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Production and consumption of nitrous oxide (N,O), methane (CH,), and carbon dioxide
(COy,) are affected by complex interactions of temperature, moisture, and substrate supply, which are
further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often
invoked to explain non-normal distributions of greenhouse gas (GHG) fluxes, also known as hot spots
and hot moments. To advance numerical simulation of these belowground processes, we expanded the
Dual Arrhenius and Michaelis-Menten (DAMM) model, to apply it consistently for all three GHGs
with respect to the biophysical processes of production, consumption, and diffusion within the soil,
including the contrasting effects of oxygen (O,) as substrate or inhibitor for each process. High-
frequency chamber-based measurements of all three GHGs at the Howland Forest (ME, USA) were
used to parameterize the model using a multiple constraint approach. The area under a soil chamber is
partitioned according to a bivariate lognormal probability distribution function (PDF) of carbon (C)
and water content across a range of microsites, which leads to a PDF of heterotrophic respiration and
O, consumption among microsites. Linking microsite consumption of O, with a diffusion model
generates a broad range of microsite concentrations of O,, which then determines the PDF of
microsites that produce or consume CH,4 and N,O, such that a range of microsites occurs with both
positive and negative signs for net CH,4 and N,O flux. Results demonstrate that it is numerically
feasible for microsites of N,O reduction and CH,4 oxidation to co-occur under a single chamber, thus
explaining occasional measurement of simultaneous uptake of both gases. Simultaneous simulation of
all three GHGs in a parsimonious modeling framework is challenging, but it increases confidence that
agreement between simulations and measurements is based on skillful numerical representation of

processes across a heterogeneous environment.

Keywords: soil microsite, probability distribution function, greenhouse gas, CO,, CH,, N,O, DAMM,
DAMM-GHG

Introduction
Fluxes of greenhouse gases (GHGs) from soil to the atmosphere are likely to play a significant
role as biotic feedbacks to climate change (Ciais et al., 2013; Davidson and Janssens, 2006). Soils

under forest, agriculture, and other land-use classes contribute to nearly a quarter of global emissions
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of GHGs, including carbon dioxide (CO,), methane (CHy), and nitrous oxide (N,O) (IPCC, 2014).
Production and consumption of these biogenic GHGs are often associated with complex processes,
involving carbon (C), nitrogen (N), and oxygen (O;) substrates and inhibitors, and environmental
controllers such as temperature, moisture, and transport of solutes and gases (Conrad, 1996), which
remain challenging to simulate in ecosystem and Earth system models (ESMs).

In this special issue, we present an expansion of a numerical soil process model that is a
logical progression of several papers published by our group in the pages of this journal. While the
importance of temperature on soil heterotrophic activity has been recognized for over a century
(Arrhenius, 1889; Lloyd & Taylor, 1994; Van’t Hoff, 1898), and optima at intermediate values of soil
moisture have also been well described (Hursh et al. 2017; Linn & Doran, 1984; Moyano et al., 2013),
empirical relationships with these driving factors have had limited value in revealing a mechanistic
understanding of soil respiration. Davidson et al. (1998) demonstrated that soil temperature and
moisture had opposite seasonal trends in a moist temperate forest, resulting in confounding effects on
soil respiration. Drawing on a growing body of research on soil respiration in the 1990s and 2000s,
Davidson et al. (2006) reviewed the emerging recognized need to move beyond mostly temperature
functions, such as Q;¢s, and to mechanistically link temperature and moisture drivers to substrate
supply for soil heterotrophic respiration. Those concepts formed the basis of a parsimonious
numerical model that used Dual Arrhenius and Michaelis-Menten (DAMM) kinetics to link soil
temperature and moisture to their effects on substrate supply for soil respiration (Davidson et al.,
2012). In the 20-year special issue of this journal, Davidson et al. (2014) described a vision for how
the DAMM model could be conceptually linked to related processes of soil carbon dynamics, which
has since been demonstrated in the modular Millennial Model (Abramoff et al., 2018), and how it
could be integrated into large ecosystem models, which was since demonstrated by Sihi et al. (2018).
Davidson et al. (2014) also proposed that other soil trace gas emissions could be simulated using the
DAMM approach.

Here we offer a new version of DAMM for the greenhouse gases, CO,, CHy, and N,O
(hereafter, DAMM-GHG: Dual Arrhenius and Michaelis Menten-Greenhouse Gas). We use three
simultaneous data streams from chamber measurements of CO,, CH4, and N,O fluxes in a New

England forest to constrain the DAMM-GHG model, which has a common structure for biophysical
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processes of production, consumption, and diffusion within the soil, including the contrasting effects
of oxygen (O,) as substrate or inhibitor for each process. Another innovation presented here is to
represent soil microsite heterogeneity of soil carbon and moisture contents with probability
distribution functions (PDFs) and to simulate the production and consumption of each gas at a
microsite scale, rather than the traditional modeling approach of using bulk soil means of measured
carbon and moisture as model drivers.

Thermodynamic theories suggest that CH,4 oxidation (aka methanotrophy) should proceed
under aerobic conditions and CH,4 production (aka methanogenesis) should be favored under
anaerobic (or reducing) conditions (Conrad, 2009; Dean et al., 2018). Production of N,O via
nitrification and denitrification processes are known to peak at an optimal intermediate soil moisture
content, whereas, reducing soil conditions under high water content are thought to be prerequisites for
N,O reduction to N via classical denitrification (Davidson, 1991; Butterbach-Bahl et al., 2013;
Firestone & Davidson, 1989). While a large body of literature generally supports these patterns, there
are exceptions that are frequently attributed to spatial heterogeneity within soils and soil microsites.

While the highest rates of net consumption of atmospheric N,O (i.e. N,O reduction) is
observed in wetlands, N,O reduction in well-drained upland soils has been observed sporadically for
many years (Chapuis-Lardy et al., 2007; Schlesinger, 2013; Syakila & Kroeze, 2010). Such
observations have often been discounted as measurement error or noise. The recent advent of fast
response field instruments with good sensitivity and precision has permitted confirmation that upland
soils can be small sinks of N,O (Eugster et al., 2007; Savage et al., 2014), and a modest soil sink for
atmospheric N,O is now generally accepted as plausible for some sites and times. Increasing soil sink
strength of N,O during drought events further increases perplexity, given that drought events
generally facilitate soil aeration (Goldberg & Gebauer, 2009). Occasional observations of net
emissions of CH, from well-drained upland soils, although contrary to expectations, are also common
(Brewer et al., 2018; Cattanio et al., 2002; Keller & Matson, 1994; Silver et al., 1999; Teh et al.,
2005; Verchot et al., 2000).

Spatial heterogeneity of soil microsites is often invoked to explain net atmospheric uptake of
N,O and net emissions of CHy4 from well-drained upland soils. Soil heterogeneity at micro-scales can

cause a wide range of microsite redox potentials and concentrations of substrates, which must be

This article is protected by copyright. All rights reserved



accounted for to explain highly skewed distributions of soil GHG fluxes (Parkin, 1987, 1993; Savage
et al., 2014; Stoyan et al., 2000). Because existing ESMs are not able to represent the underlying
mechanisms that control variation in enzymatic processes at microsite scales (Tian et al., 2019; Xu et
al., 2016), these models often fail to capture the dynamics of soil GHG fluxes, including the so-called
hot-spots and hot-moments (Groffman, 2009; Groffman, 2012; Lurndahl, 2016; Saha et al., 2018) or
control points (Bernhardt et al., 2017).

Only recently have modeling activities at ecosystem (or landscape) scales begun to shift from
the classical framework based on redox strata (or water table position) and mean measured soil
moisture to emerging conceptual frameworks that consider heterogeneous environment for production
and consumption of GHGs (Ebrahimi & Or, 2018; Or, 2019; Keiluweit et al., 2018; Wang et al.,
2019; Yang et al., 2017). However, to our knowledge, mechanistic simulation of simultaneous
production, consumption, and diffusion of multiple gases (CO,, CHy, N,O, and O,) among multiple
soil microsites has not yet been attempted. Numerical representation of microsite production and
consumption of multiple GHGs is necessary to simulate concurrent N,O reduction and CH,4 oxidation
processes in well-drained upland soils (Savage et al., 2014). The overall objective of this work is to
demonstrate that the qualitative explanations of microsite heterogeneity can be expressed in a
mathematically consistent biophysical process model that is numerically consistent with
simultaneously measured fluxes of all three GHGs: CO,, CH,4, and N,O.

While originally developed for aerobic heterotrophic respiration (i.e. Rh), here we expand the
original core structure of the DAMM model (Davidson et al., 2012, 2014; Fig. S1) to represent
methanogenesis, methanotrophy, N,O production, and N,O reduction reactions using the same
framework and physics for simulating the availability of O, and other substrates and for diffusion of
gases across soil-atmosphere boundary using microsite PDFs (Figs. 1, S1). Simultaneously
constraining our GHG enzyme kinetic model (i.e. DAMM-GHG) with observations of fluxes of
multiple GHGs presents large challenges, because tuning a model to agree with one data stream may
cause a poorer fit to a second or third data stream. However, if all data streams can be simultaneously
simulated with adequate fidelity and skill, this multiple constraint approach enhances the probability
that the parameterization and process representations are realistic and robust. One can never be certain

that a model gets the “right answer for the right reason,” but challenging a single model with multiple
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data streams of related but differing processes, such as CO,, CHy, and N,O fluxes, confers additional

credence to its structure and parameterization.

Materials and Methods
Site Description and Data Collection

We measured GHG fluxes in a mature boreal-transition forest with a hummock-hollow
microtopography, Howland Forest research site (45.20°N, 68.74°W) from central Maine, USA. Mean
annual temperature and mean annual precipitation are +5.5 °C and 1000 mm, respectively. Soils of
the Howland Forest upland sites are characterized as Skerry fine sandy loam, frigid Aquic
Haplorthods. More information on the Howland Forest research site can be found in Fernandez et al.
(1993).

High frequency (sampling frequency: 1 Hz) real-time soil CH4 and N,O fluxes were measured
using an Aerodyne quantum cascade laser (QCL) integrated with soil CO, flux measurements by LI-
COR IRGA assembly. Triplicate chambers were each sampled once every two hours. Chamber tops
were closed for 5 minutes and automated fluxes were calculated by fitting a linear regression on the
change in headspace GHG concentrations followed by temperature and pressure corrections. We
characterized the uncertainty of measurements by the standard deviation estimates for all three GHGs.
Soil temperature and soil moisture were measured at each chamber location at 10 cm depth once
every hour using a Type-T thermocouple and Campbell Scientific CS616 water content reflectometer
probes, respectively and stored on a Campbell Scientific CR10X data-logger (Campbell Scientific,
Logan, UT). We used daily average values of both drivers (soil temperature and soil moisture) and
GHG fluxes for modeling purposes to smooth high measurement noise observed at sub-daily time
scale. See Savage and Davidson (2003) for more details on our chamber design and automated
sampling system. Quality control protocols for soil GHG fluxes can be found in Savage et al. (2008,
2014).
Modeling Scheme

Aerobic and anaerobic processes in soil are linked through heterotrophic dependence on fixed
C sources for energy, but with contrasting effects of O, as either essential substrate or potential

inhibitor (Figs. 1, S1). To date, most biogeochemical models use separate model versions for
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simulating soil organic matter decomposition resulting in CO, emissions and the processes affecting

CH, and N,O emissions, but here we simultaneously simulate biogeochemically linked multiple GHG

emissions using the same biophysical framework.

For the present study, we focus primarily on heterotrophic respiration being the dominant

source of CO, production and fate of O, consumption, with the resulting O, concentrations then

affecting the net fluxes of CH4 and N,O by methanogenesis, methanotrophy, nitrification, and

denitrification processes. The logic for coupled simulation of CO,, CHy, and N,O fluxes in the

DAMM-GHG model, illustrated in Fig. 1, is as follows:

1.

The measured soil C and soil moisture can be partitioned according to a simulated log-normal
PDF, such as a distribution where only a small fraction of microsites has high soil C or high
soil moisture.

Log-normal PDFs of soil C-substrates and soil moisture among microsites lead to a simulated
PDF of heterotrophic respiration (Rh), applying the original DAMM model independently to
each microsite within the PDF.

Simulated microsite CO, production is aggregated to the chamber scale to estimate
heterotrophic respiration contributing to the chamber flux measurement. We then estimate the
total soil CO, flux by adding the contribution of root-derived CO, fluxes to Rh based on
previously measured ratios at the Howland Forest (Carbone et al., 2016; Savage et al., 2018;
Sihi et al., 2018). A distinct seasonal pattern of the contribution of root-derived CO, (Ra) to
total soil CO, fluxes (SR) increased from 0.50 in early spring to around 0.65 in early autumn,
followed by a declining trend through winter (Fig. S2). Total chamber-based measurements of
CO, efflux are used as a constraint for the sum of the simulated root and heterotrophic CO,
production rates across the simulated PDF of microsites.

The simulated and measured soil CO, efflux is a reasonable proxy for O, demand within the
soil. The respiration quotient is not exactly unity, but is usually close enough to unity in non-
calcareous soils to allow simulation of O, consumption within the soil based on measurement-
constrained simulated CO, efflux (Angert et al., 2015). Knowledge of respiration quotient
would be needed for the application of our DAMM-GHG model to calcareous soils. We
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assumed that the simulation of O, consumption by the original version of the DAMM model
serves our purpose of estimating the O, demand (or consumption) here (see Fig. S1).

5. Microsite PDFs of O, concentrations are then simulated as a function of O, consumption rates
distributed across microsites and gaseous diffusion rates using the same DAMM functions in
Fig. S1 driven by air-filled porosity.

6. Next, the resulting PDF of O, concentrations is used to simulate methanogenesis,
methanotrophy, N,O production, and N,O consumption at the scale of each of the distributed
microsites according to similar Michaelis-Menten and diffusion equations (Fig. S1), where O,
serves as either inhibitor or substrate (Davidson et al., 2014). The net CH4 and N,O flux
summed across simulated PDFs of microsites are constrained by observed chamber-based
fluxes of CH,4 and N,O.

We used soluble C as a proxy for the reducing power needed for methanogenesis.
However, future studies may explicitly represent specific substrates for acetoclastic and
hydrogenotrophic methanogenic pathways, if parameterization of that type of model structure
can be constrained by the availability of data on concentrations of organic acids (acetate,
formate) and hydrogen (H,), which was not the case for our study. We also assumed that
respiration is the dominant pathway of CO, production in soil. Thus, we did not account for
the minor contribution of acetoclastic methanogens to CO, production and hydrogenotrophic
methanogens to CO, consumption. Likewise, we considered soil respiration is the major sink
of O, and ignored the otherwise small fraction of O, consumed by methanotrophs.

We added a nitrification module to account for the N,O production during nitrification
using the observed seasonal dynamics of ammonium (NH4") in our study area (Fernandez et
al., 1995). The Howland Forest is a strongly nitrogen-limited system, with porewater nitrate
(NOs) concentration always close to detection limits by inductively coupled plasma-mass
spectrometry, I[CP-MS (Fernandez et al., 1995). N,O production during classical
denitrification is mechanistically simulated using seasonally averaged porewater NO5- data
along-with microsite PDFs of soil C and soil moisture. Nitrous oxide is reduced to N, during

classical denitrification following the Hole-in-the-Pipe conceptual model, including possible
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reduction of atmospheric N,O that diffuses into the soil (Firestone & Davidson, 1989). See

supplementary material (section S2) for DAMM-GHG model equations.
Microsite Probability Distribution Functions of Soil C and Soil Moisture

The microsite PDFs of soil C substrate and soil moisture were generated from a bivariate
truncated log-normal distribution. The PDF for soil C was truncated at 0.001 and 0.15 (g cm™),
respectively. The soil C PDF was distributed with mean equaling the observed soil C value (see Fig.
S3 for more information on the PDF of soil C). Likewise, the soil moisture PDF was distributed with
mean equaling the observed soil moisture value, truncations at 70% and 200% of the observed mean
soil moisture values. The spatial heterogeneity of soil C and soil moisture were constrained by
optimizing the parameters (standard deviation and/or coefficient of variation) that control the
skewness of soil C and soil moisture PDFs by enveloping the bounds reported by Stoyan et al. (2000).
If the upper truncation limit of the soil moisture PDF exceeded the soil pore volume, we reset it to
95% of the porosity value. We constructed the microsite PDF as the product of two lognormal
distributions of soil C and soil moisture. The PDF was evaluated at 10 x 10 equally spaced quantiles
for soil C and soil moisture, respectively.

Here we focused on spatial heterogeneity across soil microsites at the mm and sub-mm scale.
Within stand heterogeneity at the meter scale, such as variation in bulk density and porosity along

topographical gradients, is not account for in this study.
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Parameter Optimization and Uncertainty Analysis

We optimized model parameters within a Bayesian Markov chain Monte Carlo (MCMC)
framework (see section S1 for more details on the optimization algorithm). We implemented the
MCMC algorithm using mcmc and doParallel packages (Revolution Analytics & Weston, 2015) in
the R (version 3.3.2) statistical programming language (R Core Team, 2018). We applied a posterior
predictive procedure to estimate the uncertainty of the optimized parameters. We implemented the
posterior predictive analyses using the R-INLA package (Lindgren & Rue, 2015; Rue et al., 2009). We
divided daily-average soil GHG flux measurements into alternative synoptic-scale periods of 10 days,
where we used one-half of measured GHG fluxes for model calibration and another half for model
validation.
Sensitivity Analysis

We evaluated the sensitivity of model parameters using a global variance-based sensitivity
analysis and a collinearity (or parameter identifiability) analysis. We implemented a variance-based
sensitivity analysis using the R-multisensi package, where a generalized sensitivity index (ranging
between 0 to 1, extracted from the first axis of principle component analysis) was used to determine
the sensitivity of multiple GHG fluxes to each model parameter value (Bidot et al., 2018). The global
sensitivity analysis quantifies the proportion of variability accounted by each of the parameters on
model outputs, where a high GSI value indicates that the simulation results are highly sensitive to that
parameter (Lamboni et al., 2009).

We implemented the collinearity analysis using the collin function of R-FME package, where
the collinearity index (CI) was used to determine the linear dependence of model parameters to each
other (Brun et al., 2001; Soetaert & Petzoldt, 2010; Soetaert, 2016). In general, higher values of CI

indicate increased equifinality (or decreased number of identifiable parameters) of model parameters.

1

One can compensate (1 - o) e of the effect of a change in one parameter by modifying the values of

other parameters. Hence, CI values can range between 1 (when all terms are orthogonal or all subsets
of parameters are identifiable) to infinity (when all terms are linearly dependent, or no single subset of
parameters is identifiable). The CI value of 15 is considered as a threshold above which approximate
linear dependence of model parameters increases and poor identifiability can be expected (sensu

Omlin et al., 2001).
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Results
Seasonality of Soil Greenhouse Gas Fluxes

Soil CO, fluxes followed the typical seasonal trend of soil temperature, where both seasonal
average and peak CO, fluxes were comparable between 2015 (average (min-max): 171 (73-297) mg
CO,-C m? hr') and 2016 (average (min-max) measurement period: 168 (52-281) mg CO,-C m= hr!)
(Fig. 2). This is due, in part, to the comparable seasonal soil temperature ranges between 2015
(average:14.4 °C, ranged between 8.4 to 18.6 °C) and 2016 (average: 13.3 °C, ranged between 5.6 to
17.9 °C) measurement periods (Figs. 2, 3). Soil CO, fluxes exponentially increased with soil
temperature (R? = 0.75) (Fig. 3a). We also observed a typical bell-shaped relationship between CO,
flux and soil moisture (R? = 0.16), with the optimum for CO, flux at intermediate water contents (Fig.
3d). Although the effect of soil moisture on CO, fluxes was always secondary to soil temperature
(Fig. S5), the fit with soil moisture was better when it was more limiting in the dry summer of 2016
than the wet summer of 2015 (R? = 0.24 and 0.52 in 2015 and 2016, respectively) (Fig. S6d).

In contrast to CO, fluxes, soil CH, fluxes mimicked the seasonal trend of soil moisture for
both years (Fig. 2b,g). Soil moisture and net CH,4 fluxes were positively related (R? = 0.70), although
the slope of the linear regression line was steeper during 2016 than during 2015 (Figs. 3e, Sé6e). We
observed relatively smaller net CH4 oxidation in the spring followed by higher net CH4 oxidation in
summer months, and again lower net CH,4 oxidation in the autumn. Although seasonal average values
were generally similar, the range of CH, flux values in 2016 (average: -0.07 pg CH;-C m™2 hr'!, min-
max range: -0.13 to 0.004 ug CH4-C m hr'!) was wider than in 2015 (average: -0.05 pg CH4-C m2
hr-!, min-max range: -0.08 to -0.03 pg CH4-C m™2 hr'!).

Unlike CO, and CHy, the seasonal trend of soil N,O fluxes contrasted between 2015 vs. 2016
(Figs. 2¢,h, 3f, S6f). The 2015 growing season was significantly wetter than the 2016 growing season.
The cumulative precipitation of the summer months (June 1 to Sept 30) of 2015 and 2016 was 439
mm and 279 mm, respectively (source: https://www.ncdc.noaa.gov/crn/). Consequently, the average
soil moisture was generally higher (24.8 v v-!, min-max range: 14.8 to 32.6 v v'') during the 2015

growing season (measured over June 11 to Oct 17) than the average soil moisture (19.7 v v, min-
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max range: 8.9 to 27 v v'!) during the 2016 growing season (measured over May 3 to Nov 6) (Figs.
2d,i, 3f, Sof).

We observed low rates of net N,O consumption during the spring of 2015 when soil moisture
was highest, which was followed by mostly near zero net emissions and a few positive emissions
throughout the 2015 summer (Fig. 2¢,d). In contrast, we observed net positive N,O emission during
the early spring of 2016 and net N,O consumption throughout most of the 2016 growing season, when
soil moisture was minimal (Fig. 2h,i). The temperature effect was weak and inconsistent between two
years (Figs. 3¢, S6¢). On average, we observed small net N,O emission during the 2015 growing
season (average: 0.06 ug N,O-N m hr'!, ranged between -0.77 to 1.73 pg N,O-N m2 hr'!) and net
N,O consumption during the 2016 growing season (average: -0.18 ug N,O-N m hr!, ranged
between -1.10 to 1.68 pg N,O-N m-2 hr'!).

Performance of the DAMM-GHG Model

Overall, the model reproduced the seasonal dynamics of soil greenhouse gas fluxes (Figs. 2,
4). The model explained 72% of the variation in soil CO, fluxes (Fig. 4a). Likewise, the 1:1 relation
between the observed and simulated soil CH, fluxes was remarkable (R? = 0.78) (Fig. 4b). The model
marginally overestimated CO, fluxes and underestimated CH, fluxes during early spring of 2016 (Fig.
21,g).

Soil N,O fluxes were relatively noisier as compared to CO, and CH, fluxes with a few outliers
in both years (red triangles and squares in Fig. 2 and 4, respectively). The model generally explained
the dynamics of N,O fluxes (R> = 0.36 and 0.52 with and without outliers, respectively) (Fig. 4c). The
model did not capture the few very low net N,O fluxes observed in the peak season of 2016. Most
importantly, the model captured the instances when net atmospheric consumption of CHy (i.e. net CHy
oxidation) co-occurred with net atmospheric consumption of N,O (i.e. net N,O reduction) within the
same soil chamber and at two extremes of the measured soil moisture, during the early wet spring of
2015 and during the driest period of the 2016 growing season (see Fig. 2¢,h and red circles in Fig. 3f).

In general, there was little bias in the relations between the observed and simulated GHG
fluxes (slope ranged between 0.98 to 1.10) (Fig. 4). The 95% CI of the simulated GHGs for all, CO,,
CH,, and N,O, were narrow and the model parameter values were generally well-constrained. The

interquartile ranges in the posterior distributions of all parameters were less than half of their

This article is protected by copyright. All rights reserved



respective prior interquartile ranges (Table 1). The prior interquartile ranges represent the
approximate upper and lower bounds of the measured values from the relevant literature.

The effective depth in the DAMM-GHG model was optimized to a median value of 7 cm
(min-max range: 6-11 cm; Table 1), indicating that most of the important processes affecting the net
GHG fluxes that we measured with chambers were occurring within the topsoil horizons at this site.
The number of microsites within the 0.07 m? chamber footprint was optimized to a median value of
7000 (min-max range: 2000-9000; Table 1), indicating that the simulated microsites were about 3.6
mm in diameter, which could include macroaggregates and clusters of fine roots and pockets of
organic debris.

Sensitivity Analysis

Soil moisture primarily (and soil temperature secondarily) controlled the microsite PDFs of
production, consumption, and diffusion processes of CO,, CHy, and N,O. The net flux is the net effect
of production, consumption, and diffusion of individual gases (Figs. 5, S10). Of all parameters, the
most sensitive ones were those that control the Vmax terms in the Arrhenius equation (Ea and o) for
production and consumption of individual GHGs, followed by the half-saturation constants (Km’s)
and O, inhibition coefficients (KI’s) for each process (Fig. 6). The linear dependence of the DAMM-
GHG model parameters was generally low and was usually below the threshold of 15 (with a few

exceptions) identified for potential equifinality issues (Fig. 7).
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Tablel: Parameters used for simultaneous simulation all three greenhouse gases in the DAMM-GHG model.

Parameter Description Unit Prior range Posterior range Source
For CO, module
aco, Base rate for soil pmole CO, L' hr! 2*%1010(2*10% 2*10'1) 5*%10°(2*10°, 1 Abramoff et al., 2017
respiration 9*107) Davidson et al., 2012
Eaco, Temperature sensitivity kJ mol” 72(60,80) 66(64-72) L | Sihi et al., 2018
for soil respiration
kMc¢ — co, Half-saturation constant of umole C L-! 1(0.1,100) 0.9(0.7,1.6)
C for soil respiration i
kMo, — co, Half-saturation constant of pmole O, L! 100(3,300) 16(4,38)
O, for soil respiration
Depth Effective depth cm 15(5,30) 7(6,11) This study
Total microsite Total number of unitless 10%(103,10%) 7*103 (2*103, This study
microsites 9*103%)
Soil Cgp Coefficient that determine unitless 0.5(0.1,0.9) 0.5(0.1,0.9) Stoyan et al., 2000
skewness of soil carbon
PDF
Soil Moisturesp  Coefficient that determine % 20(5,30) 7(6-12) Stoyan et al., 2000

skewness of soil moisture

PDF
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For CH; module

OlCH,prod Base rate for CH, pmole CH, L hr! 3*10°(3*104,3*10°) 3*105(2*10°,6*10%) This study
production
EacH,prod Temperature sensitivity kJ mol”" 100(50,150) 74(68,78) Nedwell & Watson, 1995
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KMc _ cn, Half-saturation constant of umole C L-! 1(0.1-100) 1.2(0.9,2.1) This study
C for CH, production
Klcy, Inhibition coefficient of pmole O, L! 3(0.3-4.3) 0.43(0.4,0.9) Arah & Stephen, 1998
O, for CH, production
OCH,40x Base rate for CH, pmole CH, L'hr! 0.07(0.007,7) 0.1(0.08,2) Davidson et al., 2014
oxidation
EacH,ox Temperature sensitivity kJ mol” 30(10,50) 34(32,37) Crill et al., 1994
for CH, oxidation
kMcp, Half-saturation constant of ~ pmole CH, L! 102(10-3,10) 0.005(0.002,0.006) Davidson et al., 2014
CH . for CH . oxidation
kMo, —cn, Half-saturation constant of pmole O, L! 43(3,300) 24(13,33) Davidson et al., 2014
0, for CH . oxidation
For N,O module
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PDF: Microsite probability distribution function. Prior range represents initial (min-max) of prior interquartile range. Posterior range

represents median (95% CI) of posterior interquartile range. Units for all base rates, i.e. a(s), are in pmole concentration dissolved in water.
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Fig. 2: Temporal trend of greenhouse (GHG) gas (CO;: a, f; CHy: b, g; and N,O: c, h) fluxes, soil
moisture (d, 1), and soil temperature (e, j) during 2015 (a-e) and 2016 (f-j) growing seasons. Triangles
and squares represent observed GHG fluxes in 2015 and 2016, respectively. Light gray shades in the
background represent validation windows, which are interspersed throughout the observation period.

Red triangles and squares represent outliers for N,O fluxes. Blue line and shade represent median and

95% CI of simulated GHG fluxes.
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Discussion

Our goal is a novel integration of measurement and modeling of three key greenhouse gases to
improve understanding of and modeling capacity for interactions of belowground temperature,
moisture, and substrate supply that control the net soil emissions of CO,, CH4, and N,O. To this end,
we built upon the DAMM model, which mechanistically simulates soil heterotrophic respiration using
Arrhenius equations, diffusion functions, and Michaelis-Menten enzyme kinetics (Davidson et al.,
2012, 2014). Our framework of the DAMM-GHG model is unique in that it represents the
simultaneous production and consumption of all three GHGs within the same soil biophysical
framework using microsite PDFs. Below we discuss the performance of the DAMM-GHG model and
the utility of the microsite PDFs in reproducing the spatial and temporal dynamics of observed CO,,
CH,, and N,O fluxes within a multiple constraint framework.
Microsite Representation Captures Co-occurrence of Methane Oxidation and Nitrous Oxide
Reduction

Consumption of atmospheric N,O via classical denitrification should occur only under
reducing conditions. Yet, we have observed net uptake of atmospheric CH4 (oxidation) and uptake of
atmospheric N,O (reduction) simultaneously in well-drained soils of Howland forest under both low
and high soil moisture levels. With the advent of high frequency and high sensitivity flux
measurement technology, we can be confident that these modest uptake rates of both CH4 and N,O
are significantly different from zero and are not measurement errors or artifacts (Fig. 2 and 4, also see
Fig. S4). These seemingly contradictory observations have been qualitatively explained by describing
diffusional constraints of gas transport as follows: both CH, and N,O can diffuse into well-drained
soils; the CH, is oxidized at microsites where O, is abundant; while N,O is reduced at other
microsites where N,O is present and heterotrophic respiration is sufficiently rapid to consume O,.
Here, we demonstrate that this qualitative explanation can be expressed in a mathematically consistent
biophysical process model that is numerically consistent with simultaneously measured fluxes of
these gases.

The area under a soil chamber was partitioned according to a bivariate lognormal PDF of soil
C and moisture across a range of microsites, which leads to a PDF of CO, production and O,

consumption among microsites. The resulting broad range of microsite O, concentrations determines
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the PDF of microsites that produce or consume CH,4 and N,O according to Michaelis-Menten and
Arrhenius functions for each process (Figs. 1, S1). Concentrations of below ambient N,O (hotspots of
N,O reduction) occur in microsites with simulated high C and high moisture. Net consumption and
production of CH4 and N,O are simulated within a chamber as the average of all soil microsite
simulations. To demonstrate that it is numerically feasible for microsites of N,O reduction and CH,4
oxidation to co-occur under a single chamber, we discuss three different scenarios where mean soil
moisture levels cover the envelope of observed soil moisture in our study area (Fig. 5).

Of the two growing seasons, we measured highest bulk soil moisture (32.6 V V-!) on June 29
(DOY 180), 2015. Consequently, microsite PDFs of soil moisture ranged between 23.7 V V- to as
high as 47.7 V V-! (solid line in Fig. 5b). Microsites with high soil moisture limited diffusion of
gaseous O, through air-filled pore space. Simultaneously, soils had warmed up enough during the late
spring of 2015 for soil respiration to exceed 100 mg CO,-C m hr'!, which created significant O,
demand in microsites with high soil C. Relatively high soil respiration along with limited O, diffusion
resulted in a large fraction of total soil microsites with low O, concentrations (solid line in Fig. 5d).
Production of N,O was high in microsites with high soil C. However, reducing environments favored
N,O reduction more than N,O production in microsites with low O, concentrations. Together, the
PDFs of soil microsites resulted in a modest net negative mean flux of N,O (solid line in Fig. 51).
Classical theories of biological denitrification processes fit with our observations of net negative
fluxes of N,O under conditions of high soil moisture (and soil C) when enzymatic reduction of N,O to
N, under reducing environment outcompete N,O production rates, especially in nitrogen-limited
systems like our field site (Davidson et al., 1993, 2000; Firestone & Davidson, 1989). Although N,O
reduction slightly exceeded N,O production under these conditions, net uptake rates of atmospheric
N,O were low, because diffusion of atmospheric N,O into the soil, while occurring and thus
supporting some uptake, was also limited by high water-filled pore space.

The diffusion of atmospheric N,O into the soil increased during the drier 2016 summer, thus
enabling somewhat larger net uptake of atmospheric N,O. The observed soil moisture content of 18.2
V V-1 on July 30 (DOY 212), 2016 approximately represents the 1%t quantile of observed soil moisture
across 2015 and 2016 growing seasons. Rates of N,O production during nitrification and

denitrification were low in a large majority of microsites due to the oxygen inhibition effects as well
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as the diffusional constraints of soil C, ammonium, and nitrate substrates at low soil moisture.
However, greater diffusion of atmospheric N,O to soil microsites also increased the microsite
concentrations of N,O (dotted line in Fig. 5j), including a small fraction of microsites with
sufficiently low O, concentrations to not fully inhibit N,O reduction (i.e., the simulated O, was near

the kI for N,O reduction (kly,0 — req) in approximately 10% of total microsites, resulting in net

negative flux of N,O (dotted line in Fig. 5d, Table 1). Our observation of a net soil sink of
atmospheric N,O during summer drying events match with reports from other natural and managed
ecosystems, ranging from tropical to temperate climates, where net uptake of atmospheric N,O has
been measured when mean bulk soil moisture was drier than would normally be expected for N,O
reduction (Donoso et al., 1993; Flechard et al., 2005; Goldberg & Gebauer, 2009; Verchot et al.,
2000; Yamulki et al., 1995). In this case, however, we can demonstrate quantitatively that reducing
conditions in only about 10% of the microsites was sufficient to enable net uptake of atmospheric
N,O.

In contrast to the above two examples, intermediate soil moisture conditions are favorable for
production to exceed consumption, resulting in modest net emissions of N,O from soil to the
atmosphere. Within this context, observed soil moisture content of 25.4 V V-! on July 10, 2016 (DOY
192; dashed lines in Fig. 5), approximately represents the 3™ quantile of observed soil moisture across
2015 and 2016 growing seasons (Fig. 5b). As expected, N,O production was greatest at this
intermediate soil moisture (Fig. 5j), especially in microsites with high soil C. Because N,O production
was much higher than the very low N,O reduction rates (Fig. 5k) in a sufficiently large number of
total soil microsites, a net positive mean N,O flux resulted (Fig. 51).

Previous studies indicated that N,O production during biological nitrification and
denitrification often peak at 50-80% of water-filled pore-space (Davidson, 1991; Metivier et al.,
2009), when soil moisture may be sufficiently high such that nitrate and nitrite are more available
than O, as the alternate elector acceptor in many microsites, but the soil O, content is still high
enough to mostly inhibit the reduction of N,O to N,. This is the basis of the soil moisture function of
the conceptual hole-in-the-pipe model (Firestone and Davidson, 1989). This relationship between soil
moisture and N,O production is often represented in models as an empirical statistical algorithm, such

as a polynomial or similar function (e.g., Del Grosso et al., 2001; Potter et al., 1996). In contrast, the
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responses to soil moisture in the DAMM-GHG model produces the response pattern across simulated
microsites (Fig. S7) predicted by the conceptual hole-in-the-pipe model as an emergent property of
the role of O, as substrate (for nitrification, see Fig. S1) or inhibitor, as represented by different kI

values (kly,0 — prod and kly,o — req) used in DAMM mechanistic functions (Table 1).

For CHy4, the microsite PDFs of production, consumption, and net emission were relatively
straightforward. Methane production was high in a relatively few numbers of microsites with high soil
moisture (and soil C). In contrast, CH4 oxidation was high in the majority of microsites, which had
low soil moisture, as the diffusion of both substrates (O, and CH,) increased with decreasing soil
moisture. Note that CH, production was several orders of magnitude lower than CH,4 oxidation across
the simulated range of microsite moisture contents in our study, mainly due to significant oxygen
inhibition. Therefore, microsite PDFs of CH,4 oxidation primarily dominated the net CH, emission,
where net CH4 emission linearly decreased with decreasing soil moisture (Fig. Se-h).

Taken together, these results demonstrate that representing production, consumption, and
diffusion processes as a function of soil microsite PDFs can neatly encapsulate the factors affecting
emissions of CO,, CHy, and N,O in field studies and their underlying mechanisms. We also did a
comparison of the model performance to a conventional framework, where we kept identical soil C
and soil moisture values, set to the average values observed for the bulk soil, across all microsites.
Although the performance of the model without microsite PDF was comparable to the one with
microsite PDF for CO,, model performance for CH, and N,O was strongly affected by microsite
variability (Figs. S8, S9). The model without microsite PDF simulated less uptake of CH4 overall, had
larger than observed peaks and valleys during in wet-up and dry-down events, and had more biased
residuals (Figs. S8b, S8¢g, S9b, S9¢). For N,O, the model with PDF representation of microsite
variation also had an overall better fit to the observations and less biased residuals (Figs. S8c, S8h,
S9c, S9f).

The model-data fusion algorithm we used tends to reduce the overall model-data mismatch for
the entire measurement window, and so it is not surprising that there are periods within that window
where simulations do not match observations as well, such as the CO, and CH, fluxes of spring 2016
(Fig. 2). This may also be due to other factors not included in the DAMM-GHG model, such as

impacts of spring freeze-thaw cycles on C availability or phenology of root exudates. Additionally,
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the lower fraction of observed variability of N,O fluxes accounted for by the model, compared to CO,
and CH,4 fluxes, can be attributed to; (1) the low signal-to-noise ratio inherent to very low N,O fluxes;
and (2) the increased number and complexity of interactions of substrates (and inhibitors) for
production (e.g. C, O,, NH,4*, and NOj3-) and consumption (e.g. C, O,, and N,O) of N,O during
nitrification and denitrification that are represented numerically in the model with additional
parameters (Figs. 2, 4). We further discussed how these potential interacting processes might have
increased the covariation of parameters related to N,O dynamics than those related to CO, and CHy
dynamics (see Collinearity analysis subheading).
Sensitivity Analysis
Sensitivity of Predicted Greenhouse Gas Fluxes to Model Parameters

Sensitivity indices indicated that the parameters representing the Vmax terms in the Arrhenius
equation (a and Ea) for production and consumption of each gas were the most influential for all three
GHGs (Fig. 6a-c), which is in line with other reports (Abramoff et al., 2017; Zarnetske et al., 2012).
Sensitivity of GHG fluxes to the parameters representing Michaelis-Menten equations were secondary
to those of the a(s) and Ea(s), where the individual ranking was associated with the importance of
controlling drivers. Following a(s) and Ea(s), some of the half-saturation constants, i.e. KM(s), were
more important than others. For example, relatively higher sensitivity indices of the half-saturation

constants of CHy (kMcy,) and O (KMo, — cn,) for CH, oxidation as compared to the half-saturation
constants of C (kM _ cp,) and inhibition coefficient of O, (klcy,) for CH4 production can be explained
by the dominant role of CH,4 oxidation in controlling net CH, emissions in our study. On the other
hand, the inhibition coefficients of O, for N,O reduction (Kly,o — req) and N>O production (Kly,0 — prod
), along with the half-saturation constant of N,O for N,O reduction (kMy,0), had relatively higher
sensitivity indices than those for the half-saturation constant of ammonium (kMyy,) and O, (

kMo, — n,0) during nitrification and nitrate (kMyo,) and C (kM _ y,0) during denitrification,
respectively. These results indicate the greater importance of reducing conditions and the diffusive
supply of N,O in controlling net N,O emission at our site than either the concentrations of NH,* and
O, substrates for nitrification or NO;- and C substrates for denitrification. This result may be
particular to our site where NOj~is uniformly low and the seasonal trend of NH,* is much less

dynamic than that of soil moisture (Fernandez et al., 1995). We speculate that kMyy, and kMo,
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might be more commonly important in agricultural soils, where large temporal variations in NH;* and
NO; are expected depending upon the timing of fertilization and crop uptake.
Sensitivity of Predicted Greenhouse Gas Fluxes to Model Drivers

Soil moisture primarily (and soil temperature secondarily) controlled the skewness of the
microsite PDFs of production, consumption, and diffusion processes of each gas (Fig. S10). Within
this context, it is important to note that even though the parameters representing the Vmax terms in
the Arrhenius equation (Ea and o)) had higher sensitivity indices than the Michaelis-Menten
parameters that represent the influence of soil moisture (Fig. 6a-c), most of the temporal variations in
CH,4 and N,O fluxes were nevertheless explained by soil moisture rather than temperature. The
correlation matrix in Fig. S5 also indicates that soil moisture, rather than soil temperature, controlled
the temporal variation of CH4 and N,O fluxes. In other words, if the Ea value is changed, the average
simulated flux for the entire time period increases or decreases significantly, but the within-season
variation in CH4 and N,O fluxes is still dominantly influenced by variation in soil moisture (Figs. S6,
S10).
Collinearity analysis

As expected, the collinearity index (CI) increases as the number of variable parameters
increases (Fig. 7). Given the parsimonious model structure, we had few problems of identifiability of
the processes for CO, and CH4 module, and the most parameter combinations remain below the
threshold value of 15 (Brun et al., 2002; Omlin et al., 2001). However, we do have some parameter
combinations with CI>15 for the N,O module, due to probable ambiguity of whether N,O fluxes are
affected more by production via nitrification (affected by NH4" substrate), production via
denitrification (affected by NOj substrates), or consumption of N,O (affected by N,O diffusion).
Tradeoffs of processes within models can account for inflation of CI values (Keenan et al., 2011;
Richardson et al., 2010), which is likely the case for the N,O module relative to the CO, and CH,
modules. Overall, however, collinearity analysis indicates that the chances of having equifinality
issues characterized by biologically improbable process representations were generally low in the
DAMM-GHG model.

We believe that this success is largely due to the multiple constraints imposed by

simultaneously modeling data streams of three different gases, which enabled us to capture the
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influence of temporally and spatially varying drivers on GHG fluxes (Myrgiotis et al., 2018). For
example, when simulating only CHj4 flux, a better fit of the model to the data might be achieved by
adjusting either the Michaelis-Menten parameters or the diffusion parameters, but it may be
impossible to know which the “correct” adjustment is. However, if N,O and CO, are also being
simultaneously simulated, then adjusting the diffusion parameters will affect simulations of all three
gases, whereas adjusting the Michaelis-Menten parameters for CH4 oxidation should have little effect
on the other two gases. Hence, the additional constraints help identify which model parameterizations
are consistent with all three data streams of flux measurements.

Microsite probability distribution functions permit model parsimony

Simulating a 3-D array of soil aggregates or pore-networks (Arah & Vinten, 1995; Ebrahimi &
Or, 2014; Yan et al., 2016) is another approach for representing spatial heterogeneity of soil matrix in
biogeochemical models. However, explicit representation of soil spatial variability requires detailed
information on soil structure, involving high-throughput instrumentations such as X-ray CT scan (see
Carducci et al., 2017) and may require greater computational power than our PDF approach. Because
of the limited measurements on the spatial variability of soil aggregates (or pores) at a plot scale, let
alone at larger scales, and because of the increased computational complexity in spatially explicit
model structures, scaling up of 3-D soil aggregate (or pore-network) models to the ecosystem models
and ESMs is still challenging.

Statistically representing microsite variation as PDFs in the DAMM-GHG model offers a
relatively computationally efficient, yet mechanistically consistent, alternative way of simulating soil
heterogeneity and maintaining model parsimony, as in the original DAMM model (Davidson et al.,
2012, 2014; Sihi et al., 2018). We believe that our framework could be used to simulate fluxes of
GHGs from other natural and managed systems as well as be scaled up to ecosystem models and
ESMs.

Opportunities for Future Improvement of the DAMM-GHG Model

We represented all microsite-scale processes by optimizing an equivalent depth for
heterotrophic respiration, where most of the biological reactions appear to happen in the soil of this
study site (posterior range: 6-11 cm) and fixed that depth for simulating processes related to

production and consumption of CH4 and N,O. This simplification allowed us to use unitless diffusion
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constants for gaseous and dissolved substrates and to avoid needing to know exact diffusion path
lengths (see Davidson et al., 2012 for details). Exploring heterogeneity of diffusivity within and
among soil horizons could be an appropriate next step.

Including more complex models of gas diffusion that includes variable diffusivity between
intra-aggregate and inter-aggregate pore spaces may be more appropriate for aggregated media like
soil (Millington and Shearer, 1971; Resurreccion et al., 2010). Representing soil microsite PDFs in
more than one vertically stratified soil horizon by differentiating between the organic and various
mineral horizons may be needed for application to other sites (e.g. wetland with a seasonally variable
depth to the water table), such that transport of gases between soil horizons and across soil-air
boundary can be estimated using Fick’s law. Measured vertical concentration profiles of soil gases
could serve as additional data constraints for soil gas concentration profiles that become emergent
simulated properties of this modeling approach. It would also be useful to have a data stream of
heterogeneity of O, or redox potentials across microsites, but that would require new generations of
micro-probes.

Additionally, techniques that disentangle gross production and gross consumption rates of CH,
and N,O under field conditions could increase the predictive power of the dynamics of soil GHGs
fluxes. For example, Chanton et al. (2007) reported that measuring stable carbon isotope of emitted
CH, (13CH,) is a feasible way to quantify gross CH, oxidation in-situ. Likewise, Wen et al. (2018)
demonstrated that >N,O pool dilution method can be effective to measure atmospheric N,O uptake in
soil under field conditions. In-situ quantification of microbial activities pertaining to gross production
and consumption of CH4 and N,O can also be pursued following the gas push-pull method (Urmann
et al., 2005). Quantifying gross nitrogen transformations using stable isotope tracing could help
constrain the sources of N,O emissions (Morse & Bernhardt, 2013; Miiller et al., 2007; Myrold et al.,
1986).

In addition to nitrification and biological denitrification, other bacterial (Jensen & Burris,
1986; Yamazaki et al., 1987) and fungal (Hayatsu et al., 2008; Shoun et al., 1992) contributions, as
well as abiotic (Davidson et al., 2003; Vieten 2008) sinks of N,O in soil could be explored if
warranted. Adding other controlling factors, such as pH effects, temporal dynamics of enzyme

synthesis, root exudation, could improve model performance for some sites (Butterbach-Bahl et al.,
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2013; Zheng & Doskey, 2015). In all of these cases, however, the potential additional explanatory
value of more parameters and model complexity must be balanced with the availability of data to

constrain them and with the advantages of model structure parsimony.

Conclusions

Representing microsite heterogeneity as PDFs related to predictive processes offers a new
approach for numerical representation of methanogenesis, methane oxidation, nitrification, and
denitrification and other spatially and temporally variable microbial processes in soil. Our ability to
accurately measure and skillfully model rates of these processes has been hampered by highly
variable soil microsite conditions, which are difficult to measure and simulate, but our use of PDFs to
represent that variability offers a promising and computationally efficient approach. In addition, by
measuring and modeling all three greenhouse gases (CO,, CHy, and N,O), we have mechanistically
and quantitatively explained the apparent paradox of observed simultaneous aerobic respiration that
produces CO,, CH, uptake (oxidation), CH4 production, and N,O uptake (reduction) in the same soil
profile. Skillful representations of multiple ecologically relevant processes increase confidence of
getting the right answers for the right reasons. This relatively parsimonious process modeling
framework has the potential to be implemented within ecosystem models and ESMs to better capture

the dynamics of soil-based greenhouse gases at landscape, regional, and global scales.
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