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Introduction: Chemical Looping 
Gasification Concept 

AirSteam + Heat

N2 and other 
minor 

constituents

CO + H2
(CO2 minor)

Oxygen 
Carrier

Coal

Reduced 
Oxygen 
Carrier

Oxidized 
Oxygen 
Carrier
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Coal

Reducer/ 
Gasifier

Oxidizer

C + MeO + H2O → CO +H2 +M 2Me + O2 → 2MeO 

• Configuration:
– Dual reactor design:

• Fuel Reactor 
(Reducer/Gasifier)

• Air Reactor (Oxidizer)
• Foundation: Selective Oxygen 

Carrier with unique properties
– React directly with coal via 

solid-solid reactions to 
produce synthesis gas

– Minimal reactivity with 
synthesis gas

– Applied Energy 165 (2016) 952–966 
• Advantages:

– No direct contact between 
fuel and air.

– Synthesis gas stream not 
diluted with Nitrogen

– No need for pure oxygen via 
cryogenic separation

Solid-solid:   MeO + C*  CO + Me
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Introduction: Motivation 
Motivation for this work: 
• Provide particle scale kinetic model representation for both oxygen 

carrier and char with respect to solid mediated reactions
• Accurate model representation need for scale up and optimization 
• Determine kinetic rate parameters for the solid mediated interactions 

between coal char and metal oxide (Ca-Ferrite) 

Addressing this problem:
• Thermogravimetric Analysis, Mass Spectrometry and other coupled 

characterization techniques
• Solid state decomposition modeling approaches 
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Methods: Experimental Setup
TGA-MS 
• Experimental Parameters:
• Loading: ~30 mg of sample

– 24 mg CaFe2O4
– 6 mg Coal Char

• Ramp 200°C/min to Desired Temp
• Temperature Range:

– 850°C, 900°C & 950°C
• Hold isothermal 240 min
• Oxidize: 80% Air for 60 minutes
• On-line MS for Gas 

product analysis

Other Characterization 
Techniques
• XRD and SEM

TA Discovery TGA-MS Reactor Setup
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Methods: Kinetic Modeling using TGA-MS

Conventionally:
Extent of conversion: (Overall conversion, TGA)
Solid conversion based on instantaneous weight 
change data 

𝑋𝑋(𝑡𝑡) = 𝑚𝑚0−𝑚𝑚(𝑡𝑡)
𝑚𝑚0−𝑚𝑚𝑓𝑓

:

– 𝑚𝑚0 = initial mass (Ca-Ferrite + Char) (mg) 
– 𝑚𝑚(𝑡𝑡) = instantaneous mass at time, t 
– 𝑚𝑚𝑓𝑓 = final mass (Reduced Ca-Ferrite + Ash)

• Theoretical mass associated with full 
reduction of CaFe2O4 to 𝐶𝐶𝐶𝐶𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹0

• Full char utilization (only ash remains)

Complex System: Both Char and OC change with 
time 
Deconvolute individual weight changes (char + 
OC) based on EGA (Evolved gas anlysis). 

TG-MS CaFe2O4 & Wyodak Coal Char

Overall reaction: 𝟐𝟐𝟐𝟐∗ + 𝑪𝑪𝑪𝑪𝑭𝑭𝑭𝑭𝟐𝟐𝑶𝑶𝟒𝟒→
𝒌𝒌′
𝑪𝑪𝑪𝑪+ 𝑪𝑪𝑪𝑪𝟐𝟐 + 𝑪𝑪𝑪𝑪𝑪𝑪+ 𝟐𝟐𝑭𝑭𝑭𝑭𝟎𝟎
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Methods: Kinetic Modeling using TGA-MS
• Both char and OC change with time 

– Overall conversion must be separated to understand char and OC 
contributions

• Xchar,MS : char conversion based Mass Spectra
• Xoxygen carrier, MS : oxygen carrier conversion based on Mass Spectra

• 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ∑𝑛𝑛𝑖𝑖 𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖 = 𝑤𝑤𝐴𝐴𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑀𝑀𝑀𝑀 +𝑤𝑤𝐵𝐵𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑀𝑀𝑀𝑀

𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑀𝑀𝑀𝑀

𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑀𝑀𝑀𝑀

𝑋𝑋𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑀𝑀𝑀𝑀

𝑋𝑋𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑇𝑇𝑇𝑇 Mono-Atomic Oxygen (mg), MS

Carbon (mg), MS
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Methods: Kinetic Modeling using TGA-MS

• 𝑑𝑑𝑋𝑋𝑖𝑖
𝑑𝑑𝑑𝑑 = 𝑘𝑘 𝑇𝑇 𝑓𝑓 𝑋𝑋𝑖𝑖 : Rate of 
decomposition of solid

– 𝑓𝑓 𝑋𝑋𝑖𝑖 : representative kinetic 
model function 

• 𝑔𝑔 𝑋𝑋𝑖𝑖 = ∫0
𝑋𝑋𝑑𝑑(𝑋𝑋𝑖𝑖)
𝑓𝑓(𝑋𝑋𝑖𝑖) = 𝑘𝑘 𝑇𝑇 𝑡𝑡 :

Integral form
• 𝑋𝑋𝑖𝑖 = ℎ 𝑡𝑡 Explicit form
• 𝑘𝑘(𝑇𝑇) = 𝐴𝐴𝑒𝑒

−𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅 : Arrhenius rate constant 

– 𝐴𝐴 = frequency factor (1/s)
– 𝐸𝐸𝑎𝑎 = Activation energy (J/mol)
– 𝑅𝑅 = gas constant (J/mol-K)
– 𝑇𝑇 = reaction temperature (K)

• 𝐷𝐷𝑂𝑂2−(𝑇𝑇) = 𝐷𝐷𝑖𝑖𝑒𝑒
(𝐸𝐸𝑎𝑎

∗

𝑘𝑘𝐵𝐵𝑇𝑇
) : Oxygen ion 

diffusion coef.
– 𝐷𝐷𝑖𝑖 = jump frequency (cm2/s)
– 𝑘𝑘𝐵𝐵 = Boltzmann const

Established Kinetic models for Solid State Reactions

• ∑𝑛𝑛𝑖𝑖 𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖 = 𝑤𝑤𝐴𝐴𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑀𝑀𝑀𝑀 +𝑤𝑤𝐵𝐵𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑀𝑀𝑀𝑀

𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑀𝑀𝑀𝑀

𝑋𝑋𝐶𝐶𝐶𝐶,𝑀𝑀𝑀𝑀

𝑋𝑋𝐶𝐶𝐶𝐶2,𝑀𝑀𝑀𝑀

𝑋𝑋𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑀𝑀𝑀𝑀

𝑋𝑋𝑁𝑁𝑖𝑖

𝑋𝑋𝑁𝑁𝑖𝑖+𝑛𝑛

Model Representation of individual steps
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Methods: Kinetic Modeling using TGA-MS
Established Kinetic models for Solid State Reactions

Initial Model Screening
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Outline:

• Background
– Chemical Looping Gasification
– Motivation

• Methods
– Experimental Setup
– Modeling Approach

• Results and discussion 
– Identifying the oxygen carrier reduction pathway
– Model representation
– Impact of OC size on model representation

• Conclusions
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Identifying the reduction pathway for Ca-Ferrite
TGA (TA Discovery)  & XRD (Panalytical X-pert Pro)

XRD: Phase reorientation w.r.t. sampling intervalTGA: Reaction time impact on oxygen 
release (Controlled reduction sampling)

Initial    Partial Reduction            Full Reduction
𝑪𝑪𝑪𝑪𝑭𝑭𝑭𝑭𝟐𝟐𝑶𝑶𝟒𝟒 → 𝑪𝑪𝑪𝑪𝟐𝟐𝑭𝑭𝑭𝑭𝟐𝟐𝑶𝑶𝟓𝟓 & 𝑭𝑭𝑭𝑭𝑭𝑭 → 𝑪𝑪𝑪𝑪𝑪𝑪 & 𝑭𝑭𝑭𝑭𝟎𝟎

Fe

Q0 Fresh CaFe2O4

CaO

Ca2Fe2O5

FeO

Q1 (30 min)

Q2 (90 min)

Q3 (180 min)

Q4 (240 min)

CaFe2O4

Ca2Fe2O5, FeO

Fe & CaO↑, 
Ca2Fe2O5 ↓
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Further examination of the condensed phase 
reaction mechanism after determination of the 
reduction pathway 

Condensed phase reaction mechanism (Direct Solid-Solid reaction):
– Overall Reaction:

• 2𝐶𝐶∗ + 𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹2𝑂𝑂4→
𝑘𝑘′
𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶2 + 𝐶𝐶𝐶𝐶𝐶𝐶 + 2𝐹𝐹𝐹𝐹0

– Individual components of condensed phase mechanism:
• Char Oxidation:

– R1 Desired: 𝐶𝐶∗ + 𝑂𝑂2−
𝑘𝑘𝐴𝐴 𝐶𝐶𝐶𝐶

– R2 Undesired: 𝐶𝐶∗ + 2𝑂𝑂2−
𝑘𝑘𝐵𝐵 𝐶𝐶𝐶𝐶2

– 2 primary steps
• Oxygen Carrier Reduction

– R3: 2𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹2𝑂𝑂4
𝑘𝑘𝐶𝐶 𝐶𝐶𝐶𝐶2𝐹𝐹𝐹𝐹2𝑂𝑂5 + 2𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑂𝑂2−

– R4a:𝐶𝐶𝐶𝐶2𝐹𝐹𝐹𝐹2𝑂𝑂5
𝑘𝑘𝐷𝐷,1 2𝐶𝐶𝐶𝐶𝐶𝐶 + 2𝐹𝐹𝐹𝐹0 + 3𝑂𝑂2−

– 2 primary steps

• Model representation (multistep, parallel mech.)
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Model representation for the selective oxidation of Wyodak
Char with CaFe2O4 Wyodak Char (40-50µm) & CaFe2O4 (40-50µm), 950°C

Model Representation: 
• Wyodak Char conversion: 

– Carbon oxidation to CO2, & CO primarily first order [K1] (kinetic controlling regimes)
• CaFe2O4 Reduction Conversion:

– First order nucleation and growth [JMA1]:
• Relatively fast, increased rate of oxygen ion transfer
• Proximal contacts

– Minor underlying oxygen ion diffusion resistance

SCM-PLD (CO)

𝑿𝑿𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄,𝑴𝑴𝑴𝑴
"

3     

20w  
+ 5  

48  
+ 4  

62  
+ 1   

65w  
FeO   

Ca

XOxygen Carrier, MS

JMA1 (CaFe2O4 Reduction) 

JMA1 (Ca2Fe2O5 reduction)

SCM-PLD (Ca2Fe2O5 reduction)

Cumulative Steps

K1 (CO)

K1 (CO2)
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Assessing the impact of oxygen carrier particle size for the selective 
oxidation of Wyodak Char with CaFe2O4

Wyodak Char (~40-50µm) & CaFe2O4 (~125-180µm), 950°C

• CaFe2O4 Size has a profound impact on the prevailing mode of oxygen transfer
• Doubling the OC size, shifts reduction to predominantly SCM-PLD representation 

with oxygen ion diffusion controlling regime 
– Important coefficients determined: 𝐷𝐷𝑂𝑂2−

Note: OC conversion reported on its own respective scale

 

(a) 

𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄,   𝑴𝑴𝑴𝑴
"  

XOxygen Carrier, MS

JMA1 (CaFe2O4 Reduction) 
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SEM Imaging of char-CaFe2O4 reaction 
interface
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Conclusions:
– Provide particle scale model representation for both char and OC 
– Combination of the modified shrinking core model (SCM) with planar 

oxygen ion diffusion control and reaction order (char) /nucleation and 
growth (OC) based models were applied for kinetic parameter determination

– Models Identified to represent mechanistic behavior for further 
advancement of the process concept

– CaFe2O4 particle size plays a major role in the prevailing mode of oxygen 
release

– The probability for oxygen ion diffusion controlling regimes increased when 
the particle size range of the oxygen carrier was increased
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Modified Ellingham diagram for CaFe2O4 at 700-850 0C 
- ΔG in the synthesis gas production region
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Estimation of the Activation energy for selective oxidation 
of Wyodak char with CaFe2O4

CaFe2O4 – Wyodak Char Friedman Plot CaFe2O4 – Wyodak Char

Activation Energy 

Estimation of the overall  Activation 
Energy:
• Model Free Iso-conversional 

Methods

• ln t = −lnA + ln∫0
X dX
f x

+ Ea
RT

– For fixed values of overall 
conversion (XAD) : Plot 1/T 
vs. ln(t), fit and extrapolate 
slope

– Advantage: Independent of 
model description

• Activation energy ranges from 50-
450 kJ/mol depending upon extent 
of conversion



Lurgi Gasifier - Commercial Fixed Bed Gasifiers
http://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/lurgi

• The Lurgi gasifier is a pressurized, dry-ash, moving bed gasifier 
that produces syngas from lump coal, steam, and oxygen as an 
oxidant.

• A high ratio of steam to oxygen helps moderate the temperature 
such that the ash does not melt, but is removed as dry ash.

• Coal enters the top of the gasifier through a lock hopper and is 
handled by a rotary distributor as it begins its descent through the 
gasifier. 

• Steam and oxygen enter from the bottom, while ash is removed 
at the bottom by a rotating grate and lock hopper. 

• A top temperature of about 1,000°F and bottom temperature of 
about 1,800°F creates a temperature gradient in the gasifier. 

• Exiting raw syngas at up to 1,000°F is cooled and quenched using 
recycle water to condense tars and oils. 

• A water jacket cools the gasifier vessel and generates part of the 
steam needed by the gasifier.

http://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/fmb
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjD7fC-sOPJAhWGwj4KHcA4BnQQjRwIBw&url=http://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/lurgi&psig=AFQjCNHDNt706reWcq-G_gqPOIL6GxN5uQ&ust=1450458282079140
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