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Production and consumption of nitrous oxide (N2O), methane (CH4), and carbon dioxide 

(CO2) are affected by complex interactions of temperature, moisture, and substrate supply, which are 

further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often 

invoked to explain non-normal distributions of greenhouse gas (GHG) fluxes, also known as hot spots 

and hot moments. To advance numerical simulation of these belowground processes, we expanded the 

Dual Arrhenius and Michaelis-Menten (DAMM) model, to apply it consistently for all three GHGs 

with respect to the biophysical processes of production, consumption, and diffusion within the soil, 

including the contrasting effects of oxygen (O2) as substrate or inhibitor for each process. High-

frequency chamber-based measurements of all three GHGs at the Howland Forest (ME, USA) were 

used to parameterize the model using a multiple constraint approach. The area under a soil chamber is 

partitioned according to a bivariate lognormal probability distribution function (PDF) of carbon (C) 

and water content across a range of microsites, which leads to a PDF of heterotrophic respiration and 

O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model 

generates a broad range of microsite concentrations of O2, which then determines the PDF of 

microsites that produce or consume CH4 and N2O, such that a range of microsites occurs with both 

positive and negative signs for net CH4 and N2O flux. Results demonstrate that it is numerically 

feasible for microsites of N2O reduction and CH4 oxidation to co-occur under a single chamber, thus 

explaining occasional measurement of simultaneous uptake of both gases. Simultaneous simulation of 

all three GHGs in a parsimonious modeling framework is challenging, but it increases confidence that 

agreement between simulations and measurements is based on skillful numerical representation of 

processes across a heterogeneous environment.  

Keywords: soil microsite, probability distribution function, greenhouse gas, CO2, CH4, N2O, DAMM, 

DAMM-GHG 

Introduction 

Fluxes of greenhouse gases (GHGs) from soil to the atmosphere are likely to play a significant 

role as biotic feedbacks to climate change (Ciais et al., 2013; Davidson and Janssens, 2006). Soils 

under forest, agriculture, and other land-use classes contribute to nearly a quarter of global emissions A
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of GHGs, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) (IPCC, 2014). 

Production and consumption of these biogenic GHGs are often associated with complex processes, 

involving carbon (C), nitrogen (N), and oxygen (O2) substrates and inhibitors, and environmental 

controllers such as temperature, moisture, and transport of solutes and gases (Conrad, 1996), which 

remain challenging to simulate in ecosystem and Earth system models (ESMs).

In this special issue, we present an expansion of a numerical soil process model that is a 

logical progression of several papers published by our group in the pages of this journal. While the 

importance of temperature on soil heterotrophic activity has been recognized for over a century 

(Arrhenius, 1889; Lloyd & Taylor, 1994; Van’t Hoff, 1898), and optima at intermediate values of soil 

moisture have also been well described (Hursh et al. 2017; Linn & Doran, 1984; Moyano et al., 2013), 

empirical relationships with these driving factors have had limited value in revealing a mechanistic 

understanding of soil respiration. Davidson et al. (1998) demonstrated that soil temperature and 

moisture had opposite seasonal trends in a moist temperate forest, resulting in confounding effects on 

soil respiration. Drawing on a growing body of research on soil respiration in the 1990s and 2000s, 

Davidson et al. (2006) reviewed the emerging recognized need to move beyond mostly temperature 

functions, such as Q10s, and to mechanistically link temperature and moisture drivers to substrate 

supply for soil heterotrophic respiration. Those concepts formed the basis of a parsimonious 

numerical model that used Dual Arrhenius and Michaelis-Menten (DAMM) kinetics to link soil 

temperature and moisture to their effects on substrate supply for soil respiration (Davidson et al., 

2012). In the 20-year special issue of this journal, Davidson et al. (2014) described a vision for how 

the DAMM model could be conceptually linked to related processes of soil carbon dynamics, which 

has since been demonstrated in the modular Millennial Model (Abramoff et al., 2018), and how it 

could be integrated into large ecosystem models, which was since demonstrated by Sihi et al. (2018). 

Davidson et al. (2014) also proposed that other soil trace gas emissions could be simulated using the 

DAMM approach. 

Here we offer a new version of DAMM for the greenhouse gases, CO2, CH4, and N2O 

(hereafter, DAMM-GHG: Dual Arrhenius and Michaelis Menten-Greenhouse Gas). We use three 

simultaneous data streams from chamber measurements of CO2, CH4, and N2O fluxes in a New 

England forest to constrain the DAMM-GHG model, which has a common structure for biophysical A
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processes of production, consumption, and diffusion within the soil, including the contrasting effects 

of oxygen (O2) as substrate or inhibitor for each process. Another innovation presented here is to 

represent soil microsite heterogeneity of soil carbon and moisture contents with probability 

distribution functions (PDFs) and to simulate the production and consumption of each gas at a 

microsite scale, rather than the traditional modeling approach of using bulk soil means of measured 

carbon and moisture as model drivers.

Thermodynamic theories suggest that CH4 oxidation (aka methanotrophy) should proceed 

under aerobic conditions and CH4 production (aka methanogenesis) should be favored under 

anaerobic (or reducing) conditions (Conrad, 2009; Dean et al., 2018). Production of N2O via 

nitrification and denitrification processes are known to peak at an optimal intermediate soil moisture 

content, whereas, reducing soil conditions under high water content are thought to be prerequisites for 

N2O reduction to N2 via classical denitrification (Davidson, 1991; Butterbach-Bahl et al., 2013; 

Firestone & Davidson, 1989). While a large body of literature generally supports these patterns, there 

are exceptions that are frequently attributed to spatial heterogeneity within soils and soil microsites. 

While the highest rates of net consumption of atmospheric N2O (i.e. N2O reduction) is 

observed in wetlands, N2O reduction in well-drained upland soils has been observed sporadically for 

many years (Chapuis‐Lardy et al., 2007; Schlesinger, 2013; Syakila & Kroeze, 2010). Such 

observations have often been discounted as measurement error or noise. The recent advent of fast 

response field instruments with good sensitivity and precision has permitted confirmation that upland 

soils can be small sinks of N2O (Eugster et al., 2007; Savage et al., 2014), and a modest soil sink for 

atmospheric N2O is now generally accepted as plausible for some sites and times. Increasing soil sink 

strength of N2O during drought events further increases perplexity, given that drought events 

generally facilitate soil aeration (Goldberg & Gebauer, 2009). Occasional observations of net 

emissions of CH4 from well-drained upland soils, although contrary to expectations, are also common 

(Brewer et al., 2018; Cattânio et al., 2002; Keller & Matson, 1994; Silver et al., 1999; Teh et al., 

2005; Verchot et al., 2000). 

Spatial heterogeneity of soil microsites is often invoked to explain net atmospheric uptake of 

N2O and net emissions of CH4 from well-drained upland soils. Soil heterogeneity at micro-scales can 

cause a wide range of microsite redox potentials and concentrations of substrates, which must be A
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accounted for to explain highly skewed distributions of soil GHG fluxes (Parkin, 1987, 1993; Savage 

et al., 2014; Stoyan et al., 2000). Because existing ESMs are not able to represent the underlying 

mechanisms that control variation in enzymatic processes at microsite scales (Tian et al., 2019; Xu et 

al., 2016), these models often fail to capture the dynamics of soil GHG fluxes, including the so-called 

hot-spots and hot-moments (Groffman, 2009; Groffman, 2012; Lurndahl, 2016; Saha et al., 2018) or 

control points (Bernhardt et al., 2017).

Only recently have modeling activities at ecosystem (or landscape) scales begun to shift from 

the classical framework based on redox strata (or water table position) and mean measured soil 

moisture to emerging conceptual frameworks that consider heterogeneous environment for production 

and consumption of GHGs (Ebrahimi & Or, 2018; Or, 2019; Keiluweit et al., 2018; Wang et al., 

2019; Yang et al., 2017). However, to our knowledge, mechanistic simulation of simultaneous 

production, consumption, and diffusion of multiple gases (CO2, CH4, N2O, and O2) among multiple 

soil microsites has not yet been attempted. Numerical representation of microsite production and 

consumption of multiple GHGs is necessary to simulate concurrent N2O reduction and CH4 oxidation 

processes in well-drained upland soils (Savage et al., 2014). The overall objective of this work is to 

demonstrate that the qualitative explanations of microsite heterogeneity can be expressed in a 

mathematically consistent biophysical process model that is numerically consistent with 

simultaneously measured fluxes of all three GHGs: CO2, CH4, and N2O.  

While originally developed for aerobic heterotrophic respiration (i.e. Rh), here we expand the 

original core structure of the DAMM model (Davidson et al., 2012, 2014; Fig. S1) to represent 

methanogenesis, methanotrophy, N2O production, and N2O reduction reactions using the same 

framework and physics for simulating the availability of O2 and other substrates and for diffusion of 

gases across soil-atmosphere boundary using microsite PDFs (Figs. 1, S1). Simultaneously 

constraining our GHG enzyme kinetic model (i.e. DAMM-GHG) with observations of fluxes of 

multiple GHGs presents large challenges, because tuning a model to agree with one data stream may 

cause a poorer fit to a second or third data stream. However, if all data streams can be simultaneously 

simulated with adequate fidelity and skill, this multiple constraint approach enhances the probability 

that the parameterization and process representations are realistic and robust. One can never be certain 

that a model gets the “right answer for the right reason,” but challenging a single model with multiple A
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data streams of related but differing processes, such as CO2, CH4, and N2O fluxes, confers additional 

credence to its structure and parameterization.

Materials and Methods

Site Description and Data Collection 

We measured GHG fluxes in a mature boreal-transition forest with a hummock-hollow 

microtopography, Howland Forest research site (45.20°N, 68.74°W) from central Maine, USA. Mean 

annual temperature and mean annual precipitation are +5.5 °C and 1000 mm, respectively. Soils of 

the Howland Forest upland sites are characterized as Skerry fine sandy loam, frigid Aquic 

Haplorthods. More information on the Howland Forest research site can be found in Fernandez et al. 

(1993).     

High frequency (sampling frequency: 1 Hz) real-time soil CH4 and N2O fluxes were measured 

using an Aerodyne quantum cascade laser (QCL) integrated with soil CO2 flux measurements by LI-

COR IRGA assembly. Triplicate chambers were each sampled once every two hours. Chamber tops 

were closed for 5 minutes and automated fluxes were calculated by fitting a linear regression on the 

change in headspace GHG concentrations followed by temperature and pressure corrections. We 

characterized the uncertainty of measurements by the standard deviation estimates for all three GHGs. 

Soil temperature and soil moisture were measured at each chamber location at 10 cm depth once 

every hour using a Type-T thermocouple and Campbell Scientific CS616 water content reflectometer 

probes, respectively and stored on a Campbell Scientific CR10X data-logger (Campbell Scientific, 

Logan, UT). We used daily average values of both drivers (soil temperature and soil moisture) and 

GHG fluxes for modeling purposes to smooth high measurement noise observed at sub-daily time 

scale. See Savage and Davidson (2003) for more details on our chamber design and automated 

sampling system. Quality control protocols for soil GHG fluxes can be found in Savage et al. (2008, 

2014). 

Modeling Scheme

Aerobic and anaerobic processes in soil are linked through heterotrophic dependence on fixed 

C sources for energy, but with contrasting effects of O2 as either essential substrate or potential 

inhibitor (Figs. 1, S1). To date, most biogeochemical models use separate model versions for A
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simulating soil organic matter decomposition resulting in CO2 emissions and the processes affecting 

CH4 and N2O emissions, but here we simultaneously simulate biogeochemically linked multiple GHG 

emissions using the same biophysical framework. 

For the present study, we focus primarily on heterotrophic respiration being the dominant 

source of CO2 production and fate of O2 consumption, with the resulting O2 concentrations then 

affecting the net fluxes of CH4 and N2O by methanogenesis, methanotrophy, nitrification, and 

denitrification processes. The logic for coupled simulation of CO2, CH4, and N2O fluxes in the 

DAMM-GHG model, illustrated in Fig. 1, is as follows:  

1. The measured soil C and soil moisture can be partitioned according to a simulated log-normal 

PDF, such as a distribution where only a small fraction of microsites has high soil C or high 

soil moisture. 

2. Log-normal PDFs of soil C-substrates and soil moisture among microsites lead to a simulated 

PDF of heterotrophic respiration (Rh), applying the original DAMM model independently to 

each microsite within the PDF.  

3. Simulated microsite CO2 production is aggregated to the chamber scale to estimate 

heterotrophic respiration contributing to the chamber flux measurement. We then estimate the 

total soil CO2 flux by adding the contribution of root-derived CO2 fluxes to Rh based on 

previously measured ratios at the Howland Forest (Carbone et al., 2016; Savage et al., 2018; 

Sihi et al., 2018). A distinct seasonal pattern of the contribution of root-derived CO2 (Ra) to 

total soil CO2 fluxes (SR) increased from 0.50 in early spring to around 0.65 in early autumn, 

followed by a declining trend through winter (Fig. S2). Total chamber-based measurements of 

CO2 efflux are used as a constraint for the sum of the simulated root and heterotrophic CO2 

production rates across the simulated PDF of microsites. 

4. The simulated and measured soil CO2 efflux is a reasonable proxy for O2 demand within the 

soil. The respiration quotient is not exactly unity, but is usually close enough to unity in non-

calcareous soils to allow simulation of O2 consumption within the soil based on measurement-

constrained simulated CO2 efflux (Angert et al., 2015). Knowledge of respiration quotient 

would be needed for the application of our DAMM-GHG model to calcareous soils. We 
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assumed that the simulation of O2 consumption by the original version of the DAMM model 

serves our purpose of estimating the O2 demand (or consumption) here (see Fig. S1). 

5. Microsite PDFs of O2 concentrations are then simulated as a function of O2 consumption rates 

distributed across microsites and gaseous diffusion rates using the same DAMM functions in 

Fig. S1 driven by air-filled porosity. 

6. Next, the resulting PDF of O2 concentrations is used to simulate methanogenesis, 

methanotrophy, N2O production, and N2O consumption at the scale of each of the distributed 

microsites according to similar Michaelis-Menten and diffusion equations (Fig. S1), where O2 

serves as either inhibitor or substrate (Davidson et al., 2014). The net CH4 and N2O flux 

summed across simulated PDFs of microsites are constrained by observed chamber-based 

fluxes of CH4 and N2O.

We used soluble C as a proxy for the reducing power needed for methanogenesis. 

However, future studies may explicitly represent specific substrates for acetoclastic and 

hydrogenotrophic methanogenic pathways, if parameterization of that type of model structure 

can be constrained by the availability of data on concentrations of organic acids (acetate, 

formate) and hydrogen (H2), which was not the case for our study. We also assumed that 

respiration is the dominant pathway of CO2 production in soil. Thus, we did not account for 

the minor contribution of acetoclastic methanogens to CO2 production and hydrogenotrophic 

methanogens to CO2 consumption. Likewise, we considered soil respiration is the major sink 

of O2 and ignored the otherwise small fraction of O2 consumed by methanotrophs.  

We added a nitrification module to account for the N2O production during nitrification 

using the observed seasonal dynamics of ammonium (NH4
+) in our study area (Fernandez et 

al., 1995). The Howland Forest is a strongly nitrogen-limited system, with porewater nitrate 

(NO3
-) concentration always close to detection limits by inductively coupled plasma-mass 

spectrometry, ICP-MS (Fernandez et al., 1995). N2O production during classical 

denitrification is mechanistically simulated using seasonally averaged porewater NO3
- data 

along-with microsite PDFs of soil C and soil moisture. Nitrous oxide is reduced to N2 during 

classical denitrification following the Hole-in-the-Pipe conceptual model, including possible 
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reduction of atmospheric N2O that diffuses into the soil (Firestone & Davidson, 1989).  See 

supplementary material (section S2) for DAMM-GHG model equations. 

Microsite Probability Distribution Functions of Soil C and Soil Moisture 

The microsite PDFs of soil C substrate and soil moisture were generated from a bivariate 

truncated log-normal distribution. The PDF for soil C was truncated at 0.001 and 0.15 (g cm-3), 

respectively. The soil C PDF was distributed with mean equaling the observed soil C value (see Fig. 

S3 for more information on the PDF of soil C). Likewise, the soil moisture PDF was distributed with 

mean equaling the observed soil moisture value, truncations at 70% and 200% of the observed mean 

soil moisture values. The spatial heterogeneity of soil C and soil moisture were constrained by 

optimizing the parameters (standard deviation and/or coefficient of variation) that control the 

skewness of soil C and soil moisture PDFs by enveloping the bounds reported by Stoyan et al. (2000). 

If the upper truncation limit of the soil moisture PDF exceeded the soil pore volume, we reset it to 

95% of the porosity value. We constructed the microsite PDF as the product of two lognormal 

distributions of soil C and soil moisture. The PDF was evaluated at 10 × 10 equally spaced quantiles 

for soil C and soil moisture, respectively. 

Here we focused on spatial heterogeneity across soil microsites at the mm and sub-mm scale. 

Within stand heterogeneity at the meter scale, such as variation in bulk density and porosity along 

topographical gradients, is not account for in this study. 
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Fig. 1: Conceptual framework for simultaneous representation of CO2, CH4, and N2O fluxes in 

DAMM-GHG model. Inhib represent inhibition. f(Dgas) and f(Dliq) represent soil moisture effect on 

diffusion of gases and soluble substrates, respectively.  A
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Parameter Optimization and Uncertainty Analysis 

We optimized model parameters within a Bayesian Markov chain Monte Carlo (MCMC) 

framework (see section S1 for more details on the optimization algorithm). We implemented the 

MCMC algorithm using mcmc and doParallel packages (Revolution Analytics & Weston, 2015) in 

the R (version 3.3.2) statistical programming language (R Core Team, 2018). We applied a posterior 

predictive procedure to estimate the uncertainty of the optimized parameters. We implemented the 

posterior predictive analyses using the R-INLA package (Lindgren & Rue, 2015; Rue et al., 2009). We 

divided daily-average soil GHG flux measurements into alternative synoptic-scale periods of 10 days, 

where we used one-half of measured GHG fluxes for model calibration and another half for model 

validation.    

Sensitivity Analysis

We evaluated the sensitivity of model parameters using a global variance-based sensitivity 

analysis and a collinearity (or parameter identifiability) analysis. We implemented a variance-based 

sensitivity analysis using the R-multisensi package, where a generalized sensitivity index (ranging 

between 0 to 1, extracted from the first axis of principle component analysis) was used to determine 

the sensitivity of multiple GHG fluxes to each model parameter value (Bidot et al., 2018). The global 

sensitivity analysis quantifies the proportion of variability accounted by each of the parameters on 

model outputs, where a high GSI value indicates that the simulation results are highly sensitive to that 

parameter (Lamboni et al., 2009). 

We implemented the collinearity analysis using the collin function of R-FME package, where 

the collinearity index (CI) was used to determine the linear dependence of model parameters to each 

other (Brun et al., 2001; Soetaert & Petzoldt, 2010; Soetaert, 2016). In general, higher values of CI 

indicate increased equifinality (or decreased number of identifiable parameters) of model parameters. 

One can compensate (1 - ) % of the effect of a change in one parameter by modifying the values of 1
CI

other parameters. Hence, CI values can range between 1 (when all terms are orthogonal or all subsets 

of parameters are identifiable) to infinity (when all terms are linearly dependent, or no single subset of 

parameters is identifiable). The CI value of 15 is considered as a threshold above which approximate 

linear dependence of model parameters increases and poor identifiability can be expected (sensu 

Omlin et al., 2001).   A
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Results 

Seasonality of Soil Greenhouse Gas Fluxes

Soil CO2 fluxes followed the typical seasonal trend of soil temperature, where both seasonal 

average and peak CO2 fluxes were comparable between 2015 (average (min-max): 171 (73-297) mg 

CO2-C m-2 hr-1) and 2016 (average (min-max) measurement period: 168 (52-281) mg CO2-C m-2 hr-1) 

(Fig. 2). This is due, in part, to the comparable seasonal soil temperature ranges between 2015 

(average:14.4 °C, ranged between 8.4 to 18.6 °C) and 2016 (average: 13.3 °C, ranged between 5.6 to 

17.9 °C) measurement periods (Figs. 2, 3). Soil CO2 fluxes exponentially increased with soil 

temperature (R2 = 0.75) (Fig. 3a). We also observed a typical bell-shaped relationship between CO2 

flux and soil moisture (R2 = 0.16), with the optimum for CO2 flux at intermediate water contents (Fig. 

3d). Although the effect of soil moisture on CO2 fluxes was always secondary to soil temperature 

(Fig. S5), the fit with soil moisture was better when it was more limiting in the dry summer of 2016 

than the wet summer of 2015 (R2 = 0.24 and 0.52 in 2015 and 2016, respectively) (Fig. S6d).    

In contrast to CO2 fluxes, soil CH4 fluxes mimicked the seasonal trend of soil moisture for 

both years (Fig. 2b,g). Soil moisture and net CH4 fluxes were positively related (R2 = 0.70), although 

the slope of the linear regression line was steeper during 2016 than during 2015 (Figs. 3e, S6e). We 

observed relatively smaller net CH4 oxidation in the spring followed by higher net CH4 oxidation in 

summer months, and again lower net CH4 oxidation in the autumn. Although seasonal average values 

were generally similar, the range of CH4 flux values in 2016 (average: -0.07 µg CH4-C m-2 hr-1, min-

max range: -0.13 to 0.004 µg CH4-C m-2 hr-1) was wider than in 2015 (average: -0.05 µg CH4-C m-2 

hr-1, min-max range: -0.08 to -0.03 µg CH4-C m-2 hr-1).

Unlike CO2 and CH4, the seasonal trend of soil N2O fluxes contrasted between 2015 vs. 2016 

(Figs. 2c,h, 3f, S6f). The 2015 growing season was significantly wetter than the 2016 growing season. 

The cumulative precipitation of the summer months (June 1 to Sept 30) of 2015 and 2016 was 439 

mm and 279 mm, respectively (source: https://www.ncdc.noaa.gov/crn/). Consequently, the average 

soil moisture was generally higher (24.8 v v-1, min-max range: 14.8 to 32.6 v v-1) during the 2015 

growing season (measured over June 11 to Oct 17) than the average soil moisture (19.7 v v-1, min-
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max range: 8.9 to 27 v v-1) during the 2016 growing season (measured over May 3 to Nov 6) (Figs. 

2d,i, 3f, S6f). 

We observed low rates of net N2O consumption during the spring of 2015 when soil moisture 

was highest, which was followed by mostly near zero net emissions and a few positive emissions 

throughout the 2015 summer (Fig. 2c,d). In contrast, we observed net positive N2O emission during 

the early spring of 2016 and net N2O consumption throughout most of the 2016 growing season, when 

soil moisture was minimal (Fig. 2h,i). The temperature effect was weak and inconsistent between two 

years (Figs. 3c, S6c). On average, we observed small net N2O emission during the 2015 growing 

season (average: 0.06 µg N2O-N m-2 hr-1, ranged between -0.77 to 1.73 µg N2O-N m-2 hr-1) and net 

N2O consumption during the 2016 growing season (average: -0.18 µg N2O-N m-2 hr-1, ranged 

between -1.10 to 1.68 µg N2O-N m-2 hr-1). 

Performance of the DAMM-GHG Model 

Overall, the model reproduced the seasonal dynamics of soil greenhouse gas fluxes (Figs. 2, 

4). The model explained 72% of the variation in soil CO2 fluxes (Fig. 4a). Likewise, the 1:1 relation 

between the observed and simulated soil CH4 fluxes was remarkable (R2 = 0.78) (Fig. 4b). The model 

marginally overestimated CO2 fluxes and underestimated CH4 fluxes during early spring of 2016 (Fig. 

2f,g).           

Soil N2O fluxes were relatively noisier as compared to CO2 and CH4 fluxes with a few outliers 

in both years (red triangles and squares in Fig. 2 and 4, respectively). The model generally explained 

the dynamics of N2O fluxes (R2 = 0.36 and 0.52 with and without outliers, respectively) (Fig. 4c). The 

model did not capture the few very low net N2O fluxes observed in the peak season of 2016. Most 

importantly, the model captured the instances when net atmospheric consumption of CH4 (i.e. net CH4 

oxidation) co-occurred with net atmospheric consumption of N2O (i.e. net N2O reduction) within the 

same soil chamber and at two extremes of the measured soil moisture, during the early wet spring of 

2015 and during the driest period of the 2016 growing season (see Fig. 2c,h and red circles in Fig. 3f).  

In general, there was little bias in the relations between the observed and simulated GHG 

fluxes (slope ranged between 0.98 to 1.10) (Fig. 4). The 95% CI of the simulated GHGs for all, CO2, 

CH4, and N2O, were narrow and the model parameter values were generally well-constrained. The 

interquartile ranges in the posterior distributions of all parameters were less than half of their A
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respective prior interquartile ranges (Table 1). The prior interquartile ranges represent the 

approximate upper and lower bounds of the measured values from the relevant literature. 

The effective depth in the DAMM-GHG model was optimized to a median value of 7 cm 

(min-max range: 6-11 cm; Table 1), indicating that most of the important processes affecting the net 

GHG fluxes that we measured with chambers were occurring within the topsoil horizons at this site. 

The number of microsites within the 0.07 m2 chamber footprint was optimized to a median value of 

7000 (min-max range: 2000-9000; Table 1), indicating that the simulated microsites were about 3.6 

mm in diameter, which could include macroaggregates and clusters of fine roots and pockets of 

organic debris.

Sensitivity Analysis

Soil moisture primarily (and soil temperature secondarily) controlled the microsite PDFs of 

production, consumption, and diffusion processes of CO2, CH4, and N2O. The net flux is the net effect 

of production, consumption, and diffusion of individual gases (Figs. 5, S10). Of all parameters, the 

most sensitive ones were those that control the Vmax terms in the Arrhenius equation (Ea and α) for 

production and consumption of individual GHGs, followed by the half-saturation constants (Km’s) 

and O2 inhibition coefficients (KI’s) for each process (Fig. 6). The linear dependence of the DAMM-

GHG model parameters was generally low and was usually below the threshold of 15 (with a few 

exceptions) identified for potential equifinality issues (Fig. 7). 
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Table1: Parameters used for simultaneous simulation all three greenhouse gases in the DAMM-GHG model.

Parameter Description Unit Prior range Posterior range Source

For CO2 module

αCO2 Base rate for soil 

respiration

µmole CO
2
 L-1

 hr-1 2*1010(2*109, 2*1011) 5*109(2*109, 

9*109)

EaCO2 Temperature sensitivity 

for soil respiration
kJ mol-1 72(60,80) 66(64-72)

kMC ― CO2 Half-saturation constant of 

C for soil respiration

µmole C L-1 1(0.1,100) 0.9(0.7,1.6)

kMO2 ― CO2 Half-saturation constant of 

O
2 
for soil respiration

µmole O
2
 L-1 100(3,300) 16(4,38)

Abramoff et al., 2017

Davidson et al., 2012

Sihi et al., 2018

Depth Effective depth cm 15(5,30) 7(6,11) This study 

Total microsite Total number of 

microsites

unitless 104(103,105) 7*103 (2*103, 

9*103)

This study

Soil CSD Coefficient that determine 

skewness of soil carbon 

PDF

unitless 0.5(0.1,0.9)   0.5(0.1,0.9) Stoyan et al., 2000

SDSoil Moisture Coefficient that determine 

skewness of soil moisture 

PDF

% 20(5,30)            7(6-12) Stoyan et al., 2000
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For CH4 module

αCH4prod Base rate for CH
4 

production

µmole CH
4
 L-1

 hr-1 3*105(3*104,3*106) 3*105(2*105,6*105) This study

EaCH4prod Temperature sensitivity 

for CH
4 
production

kJ mol-1 100(50,150) 74(68,78)     Nedwell & Watson, 1995

Westermann, 1993

kMC ― CH4 Half-saturation constant of 

C for CH
4 
production

µmole C L-1 1(0.1-100) 1.2(0.9,2.1) This study

kICH4 Inhibition coefficient of 

O
2
 for CH

4 
production

µmole O
2
 L-1 3(0.3-4.3)  0.43(0.4,0.9) Arah & Stephen, 1998

αCH4ox Base rate for CH
4 

oxidation

µmole CH
4
 L-1

 hr-1 0.07(0.007,7)   0.1(0.08,2) Davidson et al., 2014

EaCH4ox Temperature sensitivity 

for CH
4 
oxidation

kJ mol-1 30(10,50) 34(32,37) Crill et al., 1994

kMCH4 Half-saturation constant of 

CH
4
 for CH

4 
oxidation

µmole CH
4
 L-1 10-2(10-3,10-1) 0.005(0.002,0.006) Davidson et al., 2014

kMO2 ― CH4 Half-saturation constant of 

O
2 
for CH

4 
oxidation

µmole O
2 
L-1 43(3,300) 24(13,33) Davidson et al., 2014

For N2O module
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αN2Oprod ― nitrif Base rate for nitrification µmole N2O 
L-1 102(101,103)  282(207,722) This study

EaN2Oprod ― nitrif Temperature sensitivity 

for N
2
O

 
production during 

nitrification

kJ mol-1 60(45,75) 62(57,67) Stark, 1996

Stark & Firestone, 1996

kMNH4 Half-saturation constant of 

NH4
+ for N

2
O

 
production

µmole NH4
+

 
L-1 15 (8,22) 9(8,10) Stark & Firestone, 1996

Zarnetske et al., 2012

kMO2 ― N2O Half-saturation constant of 

O
2 
for N

2
O

 
production

µmole O
2 
L-1 100(9,163) 36(15,44) Bodelier et al., 1996

Veresetre & Focht, 1977

Zarnetske et al., 2012

αN2Oprod ― denitrif Base rate for N
2
O

 

production

µmole N2O 
L-1 102(101,103)  520(438,958) This study

EaN2Oprod ― denitrif Temperature sensitivity 

for N
2
O

 
production during 

denitrification

kJ mol-1 60(45,75) 67(65,71) Canion et al., 2014

Holtan-Hartwig et al., 2000

Vieten, 2008

kMNO3 Half-saturation constant of 

NO3
- for N

2
O

 
production

µmole NO3
-
 
L-1 26(15,57) 17(16,19) Zarnetske et al., 2012
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kIN2O ― prod Inhibition coefficient of 

O
2
 for N

2
O

 
production

µmole O
2 
L-1 14.3(4.3,43) 41(40,42) Körner & Zumft, 1989 

Zarnetske et al., 2012

kMC ― N2O Half-saturation constant of 

C for N
2
O

 
production and 

reduction during 

denitrification

µmole C L-1 1(0.1-100) 0.6(0.3,1) This study

αN2Ored Maximum velocity for 

N
2
O

 
reduction

µmole N2O 
L-1 103(102,104) 3413(1585,9583) This study

EaN2Ored Temperature sensitivity 

for N
2
O

 
reduction

kJ mol-1 50(45,75) 47(46,47) Canion et al., 2014

Holtan-Hartwig et al. 

(2000)

Vieten, 2008

kMN2O Half-saturation constant of 

N
2
O for N

2
O

 
reduction

µmole N
2
O

 
L-1 0.16(0.05,0.27) 0.19(0.13,0.26) Holtan-Hartwig et al., 2000

Vieten, 2008

kIN2O ― red Inhibition coefficient of 

O
2
 for N

2
O

 
reduction

µmole O
2 
L-1 7.5(4.3,20.1) 19.5(18.6,19.7) Körner & Zumft, 1989 

Vieten., 2008
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PDF: Microsite probability distribution function. Prior range represents initial (min-max) of prior interquartile range. Posterior range 

represents median (95% CI) of posterior interquartile range. Units for all base rates, i.e. α(s), are in µmole concentration dissolved in water. 
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Fig. 2: Temporal trend of greenhouse (GHG) gas (CO2: a, f; CH4: b, g; and N2O: c, h) fluxes, soil 

moisture (d, i), and soil temperature (e, j) during 2015 (a-e) and 2016 (f-j) growing seasons. Triangles 

and squares represent observed GHG fluxes in 2015 and 2016, respectively. Light gray shades in the 

background represent validation windows, which are interspersed throughout the observation period. 

Red triangles and squares represent outliers for N2O fluxes. Blue line and shade represent median and 

95% CI of simulated GHG fluxes.A
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Fig. 3: Relation of observed CO2 (a, d), CH4 (b, e), and N2O (c, f) fluxes with soil temperature (a-c) 

and soil moisture (b-e). Triangles and squares represent observed GHG fluxes in 2015 and 2016, 

respectively.A
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Fig. 4: Relation between observed versus simulated greenhouse gas, GHG (CO2 (a, d), CH4 (b, e), and 

N2O (c, f)) fluxes. Triangles and squares in a-c represent observed GHG fluxes in 2015 and 2016, 

respectively. Red triangles and squares in lower left panel (c) represent outliers for N2O fluxes. Inset 

figures in bottom panels (c, f) represent one-to-one relation and model residuals for N2O after 

removing the outliers. 
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Fig. 5: Microsite probability distribution functions (PDFs) of soil carbon (a), soil moisture (b), CO2 

flux (c), O2 concentration (d), CH4 production (e), CH4 concentration (f), CH4 oxidation (g), CH4 flux 

(h), N2O production (i), N2O concentration (j), N2O reduction (k), and N2O flux (l). Solid, dashed, and 

dotted lines represent simulated microsite PDFs of individual processes for DOY 180, 2015 

(SoilM=32.6 v v-1 & SoilT=12.0 °C); DOY 192, 2016 (SoilM=25.4 v v-1 & SoilT=13.8 °C); and DOY 

212, 2016(SoilM=18.2 v v-1 & SoilT=16.3 °C), respectively, and correspond to three scenarios 

presented in the discussion section. DOY: Day of year, SoilM: Soil moisture, SoilT: Soil temperature. 
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Fig. 6: Sensitivity indices of the DAMM-GHG model parameters for CO2 (a), CH4 (b), and N2O (c) 

modules, respectively.
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Fig. 7: Collinearity indices of the DAMM-GHG model parameters for CO2 (a), CH4 (b), and N2O (c) 

modules, respectively. Each point represents a unique combination of parameters allowed to vary 

while others are held constant. Dashed horizontal lines represent threshold value above which 

approximate linear dependence of model parameters increases and poor identifiability can be expected 

(Omlin et al., 2001).   A
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Discussion  

Our goal is a novel integration of measurement and modeling of three key greenhouse gases to 

improve understanding of and modeling capacity for interactions of belowground temperature, 

moisture, and substrate supply that control the net soil emissions of CO2, CH4, and N2O. To this end, 

we built upon the DAMM model, which mechanistically simulates soil heterotrophic respiration using 

Arrhenius equations, diffusion functions, and Michaelis-Menten enzyme kinetics (Davidson et al., 

2012, 2014). Our framework of the DAMM-GHG model is unique in that it represents the 

simultaneous production and consumption of all three GHGs within the same soil biophysical 

framework using microsite PDFs. Below we discuss the performance of the DAMM-GHG model and 

the utility of the microsite PDFs in reproducing the spatial and temporal dynamics of observed CO2, 

CH4, and N2O fluxes within a multiple constraint framework.  

Microsite Representation Captures Co-occurrence of Methane Oxidation and Nitrous Oxide 

Reduction

Consumption of atmospheric N2O via classical denitrification should occur only under 

reducing conditions. Yet, we have observed net uptake of atmospheric CH4 (oxidation) and uptake of 

atmospheric N2O (reduction) simultaneously in well-drained soils of Howland forest under both low 

and high soil moisture levels. With the advent of high frequency and high sensitivity flux 

measurement technology, we can be confident that these modest uptake rates of both CH4 and N2O 

are significantly different from zero and are not measurement errors or artifacts (Fig. 2 and 4, also see 

Fig. S4). These seemingly contradictory observations have been qualitatively explained by describing 

diffusional constraints of gas transport as follows: both CH4 and N2O can diffuse into well-drained 

soils; the CH4 is oxidized at microsites where O2 is abundant; while N2O is reduced at other 

microsites where N2O is present and heterotrophic respiration is sufficiently rapid to consume O2. 

Here, we demonstrate that this qualitative explanation can be expressed in a mathematically consistent 

biophysical process model that is numerically consistent with simultaneously measured fluxes of 

these gases.

The area under a soil chamber was partitioned according to a bivariate lognormal PDF of soil 

C and moisture across a range of microsites, which leads to a PDF of CO2 production and O2 

consumption among microsites. The resulting broad range of microsite O2 concentrations determines A
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the PDF of microsites that produce or consume CH4 and N2O according to Michaelis-Menten and 

Arrhenius functions for each process (Figs. 1, S1). Concentrations of below ambient N2O (hotspots of 

N2O reduction) occur in microsites with simulated high C and high moisture. Net consumption and 

production of CH4 and N2O are simulated within a chamber as the average of all soil microsite 

simulations. To demonstrate that it is numerically feasible for microsites of N2O reduction and CH4 

oxidation to co-occur under a single chamber, we discuss three different scenarios where mean soil 

moisture levels cover the envelope of observed soil moisture in our study area (Fig. 5). 

Of the two growing seasons, we measured highest bulk soil moisture (32.6 V V-1) on June 29 

(DOY 180), 2015. Consequently, microsite PDFs of soil moisture ranged between 23.7 V V-1 to as 

high as 47.7 V V-1 (solid line in Fig. 5b). Microsites with high soil moisture limited diffusion of 

gaseous O2 through air-filled pore space. Simultaneously, soils had warmed up enough during the late 

spring of 2015 for soil respiration to exceed 100 mg CO2-C m-2 hr-1, which created significant O2 

demand in microsites with high soil C. Relatively high soil respiration along with limited O2 diffusion 

resulted in a large fraction of total soil microsites with low O2 concentrations (solid line in Fig. 5d). 

Production of N2O was high in microsites with high soil C. However, reducing environments favored 

N2O reduction more than N2O production in microsites with low O2 concentrations. Together, the 

PDFs of soil microsites resulted in a modest net negative mean flux of N2O (solid line in Fig. 5l). 

Classical theories of biological denitrification processes fit with our observations of net negative 

fluxes of N2O under conditions of high soil moisture (and soil C) when enzymatic reduction of N2O to 

N2 under reducing environment outcompete N2O production rates, especially in nitrogen-limited 

systems like our field site (Davidson et al., 1993, 2000; Firestone & Davidson, 1989). Although N2O 

reduction slightly exceeded N2O production under these conditions, net uptake rates of atmospheric 

N2O were low, because diffusion of atmospheric N2O into the soil, while occurring and thus 

supporting some uptake, was also limited by high water-filled pore space.  

The diffusion of atmospheric N2O into the soil increased during the drier 2016 summer, thus 

enabling somewhat larger net uptake of atmospheric N2O. The observed soil moisture content of 18.2 

V V-1 on July 30 (DOY 212), 2016 approximately represents the 1st quantile of observed soil moisture 

across 2015 and 2016 growing seasons. Rates of N2O production during nitrification and 

denitrification were low in a large majority of microsites due to the oxygen inhibition effects as well A
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as the diffusional constraints of soil C, ammonium, and nitrate substrates at low soil moisture. 

However, greater diffusion of atmospheric N2O to soil microsites also increased the microsite 

concentrations of N2O (dotted line in Fig. 5j), including a small fraction of microsites with 

sufficiently low O2 concentrations to not fully inhibit N2O reduction (i.e., the simulated O2 was near 

the kI for N2O reduction ( ) in approximately 10% of total microsites, resulting in net kIN2O ― red

negative flux of N2O (dotted line in Fig. 5d, Table 1). Our observation of a net soil sink of 

atmospheric N2O during summer drying events match with reports from other natural and managed 

ecosystems, ranging from tropical to temperate climates, where net uptake of atmospheric N2O has 

been measured when mean bulk soil moisture was drier than would normally be expected for N2O 

reduction (Donoso et al., 1993; Flechard et al., 2005; Goldberg & Gebauer, 2009; Verchot et al., 

2000; Yamulki et al., 1995). In this case, however, we can demonstrate quantitatively that reducing 

conditions in only about 10% of the microsites was sufficient to enable net uptake of atmospheric 

N2O.  

In contrast to the above two examples, intermediate soil moisture conditions are favorable for 

production to exceed consumption, resulting in modest net emissions of N2O from soil to the 

atmosphere. Within this context, observed soil moisture content of 25.4 V V-1 on July 10, 2016 (DOY 

192; dashed lines in Fig. 5), approximately represents the 3rd quantile of observed soil moisture across 

2015 and 2016 growing seasons (Fig. 5b). As expected, N2O production was greatest at this 

intermediate soil moisture (Fig. 5j), especially in microsites with high soil C. Because N2O production 

was much higher than the very low N2O reduction rates (Fig. 5k) in a sufficiently large number of 

total soil microsites, a net positive mean N2O flux resulted (Fig. 5l).  

Previous studies indicated that N2O production during biological nitrification and 

denitrification often peak at 50-80% of water-filled pore-space (Davidson, 1991; Metivier et al., 

2009), when soil moisture may be sufficiently high such that nitrate and nitrite are more available 

than O2 as the alternate elector acceptor in many microsites, but the soil O2 content is still high 

enough to mostly inhibit the reduction of N2O to N2. This is the basis of the soil moisture function of 

the conceptual hole-in-the-pipe model (Firestone and Davidson, 1989). This relationship between soil 

moisture and N2O production is often represented in models as an empirical statistical algorithm, such 

as a polynomial or similar function (e.g., Del Grosso et al., 2001; Potter et al., 1996). In contrast, the A
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responses to soil moisture in the DAMM-GHG model produces the response pattern across simulated 

microsites (Fig. S7) predicted by the conceptual hole-in-the-pipe model as an emergent property of 

the role of O2 as substrate (for nitrification, see Fig. S1) or inhibitor, as represented by different kI 

values (  and ) used in DAMM mechanistic functions (Table 1).kIN2O ― prod kIN2O ― red

For CH4, the microsite PDFs of production, consumption, and net emission were relatively 

straightforward. Methane production was high in a relatively few numbers of microsites with high soil 

moisture (and soil C). In contrast, CH4 oxidation was high in the majority of microsites, which had 

low soil moisture, as the diffusion of both substrates (O2 and CH4) increased with decreasing soil 

moisture. Note that CH4 production was several orders of magnitude lower than CH4 oxidation across 

the simulated range of microsite moisture contents in our study, mainly due to significant oxygen 

inhibition. Therefore, microsite PDFs of CH4 oxidation primarily dominated the net CH4 emission, 

where net CH4 emission linearly decreased with decreasing soil moisture (Fig. 5e-h). 

Taken together, these results demonstrate that representing production, consumption, and 

diffusion processes as a function of soil microsite PDFs can neatly encapsulate the factors affecting 

emissions of CO2, CH4, and N2O in field studies and their underlying mechanisms. We also did a 

comparison of the model performance to a conventional framework, where we kept identical soil C 

and soil moisture values, set to the average values observed for the bulk soil, across all microsites. 

Although the performance of the model without microsite PDF was comparable to the one with 

microsite PDF for CO2, model performance for CH4 and N2O was strongly affected by microsite 

variability (Figs. S8, S9). The model without microsite PDF simulated less uptake of CH4 overall, had 

larger than observed peaks and valleys during in wet-up and dry-down events, and had more biased 

residuals (Figs. S8b, S8g, S9b, S9e). For N2O, the model with PDF representation of microsite 

variation also had an overall better fit to the observations and less biased residuals (Figs. S8c, S8h, 

S9c, S9f).

The model-data fusion algorithm we used tends to reduce the overall model-data mismatch for 

the entire measurement window, and so it is not surprising that there are periods within that window 

where simulations do not match observations as well, such as the CO2 and CH4 fluxes of spring 2016 

(Fig. 2). This may also be due to other factors not included in the DAMM-GHG model, such as 

impacts of spring freeze-thaw cycles on C availability or phenology of root exudates. Additionally, A
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the lower fraction of observed variability of N2O fluxes accounted for by the model, compared to CO2 

and CH4 fluxes, can be attributed to; (1) the low signal-to-noise ratio inherent to very low N2O fluxes; 

and (2) the increased number and complexity of interactions of substrates (and inhibitors) for 

production (e.g. C, O2, NH4
+, and NO3

-) and consumption (e.g. C, O2, and N2O) of N2O during 

nitrification and denitrification that are represented numerically in the model with additional 

parameters (Figs. 2, 4). We further discussed how these potential interacting processes might have 

increased the covariation of parameters related to N2O dynamics than those related to CO2 and CH4 

dynamics (see Collinearity analysis subheading). 

Sensitivity Analysis

Sensitivity of Predicted Greenhouse Gas Fluxes to Model Parameters 

Sensitivity indices indicated that the parameters representing the Vmax terms in the Arrhenius 

equation (α and Ea) for production and consumption of each gas were the most influential for all three 

GHGs (Fig. 6a-c), which is in line with other reports (Abramoff et al., 2017; Zarnetske et al., 2012). 

Sensitivity of GHG fluxes to the parameters representing Michaelis-Menten equations were secondary 

to those of the α(s) and Ea(s), where the individual ranking was associated with the importance of 

controlling drivers. Following α(s) and Ea(s), some of the half-saturation constants, i.e. kM(s), were 

more important than others. For example, relatively higher sensitivity indices of the half-saturation 

constants of CH4 ( ) and O2 ( ) for CH4 oxidation as compared to the half-saturation kMCH4 kMO2 ― CH4

constants of C ( ) and inhibition coefficient of O2 ( ) for CH4 production can be explained kMC ― CH4 kICH4

by the dominant role of CH4 oxidation in controlling net CH4 emissions in our study. On the other 

hand, the inhibition coefficients of O2 for N2O reduction ( ) and N2O production (kIN2O ― red kIN2O ― prod

), along with the half-saturation constant of N2O for N2O reduction ( ), had relatively higher kMN2O

sensitivity indices than those for the half-saturation constant of ammonium ( ) and O2 (kMNH4

) during nitrification and nitrate ( ) and C ) during denitrification, kMO2 ― N2O kMNO3 (kMC ― N2O

respectively. These results indicate the greater importance of reducing conditions and the diffusive 

supply of N2O in controlling net N2O emission at our site than either the concentrations of NH4
+ and 

O2 substrates for nitrification or NO3
- and C substrates for denitrification. This result may be 

particular to our site where NO3
- is uniformly low and the seasonal trend of NH4

+ is much less 

dynamic than that of soil moisture (Fernandez et al., 1995). We speculate that  and kMNH4 kMNO3 A
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might be more commonly important in agricultural soils, where large temporal variations in NH4
+ and 

NO3
- are expected depending upon the timing of fertilization and crop uptake.

Sensitivity of Predicted Greenhouse Gas Fluxes to Model Drivers 

Soil moisture primarily (and soil temperature secondarily) controlled the skewness of the 

microsite PDFs of production, consumption, and diffusion processes of each gas (Fig. S10). Within 

this context, it is important to note that even though the parameters representing the Vmax terms in 

the Arrhenius equation (Ea and α) had higher sensitivity indices than the Michaelis-Menten 

parameters that represent the influence of soil moisture (Fig. 6a-c), most of the temporal variations in 

CH4 and N2O fluxes were nevertheless explained by soil moisture rather than temperature. The 

correlation matrix in Fig. S5 also indicates that soil moisture, rather than soil temperature, controlled 

the temporal variation of CH4 and N2O fluxes. In other words, if the Ea value is changed, the average 

simulated flux for the entire time period increases or decreases significantly, but the within-season 

variation in CH4 and N2O fluxes is still dominantly influenced by variation in soil moisture (Figs. S6, 

S10). 

Collinearity analysis

As expected, the collinearity index (CI) increases as the number of variable parameters 

increases (Fig. 7). Given the parsimonious model structure, we had few problems of identifiability of 

the processes for CO2 and CH4 module, and the most parameter combinations remain below the 

threshold value of 15 (Brun et al., 2002; Omlin et al., 2001). However, we do have some parameter 

combinations with CI>15 for the N2O module, due to probable ambiguity of whether N2O fluxes are 

affected more by production via nitrification (affected by NH4
+

 substrate), production via 

denitrification (affected by NO3
-
 substrates), or consumption of N2O (affected by N2O diffusion). 

Tradeoffs of processes within models can account for inflation of CI values (Keenan et al., 2011; 

Richardson et al., 2010), which is likely the case for the N2O module relative to the CO2 and CH4 

modules. Overall, however, collinearity analysis indicates that the chances of having equifinality 

issues characterized by biologically improbable process representations were generally low in the 

DAMM-GHG model. 

We believe that this success is largely due to the multiple constraints imposed by 

simultaneously modeling data streams of three different gases, which enabled us to capture the A
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influence of temporally and spatially varying drivers on GHG fluxes (Myrgiotis et al., 2018). For 

example, when simulating only CH4 flux, a better fit of the model to the data might be achieved by 

adjusting either the Michaelis-Menten parameters or the diffusion parameters, but it may be 

impossible to know which the “correct” adjustment is. However, if N2O and CO2 are also being 

simultaneously simulated, then adjusting the diffusion parameters will affect simulations of all three 

gases, whereas adjusting the Michaelis-Menten parameters for CH4 oxidation should have little effect 

on the other two gases. Hence, the additional constraints help identify which model parameterizations 

are consistent with all three data streams of flux measurements.

Microsite probability distribution functions permit model parsimony

Simulating a 3-D array of soil aggregates or pore-networks (Arah & Vinten, 1995; Ebrahimi & 

Or, 2014; Yan et al., 2016) is another approach for representing spatial heterogeneity of soil matrix in 

biogeochemical models. However, explicit representation of soil spatial variability requires detailed 

information on soil structure, involving high-throughput instrumentations such as X-ray CT scan (see 

Carducci et al., 2017) and may require greater computational power than our PDF approach. Because 

of the limited measurements on the spatial variability of soil aggregates (or pores) at a plot scale, let 

alone at larger scales, and because of the increased computational complexity in spatially explicit 

model structures, scaling up of 3-D soil aggregate (or pore-network) models to the ecosystem models 

and ESMs is still challenging. 

Statistically representing microsite variation as PDFs in the DAMM-GHG model offers a 

relatively computationally efficient, yet mechanistically consistent, alternative way of simulating soil 

heterogeneity and maintaining model parsimony, as in the original DAMM model (Davidson et al., 

2012, 2014; Sihi et al., 2018). We believe that our framework could be used to simulate fluxes of 

GHGs from other natural and managed systems as well as be scaled up to ecosystem models and 

ESMs.              

Opportunities for Future Improvement of the DAMM-GHG Model

We represented all microsite-scale processes by optimizing an equivalent depth for 

heterotrophic respiration, where most of the biological reactions appear to happen in the soil of this 

study site (posterior range: 6-11 cm) and fixed that depth for simulating processes related to 

production and consumption of CH4 and N2O. This simplification allowed us to use unitless diffusion A
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constants for gaseous and dissolved substrates and to avoid needing to know exact diffusion path 

lengths (see Davidson et al., 2012 for details). Exploring heterogeneity of diffusivity within and 

among soil horizons could be an appropriate next step. 

Including more complex models of gas diffusion that includes variable diffusivity between 

intra-aggregate and inter-aggregate pore spaces may be more appropriate for aggregated media like 

soil (Millington and Shearer, 1971; Resurreccion et al., 2010). Representing soil microsite PDFs in 

more than one vertically stratified soil horizon by differentiating between the organic and various 

mineral horizons may be needed for application to other sites (e.g. wetland with a seasonally variable 

depth to the water table), such that transport of gases between soil horizons and across soil-air 

boundary can be estimated using Fick’s law. Measured vertical concentration profiles of soil gases 

could serve as additional data constraints for soil gas concentration profiles that become emergent 

simulated properties of this modeling approach. It would also be useful to have a data stream of 

heterogeneity of O2 or redox potentials across microsites, but that would require new generations of 

micro-probes. 

Additionally, techniques that disentangle gross production and gross consumption rates of CH4 

and N2O under field conditions could increase the predictive power of the dynamics of soil GHGs 

fluxes. For example, Chanton et al. (2007) reported that measuring stable carbon isotope of emitted 

CH4 (13CH4) is a feasible way to quantify gross CH4 oxidation in-situ. Likewise, Wen et al. (2018) 

demonstrated that 15N2O pool dilution method can be effective to measure atmospheric N2O uptake in 

soil under field conditions. In-situ quantification of microbial activities pertaining to gross production 

and consumption of CH4 and N2O can also be pursued following the gas push-pull method (Urmann 

et al., 2005). Quantifying gross nitrogen transformations using stable isotope tracing could help 

constrain the sources of N2O emissions (Morse & Bernhardt, 2013; Müller et al., 2007; Myrold et al., 

1986). 

In addition to nitrification and biological denitrification, other bacterial (Jensen & Burris, 

1986; Yamazaki et al., 1987) and fungal (Hayatsu et al., 2008; Shoun et al., 1992) contributions, as 

well as abiotic (Davidson et al., 2003; Vieten 2008) sinks of N2O in soil could be explored if 

warranted. Adding other controlling factors, such as pH effects, temporal dynamics of enzyme 

synthesis, root exudation, could improve model performance for some sites (Butterbach-Bahl et al., A
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2013; Zheng & Doskey, 2015). In all of these cases, however, the potential additional explanatory 

value of more parameters and model complexity must be balanced with the availability of data to 

constrain them and with the advantages of model structure parsimony.

Conclusions

Representing microsite heterogeneity as PDFs related to predictive processes offers a new 

approach for numerical representation of methanogenesis, methane oxidation, nitrification, and 

denitrification and other spatially and temporally variable microbial processes in soil. Our ability to 

accurately measure and skillfully model rates of these processes has been hampered by highly 

variable soil microsite conditions, which are difficult to measure and simulate, but our use of PDFs to 

represent that variability offers a promising and computationally efficient approach. In addition, by 

measuring and modeling all three greenhouse gases (CO2, CH4, and N2O), we have mechanistically 

and quantitatively explained the apparent paradox of observed simultaneous aerobic respiration that 

produces CO2, CH4 uptake (oxidation), CH4 production, and N2O uptake (reduction) in the same soil 

profile. Skillful representations of multiple ecologically relevant processes increase confidence of 

getting the right answers for the right reasons. This relatively parsimonious process modeling 

framework has the potential to be implemented within ecosystem models and ESMs to better capture 

the dynamics of soil-based greenhouse gases at landscape, regional, and global scales.      
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