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Solution to strongly coupled multiphysics problems, often involving strong shocks: Continuous problem  C R

e be positivity preserving for p, pressure etc. (e.g. LED schemes)

e be applicable to widely varying timescales u; — V . f(u) — 07 (X, t) - Q X R—H U(X, O) — UO(X),
e allow flexible time integrator usage (e.g. RK-IMEX schemes) d

e be on general unstructured meshes, high spatial and temporal order u: (X7 t) > ij f . Rm —> Rmx .

start with ideal MHD as an effort towards multi-fluid plasma

High order semi-discrete scheme in FE space V" = P! or Q' with N, degrees of freedom:

dU
MLE: (U)+ D(U)U+ B(U) + F(U).
LR M. = diag{m} ") lnxm, mi= Y my Mc={Mg}",, My= mylnm, m;= / dihjdx.
s : 0
J
Ny Nk
W N < siall K(U) = {k}", ki=) " / V- f(up)dx, B(U) = {b}", bj=—") / o f(uy) - ndo.
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Artificial diffusion (Rusanov or Roe) (Kuzmin et al., 2012):

~ HD&MHDSpems o~ (0 0,3

|deal non-viscous,non-resistive MHD: Antidiffusion: .
N ) i Fo = (M — MY — pEUE U@,
g v Stabilized i-di h L C

O v vv—+pl— T tabilized semi-discrete scheme:

— 'OE +V- P = pl TM =0, V-B=0. dU _ _ )

ot | p v- ((pE+ p)l — Tw) M — = K(U) + D(U)U + B(U) + F, where F = "«.F

B . Bov-ve®B dt ,
where, . 1 Construct a linearity preserving limiter (Kuzmin et al.,, CMAME 2017):
P 2 2
pE= L ol + B > 1 L, e
Y o ae = min{al, alP}, OR ae, = min{a®, al}, where s=logp— vlogp.
and h th
1 1 , such that
Tw=—|B® B—_||B|l]. o ®(u;— u;) depends continuously on u;, j € N ().
o 2 J J
. | o ®(u;— u;) =0 at a local maximum and local minimum.

Solution strategy: . .
e Do continuous finite element discretization in space (P'/Q"). ® q),'(U,' — UJ) — (U,' — UJ) if Up 1S linear on Q,‘ — Supp{¢,}.
e Introduce algebraic stabilization (low order diffusion + limiters).
e Do divergence cleaning for MHD (hyperbolic/parabolic/mixed). - 2 q
Achievements so far: > i Biluy — w)| + e
e Extensive studies for Euler equations (different limiter designs) (DU — 1 —
e Applications to steady hydrodynamics problems (Scramje / ?
° Agglicazions to ltD/2}[l) rﬁagne}‘:ohydrod@namics éroblemjst) Zﬁélﬁ’./’u./ R U,'| T €
e Applied explicit and implicit time stepping (explicit RK4 & Crank-Nicolson)

where 3 > 0 such that » ., 5,8 (X; — x;) — 0, g=10, and ¢ = 1 % 10716

Woodward-Colella 1D Brio-Wu shock tube problem (Brio and Wu, JCP 1988):

1D results

Sod shock tube
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1D Ryu-Jones problem
Sod ShockTube - Mesh Convergence 100-3200 cells = =
Tl -]
(100-200) (200-400) (400-800) (800-1600) (1600-3200)
rho 9.3668%e-01 9.65261e-01 8.52469e-01 8.06609e-01  8.60413e-01 o
rhoE 1.03158e+00 1.06352e+00 9.39890e-01 8.1692%9e-01 1.01285e+00 6 -
P P By Vy
rhou 9.87064e-01 9.94115e-01 8.30446e-01 7.41841e-01 8.76973e-01
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2D results; Top: Radial Riemann, Bottom: Sedov point blast ot | pE v- ((pE+ p)l— Ty) v-B
B Bv—v® B — v
] |V - Bl| 1k range for no cleaning, Powell term and parabolic cleaning:
L No cleaning 8.7 x 1073 to 13.955
- Powell term 4.802 x 107 to 11.0264
Parabolic cleaning 2.6318 x 1073 to 0.6333
Ax— Ay —1/128 and At — p vs x trace at x — y and y — Plots of ||V - B|| 1k color-scheme between 0 and 13.955:
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Steady 2D Ma = 3 supersonic combustion ramjet engine Orszag-Tang profile at 3 mesh levels.
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Coarse unstructured mesh Density \\Q
65256 elements and 33859 degrees of freedom per variable.
p for Ax= Ay =1/100 p for Ax= Ay =1/200 p for Ax= Ay =1/400
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