
LLNL-CONF-750746

Runtime and Memory Evaluation
of Data Race Detection Tools

P. Lin, C. Liao, M. Schordan, I. Karlin

May 3, 2018

ISOLA 2018
LIMASSOL, Cyprus
November 5, 2018 through November 9, 2018



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Runtime and Memory Evaluation of Data Race
Detection Tools ?

Pei-Hung Lin, Chunhua Liao, Markus Schordan, Ian Karlin

Lawrence Livermore National Laboratory, Livermore CA 94550, USA

Abstract. An analysis tool’s usefulness depends on whether its runtime and mem-
ory consumption remain within reasonable bounds for a given program. In this pa-
per we present an evaluation of the memory consumption and runtime of four data
race detection tools: Archer, ThreadSanitizer, Helgrind, and Intel Inspector, using
DataRaceBench version 1.1.1 using 79 microbenchmarks. Our evaluation consists
of four different analyses: (1) runtime and memory consumption of the four data
race detection tools using all DataRaceBench microbenchmarks, (2) comparison
of the analysis techniques implemented in the evaluated tools, (3) for selected
benchmarks an in-depth analysis of runtime behavior with CPU profiler and the
identified differences, (4) data analysis to investigate correlations within collected
data. We also show the effectiveness of the tools using three quantitative metrics:
precision, recall, and accuracy.

Keywords: data race detection, DataRaceBench, evaluation, benchmark

1 Introduction

The widespread use of threaded programming models and the increasing on-node
parallelism necessitate effective and efficient tools to detect and fix data races within
limited time and system resources. A data race occurs when two or more threads
perform simultaneous conflicting data accesses to the same memory location without
proper synchronization and at least one access is a write. Data race bugs may lead
to unpredictable results of a parallel program even with the exact same input. Due
to this behavior, the difficulties in detecting and fixing data race bugs can greatly
reduce programming productivity. Therefore there is an increasing demand for data
race detection tools and many industrial and research efforts are providing tools with
data race detection capabilities. An effective data race detection tool needs to have
high accuracy in detecting and reporting the data race instances. In the ideal case,
the tool is efficient in exploiting shared system resources and detects data races in the
short time.

The DataRaceBench benchmark suite [12] was specifically designed for systematic
evaluation of data race detection tools with focus on the OpenMP parallel program-
ming model. The development team of DataRaceBench has presented initial evaluation
results using quantitative metrics for four selected data race detection tools: Archer,
ThreadSanitizer, Helgrind and Intel Inspector.

The evaluation with DataRaceBench lead to the following discoveries:

? Prepared by LLNL under Contract DE-AC52-07NA27344. LDRD 17-ERD-023. LLNL-
CONF-750746



II Pei-Hung Lin, Chunhua Liao, Markus Schordan, Ian Karlin

– OpenMP awareness is a necessity for detecting data races in programs using the
OpenMP programming model. Even if an OpenMP runtime library is implemented
using Pthreads, a tool that only considers pthread semantics will miss certain
details of the OpenMP semantics, leading to false alarms (false positives) in the
analysis.

– There is no existing dynamic tool supporting data race detection for SIMD direc-
tives.

– With all four of the evaluated dynamic data race detection tools, it is necessary
to run the tool multiple times (with the exact same input) because some data
races only occur with certain thread schedules. Note that this adds to the overall
runtime of dynamic analysis tools in practice.

– Dynamic testing tools can be sensitive to the number of threads used in testing.
DataRaceBench includes microbenchmarks that are specifically designed to only
have data races with a certain number of threads.

DataRaceBench is useful in evaluating the effectiveness of data race detection tools,
but it remains difficult to predict how fast a tool can detect a race and how many
system resources it requires.

This paper continues the experiments from [12] to include more details about the
runtime and memory consumption of the selected data race detection tools. We use
these metrics as basis to determine the most efficient race detection tools.

We present results for four kinds of evaluations. First, we analyze the differences
among microbenchmarks in DataRaceBench and show characteristics in microbench-
marks. Second, we compare the selected tools to understand their different runtime
behaviors. Third, we use additional evaluation tools to investigate the differences be-
tween two selected data race detection tools: ThreadSanitizer and Archer. For Intel
Inspector we also show the differences between the default configuration and the max-
resource configuration. Finally, we apply a data analysis tool to investigate correlations
within the collected experimental results.

The following contributions are be presented in this paper:

– We present an updated evaluation of the tools accuracy extended with memory
consumption results for DataRaceBench version 1.1.1 with additional microbench-
marks.

– We collect the runtime overheads of the selected tools when run on DataRaceBench
microbenchmarks.

– We show three different evaluations with analysis using DataRaceBench. We pro-
vide a tool comparison using quatifiable metrics, detailed analysis to understand
the behaviors of specific tools, and analysis of our collected data with a data anal-
ysis tool to show what features of the benchmarks impact our metrics the most.

The rest of the paper is organized as follows: in Section 2 we present the DataRaceBench
suite. In Section 3 we describe the selected data race detection tools and the analysis
techniques they use. In Section 4 we present the experimental results and analyses. In
Section 5 we discuss the related work and in section 6 we conclude.

2 DataRaceBench Suite

DataRaceBench was designed to capture possible data race patterns in OpenMP pro-
grams and serve as a measurement suite to evaluate the accuracy and overhead of data



Runtime and Memory Evaluation of Data Race Detection Tools III

race detection tools. The development of the DataRaceBench suite followed specific
design guidelines to achieve its design goals:

– Each microbenchmark should be compact and representative.
– Each program should be self-contained so they can be easily used as part of re-

gression tests for developing data race detection tools.
– Each microbenchmark has a main function to support dynamic data race detection.
– The benchmark suite contains microbenchmarks that allow arbitrary problem sizes

to probe static data race detection tools.
– The benchmark suite categorizes code patterns (or properties) of data races in

OpenMP programs in its microbenchmark collection.
– The microbenchmarks are divided into two categories: microbenchmarks with

known data races and those which are known to be data race free.
– If possible, a program in the category with known data races (race-yes set) should

only contain a single pair of source locations that cause data races.
– All microbenchmark programs have built-in input data. A subset of microbench-

marks comes with one additional variant using C99 variable-length arrays to allow
probing the impact of changing input data sizes.

The collected microbenchmarks we selected from four major sources: (1) regression
test cases from the auto-parallelization tool AutoPar [13]; (2) parallel optimization
variants, generated by polyhedral optimizations; (3) data access patterns found in
development branches of real scientific applications; and (4) microbenchmarks built
by the DataRaceBench developers.

In order to represent different patterns found in OpenMP programs with and with-
out data races, a list of property labels are assigned to the collected microbenchmarks
in the DataRaceBench, as shown in Table 1.

Property labels for race-yes set Property labels for race-no set

Y1: Unresolvable dependencies N1: Embarrassingly parallel

Y2: Missing data sharing clauses N2: Use of data sharing clauses

Y3: Missing synchronization N3: Use of synchronization

Y4: SIMD data races N4: Use of SIMD directives

Y5: Accelerator data races N5: Use of accelerator directives

Y6: Undefined behaviors N6: Use of special language features

Y7: Numerical kernel data races N7: Numerical kernels

Table 1: Property labels of microbenchmarks

The DataRaceBench suite is available at https://github.com/LLNL/dataracebench.
The version 1.1.1 used in this paper, uses 79 microbenchmarks to represent all the
property labels shown in Table 1.

3 Data Race Detection Tools

In this paper, we use the same race detection tools used in [12]: Helgrind,ThreadSanitizer,
Archer and Intel Inspector. All these tools use dynamic analysis to find data races dur-
ing the runtime. Helgrind and ThreadSanitizer are recommended for applications using

https://github.com/LLNL/dataracebench


IV Pei-Hung Lin, Chunhua Liao, Markus Schordan, Ian Karlin

the POSIX thread API. The versions of the selected data race detection tools we used
are listed in Table 2, with the respective compilers used (either to build the tools,
compile the microbenchmarks, or both).

Tool Version Compiler

Helgrind 3.12.0 GCC 4.9.3

ThreadSanitizer 4.0.1 Clang/LLVM 4.0.1

Archer towards tr4 branch Clang/LLVM 4.0.1

Intel Inspector 2017 (build 475470) Intel Compiler 17.0.2

Table 2: data race detection tools: versions and compilers

Helgrind. Helgrind 1 is a Valgrind-based error detection tool for C, C++ and For-
tran programs with POSIX threads. It targets three classes of errors: a) Misuses of the
Pthreads API: Helgrind intercepts POSIX thread function calls to detect errors and
provides stack trace information for the detected error. b) Potential deadlock from lock
ordering problems: The order in which threads acquire locks is monitored by Helgrind
to detect potential deadlocks. c) Data races: Helgrind follows the “happen-before”
tracking and intercepts a selected list of events. It monitors all memory access and
builds a directed acyclic graph that represents the collective happens-before dependen-
cies. Analysis with Helgrind can have slowdowns on the order of 100:1, as noted in the
documentation. In [15] a slowdown of 20× to 30× is reported. We use Valgrind version
3.12.0 (built with GCC 4.9.3) and GCC version 4.9.3 to compile the microbenchmarks.

ThreadSanitizer. ThreadSanitizer (Tsan) 2 is a runtime data race detector devel-
oped by Google. ThreadSanitizer is now part of the LLVM and GCC compilers to
enable data race detection for C++ and Go code. Every memory access is instru-
mented by ThreadSanitizer and every aligned 8-byte word of application memory is
mapped to N shadow words through direct address mapping (N is configurable to 2,
4 and 8). A state machine that updates the shadow state at every memory address
iterates over all stored shadow words. A warning message is printed when one shadow
word constitutes a data race with the other shadow word. The memory overhead of
ThreadSanitizer comes from four main sources [23]: (1) a constant size buffer that
stores segments (a segment has a sequence of events of one thread that contains only
memory access events), including stack traces, (2) vector time clocks attached to each
segment, (3) Per-ID state, and (4) segment sets and locksets. The segment sets and
locksets may potentially consume arbitrary large amount of memory. On an average
Google unit test the memory overhead is within a factor of 3 to 4 (compared to a
native run).

Archer. Archer is an OpenMP data race detector that exploits ThreadSanitizer to
achieve scalable happen-before tracking. It takes the LLVM-based tooling approach to

1 http://valgrind.org/docs/manual/hg-manual.html
2 https://github.com/google/sanitizers

http://valgrind.org/docs/manual/hg-manual.html
https://github.com/google/sanitizers


Runtime and Memory Evaluation of Data Race Detection Tools V

develop LLVM passes within the LLVM package. In addition to the dynamic analysis
performed by ThreadSanitizer, Archer adopts static analysis to categorize OpenMP
regions into guaranteed race-free and potentially racy. LLVM passes are designed to
identify guaranteed sequential regions within OpenMP code. Memory accesses within
OpenMP parallelizable loops, detected by LLVM’s Polly 3, are black-listed for the
dynamic analysis checking. The unmodified ThreadSanitizer reports a high number
of false positives in OpenMP code caused by potential confusion in OpenMP runtime
actions. To avoid the confusion for better OpenMP race detection, Archer includes a
customized ThreadSanitizer and employs ThreadSanitizer’s annotation API to identify
the synchronization points within OpenMP runtime.

In this paper, we use the development branch of Archer built based on LLVM
version 4.0.14. The OpenMP runtime support for Archer is from the OMPT5.

Intel Inspector. Intel Inspector 6 is a dynamic analysis tool that detects threading
and memory errors in C, C++ and Fortran codes. It supersedes Intel’s Thread Checker
tool [21,18], with added memory error checking. Supported thread errors include race
conditions and deadlocks.

We used a commercial version of Intel Inspector. This tool provides three different
levels of analysis. The widest scope maximizes the load on the system for more thor-
ough analysis but has higher analysis overhead. Intel Inspector also allows customized
configuration in the data race analysis, e.g. byte granularity, stack frame depth and
resources used. By default, Intel uses four bytes for monitoring memory accesses, a
stack frame depth of 1, without exploiting maximum resources. Setting the access
granularity to be a single byte and increasing the stack frame depth to 16 leads to
exploiting the maximum resources and increases precision. One limitation is that this
version does not support GCC’s OpenMP runtime and may report false positives for
OpenMP codes compiled by GCC. Therefore, we used Intel C/C++ compilers (with
the supported Intel OpenMP runtime) to compile our microbenchmark programs. We
also turned off optimizations to keep the best possible debugging information avail-
able for dynamic analysis. The graphic user interface of Intel Inspector can provide
analysis time overhead and memory overhead to help quickly estimate the time and
memory required for the data race analysis. The Livermore computing center reports
that slowdowns in the order of 2x to 160x from Intel Inspector can be expected. It
is suggested that users choose a small, representative workload, when running Intel
Inspector rather than a full production workload.

4 Evaluation

The evaluation in this paper is based on DataRaceBench, version 1.1.1, with seven new
microbenchmarks compared to version 1.0.1 used in [12]. Several microbenchmarks in
DataRaceBench are designed to have data races only when running with a specific
number of OpenMP threads. To allow tools to detect such data races, the experiments

3 https://polly.llvm.org
4 https://github.com/PRUNERS/archer 5ad2f47bc8ca8aad006a82a567179d2e0ce1ba75
5 https://github.com/OpenMPToolsInterface/LLVM-openmp.git

6e7140bf94d178f719200a6543558d7ae079183b
6 https://software.intel.com/en-us/intel-inspector-xe

https://polly.llvm.org
https://github.com/PRUNERS/archer
https://github.com/OpenMPToolsInterface/LLVM-openmp.git
https://software.intel.com/en-us/intel-inspector-xe


VI Pei-Hung Lin, Chunhua Liao, Markus Schordan, Ian Karlin

were run with different number of OpenMP threads from a selected list of numbers:
(3,36,45,72,90,180,256). Different array sizes (32,64,128,256,512,1024) are provided on
the command line to allocate arrays of different sizes in the microbenchmarks (var-
length set). There are 79 microbenchmarks in total and 16 of them are in the var-length
set, a set of benchmarks that allow users to define the length of arrays used in the
benchmark as parameter on the command line.

Each tool is run five times for every microbenchmark with the exact same input
and independent of any other run. The reason why we run the tools several times
is that the analysis results can differ dependent on the thread schedule. A total of
(5×7×6×16)+(5×7×1×63) = 5565 tests were performed by each tool. The evaluation
collects the detected number of data races, testing time, and memory consumption,
and computes the quantitative metrics for all microbenchmarks using the selected data
race detection tools.

Our testing platform is the Quartz cluster hosted at the Livermore Computing
Center. Each computation node of the cluster has two Intel 18-core Xeon E5-2695 v4
processors with hyper threading support (18 cores × 2 sockets ×2 = 72 threads in
total). The details of each data race detection tool and the used compilers are shown
in Table 2.

The test script provided as part of the DataRaceBench distribution, collects the
execution time as wall time (millisecond precision). The memory is not limited and
we measure the maximum amount of memory that is used by the tool when analyzing
the execution of the microbenchmark. None of the benchmarks fork processes. The
computation nodes are configured to use no swap space. We use the Linux command
/usr/bin/time -f "%M" to record the maximum resident set size (RSS), the portion
of memory occupied by a process that is held in main memory, of the data race
detection process during its lifetime. All the collected information is recorded in csv
file format for further post processing and analysis.

4.1 Data Race Detection Report

Table 3 reports the data race detection results for the seven new microbenchmarks in
DataRaceBench version 1.1.1 following the same format as in [12]. The results include
the range of minimum and maximum number of races (min race - max race) and the
type of result in true positive (TP), false negative (FN), true negative (TN) or false
positive (FP).

ID Microbenchmark Program R Data Race Detection Tools
Helgrind ThreadSanitizer Archer Intel Inspector

min
race

-max
race

type
min
race

-max
race

type
min
race

-max
race

type
min
race

-max
race

type

73 doall2-orig-yes.c Y 13 - 18 TP 3 -120 TP 2 -126 TP 1 - 1 TP
74 flush-orig-yes.c Y 9 - 13 TP 9 - 9 TP 1 - 3 TP 1 - 1 TP

75 getthreadnum-orig-yes.c Y 6 - 13 TP 3 -124 TP 2 -255 TP 0 - 1 TP/
FN

76 flush-orig-no.c N 10 - 11 FP 5 - 8 FP 0 - 0 TN 0 - 0 TN
77 single-orig-no.c N 6 - 12 FP 2 - 11 FP 0 - 0 TN 0 - 0 TN
78 taskdep2-orig-no.c N 26 -123 FP 2 - 11 FP 0 - 0 TN 0 - 0 TN
79 taskdep3-orig-no.c N 21 -134 FP 1 - 14 FP 0 - 0 TN 0 - 0 TN

Table 3: Data race detection report for the seven new microbenchmarks. See [12] for
the microbenchmarks 1-72. Column R shows whether a program contains a data race.



Runtime and Memory Evaluation of Data Race Detection Tools VII

Table 4 summarizes the numbers of true/false positive and true/false negative
results for all 79 microbenchmarks. In Table 5 we show the usual evaluation metrics
for precision, recall and accuracy for the selected data race detection tools. The results
show that the OpenMP-aware tools Archer and Intel Inspector have higher accuracy
than Helgrind and ThreadSanitizer. Archer has the smallest range in the accuracy.
Intel Inspector with max resources configuration has both higher value and smaller
range in recall and accuracy, but a slightly larger range in precision compared to the
default configuration.

Tool Race:Yes Race:No
TP TP/FN FN TN TN/FP FP

Helgrind 41 0 2 1 0 35
ThreadSanitizer 41 0 2 1 0 35

Archer 36 5 2 33 3 0
Intel Inspector default 12 24 7 35 1 0

Intel Inspector max resources 32 9 2 33 3 0

Table 4: Positive and negative results of the tools

Tool Precision Recall Accuracy
min max min max min max

Helgrind 0.539 0.539 0.953 0.953 0.532 0.532
ThreadSanitizer 0.539 0.539 0.953 0.953 0.532 0.532

Archer 0.923 1.000 0.837 0.953 0.873 0.975
Intel Inspector default 0.923 1.000 0.279 0.837 0.595 0.911

Intel Inspector max resource 0.914 1.000 0.744 0.953 0.823 0.975

Table 5: Metrics for the tools

4.2 Runtime Behavior Analysis

For analyzing the runtime behavior of the analysis tools, we determine a baseline by
collecting measurements from running the DataRaceBench microbenchmarks using
GCC, Clang and the Intel compiler. This gives us measurements for all microbench-
marks without any interference with the data race detection tools. We also collect
runtime and memory consumption results for all microbenchmarks with the data race
detection tools.

We run each evaluation five times for every microbenchmark with the exact same
input and independent of any other run. This is necessary because analysis results can
differ dependent on the thread schedule and as reported in [12] this is necessary to get
good analysis results.

The average values of runtime and memory consumption from the 5 independent
runs are also used in the runtime behavior analysis. To simplify the analysis, we select
only a data size of 1024 for microbenchmarks in the var-length set.

We conduct an empirical analysis using the collected data and focus on the follow-
ing four tasks:

1. Analyzing the differences between microbenchmarks in DataRaceBench



VIII Pei-Hung Lin, Chunhua Liao, Markus Schordan, Ian Karlin

2. Comparing selected data race detection tools
3. Investigating differences between specific tools
4. Correlation study using data analysis tool

Differences within DataRaceBench DataRaceBench was designed to represent
OpenMP programs used for data race detection. There are 70 microbenchmarks with
a single OpenMP parallel region, 6 microbenchmarks with multiple OpenMP parallel
regions (#41 - #44, #55, #56), and 3 microbenchmarks with no OpenMP parallel
region (#25, #26, #70). In the results we discovered that the number of OpenMP
threads used in the test has no impact on the execution time and memory consump-
tion for microbenchmarks #25, #26, #70, #74, and #76. The microbenchmarks #25,
#26, and #70 have the SIMD property label and have only a OMP SIMD pragma in the
microbenchmark. Without omp parallel used in test codes, these tests will be run by
only a single thread. The microbenchmarks #74 and #76 have the num threads(10)

clause to enforce having 10 OpenMP threads during the execution. The microbench-
marks #25, #26, and #70 also show the lowest execution time and memory consump-
tion, with and without tools involved, in the sorted experiment results, and are run
with a single thread and therefore have no OpenMP runtime overhead involved. The
selected tools can perform data race detection only in multi-threaded programs (with
OpenMP or Pthread). Therefore, the tools cannot detect data races existent in SIMD
loops.

Microbenchmarks consuming high testing time are mainly from the Polyhedral
microbenchmarks (#41 - #44, #55, #56), programs with nested loops and an OpenMP
loop as their innermost loop (#37, #38, #62), programs with multidimensional arrays
(#23, #31, #32, #37, #38, #58), and a program with high loop iterations (#65).
Based on the results we find that microbenchmarks with large arrays (#4, #15, #31,
#32, #37, #38) all have higher memory consumption in the experiments with all data
race detection tools.

Comparing data race detection tools We observe the number of OpenMP threads
used in experiments has a strong impact on both runtime and memory consumption.
Experiments with more OpenMP threads use additional memory and have longer
execution time. In this section we downselect the data to show only results from tests
using 72 OpenMP threads, matching the hardware thread number available in the
testing node. The computation in the program, the design of data race detection tool,
and the software and hardware environment - all have an influence on the runtime and
memory consumption in the data race detection.

To effectively compare all the selected tools, we choose the overhead ratio, the ratio
between overhead (in time or memory consumption) and the corresponding baseline
measurement, as the metric in the comparison. Figure 1a and Figure 1b show the over-
head ratio in execution time and memory consumption from all tool configurations.
The X axis in figures presents the IDs of all microbenchmarks in a sorted order based
on the time overhead ratio from Archer. As Archer has the lowest overhead ratio for
most of the microbenchmarks, the sorted order of Archer’s result shows a clear refer-
encing line in the figure. Archer is also the tool with highest accuracy from previous
experiments in [12] and experiments in this paper.

There are two distinct groups shown in the runtime overhead comparison: (1)
ThreadSanitizer and Archer have an overhead ratio around or lower than 10 for most



Runtime and Memory Evaluation of Data Race Detection Tools IX

1

10

100

1000

10000

100000

46 45 59 66 63 69 79 50 48 53 76 57 51 13 25 54 8 71 77 38 70 26 28 68 67 37 52 60 62 61 49 64 6 72 47 3 24 12 5 78 14 21 2 34 74 36 15 16 42 75 39 17 10 1 30 33 19 22 35 27 11 29 7 9 18 73 20 40 41 23 32 56 31 55 4 58 43 44 65

O
ve

rh
ea

d 
ra

tio
 

Execution time overhead comparison 

Tsan average time Archer average time Hegrind average time
Intel-default average time Intel-Max average time

(a) Execution time comparison

0

50

100

150

200

250

300

46 45 59 66 63 69 79 50 48 53 76 57 51 13 25 54 8 71 77 38 70 26 28 68 67 37 52 60 62 61 49 64 6 72 47 3 24 12 5 78 14 21 2 34 74 36 15 16 42 75 39 17 10 1 30 33 19 22 35 27 11 29 7 9 18 73 20 40 41 23 32 56 31 55 4 58 43 44 65

ov
er

he
ad

 ra
tio

Memory consumption overhead comparison 

Tsan-average-mem Archer-average-mem Helgrind-average-mem
Intel-default-average-mem Intel-Max-average-mem

(b) Memory consumption comparison

Fig. 1: Tool comparison

microbenchmarks; (2) Helgrind and Intel Inspector with two different configurations
have a higher overhead ratio, between 100 to 1000, in most of the microbenchmarks.
Although ThreadSanitizer and Archer are based on the same tool and show a low
overhead ratio in most cases, we find ThreadSanitizer has the highest overhead ratio
among all selected tools for the six Polyhedral microbenchmarks (#41 - #44, #55,
#56). The figure shows a high similarity between the results from two configurations
of Intel Inspector. The max-resource configuration shows a higher overhead ratio in 4
Polyhedral microbenchmarks (#43, #44 #55, #56), a microbenchmark with Jacobi
kernel (#58), and a microbenchmark with a high OpenMP loop iteration count (#65).

The memory consumption comparison shows 3 different groups in Figure 1b. Archer
and ThreadSanitizer have a very similar overhead ratio (around 20) for all microbench-
marks. Intel Inspector also has a high similarity in the overhead ratio (between 55 to
60) with two different configurations. Helgrind has the highest memory overhead ratio,
most microbenchmarks around 160, but for 6 microbenchmarks higher than 220.

Comparing all results regardless of the OpenMP thread number used in the ex-
periments, ThreadSanitizer and Archer have a time overhead ratio lower than 100,
Helgrind has a range between 50 and 500, Inspector has a range at 200 to 2000. Re-
garding the memory consumption overhead: ThreadSanitizer and Archer have a range
between 10 to 20, Helgrind has the highest number with a range between 50 and 250,
Intel Inspector has a range at 20 to 80. From our collected data, we find that using a



X Pei-Hung Lin, Chunhua Liao, Markus Schordan, Ian Karlin

higher number of OpenMP threads results in a higher execution time, but does not al-
ways result in a higher time overhead ratio. On the other hand, having more OpenMP
threads, always leads to a high memory consumption and a higher memory consump-
tion ratio. The time overhead is less sensitive to the OpenMP thread number used in
the experiments. Comparing the highest time overhead ratio to the lowest time over-
head ratio for each microbenchmark using different number of OpenMP threads, we
see ThreadSanitizer has an average of 1.84×, Archer has 1.99×, Helgrind has 4.68×,
Intel has 1.77× and 1.65× for default and max-resource configuration. Doing the same
comparison for the memory consumption overhead ratio, ThreadSanitizer has an av-
erage of 4.62×, Archers has 2.94×, Helgrind has 7.77×, Intel has 7.96× and 5.96× for
default and max-resource configuration.

Comparing ThreadSanitizer and Archer We further investigate the differences
between ThreadSanitizer and Archer, especially for those microbenchmarks with a
high difference in execution time between these two tools. Archer adopts static poly-
hedral analysis to detect data dependencies within a test code. A detected OpenMP
parallelizable loop (i.e. a loop that is found to have no conflicting dependencies, such
that it can be run in parallel) will be black-listed in Archer for dynamic analysis check-
ing. This can reduce the testing time for Archer. For comparison we also use modified
Archer command line arguments to perform data race detection without static analy-
sis provided from LLVM’s Polly. For all 79 microbenchmarks, using Archer with static
analysis has a range between 0.66× to 1.09×, or an average of 0.97×, of execution time
using Archer without static analysis. As Archer does not report the parallelizable loops
detected by its static analysis, we do not have information whether loops are detected
and blacklisted for the dynamic analysis. Microbenchmarks in DataRaceBench that
were generated using polyhedral transformations are the candidates to be detected
by the polyhedral analysis in LLVM’s Polly. We exam the results from Polyhedral mi-
crobenchmarks in the DataRaceBench and the execution time using Archer with static
analysis is 0.83×, on average, of the execution time from experiments using Archer
without static analysis. We can conclude that the static analysis in Archer can help
reduce the runtime of the data race detection if parallelizable loops are detected.

ThreadSanitizer has an extremely high time overhead ratio for polyhedral mi-
crobenchmarks (#43 - #44 #55, #56) and microbenchmark with the Jacobi ker-
nel(#58). We use the CPU profiler tool from gperftools (originally Google Performance
Tools)7 to inspect two selected microbenchmarks, adi-tile-no.c (#44) and jacobikernel-
orig-no.c (#58). CPU profiler uses a default frequency of 100 interrupts per second to
profile active CPU usage. The profiler does not consider idle time (sleeping, blocked
on locks, waiting for IO, waiting for work etc) in its report. The profile report can
generate an annotated call graph with timing information and top N functions sorted
by the execution time. Table 6 and Table 7 list the top 3 functions and total sample
counts from the profile reports. For adi-tile-no.c (#44), ThreadSanitizer and Archer
have 1518 and 1067 total sample counts respectively. This implies that ThreadSan-
itizer has 1.42× more active CPU usage than Archer. However, the execution time
report shows that ThreadSanitizer (1474.2 sec.) and Archer (3.4 sec.) has a 432.9×
difference in execution time. For jacobikernel-orig-no.c (#58), ThreadSanitizer has

7 https://github.com/gperftools/gperftools

https://github.com/gperftools/gperftools


Runtime and Memory Evaluation of Data Race Detection Tools XI

7.17× more active CPU usage than Archer. The execution times are 121.3 seconds for
ThreadSanitizer and 7.8 seconds for Archer (15.51× difference).

The function call kmp flag 64::wait is found in the top 3 functions for both
microbenchmarks using both tools. It contains spin wait loop that does pause, then
yield, and sleep in OpenMP runtime and it is likely to appear at a synchronization
point. A kmp release from another thread has to appear to wake up this function
from sleep. As idle time is not profiled by CPU profiler, this kmp flag 64::wait could
contribute a significant amount of sleeping time in the execution. We observe that
ThreadSanitizer finishes reporting detected data races to stdout in the very beginning
of the testing and then goes into an idle mode till the end of execution. The OpenMP
standard specifies several high-level synchronization points: barrier, critical, atomic,
taskwait, single, task, and reduction. ThreadSanitizer lacks information about these
OpenMP synchronization points. In contrast, Archer with its OpenMP-awareness, has
the advantage to use the annotation API of ThreadSanitizer to mark synchroniza-
tion points within the OpenMP runtime and potentially save testing time for in the
synchronization points. Our analysis concludes that ThreadSanitizer can require more
time than Archer at the OpenMP synchronization points in the data race detection.

ThreadSanitizer Archer
functions Name Count % Name Count %
#1 kmp flag 64::wait 457 30.1 kmp flag 64::wait 334 31.3
#2 GI sched yield 222 14.6 GI sched yield 291 27.3
#3 kmp hardware timestamp 208 13.7 kmp hardware timestamp 162 15.2

Total count 1518 1067

Table 6: Profile report for adi-tile-no.c

ThreadSanitizer Archer
functions Name Count % Name Count %
#1 kmp flag 64::wait 15218 28.1 tsan read8 2337 30.9
#2 GI sched yield 10410 19.2 kmp flag 64::wait 1430 18.9
#3 tsan::ReportRace 9499 17.5 tsan read4 1017 13.5

Total count 54173 7554

Table 7: Profile report for jacobikernel-orig-no.c

Comparing default option and max-resource option in Intel Inspector The
default data race detection configuration in Intel Inspector, ti2 analysis, aims to find
out if a data race exists. In the configuration with maximum resources, we use the
ti3 analysis which tries to answer where are the data races in the program. We setup
the analysis knob to use an extreme scope to detect data races on the stack with
a 1-byte data race detection granularity and cross-thread stack access detection. An
additional analysis knob, use-maximum-resources, is set to allow Intel Inspector to
exploit maximum system resources in data race detection. The collected data does not
show significant difference between the results of the two configurations. There are
higher variations in time overhead ratio and memory consumption overhead ratio for



XII Pei-Hung Lin, Chunhua Liao, Markus Schordan, Ian Karlin

microbenchmarks with more computation involved, i.e. polyhedral microbenchmarks
and Jacobi kernels. Many microbenchmarks in DataRaceBench were designed to be
compact and representative for OpenMP programs, but might not have enough com-
plexity in the computation. Therefore, we do not see a significant difference between
the runtime behaviors from Intel with default and maximum resource configurations.
We do expect to see the configuration with maximum resources consuming more mem-
ory and execution time for real-world applications.

ThreadSanitizer Archer Helgrind Intel-default Intel-Max
Time Memory Time Memory Time Memory Time Memory Time Memory
6 (0.48) 4 (0.85) 8 (0.27) 4 (0.86) 6 (0.25) 4 (0.92) 8 (0.24) 4 (0.91) 8 (0.35) 4 (0.88)
8 (0.30) 6 (0.58) 3 (0.16) 6 (0.50) 3 (0.20) 6 (0.15) 4 (0.22) 7 (0.24) 4 (0.31) 7 (0.35)
3 (0.27) 7 (0.30) 4 (0.10) 7 (0.27) 5 (0.08) 7 (0.07) 6 (0.05) 6 (0.13) 3 (0.15) 6 (0.08)

Table 8: Correlation report with following attribute ID and correlation value. Attribute
list: (1) tool, (2) filename, (3) haverace, (4) threads, (5) dataset, (6) races, (7) elapsed-
time, (8) used-mem.

Comparing data race detection tools We use the data analysis tool, Weka[7],
to investigate the correlations within the collected data. There are eight attributes
used by the data analysis tool representing the eight columns of data recorded in
the csv files. We can calculate the correlation between each attribute using Weka
and rank the attributes with the strongest correlation. Table 8 shows the top three
attributes with strong correlation to the execution time and memory consumption
using the selected data race detection tools. Each cell in the table shows the attribute
ID with its correlation value. Higher correlation values represent stronger correlation
between attributes. The data analysis report shows that the thread number (attribute
#4) has a strong correlation to memory consumption for every tool. The number of
races detected has a moderate correlation to the memory consumption for Archer
and ThreadSanitizer. The report shows no attribute with a strong correlation to the
execution time for all tools. Only the number of races detected also has a moderate
correlation, 0.48, to the execution time for ThreadSanitizer.

5 Related Work

All of the tools evaluated in this paper are dynamic; they run the target program
under instrumentation and analyze the execution trace [29]. Many dynamic analyses
use a happens-before approach. Reads and writes to shared memory are modeled by a
partial order over events within the system [11]. This technique is heavily dependent on
the application scheduler, and may miss many latent races. Many advances have been
made in this area over the years by using more specialized concepts than traditional
vector clocks in order to reduce overhead [5,4], expanding it to single-threaded event-
driven programs [14], and defining additional relations such as casually-precedes [25].

Lockset analyses such as Eraser [22] present an alternative to happens-before tech-
niques; they infer the set of mutually-exclusive locks that protect each shared location.
If a variable’s lockset is empty then accesses to that location may trigger races. These



Runtime and Memory Evaluation of Data Race Detection Tools XIII

analyses can find races that happens-before techniques cannot, but they incur steep
performance costs.

Hybrid approaches combining both methods have also been developed [29,19,16,8,24].
These methods leverage information about local control flow, recent access, and com-
mon race patterns in order to dynamically adjust the analysis. This leads to greater
flexibility when balancing accuracy and performance, as well as enabling long-term [29]
and large-scale [24] analyses that might not be possible with other techniques.

Static data race detection techniques do not require the program to be executed
in order to identify data-races. Static tools do not rely on instrumented schedulers,
and therefore may find races that dynamic tools could not. Locksmith [20] is one
such tool that seeks to correlate locks with the shared memory locations they guard.
It over-approximates the set of data races, possibly returning some false positives.
Another analysis seeks to improve the detection of shared variables [9] by performing
pointer analysis in order to find global variables that are locally aliased. The RELAY
analysis [27] modularizes each source of unsoundness in its analysis so that more
accurate methods can be substituted when they are developed. OmpVerify [2] is a
static race detector that targets OpenMP exclusively. It uses a polyhedral model to
determine data dependencies in shared data.

An analysis of Intel Thread Checker was performed in 2008 [10], evaluating its
performance in detecting races during loop parallel and section parallel codes. The
benchmark suite used for the evaluation was not released along with the paper. Another
work evaluated three data race detection tools: Sun’s Thread Analyzer, Intel’s Thread
Checker and GNU’s RaceStand [6]. With the EPCC OpenMP benchmark, Thread
Analyzer was about five times faster than Thread Checker and two times slower than
RaceStand.

Similar multi-tool analyses have been performed with other languages. Two tar-
geting the Java language [1,28] analyzed several data race detection tools and com-
pared the accuracy and performance of each. The first [1] compared RaceFuzzer, Rac-
erAJ, JCHORD, Race Condition Checker, and Java RaceFinder. The authors com-
pared the compilation time, accuracy, precision, along with several other metrics. Java
RaceFinder performed the best on their tests, although it only reported the first race
found even if there were others in the program.

The second [28] focused on detection methods rather than tools, and compared five
different algorithms: FastTrack, Acculock, Multilock-HB, SimpleLock+, and casually
precedes (CP) detection. The report used FastTrack as a baseline to compare detection
accuracy and performance against. Multilock-HB reported the most races without any
false-positives, but generated significant overhead; SimpleLock+ was had the lowest
overhead, but missed at least one race that MultiLock found.

There exist several frameworks that can simplify the evaluation of large sets of
programs: DataMill deals with the problem of varying hardware [17], EMP addresses
the problem of varying runtimes on repeated executions of the same program [26], and
BenchExec [3] provides a framework for execution (measurement and control), collect-
ing data from large benchmark sets, and results representation (tables, graphs). As the
complexity of the DataRaceBench benchmarks grows and their tested environments
become more complicated we consider using one of those frameworks in future.



XIV Pei-Hung Lin, Chunhua Liao, Markus Schordan, Ian Karlin

6 Conclusion

In this paper, we present a runtime and memory evaluation for four data race detec-
tion tools using the DataRaceBench suite. Regardless of the effectiveness in finding
data races, ThreadSanitizer and Archer ( based on ThreadSanitizer), have the lowest
overheads in time and memory consumption among the four tools. These two tools
have high similarity in the overhead of memory consumption but differ more in the
time overhead for several microbenchmarks. We conclude the differences in runtime
are from two factors: (1) the static analysis available in Archer blacklists serial execu-
tion and uses polyhedral analysis to determine whether affine loops nests have a data
race to reduce dynamic analysis testing. (2) ThreadSanitizer can have a higher idling
time for spin-wait at the synchronization points compared to Archer. The OpenMP-
awareness in Archer provides higher accuracy in performing data race detection in
OpenMP programs. The time overhead ratio from Helgrind in data race detection is
between the overheads from Intel Inspector and ThreadSanitizer-based tools. Helgrind
has the highest memory consumption overhead ratio among the selected tools. The
reason is that Helgrind lacks knowledge about OpenMP semantics and reports many
false positive data races from microbenchmarks in DataRaceBench. Intel Inspector
offers many configurable parameters to increase the accuracy and provides detailed
information about detected data races. The two configurations used in our evaluation,
default and maximum resources, show only a small difference in many microbench-
marks in DataRaceBench. A few microbenchmarks, those with multiple OpenMP par-
allel regions and more computation involved in the parallel loops, show higher memory
consumption for the configuration with maximum resources. Intel Inspector also stores
the tracing information to disk and it allows users to use an interface to review and
inspect the detected races with references to the source code. Intel Inspector deliv-
ers higher accuracy in data race detection when configured with maximum resources
verse its default configuration. Through data analysis, we find a strong correlation
between the number of OpenMP threads and memory consumption. There are weak
correlations between the runtime and other data collected in the experiments.

In conclusion, Archer and Intel Inspector with OpenMP awareness provide higher
accuracy in finding data races. Intel Inspector, with two configurations, has a roughly
4 times higher overhead in memory consumption and a much higher overhead in ex-
ecution time compared to Archer. Intel Inspector requires additional disk storage to
store tracing information and writing data to disk could have an impact on the overall
runtime.



Runtime and Memory Evaluation of Data Race Detection Tools XV

References

1. Alowibdi, J.S., Stenneth, L.: An empirical study of data race detector tools.
In: 2013 25th Chinese Control and Decision Conference (CCDC). pp. 3951–
3955 (May 2013). https://doi.org/10.1109/CCDC.2013.6561640, http://dx.doi.org/

10.1109/CCDC.2013.6561640

2. Basupalli, V., Yuki, T., Rajopadhye, S.V., Morvan, A., Derrien, S., Quinton, P., Won-
nacott, D.: ompverify: Polyhedral analysis for the openmp programmer. In: Chapman,
B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) OpenMP in the Petascale Era
- 7th International Workshop on OpenMP, IWOMP 2011, Chicago, IL, USA, June
13-15, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6665, pp. 37–53.
Springer (2011). https://doi.org/10.1007/978-3-642-21487-5 4, http://dx.doi.org/10.
1007/978-3-642-21487-5_4

3. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and so-
lutions. International Journal on Software Tools for Technology Transfer pp. 1–
29 (Nov 2017). https://doi.org/10.1007/s10009-017-0469-y, https://doi.org/10.1007/
s10009-017-0469-y

4. Effinger-Dean, L., Lucia, B., Ceze, L., Grossman, D., Boehm, H.: Ifrit: interference-
free regions for dynamic data-race detection. In: Leavens, G.T., Dwyer, M.B.
(eds.) Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2012,
part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012. pp. 467–484.
ACM (2012). https://doi.org/10.1145/2384616.2384650, http://doi.acm.org/10.1145/
2384616.2384650

5. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection. In:
Hind, M., Diwan, A. (eds.) Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2009, Dublin, Ireland, June
15-21, 2009. pp. 121–133. ACM (2009). https://doi.org/10.1145/1542476.1542490, http:
//doi.acm.org/10.1145/1542476.1542490

6. Ha, O.K., Kim, Y.J., Kang, M.H., Jun, Y.K.: Empirical comparison of race detection
tools for openmp programs. In: Grid and Distributed Computing. pp. 108–116. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009)

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka
data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18 (Nov 2009)

8. Huang, J., Meredith, P.O., Rosu, G.: Maximal sound predictive race detec-
tion with control flow abstraction. In: O’Boyle, M.F.P., Pingali, K. (eds.) ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014. pp. 337–348.
ACM (2014). https://doi.org/10.1145/2594291.2594315, http://doi.acm.org/10.1145/
2594291.2594315

9. Kahlon, V., Yang, Y., Sankaranarayanan, S., Gupta, A.: Fast and accurate static data-
race detection for concurrent programs. In: Damm, W., Hermanns, H. (eds.) Computer
Aided Verification, 19th International Conference, CAV 2007, Berlin, Germany, July 3-7,
2007, Proceedings. Lecture Notes in Computer Science, vol. 4590, pp. 226–239. Springer
(2007). https://doi.org/10.1007/978-3-540-73368-3 26

10. Kim, Y., Kim, D., Jun, Y.: An empirical analysis of intel thread checker for de-
tecting races in openmp programs. In: Lee, R.Y. (ed.) 7th IEEE/ACIS Interna-
tional Conference on Computer and Information Science, IEEE/ACIS ICIS 2008, 14-
16 May 2008, Portland, Oregon, USA. pp. 409–414. IEEE Computer Society (2008).
https://doi.org/10.1109/ICIS.2008.79, http://dx.doi.org/10.1109/ICIS.2008.79

11. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978). https://doi.org/10.1145/359545.359563, http://doi.acm.
org/10.1145/359545.359563

http://dx.doi.org/10.1109/CCDC.2013.6561640
http://dx.doi.org/10.1109/CCDC.2013.6561640
http://dx.doi.org/10.1007/978-3-642-21487-5_4
http://dx.doi.org/10.1007/978-3-642-21487-5_4
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
http://doi.acm.org/10.1145/2384616.2384650
http://doi.acm.org/10.1145/2384616.2384650
http://doi.acm.org/10.1145/1542476.1542490
http://doi.acm.org/10.1145/1542476.1542490
http://doi.acm.org/10.1145/2594291.2594315
http://doi.acm.org/10.1145/2594291.2594315
http://dx.doi.org/10.1109/ICIS.2008.79
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563


XVI Pei-Hung Lin, Chunhua Liao, Markus Schordan, Ian Karlin

12. Liao, C., Lin, P.H., Asplund, J., Schordan, M., Karlin, I.: Dataracebench: A
benchmark suite for systematic evaluation of data race detection tools. In: Pro-
ceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis. pp. 11:1–11:14. SC ’17, ACM, New York, NY,
USA (2017). https://doi.org/10.1145/3126908.3126958, http://doi.acm.org/10.1145/
3126908.3126958

13. Liao, C., Quinlan, D.J., Willcock, J.J., Panas, T.: Semantic-aware automatic paralleliza-
tion of modern applications using high-level abstractions. International Journal of Parallel
Programming 38(5), 361–378 (2010)

14. Maiya, P., Kanade, A., Majumdar, R.: Race detection for android applications. In:
O’Boyle, M.F.P., Pingali, K. (eds.) ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09
- 11, 2014. pp. 316–325. ACM (2014). https://doi.org/10.1145/2594291.2594311, http:
//doi.acm.org/10.1145/2594291.2594311

15. Müehlenfeld, A., Wotawa, F.: Fault detection in multi-threaded c++ server applications.
In: Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. pp. 142–143. PPoPP ’07, ACM, New York, NY, USA (2007)

16. O’Callahan, R., Choi, J.: Hybrid dynamic data race detection. In: Eigenmann, R., Ri-
nard, M.C. (eds.) Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPOPP 2003, June 11-13, 2003, San Diego, CA,
USA. pp. 167–178. ACM (2003). https://doi.org/10.1145/781498.781528, http://doi.
acm.org/10.1145/781498.781528

17. de Oliveira, A.B., Petkovich, J.C., Reidemeister, T., Fischmeister, S.: Datamill: Rigorous
performance evaluation made easy. In: Proceedings of the 4th ACM/SPEC International
Conference on Performance Engineering. pp. 137–148. ICPE ’13, ACM, New York, NY,
USA (2013). https://doi.org/10.1145/2479871.2479892, http://doi.acm.org/10.1145/
2479871.2479892

18. Petersen, P., Shah, S.: Openmp support in the intel R© thread checker. In: International
Workshop on OpenMP Applications and Tools. pp. 1–12. Springer (2003)

19. Poznianski, E., Schuster, A.: Efficient on-the-fly data race detection in multithreaded
C++ programs. In: 17th International Parallel and Distributed Processing Symposium
(IPDPS 2003), 22-26 April 2003, Nice, France, CD-ROM/Abstracts Proceedings. p. 287.
IEEE Computer Society (2003). https://doi.org/10.1109/IPDPS.2003.1213513, http://
dx.doi.org/10.1109/IPDPS.2003.1213513

20. Pratikakis, P., Foster, J.S., Hicks, M.W.: LOCKSMITH: context-sensitive correla-
tion analysis for race detection. In: Schwartzbach, M.I., Ball, T. (eds.) Proceed-
ings of the ACM SIGPLAN 2006 Conference on Programming Language Design
and Implementation, Ottawa, Ontario, Canada, June 11-14, 2006. pp. 320–331.
ACM (2006). https://doi.org/10.1145/1133981.1134019, http://doi.acm.org/10.1145/
1133981.1134019

21. Sack, P., Bliss, B.E., Ma, Z., Petersen, P., Torrellas, J.: Accurate and efficient filtering
for the intel thread checker race detector. In: Proceedings of the 1st workshop on Ar-
chitectural and system support for improving software dependability. pp. 34–41. ACM
(2006)

22. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: A dy-
namic data race detector for multithreaded programs. ACM Trans. Comput. Syst. 15(4),
391–411 (1997). https://doi.org/10.1145/265924.265927, http://doi.acm.org/10.1145/
265924.265927

23. Serebryany, K., Iskhodzhanov, T.: Threadsanitizer: Data race detection in practice. In:
Proceedings of the Workshop on Binary Instrumentation and Applications. pp. 62–71.
WBIA ’09, ACM, New York, NY, USA (2009)

http://doi.acm.org/10.1145/3126908.3126958
http://doi.acm.org/10.1145/3126908.3126958
http://doi.acm.org/10.1145/2594291.2594311
http://doi.acm.org/10.1145/2594291.2594311
http://doi.acm.org/10.1145/781498.781528
http://doi.acm.org/10.1145/781498.781528
http://doi.acm.org/10.1145/2479871.2479892
http://doi.acm.org/10.1145/2479871.2479892
http://dx.doi.org/10.1109/IPDPS.2003.1213513
http://dx.doi.org/10.1109/IPDPS.2003.1213513
http://doi.acm.org/10.1145/1133981.1134019
http://doi.acm.org/10.1145/1133981.1134019
http://doi.acm.org/10.1145/265924.265927
http://doi.acm.org/10.1145/265924.265927


Runtime and Memory Evaluation of Data Race Detection Tools XVII

24. Serebryany, K., Iskhodzhanov, T.: Threadsanitizer: data race detection in practice. In:
Proceedings of the Workshop on Binary Instrumentation and Applications. pp. 62–71.
ACM (2009)

25. Smaragdakis, Y., Evans, J., Sadowski, C., Yi, J., Flanagan, C.: Sound predictive
race detection in polynomial time. In: Field, J., Hicks, M. (eds.) Proceedings of the
39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012. pp. 387–400.
ACM (2012). https://doi.org/10.1145/2103656.2103702, http://doi.acm.org/10.1145/
2103656.2103702

26. Suh, Y., Snodgrass, R.T., Kececioglu, J.D., Downey, P.J., Maier, R.S., Yi, C.: EMP: ex-
ecution time measurement protocol for compute-bound programs. Softw., Pract. Exper.
47(4), 559–597 (2017). https://doi.org/10.1002/spe.2476, https://doi.org/10.1002/

spe.2476

27. Voung, J.W., Jhala, R., Lerner, S.: RELAY: static race detection on millions of lines
of code. In: Crnkovic, I., Bertolino, A. (eds.) Proceedings of the 6th joint meeting of
the European Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2007, Dubrovnik, Croatia, Septem-
ber 3-7, 2007. pp. 205–214. ACM (2007). https://doi.org/10.1145/1287624.1287654,
http://doi.acm.org/10.1145/1287624.1287654

28. Yu, M., Park, S.M., Chun, I., Bae, D.H.: Experimental performance compari-
son of dynamic data race detection techniques. ETRI Journal 39(1), 124–134 (02
2017). https://doi.org/10.4218/etrij.17.0115.1027, http://dx.doi.org/10.4218/etrij.
17.0115.1027

29. Yu, Y., Rodeheffer, T., Chen, W.: Racetrack: efficient detection of data race conditions
via adaptive tracking. In: Herbert, A., Birman, K.P. (eds.) Proceedings of the 20th ACM
Symposium on Operating Systems Principles 2005, SOSP 2005, Brighton, UK, October
23-26, 2005. pp. 221–234. ACM (2005). https://doi.org/10.1145/1095810.1095832, http:
//doi.acm.org/10.1145/1095810.1095832

http://doi.acm.org/10.1145/2103656.2103702
http://doi.acm.org/10.1145/2103656.2103702
https://doi.org/10.1002/spe.2476
https://doi.org/10.1002/spe.2476
http://doi.acm.org/10.1145/1287624.1287654
http://dx.doi.org/10.4218/etrij.17.0115.1027
http://dx.doi.org/10.4218/etrij.17.0115.1027
http://doi.acm.org/10.1145/1095810.1095832
http://doi.acm.org/10.1145/1095810.1095832

