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Introduction: Chemical Looping N=|varona
Gasification Concept T [rEcinoroy

: : LABORATORY
Configuration:
— Dual reactor design:

* Fuel Reactor CO + H, N, and other
(Reducer/Gasifier) (CO minor) minor

» Air Reactor (Oxidizer) ¥ ﬂ»\constituents
Foundation: Selective Oxygen '

Carrier with unique properties [ Reducer/ Oxidizer
— Reactdirectly with coalvia - | Gasifier Reduced
solid-solid reactions to A

produce synthesis gas

— Minimal reactivity with
synthesis gas Jogen
— Applied Energy 165 (2016) 952-966
Advantages: Coal

— No direct contact between
fuel and air.

— Synthesis gas stream not | |
diluted with Nitrogen Coal Steam + Heat Air

— No need for pure oxygen via
Cryogenlc separaﬂon C + MeO + H,0 - CO +H, +M 2Me + O, - 2MeO

Solid-solid: MeO + C*-> CO + Me

___ Oxidized
Oxygen
Carrier
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Introduction: Motivation TL | RSORToRT

Motivation for this work:

 Provide particle scale kinetic model representation for both oxygen
carrier and char with respectto solid mediated reactions

« Accurate model representation need for scale up and optimization

« Determinekinetic rate parameters for the solid mediated interactions
between coal char and metal oxide (Ca-Ferrite)

Addressing this problem:

« Thermogravimetric Analysis, Mass Spectrometry and other coupled
characterization techniques

 Solid state decomposition modeling approaches
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Methods: Experimental Setup NE ey

TGA-MS

« Experimental Parameters:
 Loading: ~30 mg of sample

— 24 mg CaFe,O,

— 6 mg Coal Char
« Ramp 200°C/min to Desired Temp

TA Discovery TGA-MS Reactor Setup « Temperature Range:
Hangdown — 850°C, 900°C & 950°C
wire, linked to J—.li Balance Purge  Hold isothermal 240 min
microbalance e ) )
—  [[Quartz Reactor . OX|d|z.e. 80% Air for 60 minutes
Spectrometer Tube « On-line MS for Gas
Capillary product analysis
Sample Gas
Effluent I I Inlet
T . .
' Other Characterization
::szll:lne;itelng | Sample Pan Tech n|q ues
— i - XRD and SEM
Adsorbing Thermocouple
Cylinder
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Methods: Kinetic Modeling using TGA-MS [§

ol

TG-MS CaFe, 0, & Wyodak Coal Char  Conventionally:

_ Extent of conversion: (Overall conversion, TGA)
3.0 /Welght(mg) r 35

_ . ; Solid conversion based on instantaneous weight
25 Fommcnn - 30  change data

_ mo-—m(t)

2.0 ) 2 X(t) —

-,
.-
----------------------------------

N
=]

Weight (mg)

mo—mf
mg = initial mass (Ca-Ferrite + Char) (mg)
m(t) = instantaneous mass at time, t
my = final mass (Reduced Ca-Ferrite + Ash)

- 5  Theoretical mass associated with full
: reduction of CaFe,0, to Ca0 and Fe®

0 20 40 60 80 100 * Full char utilization (only ash remains)

Time (min)

[
%,

Concentration %
= = )
o wn
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Complex System: Both Char and OC change with
time

Deconvolute individual weight changes (char +
OC) based on EGA (Evolved gas anlysis).

kl
Overall reaction: 2C* + CaFe,0,— CO + CO, + CaO + 2Fe°
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Methods: Kinetic Modeling using TGA-MS [TL|siossr

« Bothcharand OCchangewith time
— Overall conversion must be separated to understand char and OC
contributions
XeharMs - Char conversion based Mass Spectra
Xoxygen carier, Ms - OXygen carrier conversion based on Mass Spectra

1.0 2.0 - 6
0o /XO,,emu conversion,TG g Mono-Atomic Oxygen (mg), MS [
t . / 5
0.8 1.6
—X Overall conversion,MS
0.7 1.4 _~ Carbon (mg), MS
= 1 [ S L B N 4
'E 0.6 a; 1.2 o =
s 2 ! £
g 05 /Xoxygen carrier,MS B0 CO, (conc. %) 3 2
— c _!i
T g ——CO (conc. %) o
Y R | B SR 508 =
s /|- = - _—
203 = Xchar,MS 0.6 H,0 (conc. %) - 2
-~ 731 Hr \ Carbon (mg), MS
0.2 0.4 ) L
—— Mono-Atomic - 1
0.1 0.2 Oxygen (mg), MS
U.U T T T T T T T T T T T T T T T T T T T T T T T T G.ﬂ' L | T T | T | B T T T I D
0 50 100 150 200 0 10 20 30 40 50
Time {min) Time (min)

— i —
Xoverall conversion — Zn WiXi - WAXchar,MS + WBXoxygen carrier, MS -




Methods: Kinetic Modeling using TGA-MS

i —
° Zn wiX; = WAXchar,MS + WBX0xygen carrier,MS

Model Representation of individual steps

L= k (T)f(X,): Rate of

decomposition of solid

- f(X;) : representative kinetic
model function
_ Xd(Xy) _ _
« gX) =/, A k(T)t :
Integral form
e X; = h(t) Explicitform

—E

e k()= Ae(R_Ta) : Arrhenius rate constant

- A =frequency factor (1/s)

- E, = Activation energy (J/mol)
- R =gas constant (J/mol-K)

- T =reaction temperature (K)

) :
e Dy2-(T) = D;e*sT : Oxygen ion
diffusion coef.
D; = jump frequency (cm?/s)
- kg = Boltzmann const
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Established Kinetic models for Solid State Reactions

Kinetic
Model |Mechanism fix) glx) X =ht)
1st Order |(1—X) —In(1—-X) 1 — e7K(DO
Orderof |2nd Order [(1—X)® (-x"-1 1—(k(My+1)"
Reaction 3rd Order (1 _X)g ({1 —X)_z i 1) 1_ (k(T}t + 1:}—1f2
nth Order |(1—X)" (1 =x)"""1)—1) |1 — (k(T)t 4+ 1)~/ D
1-D 1,;2X XZ _£k£T)t)1,’2
Diffusion 3D (SCM . . ) )
PLD) 3,1 =% — A —X)3] | (1 — (1 — X)3)? 11— (11— (MDY
2D 2(1— X)Y? 1-(1-x)? 1- (1 — k(D))
Contraction|3 p (SCM
KC) 3(1 — X)2/3 1—(1-—Xx)'/3 1—(1—1(T)t)?
nth Order |n(1 —X)(—In(1 —X})(l_%) [—In(1 —X)ﬁ 1 — D"
IMA
(nucleation)[" = 1 - [-In(1 —X)] 1 — g k(M)
n=2 - [—In(1 — )] 1 — g(-kME)?
Ginstling- StM
Brounshtein P[oduct 2 1
(GB-SCM aver 11-3(1-x)F+2(1-x)3/2(1-x)F -7t -
PLD) Radial

Diffusion
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Established Kinetic models for Solid State Reactions

.. . Kinetic
Initial Model Screening Model _|Mechanism f(x)
1st Order |(1 —X)
—— Xonygen Carvier, MS Orderof |2nd Order | (1 —X)?
—K1 Reaction 3rd Order [(1 —Xx)?
—K2
— K3 |nth Order |:1 — § :=|"
f = =Kn, = 245 Diffusion = !‘)X
. . 3-D (SCM 2 1
E 1D-Diff PLD) 3/, (1 —x)3[1— (1 —X)3]
i ===-5CM-PLD 2-D 2(1 — X)j_‘(z
g — - 1D-Contraction Contraction|3 p (scm
K] — — 3D-Contraction Q) 007 T
w - - - nth Order |n(1 —X)(—In(1 —x))“7#
IMA, n=1 VA
----- IMA, n=2 (nucleation)[" = 1 -
- - = GB-SCM-PLD n=2 ]
Ginstling- Pi}t:nuct
Brounshtein 2
(GBscm | HAYer [(1-3(1-X)F+2(1-X))
PLD) Radial
Diffusion
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ldentifying the reduction pathway for Ca-Ferrite

N=
TL
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release (Controlled reductionsampling)

TGA (TA Discovery) & XRD (Panalytical X-pert Pro)
TGA: Reactiontimeimpact on oxygen

XRD: Phase reorientationw.r.t. samplinginterval

P
] CaFe,0 ’ 1000 CayFe,05 A ) ' [Fe |
30 1 -‘/ - 900 > ca0o E «—
I - 800 v 1Q4 (240 min]
25 ] \.\‘/ Ca,Fe,0s, FeO 7 0 _ - e - * * *
] Sl [ )
- I N o 3
£ S . "% Q3 (180 min]
Eﬂ 20 11 ==--- Weightmg Tt ': 500 E" : - - -ML A PLY, W VY WP WP Y PP RPN - ~—-JL -
2 ® QOFresh Fe & CaOP, — - 4005 %
e Q1 (30 mm) Ca,Fe,05 N2 - o .g
] e Q2(%0min) 300 g | Q2 (90 min)
15 _ L O-3(180 min) E 200 - " i .“..._M\_,I ,,,,».,...,,,)JLML,,Am,lb.a.ﬂ”w,mjwvwmww lwmw'l"h - e
| @ Q4 (240 min) - 3 ) 7
1 Temperature °C - 100 FeO
10 T T T 1 T T T T 1 T T T T 1 T T T T 1 T T T T + 0 I 1 30 min
0 50 100 150 200 250 s . wd d N -MLWMM Q (___ )
Time (min) B ( Tp—————
‘ |\ | QO Fresh CaFe,0,
ijwwm«-v-x—h—w A 'wa ‘ermw’\f\"‘ ‘mj A »M’w'l L’WMWMW"J“WW’MWMJEVt Syt iy it ibg s Wrpremopg P mimetesi
15.00 25.00 35.00 45.00 55.00 65.00 75.00 85.00 95.00
20
Initial Partial Reduction Full Reduction
CaFe,0, —» CayFe,05&Fe0 — CaO &Fe®
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Further examination of the condensed phase N
reaction mechanism after determination of the TL

reduction pathway

Condensed phase reaction mechanism (Direct Solid-Solid reaction):
— Overall Reaction:

kl
« 2C*+ CaFe,0,~ CO + CO, + CaO + 2Fe"
— Individual components of condensed phase mechanism:
» Char Oxidation:

k
— R1 Desired: C* + 02~ =5 €0

K
— R2 Undesired: C*+ 202~ 5 CO,
— 2 primary steps

» Oxygen Carrier Reduction

k
— R3: 2CaFe,0, - Ca,Fe,0s + 2Fe0 + 0%~

: kD4 0 2-
— R4a:CayFe;Os — 2Ca0 + 2Fe” + 30
— 2 primary steps
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 Model representation (multistep, parallel mech.)
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Model representation for the selective oxidation of Wyodak

Char with CaFe 20 4 Wy odak Char (40-50um) & CaFe,0, (40-50pm), 950°C
10 1 1.0 -
X" . XOxygen Carrier, MS_ _ . .- &-
char, MS /Cumulatlve Steps o P, W cumulative Steps
0.8 - FY F X === 1 Y 5 emmmmemmmmmmmeemTeT
< 0.8 -1 e mmmm————TT - - F—
—_ ] = 1Y \JMA]_ & SCM-PLD (CazFeZO5TE'd'UCh°n)
S ~ K1(CO) & SCM-PLD (CO) 2
$ 06 1 E 1 KJMA1 (Ca,Fe,0; reduction)
£ L . S 0.6 4 _
g WK1 (CO) 2
2 §
= ]
Q = i
5 ® 04 -
= § -
2 2
0-2 02 4 T SCM-PLD (Ca,Fe,O; reduction) | -
_IMA1 (CaFe,0, Reduction)..............ccoooovmorreeer
"""""""""""""""""""""""""" ¥ scm-pLD (CO) T
o0 —0—-"—>7+r—>»—+—7—— 77771 -t
0 50 100 150 200 o0+ T7 T T
Time (min) 0 50 100 150 200

Time (min)

Model Representation:
e Wyodak Char conversion:
— Carbonoxidation to CO,, & CO primarily first order [K1] (kinetic controlling regimes)
e CaFe,O,Reduction Conversion:
— First order nucleation and growth [JMAL1]:
» Relatively fast, increased rate of oxygen ion transfer
* Proximal contacts

Vo
N\ — Minor underlying oxygen ion diffusion resistance




Assessing the impact of oxygen carrier particle size for the selective
oxidation of Wyodak Char with CaFe,O,

CaFe,0O, Size has a profound impact on the prevailing mode of oxygen transfer

Doubling the OC size, shifts reduction to predominantly SCM-PLD representation
with oxygen ion diffusion controlling regime

— Important coefficients determined: D 2-

U.S. DEPARTMENT OF

ENERGY

X,. (oxygen carrier conversion)

Wyodak Char (~40-50um) & CaFe,O, (~125-180um), 950°C

1.0

] XOxygen Carrier, MS

---» 32wt% CaO + 68wt% Fe°

____, 20wt% Ca;Fe,0s+30wt% CaO +
50wt% Fe°

____» 48.5wt% CazFe;0s + 10wt%Ca0
+41.5wt% Fe®

=% 62wt% Ca;Fe;0s +20wt% FeO
+16.5wt% Fe’+ 1.5%Ca0

777" 65wt% CazFe 05 + 30.5wt%
FeO + 4.5wt% Fe®

~—--» CaFe;04

100 150
Time (min)

Note: OC conversion reported on its own respective scale
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SEM Imaging of char-CaFe,O, reaction [N=|NATONAL

interface TL|ESHNOLOGY

.

(a)

Wyodak Char

/

Wyodak Char
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— Provide particle scale model representation for both char and OC

— Combination of the modified shrinking core model (SCM) with planar
oxygen ion diffusion control and reaction order (char) /nucleation and
growth (OC) based models were applied for kinetic parameter determination

— Models Identified to represent mechanistic behavior for further
advancement of the process concept

— CaFe,0, particle size plays a major role in the prevailing mode of oxygen
release

— The probability for oxygen ion diffusion controlling regimes increased when
the particle size range of the oxygen carrier was increased

Legend
Char

B CaFe,0,
B Cofe,0.

s FeQ
CaO0, Fe

Cao, Fe

[ Ly il = S SRR

I I I I
t 4.5 min 15 min 45 min 200 min
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Modified Ellingham diagram for CaFe,O, at 700-850 °C

N

NATIONAL

- AG in the synthesis gas production region TECHNOLOGY
TL LABORATORY
400 500 600 700 800 900 1000 1100 1200
0 [ TR TN NN (NN TN TN SR NN NN NN (N S SN NN SN SN SN S SN U S SN S SN S S S S N SN S S S N S S N O
-100 ; -100
] A: Combustion
-200 - -200
-300 | -300
o 1 === i
o . i
o -400 - - -400
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=2 i
O -500 - -500
< i
C: Inert [
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Estimation of the Activation energy for selective oxidation N NATIONAL

of Wyodak char with CaFe,0O, TL TECHNOLOGY
LABORATORY
! CaFe,0, — Wyodak Char e Friedman Plot CaFe,0, — Wyodak Char
0.9 ] . o1 Estimation of the overall Activation
0.8 * ] " 015 Energy:
£ 07 2] > 10931 «  Model Free Iso-conversional
5 oe 1 = 035 Methods
: eC/mi . ] " o XdX\ , E
E o5 ——Ramp 200°C/min to 950 °C z 3] g:gs R In(t) = (—lnA +1n fo _) 4+ Ea
: —Ramp 200°C/mint0 900°C = ] 055 f)/ = RT
E 0.4 —— Ramp 200°C/min to 850 °C 5 ] : 3:25 — For fixed values of overall
0.3 ] - , . conversion (Xap) : Plot 1/T
0.2 1] / 0.8 vs. In(t), fit and extrapolate
01 :///ﬂ slope
or-— 0o +———— — — — Advantage: Independent of
0 50 100 150 200 0.0008 0.00085 0.0009 model description
1 1/T(1/K)
0.9 Activation Energy
' . Activation energy ranges from 50-
08 450 kJ/mol depending upon extent
T 07 of conversion
2 06
é 0.5
g 0.4
<
= 03 - —— .
a (k)/mol) [Ca-Ferrite-Wyodak Char]
0.2 :
0.1 50 —=—Ea (kJ/mol) [Ca-Ferrite-lllinios #6 Char]
0 llllllllllllllllllllllll 0 T T T T T T T T T T T T T T T T
0 50 100 150 200 0.1 0.3 0.5 0.7

Time (min) XAD,(overaII conversion)
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Lurgi Gasifier - Commercial Fixed Bed Gasifiers

http://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/lurgi

Coal

Brnier

Feoder

Coan btk

Coal
Water
Air

¥

Ixwg Qrale

Agk bagk

The Lurgi gasifierisa pressurized, dry-ash, moving bed gasifier
that produces syngasfrom lump coal, steam, and oxygenas an
oxidant.

A highratio of steam to oxygen helps moderate the temperature
such that the ash doesnot melt, but is removed as dry ash.

Coal entersthe top of the gasifierthrough a lock hopper and is
handled by a rotary distributoras it beginsits descent through the
gasifier.

Steam and oxygen enterfrom the bottom, while ash isremoved
at the bottom by a rotating grate and lock hopper.

A top temperature of about 1,000°F and bottom temperature of
about 1,800°F creates atemperature gradientinthe gasifier.

Exiting raw syngas at up to 1,000°F is cooled and quenched using
recycle water to condense tars and oils.

A water jacket cools the gasifiervessel and generates part of the
steam needed by the gasifier.


http://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/fmb
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