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Motivation

Solution to strongly coupled multiphysics problems, often involving strong shocks:
• be positivity preserving for p, pressure etc. (e.g. LED schemes)
• be applicable to widely varying timescales
• allow flexible time integrator usage (e.g. RK-IMEX schemes)
• be on general unstructured meshes, high spatial and temporal order
• start with ideal MHD as an effort towards multi-fluid plasma

Astrophysical plasma (Casey Reed/NASA) Laboratory plasma (SNL)

MHD Systems

Ideal non-viscous,non-resistive MHD:
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Solution strategy:
• Do continuous finite element discretization in space (P1/Q1).
• Introduce algebraic stabilization (low order diffusion + limiters).
• Do divergence cleaning for MHD (hyperbolic/parabolic/mixed).

Achievements so far:
• Extensive studies for Euler equations (different limiter designs)
• Applications to steady hydrodynamics problems (Scramjet)
• Applications to 1D/2D magnetohydrodynamics problems
• Applied explicit and implicit time stepping (explicit RK4 & Crank-Nicolson)
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Numerical results HD
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Steady 2D Ma = 3 supersonic combustion ramjet engine
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Coarse unstructured mesh Density

65256 elements and 33859 degrees of freedom per variable.
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Stabilized CG scheme

Continuous problem Q C d:

ut • f(u) - 0, (x, t) E S2 x   u(x, 0) = uo(x),

u : (x,t)  f m

High order semi-discrete scheme in FE space Vh = P1 or Q1 with Nh degrees of freedom:
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Artificial diffusion (Rusanov or Roe) (Kuzmin et al., 2012):

Antidiffusion:
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Stabilized semi-discrete scheme:

ML
dU 
= K(U) +D(OU B(U) + F, where F GeF(e)

dt
e

Construct a linearity preserving limiter (Kuzmin et al., CMAME 2017):

ae = 111111{GPe, Pe } , OR a e = minfaPe, asel, where s= log p log p.

such that
• $1);(ui uj) depends continuously on ui, j E Ar(0.
• (i);(ui u1) = 0 at a local maximum and local minimum.
• (I)si(ui ui) (ui ui) if uh is linear on Qi = supp{Oi}.

rdi/i ij( Ui - ui +

Lij +

q

where > 0 such that >=2.00iigi • (xj xi) = 0, q= 10, and E= 1 x 10-16.

Numerical results MHD

1D Brio-Wu shock tube problem (Brio and Wu, JCP 1988):
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1D Ryu-Jones problem (Ryu and Jones, Astro J., 1995):
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Divergence cleaning

Use of Powell term and )arabolic cleaning :

Ot

pv
pE

•

pv
pv® v+ pl- TM
v ((pE+ p)I - TM)

0

±
v • B

_ _ _BOv-v0B-5(V

V • BIL1(K) range for no cleaning, Powell term and parabolic cleaning:
No cleaning 8.7 x 10-3 to 13.955
Powell term 4.802 x 10-3 to 11.0264
Parabolic cleaning 2.6318 x 10-3 to 0.6333

Plots of V • BILIK color-scheme between 0 and 13.955:
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