‘ ! ! . LLNL-CONF-756830

LAWRENCE
LIVERMORE
NATIONAL

wouon | LJSING Polyhedral Analysis to
Verify OpenMP Applications are
Data Race Free

F. Ye, M. Schordan, C. Liao, P. Lin, I. Karlin, V.
Sarkar

August 21, 2018

Correctness 2018: Second International Workshop on
Software Correctness for HPC Applications

Dallas, TX, United States

November 12, 2018 through November 12, 2018

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Using Polyhedral Analysis to Verity OpenMP
Applications are Data Race Free

Fangke Ye!, Markus Schordan?, Chunhua Liao?, Pei-Hung Lin2, Tan Karlin?, Vivek Sarkar!
1 School of Computer Science, Georgia Institute of Technology, Atlanta, USA
2 Center of Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, USA
3 Livermore Computing, Lawrence Livermore National Laboratory, Livermore, USA
Email: yefangke @gatech.edu, schordanl @lInl.gov, liao6 @IInl.gov, 1in32@1Inl.gov, karlinl @IInl.gov, vsarkar @ gatech.edu

Abstract—Among the most common and hardest to debug
types of bugs in concurrent systems are data races. In this
paper, we present an approach for verifying that an OpenMP
program is data race free. We use polyhedral analysis to verify
those parts of the program where we detect parallel affine
loop nests. We show the applicability of polyhedral analysis
with analysis-enabling program transformations for data race
detection in HPC applications. We evaluate our approach with
the dedicated data race benchmark suite DataRaceBench and
the LLNL Proxy Application AMG2013 which consists of 75,000
LOC. Our evaluation shows that polyhedral analysis can classify
40% of the DataRaceBench 1.2.0 benchmarks as either data race
free or having data races, and verify that 41 of the 114 (36%)
loop nests of AMG2013 are data race free.

Index Terms—OpenMP, Polyhedral Analysis, Data Race.

I. INTRODUCTION

Data races are among the most common and hardest to
debug types of bugs in concurrent systems. A data race occurs
when two or more threads perform simultaneous conflicting
data accesses to the same memory location without proper
synchronization and at least one access is a write. Data race
bugs may lead to unpredictable results of a parallel program
even with the exact same input. Due to this behavior, the
difficulties in detecting and the time required to fix data race
bugs can greatly reduce productivity. Therefore, there is an
increasing demand for data race detection tools and many
industrial and research efforts provide various approaches to
data race detection.

The DataRaceBench benchmark suite [15] was specifically
designed for systematic evaluation of data race detection tools
with a focus on the OpenMP parallel programming model.
The development team of DataRaceBench presented initial
evaluation results using quantitative metrics for four selected
data race detection tools: Archer, ThreadSanitizer, Helgrind
and Intel Inspector. The evaluation with DataRaceBench lead
to the following discoveries:

o OpenMP awareness is a necessity for detecting data races
in programs using the OpenMP programming model.
Even if an OpenMP runtime library is implemented using
Pthreads, a tool that only considers Pthread semantics will

This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-
ACS52-07NA27344 and was supported by the LLNL-LDRD Program under
Project No. 17-ERD-023. IM Release Nr. LLNL-CONF-756830.

miss certain details of the OpenMP semantics that are
checked at compile time, leading to false alarms (false
positives) of the analysis.

o With all four of the evaluated dynamic data race detection
tools, it is necessary to run the tool multiple times (with
the exact same input) because some thread schedules
can differ each time the program is executed, and some
do result in a data race while others do not. Requiring
multiple runs also increases the overall runtime of using
dynamic analysis tools in practice.

« Dynamic testing tools can be sensitive to the number of
threads used in testing. Some data races only occur when
a certain number of threads are used. Testing code using
a dynamic tool can require trying multiple thread counts
to cover all possible data race bugs, further increasing the
time needed to test a code.

Dynamic tools use testing to detect existing data races, but
they cannot guarantee that a program is data race free. In
contrast, static analysis can guarantee that a program is data
race free whereas testing tools cannot. Our approach uses static
analysis and the polyhedral model, a formalism developed for
reasoning about program regions that use counted for-loops to
manipulate dense arrays. Many applications of the polyhedral
model have been found since its introduction [4]. Polyhedral
analysis is being used also in optimizing compilers which
have shown great promise in delivering high-performance by
starting from a single input source and generating optimized
code for a variety of target platforms (e.g. to map affine stencil
computations to CPUs [5], [13], GPUs [10] and FPGAs [18]).

In this paper, we present a method for data race detection
based on polyhedral analysis with analysis-enabling program
transformations. We cannot verify all loops and OpenMP
constructs with this single approach, but it allows us to carve
out all those parts of a given program for which we can provide
a conclusive result: that a given loop nest is data race free for
an arbitrary iteration count of those verified loops. For the
remaining loops and constructs in a program, other methods
for data race detection can be used. Thus, the method should
be used in combination with other verification techniques to
verify the correctness of an entire program.

Our approach carves out parallel affine nested loops, which
can be handled by a polyhedral analysis, and performs code
transformations to enable polyhedral analysis of programs

which otherwise could not be handled. While the analysis
can verify some of the loops in a program it cannot handle
loops with indirect addressing or pointers. For program regions
with for-loops and dense arrays, our polyhedral analysis shows
high precision and no false positives are reported (= any
data race that is reported does indeed exist). We also do not
produce any false negatives which would indicate a bug in our
implementation since it is designed to be sound. Programs that
cannot be verified to be data race free, and for which we cannot
detect a data race either, are reported as “unverified”.

We perform an evaluation of our approach using
DataRaceBench and demonstrate its applicability to real ap-
plications by applying it to the LLNL proxy application
AMG2013'. We describe more details of the selected applica-
tion in Sec. IV.

The contributions in this paper are:

« We present an approach for extending the applicability
of polyhedral analysis with analysis-enabling program
transformations. The presented transformations enable the
application of polyhedral analysis when it could not be
applied otherwise. This concerns the handling of private
variables and out-of-bounds checks. The out-of-bounds
check is necessary to also address cases in the C/C++
language where legal out-of-bounds accesses to elements
inside a multi-dimensional array can cause data races.

e We determine whether a benchmark has a data race
or does not for 40 % of the microbenchmarks in
DataRaceBench [15] (current version 1.2.0 with 116
microbenchmarks). For those microbenchmarks without
data races, we report how many microbenchmarks we
can successfully verify to be data race free. For mi-
crobenchmarks that (intentionally) include data races, the
polyhedral analysis reports conflicts and we report them
as potential data races. If our pre-analysis determines that
not all conditions for a correct polyhedral analysis hold
for a given loop nest, we report it as unverified.

o We also apply our approach to the LLNL proxy appli-
cation AMG2013. We can verify 41 of the 114 parallel
loops to be data race free. This also involves a number
of program transformation so that the polyhedral analysis
can be applied. AMG2013 is an LLNL proxy application
with 75,000 lines of code.

The rest of the paper is organized as follows. In Sec. II we
give an overview of our approach and show some examples
from the verified programs to illustrate some of the high-level
aspects of our verification method. In Sec. IIl we describe
our approach in detail. In Sec. IV we present an extensive
evaluation of our approach, using DataRaceBench [15] and
the LLNL proxy app AMG2013. In Sec. V we discuss related
work before we conclude in Sec. VL.

II. OVERVIEW

The presented analysis technique is part of our work on
the data race detection tool DRACO (Data Race Analysis

TAMG2013: https://computation.linl.gov/projects/co-design/amg2013

int main(int argc, charx argv([]) {

int 1i;

int a[2000];

for (i=0; 1i<2000; i++)
alil=1i;

#pragma omp parallel for

LI = Y N R

for (i=0;1<1000;1i++)
al[2+xi+l]l=alil+1;
9 printf ("a[l1001]=%d\n", a[1001]);
10 return 0;

11 }

Fig. 1: DataRaceBench benchmark DRB033 with a detected
data race.

and COrrectness) which is based on the ROSE compiler
infrastructure®. One of the design goals of the tool is to analyze
real applications without user interaction. The tool takes as
input a C/C++ program and verifies that the program is data
race free. In case we cannot verify the entire program, it
reports the specific parts of the program that were verified.
The granularity of reporting is functions and loops. Functions
are reported by their respective names if the entire function
can be verified. If an entire function cannot be verified then
the OpenMP loop(s) (by their starting line number) that are
verified within this respective function are reported. Parallel
sections are reported data race free if the entire section is
data race free. DRACO will be released as open source and
distributed with ROSE when it is productized.

A. Examples

This section presents three examples that DRACO analyzed
as either data race free or detected a data race in. Each example
represents one of the three groups of programs that we analyze.
Two examples are microbenchmarks from DataRaceBench,
one with a known data race and one without a known data
race. The third example is a code snippet of a verified loop
from the LLNL proxy application AMG2013.

1) Data Race Bench - detected data race: In Fig. 1 we
show the source code of the DataRaceBench microbenchmark
DRBO033. Variable i is implicitly private. This benchmark
has a data race in the omp parallel for loop which is
detected by our analysis and the line number of the data race
is reported.

2) Data Race Bench DRB043 - verified to be data race free:
The DataRaceBench microbenchmark DRB0433 is a bench-
mark with no known data race. It is one of the benchmarks
generated by PolyOpt*. In total it has 6 parallel loops. The
iteration variable is implicitly private in each loop. Arrays A,
B, and X are referred to by pointers passed as arguments to the
function kernel_adi. Those array pointers refer to different
arrays in the benchmark and no aliasing occurs. Aliasing also
does not cause data races in other DataRaceBench benchmarks
with affine loop nests.

3) AMG2013 - verified to be data race free: In Fig. 2 one
of the many loops verified to be data race free in the proxy

2ROSE: http://rosecompiler.org

3https://github.com/LLNL/dataracebench/blob/master/micro-
benchmarks/DRB043-adi-parallel-no.c

4PolyOpt: http://web.cs.ucla.edu/pouchet/software/polyopt

int hypre_ParCSRRelax_Cheby (....) {

int num_rows = hypre_CSRMatrixNumRows (A_diag);...
double =xu_data

= hypre_VectorData (hypre_ParVectorLocalVector (u)); ...
double xorig_u;...

orig_u = hypre_CTAlloc (double, num_rows);...

®© N U kWD -

double *ds_data, *tmp_data;...
9 ds_data
10 = hypre_VectorData (hypre_ParVectorLocalVector(ds));...

11 N
12 #ifdef HYPRE_USING_OPENMP

13 #pragma omp parallel for private(j) schedule(static)

14 #endif

15 for (j = 0; j < num_rows; J++

16 {

17 u_data[j] = orig_u(j] + ds_data[j]l*u_dataljl;

18 }

19 .

20 }

Fig. 2: AMG2013 function hypre_parCSRRelax_cheby
in file parcsr_ls/par_relax_more.c. The directive
omp parallel for is atline 742 in the original file. This
loop is verified to have no data race.

application AMG2013 is shown. We show only one verified
parallel loop and some context from the source code. The
function hypre_ParCSRRelax_Cheby takes a number of
arguments and the arrays are allocated by called functions.
An alias analysis has to ensure that the pointers u_data and
orig_u and ds_data refer to different arrays. No pointer
arithmetic occurs in the application and only pointers to the
beginning of arrays are passed between functions. All offsets
in arrays are accessed through index expressions. Once the
property is established that the pointers do not alias and the
memory regions referred to do not overlap, the polyhedral
analysis can verify the property that no data race exists in
this loop. The alias analysis is not integrated yet, we checked
manually that no aliasing occurs, for details see Sec. IV-B.

III. APPROACH

DRACO performs data-race-free verification on a supported
subset of OpenMP parallel loop nests in a program. It is
implemented with the ROSE compiler infrastructure and takes
advantage of the native support for OpenMP in ROSE, which
parses OpenMP pragmas into special AST nodes and provides
an analysis to identify whether a variable is shared among
threads. DRACO also uses the Polyhedral Compiler Collection
package (PoCC) > to perform the polyhedral data race analysis.

A. Precondition Checking

Not all parallel loops can be verified with the polyhedral
model. The available support for OpenMP pragmas in DRACO
and the assumptions made by the polyhedral model together
result in the following preconditions that must be satisfied by
a loop nest before it can be verified by the polyhedral data
race analysis:

1) It is a for-loop nest parallelized by a supported OpenMP
directive;
2) It contains no unsupported OpenMP directive or clause;

SPoCC: https://sourceforge.net/projects/pocc

3) Its sequential version (i.e., without any OpenMP
pragma) can be represented by the polyhedral model;

4) The arrays referenced in the loop nest do not overlap;

5) There is no out-of-bounds array access in the loop nest.

The OpenMP directives currently supported by DRACO
are for, simd and for simd. The supported clauses are
collapse and data-sharing clauses. The handling of syn-
chronization constructs is not supported and is subject of future
work. The checking of OpenMP directives is implemented
based on ROSE’s OpenMP AST which contains OpenMP
nodes representing corresponding pragmas.

The loop nests that can be represented and analyzed by the
polyhedral model are called Static Control Parts (SCoP). In a
SCoP the control flow and data dependencies can be computed
statically. The branch conditions, loop bounds, and memory
accesses in the loop nest are expressed as affine functions
of induction variables and parameters. DRACO aims to parse
loop nests that meet the first two preconditions into SCoPs and
proceeds with the analysis only if the parsing is successful.

The last two preconditions are the assumptions made by
the polyhedral analysis. We discuss the required alias anal-
ysis (Item 4) in Sec. IV-B. For bounds checking, we use a
polyhedral-based method described in Sec. III-C.

B. Data Race Analysis

In a SCoP, two kinds of data race can exist. The first
kind is the data race of induction variable references in loop
initialization, test and increment expressions. This usually
happens when the programmer forgets to declare the induction
variables in loop nests as private. The second kind of data
race is caused by non-induction variable references in the loop
body, which is where the polyhedral analysis can be applied.

1) Induction Variable Data Race Analysis: In a SCoP, an
induction variable is not written in the loop body. As a result, it
causes a data race if and only if it is shared between threads.
Thus the checking of data races among induction variables
can be achieved by simply performing an analysis on the data-
sharing clauses to identify shared variables. If there is a shared
induction variable, a data race is found. Otherwise, there is no
data race involving induction variables.

2) Loop Body Data Race Analysis: One key component
of polyhedral loop optimizations is data dependence analysis,
which is based on the polyhedral representation of statements
in the loop body. A legal loop transformation needs to preserve
all the data dependencies in the loop nest. In a parallelized loop
nest, the violation of data dependencies of shared variables
results in data races. DRACO employs the existing polyhedral
data dependence analysis in PoCC to perform data-race-free
verification on parallel loops nests.

Analysis-Enabling Program Transformation

The polyhedral dependence analysis in PoCC is not aware
of OpenMP pragmas and thus does not distinguish between
private and shared variable references. Since private memory
accesses (by also considering pointer semantics) can never
produce a data race, the dependence analysis should not take
them into account. Instead of modifying PoCC’s dependence

1 int main(int argc, charx argv([])

2 {

3 int 1, 3;

4 int n=100, m=100;

5 double b[n] [m];

6 #pragma omp parallel for private (J)
7 for (i=1;i<n;i++)

8 for (J=0; j<m; j++)

9 b[1]1[J1=bl[i]1[]3-11;

10 printf ("b[50][50]=%f\n",b[50][50]);
11 return 0;

12 }

Fig. 3: DataRaceBench benchmark DRB014 with a data race
caused by an out-of-bounds access in line 9.

analysis library, we remove the corresponding write references
to private variables from the source code. We achieve this
by making the left-hand side (a private variable reference)
and the right-hand side of an assignment statement to two
standalone statements, that replace the original statement.
This transformation replaces private variable write references
with read references and preserves all references to shared
variables.
Polyhedral Dependence Analysis

After the previously mentioned code transformation, we
apply a standard polyhedral dependence analysis described
in [24]. The analysis is able to find all data dependencies
between statement instance pairs. Since there is no write
reference to private variables in the code, all the dependencies
identified are caused by shared variable references.
Finding Data Races From Data Dependencies

We use the following conclusion drawn from the definitions
of data races and data dependencies to identify data races from
the result of data dependence analysis. For a loop nest L, let
St denote the set of statements in the loop body of L. Let
Dy, _,s, be a data dependency from s; to se. There is a data
race between si, so € Sp, if and only if

dl € Z,3Dy, s, carried at level I,s.t. 1 <1 < Cf,

where C7, is the collapse level of L decided by the collapse
clause.

Following this conclusion, once all the data dependencies of
shared variables are identified, a further filtering is needed to
reach the final result. The filtering process takes the collapse
level as input and keeps only the dependencies carried by loops
whose nested level is less than or equal to the collapse level. If
there is no dependency left, meaning that no data dependency
is violated by the parallelization, the loop nest is data race
free.

C. Polyhedral Bounds Checking via Transformation

For multi-dimensional arrays whose elements are stored
contiguously in memory, an out-of-bounds access can be
wrapped around and result in a data race within the same
array. DataRaceBench contains such microbenchmarks with
out-of-bounds array index operations that lead to data races
(e.g. DRBO14 as shown in Fig. 3). As previously mentioned
in Sec. III-A, a precondition of the polyhedral analysis is that
no out-of-bounds array access exists in the loop nest because

int a[l0]; int a[l0];
for (£t = 0; t < 2; t++)
for (1 = 0; 1 < 5; i++) for (i = 0; 1 < 5; i++)
for (j = 0; J < 5; j++) for (j = 0; 3 < 5; j++)
if (1 >= 3j) if (1 >= 3j)
ali - 3 - 11++; if (i -3-1<0 ||

i-3j-1>=10)
tmp = 0;
(a) The original loop. (b) The transformed loop.
Fig. 4: A transformation example for bounds checking.

the wrap-around is equivalent to a modulo operation in the
array index expression, making the expression non-affine.

The fulfillment of this precondition is necessary to the
soundness of the data race freedom verification. For example,
in Fig. 3, without the bounds checking that would otherwise
stop us from further analyzing the loop, the polyhedral analysis
will find no data dependency and miss the data race.

The checking of this precondition (i.e., bounds checking)
can be done with the help of a polyhedral analysis when the
size of each dimension of arrays is known at compile time.

Given a loop nest that is a SCoP, checking whether an array
index expression can be out of bounds can be transformed into
a dependence analysis problem and solved by the polyhedral
analysis. We first build a temporary loop nest that has all the
control structure containing the array reference in it. An if-
statement that checks if the index expression is out of bounds
is built at the location in the temporary loop nest that would
be the array reference in the original loop nest. The branch of
that if-statement has one temporary variable assignment (e.g.,
tmp = 0;). At last, a for-loop with two iterations is added to
wrap the outermost loop of the temporary loop construction.
Fig. 4 shows a simple example of the transformations. Once
the temporary loop is built, we run polyhedral dependence
analysis on it. If there is no dependency on a write to
the temporary variable between different iterations, we can
conclude that the index expression must be in-bounds.

This analysis can be overly conservative if there are param-
eters with values unknown at compile time in the polyhedral
representation. DRACO only includes this analysis as an
optional part of the pipeline and enables it when there is no
parameter in the polyhedral representation. In our experiments
we turned off the upper-bounds check because it turns out to
be overly conservative. The lower-bounds check is performed.

D. Limitations

With all the preconditions mentioned in Sec. III-A satisfied,
DRACO will produce no false negatives, which is necessary
for the correctness of the data-race-free verification. But false
positives can be present in the results. One kind of false
positive is due to the existence of parameters whose values are
unknown at compile-time. For example, consider a parameter
that appears in a parallel loop’s bound, whose value range
limits that of the induction variable, and the loop can have a
data race only if the induction variable falls into the impossible
value range. Since the value range of the parameter is unknown
during the polyhedral analysis, a false positive data race report

could be issued. However, it is possible to perform a static pre-
analysis to decide the possible values of a parameter so as to
reduce the number of false positives.

Another kind of false positive is caused by the lack of sup-
port for some OpenMP clauses. An example is the safelen
clause in the simd directive. This clause makes data races
reported by DRACO between two array references with a
distance larger than the safe length infeasible.

IV. EVALUATION

We perform our evaluation with the data race bench-
mark suite DataRaceBench and the LLNL proxy application
AMG?2013. The input codes are unmodified, and we only re-
place the compiler in the Makefile with our analysis tool. Then
the build process is run as usual except that it now generates
race analysis results. Optionally the original compiler can be
invoked after the analysis phase and the respective original
file is also compiled (and linked) - this can be important for
complicated build scripts, but turned out not to be relevant for
our test cases.

A. Data Race Bench

In its initial release, version 1.0.1, DataRaceBench had 72
benchmarks. Further development with feedback and contri-
butions from other research groups as well as the addition of
microbenchmarks for addressing new features in OpenMP 4.5
have been made. The current release, version 1.2.0, contains
116 microbenchmarks. We used this latest version in our
evaluation.

W Verified Data Race Reported Unverified

] w w N
o =} « o
=] s} =]]

Number of Parallel Loops
. N
wv o
o o

—
4 5+

100
) I
0 [
1 2 3
Number of Static Assignments in the Loop

Fig. 5: DataRaceBench: verified parallel loops, loops with
reported data races, and unverified parallel loops.

TABLE I: DataRaceBench result statistics

Data Race | Verified Unverified | No Parallel | Total
Reported Data Race Free Loop
#benchmarks 26 20 42 28 116
Min. Runtime (s) | 0.26 0.24 0.17 0.20 N/A
Max. Runtime (s) | 0.63 1.32 208.44 7.17 N/A
Tot. Runtime (s) 12.95 7.83 233.46 25.16 279.40

! All parallel regions are parallel loops

* OpenMP parallel loop at line 6:
Loop can be analyzed with the polyhedral model
Number of data races: 1

— Reason: flow dependency
Source at line 8: af[2 * 1 + 1] = a[i] + 1;
Sink at line 8: a[2 = 1 + 1] = a[i] + 1;

Fig. 6: DRACO’s output on DataRaceBench DRB033.

Our prototype tool DRACO is run on each microbenchmark
and reports one of the following results for each (possibly
nested) parallel OpenMP loop:

« A potential data race is detected. The reason for the data
race and the location information are reported.

o The loop is verified to be data race free and is guaranteed
to be correct in this respect.

e The loop cannot be verified. The reason can be an
unsupported OpenMP feature or because the loop is not
an affine loop nest. Note that we also perform code trans-
formations before the polyhedral analysis is performed
which can make some loops analyzable for the polyhedral
analysis (see Sec. III for more details).

Fig. 6 displays the output of DRACO after analyzing the
DataRaceBench microbenchmark DRB033 shown in Fig. 1.
The first line indicates that every parallel region in the input
program is a parallel loop. This implies that the program can
be fully verified if all its parallel loops are verified. The rest of
the output gives the verification result of the only parallel loop
starting from line 6 (the location of the omp for pragma).
It identifies the data race caused by a flow dependency from
the statement at line 8 to itself.

In Fig. 5, we show the verification results reported by the
number of verified parallel loops across all 116 microbench-
marks. We show how many loops are verified to be data race
free, in how many loop nests data races were reported, and how
many loop nests remained unverified, grouped by the number
of static assignments in the respective loop bodies. A static
assignment is an assignment in the source code. There are a
few benchmarks with a high number of parallel loops, e.g.
DRBO042 has 391 omp simd loops and several omp for
loops. Only 4 benchmarks have more than 100 parallel loops.

Table I shows the results based on the number of bench-
marks. A benchmark is reported as verified only if all parallel
loops in the benchmark could be verified to be data race free.
If a data race is detected in at least one parallel loop, the
benchmark is reported as “Data Race Reported”. In all other
cases, “Unverified” is reported. For example, in DRB013 there
is a nowait loop causing a data race. We can verify the
loop to be data race free, but not the entire region (similar
DRB104). These benchmarks are reported as unverified. The
column “No Parallel Loop” shows how many benchmarks do
not contain any parallel loop.

Table I also shows initial runtime results for our prototype
including the total time of analysis: parsing, pre-analysis to
determine whether a loop can be analyzed with the poly-
hedral analysis, the polyhedral analysis itself (if applicable),
and result reporting. It also shows the minimum, maximum

and total analysis time, showing that for all benchmarks the
analysis time is within reasonable time bounds. No analysis
was aborted and each benchmark consists of one source file
(= translation unit).

An interesting observation not captured in these tables is
that the microbenchmarks contain 16 cases with variable-
length arrays. The length of the array is a command line
parameter to the benchmark. If no parameter is provided, some
default value is selected. All 16 microbenchmarks contain a
data race. For 13 of those 16 benchmarks in which we detected
a data race, 3 were reported to be not verified.

We ran our experiments on a Linux machine running Ubuntu
16.04 with an Intel Core i7-8550U processor at 1.80 GHz and
16GB of RAM.

B. AMG2013 Proxy Application

AMG2013 is an LLNL proxy application that takes the
BoomerAMG solver from Hypre and wraps it with a driver
to run example problems. AMG2013 implements a parallel
algebraic multigrid solver for linear systems arising from
problems on unstructured grids. The driver provided in the
benchmark can build various test problems. The default prob-
lem is a Laplace type problem on an unstructured domain
with various jumps and an anisotropy in one part. AMG2013
is written in ISO-C. It is an SPMD code which uses MPI
as well as OpenMP. MPI parallelism is achieved by domain
decomposition. The driver provided with AMG2013 achieves
this decomposition by subdividing the grid into logical P x Q x
R (in 3D) chunks of equal size. The benchmark was designed
to test parallel weak scaling efficiency. It consists of 75,000
lines of code. In our evaluation, we target the OpenMP parallel
loops.

TABLE II: AMG2013 Loop Analysis Results

Data race | Verified Unverified | Total | Runtime (s)
reported Data Race Free
[0 [41 [73 [114 [308.40]

We ran DRACO on all 75,000 LOC, and analyzed each
file separately. The analysis assumes that the arrays operated
on by the polyhedral tool are alias-free because our prototype
does not integrate whole-program analysis yet. We confirmed
manually that there is no aliasing in the AMG2013 benchmark
that violates the required assumptions. The same assumption
of no aliasing is made in [3] and [6] where pointer analysis
is considered as future work as well. AMG2013 has only
some specific aliasing patterns: every array element is accessed
through a pointer referring to the beginning of the array and
an index offset. No pointer arithmetic is used. We plan to
integrate the required alias analysis in DRACO to automate
this aspect.

In Table II, we show the results of analyzing the loops in
AMG2013. We can verify 41 of the 114 parallel OpenMP
loops to be data race free (column 2) and no data race exists
in the successfully analyzed loops (column 1). 73 loops remain
unverified. The loops involve a number of different OpenMP
directives and clauses. A more detailed view is presented in

WVerified M Data Race Reported M Unverified

40

Number of Parallel Loops

[1,10] [11,20] [21,30] [31,40] [41,50] [51,60] [61,70]

Number of Static Assignments in the Loop

[71,80] [81,90] [91, 100]

Fig. 7: AMG2013 Proxy Application: verified and unverified
parallel loops. No loops with data races are reported.

Fig. 7. The histogram shows how many parallel loop nests
could be verified and how many remain unverified for groups
of loop nests with multiples of 10 assignments in the source
code (static assignments) in the respective loop bodies. Those
loops that cannot be verified are not affine loop nests (we also
confirmed this manually).

We also analyzed AMG2013 with the tool Archer version
2.0.0. In our experiment Archer found three data races, match-
ing the number of data races reported in a previous evaluation
of Archer [2]. These three data races are inside an OpenMP
parallel region but not in any parallel loop. Therefore, DRACO
does not report them as data races.

V. RELATED WORK

Data race detection has been a challenging problem for
decades and has been attacked using dynamic and static
analysis techniques. There exist also a number of approaches
that combine several tools. We therefore discuss separately the
related work for those three groups.

A. Static Data Race Detection

Static data race detection techniques do not require the
program to be executed in order to identify data-races. Static
tools do not rely on instrumented schedulers and therefore can
find all data races. They might also report data races that do not
exist due to the imprecision of static analysis. Omp Verify [3]
is a static race detector that targets OpenMP exclusively using
a polyhedral model to determine data dependencies in shared
data. This approach is similar to our approach in terms of
converting OpenMP programs into a polyhedral representation
to enable data race detection. In [7] the polyhedral model is
extended to represent SPMD programs and an approach for
data race detection is presented for extracting race constraints
that can be solved by an SMT solver such as Z3. In [6]
this approach is further developed and implemented in the
tool PolyOMP, support for pointer analysis is planned as

future work. Those works assume that the preconditions of
the polyhedral analysis are satisfied while our work takes the
precondition checking into consideration. Unlike their methods
that adapt the polyhedral analysis to parallel programs, our
method transforms the source code to make use of the existing
polyhedral analysis out-of-the-box. Besides, those works are
only evaluated on a few small kernels, while we measured our
method on a real-world application, showing the applicability
of polyhedral methods on large-scale HPC applications.

Locksmith [19] is one such tool that seeks to correlate
locks with the shared memory locations they guard. It over-
approximates the set of data races, possibly returning some
false positives. Another analysis seeks to improve the detection
of shared variables [12] by performing pointer analysis in
order to find global variables that are locally aliased.

CIVL [27] is a framework for static analysis and verification
of concurrent programs. It supports MPI, OpenMP, CUDA,
and Pthreads and can also perform a data race detection
for OpenMP programs. It uses symbolic execution and can
verify programs up to a certain bound, e.g. the number of
loop iterations - in contrast to polyhedral analysis which
allows verifying at least affine loop nests independent of
the number of iterations. Due to its design of mapping the
constructs of different parallel programming languages to a
common intermediate representation, CIVL can also verify
mixed programs, where, for example, both MPI and OpenMP
are used.

B. Dynamic and Hybrid Data Race Detection

Dynamic data race detection tools run an instrumented
target program and analyze the execution trace [26]. Many
dynamic analyses use a happens-before approach. Reads and
writes to shared memory are modeled by a partial order
over events within the system [14]. This technique is heavily
dependent on the application scheduler and may miss many
latent races. Many advances have been made in this area over
the years by using more specialized concepts than traditional
vector clocks in order to reduce overhead [8], [9], expanding
it to single-threaded event-driven programs [16], defining
additional relations such as casually-precedes [23], and by
taking some high-level language semantics also in dynamic
tools into account [20].

Lockset analyses such as Eraser [21] present an alternative
to happens-before techniques; they infer the set of mutually-
exclusive locks that protect each shared location. If a variable’s
lockset is empty then accesses to that location may trigger
races. These analyses can find races that happens-before
techniques cannot, but they incur steep performance costs.

Hybrid approaches combining both methods have also been
developed [11], [17], [22]. These methods leverage informa-
tion about local control flow, recent access, and common
race patterns in order to dynamically adjust the analysis.
This leads to greater flexibility when balancing accuracy and
performance, as well as enabling long-term [26] and large-
scale [22] analyses that might not be possible with other
techniques.

In [15] the four dynamic analysis tools Helgrind, Thread-
Sanitizer, Archer, and Intel Inspector are evaluated using the
DataRaceBench suite which provides benchmarks specifically
designed for evaluating data race detection tools. There are
groups of benchmarks with and without data races, and
benchmarks that can be run with a command line parameter
specifying the size of arrays that the program operates on. One
of those four tools, Archer, uses also a polyhedral analysis to
determine statically whether a loop-nest in a program is data
race free. Archer is based on LLVM and leverages LLVM’s
polyhedral analysis for this purpose. Archer does not report in
those cases the absence of data races, it only reports as usual
that it did not detect a data race in the specific program run.

C. Related Analyses

Similar multi-tool analyses have been performed with other
languages. Two targeting the Java language [l], [25] ana-
lyzed several data race detection tools and compared the
accuracy and performance of each. The first [1] compared
RaceFuzzer, RacerAJ, JCHORD, Race Condition Checker, and
Java RaceFinder. The authors compared the compilation time,
accuracy, precision, along with several other metrics. Java
RaceFinder performed the best on their tests, although it only
reported the first race found even if there were others in the
program. In [25] the authors focused on detection methods
rather than tools, and compared five different algorithms:
FastTrack, Acculock, Multilock-HB, SimpleLock+, and casu-
ally precedes (CP) detection. The report used FastTrack as
a baseline to compare detection accuracy and performance
against. Multilock-HB reported the most races without any
false-positives, but generated significant overhead; Simple-
Lock+ had the lowest overhead but missed at least one race
that MultiLock found.

VI. CONCLUSION

In this paper, we presented an approach for proving the ab-
sence of data races using polyhedral analysis. Since polyhedral
analysis can only handle affine loop nests the analysis cannot
handle all loops in the analyzed application, but those loops
that can be analyzed are verified for arbitrary loop bounds
and iterations to be data race free. In addition, we presented
a code transformation that widens the range of applicability
of the polyhedral analysis (Sec. III-C). Using this approach
we are able to determine that 40% of the microbenchmarks in
DataRaceBench 1.2.0 are data race free or have a data race,
and verify 41 of the 114 parallel loops of the proxy application
AMG?2013 are data race free. This is an important finding:
36% of the hand-written loops in AMG2013 are indeed affine
loop nests and polyhedral analysis is suitable to verify that
these loops are data race free.

In contrast to testing tools and bounded model checking
tools, we can determine that a parallel OpenMP loop is data
race free independent of a thread schedule and the number of
iterations.

Polyhedral analysis allows us to determine there is no data
race, but false positives are possible. The analysis may report

a data race exists in a parallel loop when none is present. For
DataRaceBench and the AMG2013 proxy application, no false
positives are reported, but it is important to note that parallel
loop patterns exist for which false positives can be reported.
However, our analysis shows a high level of precision, as we
do not report any false positives for the analyzed affine loops
in DataRaceBench or AMG2013.

As part of our future work, we will integrate an inter-
procedural alias analysis that will allow us to fully automate
the verification of the evaluated programs.

If our analysis detects a data race, we report the line num-
bers of the conflicting accesses. As is common for verification
tools, we plan to generate a counterexample that demonstrates
how to trigger a data race. A counterexample has to involve
at least two threads and the path that each of the threads can
take in a program that eventually leads to a conflicting access.
Counterexamples are also helpful in debugging and proving
the existence of a data race.

On the path in achieving data-race-free programs, testing
tools are helpful for detecting and debugging data races, but a
verification tool is necessary to prove that a program is indeed
data race free. Only then can a program (or at least parts of
it) be considered correct and be trusted to behave as specified.

REFERENCES

[1] J. S. Alowibdi and L. Stenneth. An empirical study of data race detector
tools. In 2013 25th Chinese Control and Decision Conference (CCDC),
pages 3951-3955, May 2013.

[2] S. Atzeni, G. Gopalakrishnan, Z. Rakamaric, D. H. Ahn, I. Laguna,
M. Schulz, G. L. Lee, J. Protze, and M. S. Miiller. ARCHER: effectively
spotting data races in large openmp applications. In Parallel and
Distributed Processing Symposium, 2016 IEEE International, pages 53—
62. IEEE, 2016.

[3] V. Basupalli, T. Yuki, S. Rajopadhye, A. Morvan, S. Derrien, P. Quinton,
and D. Wonnacott. ompverify: Polyhedral analysis for the openmp
programmer. In Proceedings of the 7th International Conference on
OpenMP in the Petascale Era, INOMP’11, pages 37-53. Springer-
Verlag, 2011.

[4] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul. The
polyhedral model is more widely applicable than you think. In Compiler
Construction, pages 283-303. Springer, 2010.

[5] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral program optimization system. In ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, June 2008.

[6] P. Chatarasi, J. Shirako, M. Kong, and V. Sarkar. An extended polyhedral
model for spmd programs and its use in static data race detection. In
C. Ding, J. Criswell, and P. Wu, editors, Languages and Compilers for
Parallel Computing, pages 106120, Cham, 2017. Springer International
Publishing.

[7]1 P. Chatarasi, J. Shirako, and V. Sarkar. Static data race detection for
SPMD programs via an extended polyhedral representation. In Pro-
ceedings of the Sixth International Workshop on Polyhedral Compilation
Techniques, IMPACT, volume 16, 2016.

[8] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H. Boehm.
IFRit: interference-free regions for dynamic data-race detection. In G. T.
Leavens and M. B. Dwyer, editors, Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2012, part of SPLASH 2012,
Tucson, AZ, USA, October 21-25, 2012, pages 467-484. ACM, 2012.

[9] C. Flanagan and S. N. Freund. Fasttrack: efficient and precise dynamic
race detection. In M. Hind and A. Diwan, editors, Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009,
pages 121-133. ACM, 2009.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

J. Holewinski, L.-N. Pouchet, and P. Sadayappan. High-performance
code generation for stencil computations on gpu architectures. In ICS,
June 2012.

J. Huang, P. O. Meredith, and G. Rosu. Maximal sound predictive
race detection with control flow abstraction. In M. F. P. O’Boyle
and K. Pingali, editors, ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, pages 337-348. ACM, 2014.

V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta. Fast and accu-
rate static data-race detection for concurrent programs. In W. Damm and
H. Hermanns, editors, Computer Aided Verification, 19th International
Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings,
volume 4590 of Lecture Notes in Computer Science, pages 226-239.
Springer, 2007.

M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and P. Sa-
dayappan. When polyhedral transformations meet simd code generation.
In PLDI, June 2013.

L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558-565, 1978.

C. Liao, P-H. Lin, J. Asplund, M. Schordan, and I. Karlin.
Dataracebench: A benchmark suite for systematic evaluation of data
race detection tools. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
17, pages 11:1-11:14, New York, NY, USA, 2017. ACM.

P. Maiya, A. Kanade, and R. Majumdar. Race detection for android
applications. In M. F. P. O’Boyle and K. Pingali, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 14, Edinburgh, United Kingdom - June 09 - 11, 2014, pages
316-325. ACM, 2014.

R. O’Callahan and J. Choi. Hybrid dynamic data race detection. In
R. Eigenmann and M. C. Rinard, editors, Proceedings of the ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP 2003, June 11-13, 2003, San Diego, CA, USA, pages 167-178.
ACM, 2003.

L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong. Polyhedral-based
data reuse optimization for configurable computing. In FPGA, Feb.
2013.

P. Pratikakis, J. S. Foster, and M. W. Hicks. LOCKSMITH: context-
sensitive correlation analysis for race detection. In M. I. Schwartzbach
and T. Ball, editors, Proceedings of the ACM SIGPLAN 2006 Confer-
ence on Programming Language Design and Implementation, Ottawa,
Ontario, Canada, June 11-14, 2006, pages 320-331. ACM, 2006.

J. Protze, M. Schulz, D. H. Ahn, and M. S. Miiller. Thread-local
concurrency: A technique to handle data race detection at programming
model abstraction. In Proceedings of the 27th International Symposium
on High-Performance Parallel and Distributed Computing, HPDC 18,
pages 144-155, New York, NY, USA, 2018. ACM.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson.
Eraser: A dynamic data race detector for multithreaded programs. ACM
Trans. Comput. Syst., 15(4):391-411, 1997.

K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: data race detection
in practice. In Proceedings of the Workshop on Binary Instrumentation
and Applications, pages 62-71. ACM, 2009.

Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan. Sound
predictive race detection in polynomial time. In J. Field and M. Hicks,
editors, Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2012, Philadelphia,
Pennsylvania, USA, January 22-28, 2012, pages 387-400. ACM, 2012.
N. Vasilache, C. Bastoul, A. Cohen, and S. Girbal. Violated dependence
analysis. In Proceedings of the 20th annual international conference on
Supercomputing, pages 335-344. ACM, 2006.

M. Yu, S.-M. Park, I. Chun, and D.-H. Bae. Experimental performance
comparison of dynamic data race detection techniques. ETRI Journal,
39(1):124-134, 02 2017.

Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: efficient detection of data
race conditions via adaptive tracking. In A. Herbert and K. P. Birman,
editors, Proceedings of the 20th ACM Symposium on Operating Systems
Principles 2005, SOSP 2005, Brighton, UK, October 23-26, 2005, pages
221-234. ACM, 2005.

M. Zheng, M. S. Rogers, Z. Luo, M. B. Dwyer, and S. F. Siegel. CIVL:
Formal verification of parallel programs. In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 830-835, Nov 2015.

APPENDIX A
ARTIFACT DESCRIPTION

A. Benchmark and Proxy Application
The data race benchmark suite and proxy applications used in
this paper are open source and publicly available:

1) The DataRaceBench benchmark suite is available at
https://github.com/LLNL/dataracebench.

2) The AMG2013 proxy application can be
found at https://computation.llnl.gov/projects/co-
design/amg2013.

B. Evaluation with DRACO

The tool DRACO was run on each DataRaceBench benchmark
file and on each file of the proxy application AMG 2013. The
used version of DRACO is 0.9.0.

For the evaluation on DataRaceBench, we used the following
command line to analyze each microbenchmark:

draco —-—no-check-upper-bounds INPUT_FILE

With the option ——no-check-upper-bounds, we turned
off the additional checking of upper bounds of array accesses
because this check is currently overly conservative. The poly-
hedral check of the lower array bounds remains active by
default. We manually checked that no out of upper-bounds
access exists. See section III-C for more details.

To analyze AMG2013, we modified the file Makefile.include
of AMG2013 by adding the following line:

CC = draco --no-check-upper-bounds $ (
shell mpicc -show | cut -d’ ' -f2-)

With the option ——compile, DRACO can invoke the back-
end to compile the given input file. We did not use this option
for the evaluation to avoid counting the compilation time as
part of DRACQO’s runtime.

C. Evaluation with Archer

The tool Archer and installation instructions can be found
at: https://github.com/PRUNERS/archer. The used version of
Archer is 2.0.0 built on Clang/LLVM 6.0.1.

To instrument and build AMG2013 with Archer, we added the
following line to the file Makefile.include of AMG2013:

CC = clang-archer —--sa $(shell mpicc -
show | cut -d’ 7 —-f2-)

The command line parameters used in the evaluation are
from an example provided in the AMG2013 documentation.
The evaluation was run with the following command line
parameters:

mpirun -np 1 ./amg2013 -laplace -n 40 40
40 -p 1 1 1

The following list shows the data races as reported by Archer
with file names, line numbers and column numbers:

1) AMG2013/utilities/threading.c:27:16

2) AMG2013/parcsr_ls/par_interp.c:1248:25

3) AMG2013/parcsr_ls/par_interp.c:1249:25
The data race analysis results reported by Archer are consistent
with the results reported by our tool DRACO.

