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Overview:
• Background

• Chemical Looping Combustion 
• Problem Statement 

• CuFeAlO4 – Gas Phase System (H2 and CO)
• Modeling of Gas-Solid Reactions (Underlying assumptions of the SCM model)

• Thermogravimetric Analysis 
• Reduction Pathway (Solid State Chemical Changes associated with O2- extraction)
• Physical properties (BCs & Const.)
• Surface Morphology Changes due to reduction (SEM)

• Kinetic Modeling
• Iso-conversional Techniques (Determination of Conversion dependent activation energy)
• Model descriptions and comparisons between gas phase components

• Summary
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Chemical Looping Combustion
• Configuration:

– Dual reactor design:
• Fuel Reactor 

(Reducer)
• Air Reactor 

(Oxidizer)

• Foundation: 
• Oxygen Carriers

• Advantages:
– No direct contact 

between fuel and air.
– Product stream not 

diluted with Nitrogen
– No need for pure 

oxygen via cryogenic 
separation

Figure adapted from: [1] Bayham, S., Straub, D., and Weber, J., “Operation of the NETL Chemical Looping 
Reactor w ith Natural Gas and a Novel Copper-Iron Material,” NETL-PUB-20912; NETL Technical Report 
Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2016; p 52
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(𝟐𝟐𝟐𝟐 +𝒎𝒎)𝑴𝑴𝑴𝑴𝒙𝒙𝑶𝑶𝒚𝒚 +𝑪𝑪𝒏𝒏𝑯𝑯𝟐𝟐𝟐𝟐 → (𝟐𝟐𝟐𝟐 +𝒎𝒎)𝑴𝑴𝑴𝑴𝒙𝒙𝑶𝑶𝒚𝒚−𝟏𝟏 + 𝒏𝒏𝒏𝒏𝒏𝒏𝟐𝟐 +
𝒎𝒎𝒎𝒎𝟐𝟐𝑶𝑶

(1)

Syn-Comb H2 𝑴𝑴𝑴𝑴𝒙𝒙𝑶𝑶𝒚𝒚 +𝑯𝑯𝟐𝟐 →𝑴𝑴𝑴𝑴𝒙𝒙𝑶𝑶𝒚𝒚−𝟏𝟏 + 𝑯𝑯𝟐𝟐𝑶𝑶 (2)
Syn-Comb CO 𝑴𝑴𝑴𝑴𝒙𝒙𝑶𝑶𝒚𝒚 + 𝑪𝑪𝑪𝑪 → 𝑴𝑴𝑴𝑴𝒙𝒙𝑶𝑶𝒚𝒚−𝟏𝟏 +𝑪𝑪𝑪𝑪𝟐𝟐 (3)

OC Regeneration: 
Oxidation

𝑴𝑴𝑴𝑴𝒙𝒙𝑶𝑶𝒚𝒚−𝟏𝟏 + (𝟎𝟎.𝟓𝟓)𝑶𝑶𝟐𝟐→ 𝑴𝑴𝑴𝑴𝒙𝒙𝑶𝑶𝒚𝒚 (4)
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Problem Statement and Focus Areas

Motivation: 
• Reaction Kinetics are a major pillar of 

CL system design procedures
• Lack of uniformly descriptive models 

in the literature to explain 
phenomenological behavior 

• Need for descriptive material specific 
particle scale models for advancement 
of the CL process concepts 

Focus Area: 
• A kinetic analysis of the reduction (with H2, and CO) for gas phase fueled chemical 

looping combustion applications to derive particle scale representative models for 
a Cu(Fe2−xAlx)O4 oxygen carrier. 

• *CuFeAlO4

Design procedure for a CL reactor system, 
adapted from [2]

[2] J. Li, H. Zhang, Z. Gao, J. Fu, W. Ao and J. Dai, "CO2 Capture with Chemical Looping Combustion of 
Gaseous Fuels: An Overview," Energy and Fuels, vol. 31, pp. 3475-3524, 2017.
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CuFeAlO4 – Gas Phase System

Synthetic OC currently in development for 
pilot scale applications

Key Modeling Questions:
(1) How does the oxygen carrier change with 

extent of solid conversion? 
• Chemical Properties:

• Phase, Lattice alterations
• Physical Properties

• Particle Size
• Surface Area/Porosity
• Skeletal and Bulk Density

(2) What types of interfaces exist for oxygen 
transfer and what is their impact on the 
transfer rate? 

Cu2+, Fe2+

O2-

Fe3+, Al3+                

Crystal Structure of Cu(Fe2−xAlx)O4 (0 ≤ x ≤ 2) 
spinel in cubic phase 
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Conceptual model for Gas-Solid Reaction 
Systems:

• 𝑟𝑟𝑜𝑜 > 𝑟𝑟 > 𝑟𝑟𝑐𝑐 , 𝑑𝑑
𝑑𝑑𝑟𝑟
� 𝑟𝑟2 � 𝑑𝑑𝐶𝐶𝐴𝐴

𝑑𝑑𝑟𝑟
= 0

• BC
• 𝒟𝒟𝑒𝑒

𝑑𝑑𝑑𝑑𝐴𝐴
𝑑𝑑𝑑𝑑 𝑟𝑟𝑐𝑐

= 𝑘𝑘" 𝐶𝐶𝐴𝐴𝑐𝑐

• 𝒟𝒟𝑒𝑒
𝑑𝑑𝑑𝑑𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑔𝑔 � (𝐶𝐶𝐴𝐴𝑏𝑏 − 𝐶𝐶𝐴𝐴𝑠𝑠)

• 𝜌𝜌𝐵𝐵
𝑏𝑏

𝑑𝑑𝑟𝑟𝑐𝑐
𝑑𝑑𝑡𝑡

= 𝑘𝑘" 𝐶𝐶𝐴𝐴𝑐𝑐, |𝑟𝑟𝑐𝑐 𝑡𝑡=0 = 𝑟𝑟𝑜𝑜

• 𝑋𝑋𝑝𝑝 = 1 − 𝑟𝑟𝑐𝑐
𝑟𝑟𝑜𝑜
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• 𝑑𝑑𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

=
𝑏𝑏 3
𝑟𝑟𝑜𝑜

�𝐶𝐶𝐴𝐴 𝜌𝜌𝐵𝐵
1

𝛾𝛾2𝑘𝑘𝑔𝑔
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

+ 𝑟𝑟𝑜𝑜
𝒟𝒟𝑒𝑒

1

1−𝑋𝑋𝑝𝑝
1
3
−1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

+ 1
(1−𝑋𝑋𝑝𝑝)2/3⏟

1
𝑘𝑘"

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Shrinking Unreacted Core Model

𝒕𝒕𝟑𝟑
𝒕𝒕

𝒕𝒕𝟏𝟏 𝒕𝒕𝟐𝟐

𝒓𝒓𝒐𝒐
𝒓𝒓𝒄𝒄

∆𝒓𝒓

)𝑎𝑎𝑎𝑎 𝑔𝑔 + 𝑏𝑏𝑏𝑏 𝑠𝑠 → 𝑐𝑐𝑐𝑐 𝑔𝑔 + 𝑑𝑑𝑑𝑑(𝑠𝑠
𝐴𝐴

𝐶𝐶

𝑾𝑾𝑨𝑨,𝒇𝒇
𝑾𝑾𝑨𝑨,𝑷𝑷

𝐵𝐵(𝑠𝑠) 𝐷𝐷(𝑠𝑠)

• 𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑡𝑡

+ 𝛻𝛻𝛻𝛻𝑖𝑖 = �𝑅𝑅𝑖𝑖 , Continuity Eq.
• 𝐶𝐶𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
• 𝑁𝑁𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
• �𝑅𝑅𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

• 𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑡𝑡

= 0, 𝑃𝑃. 𝑆𝑆.𝑆𝑆.𝐴𝐴
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Conceptual model for Gas-Solid Reaction 
Systems:

Simplified Grainy Pellet Model

𝒕𝒕𝟑𝟑
𝒕𝒕

𝒕𝒕𝟏𝟏 𝒕𝒕𝟐𝟐

𝑹𝑹𝒊𝒊
𝒓𝒓𝒄𝒄

∆𝒓𝒓

)𝑎𝑎𝑎𝑎 𝑔𝑔 + 𝑏𝑏𝑏𝑏 𝑠𝑠 → 𝑐𝑐𝑐𝑐 𝑔𝑔 + 𝑑𝑑𝑑𝑑(𝑠𝑠
𝐴𝐴

𝐶𝐶

𝑾𝑾𝑨𝑨,𝑷𝑷

𝐵𝐵(𝑠𝑠) 𝐷𝐷(𝑠𝑠)

Fundamental Assumptions:
• The Oxygen carrier grains are 

considered non porous (≤1m2/g)
• Considered spherical*
• Size is constant during reaction
• Reaction is carried out isothermally
• Pseudo-steady state approximation is 

applicable
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TGA-MS 
• Experimental Parameters:

• Isothermal Reaction studies
• Temperature Ranges: 700-

850°C, 50°C increments
• Reducing gas conc: 5-20%H2

or CO
• Reduction Time: 10-60 min
• Oxidizing gas: Air
• Oxidation Time: 20 min
• 5 cycles

• On-line MS for Gas product 
analysis

• Purpose: Build broad operational 
scale data matrix for model 
fitting and validation  

TA Discovery TGA-MS Reactor Setup

Thermogravimetric Analysis (TGA) of CLC reactions
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Conventionally:
Extent of conversion: (Overall 
conversion, TGA)
Solid conversion based on 
instantaneous weight change data 

𝑋𝑋𝑝𝑝(𝑡𝑡) = 𝑚𝑚0−𝑚𝑚(𝑡𝑡)
𝑚𝑚0−𝑚𝑚𝑓𝑓

:

– 𝑚𝑚0 = initial mass (CuFeAlO4) 
(mg) 

– 𝑚𝑚(𝑡𝑡) = instantaneous mass at 
time, t 

– 𝑚𝑚𝑓𝑓 = final mass (oxygen 
depleted Copper-Ferri-
Aluminate)

TG-MS CuFeAlO4 Cycle 1 of 5 cycle test 5%H2
@ 700°C

H2
H2O

Weight (mg)

TGA-MS & use for Kinetic Modeling of OCs in CLC   
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Determining the reduction pathway 
of CuFeAlO4 Oxygen Carrier
XRD Analysis of TGA Samplings 

• Phase changes due to reducing gas 
exposure

• Possible contributing reduction routes:
• Cu(FeAl)O4→ Cu + Fe + 3.5O2-+ 

0.5Al2O3
• Intermediates: FeAl2O4 , CuAlO2
• Theoretical Oxygen Transfer 

Capacity:14.5% Reduction pathway-XRD scans of Fresh 
Cu(FeAl)O4 Oxygen carrier and from 
controlled reduction during 20% H2

exposure at 800°C (XRD scans conducted at 
ambient temperature)

𝒕𝒕

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝟒𝟒

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝟒𝟒
𝑪𝑪𝒖𝒖𝑨𝑨𝑨𝑨𝑨𝑨𝟐𝟐

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝟐𝟐𝑶𝑶𝟒𝟒
+ 𝑪𝑪𝑪𝑪

𝑨𝑨𝑨𝑨𝟐𝟐𝑶𝑶𝟑𝟑
+ 𝑪𝑪𝑪𝑪
+ 𝑭𝑭𝑭𝑭

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝟒𝟒
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Determining the reduction pathway of 
CuFeAlO4 Oxygen Carrier
In-Situ High Temperature XRD Analysis

• Isothermal: 800°C with Incremental Reduction 
gas dosing

• Lattice Expansion and Contraction occur 
simultaneously as CuFeAlO4 spinel is reduced:

• Formation of CuAlO2 (contraction) and Cu 
& Al-deficient Fe-Aluminate (expansion)

• Lattice alterations: a=b=c=+0.101 Angstrom 
followed by -0.130 Angstrom

• Occurs quickly, within the first 1-1.5 min of 
reduction: (based on ex-situ experiments) 

• Final reduced phases confirmed at operating 
temperature

Anton Parr HTK 1200N 

Picture from: http://www.uam.es/ss/Satell ite/en/1242668321033/1242691900286/UAM_Equipo_FA/equipo/Panalytical_X_Pert__PRO_Theta_Theta_Diffractometer.htm

Reduction pathway-In Situ XRD scans of  
Cu(FeAl)O4 Oxygen carrier with incremental 

controlled reduction dosing of H2 at 800°C 
(XRD scans conducted at 800°C)

Within 1.5 
minutes of 
reduction, 
Xp = 0.6
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Extent of Reduction effects on Particle Size 
Distribution

Pellet Size distribution density for Fresh and Fully Reduced OC

• Slight shift in Sauter Mean 
Diameter (SMD). Suggests that 
there is minimal change in 
particle size when the material 
is fully reduced

• Macroscopic indicator that 
grain swelling/shrinkage is not 
occurring.

Instrument: (Sympatec QICPIC)
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Extent of Reduction effects on Surface Area 
Surface Area and Porosity: Micromeritics ASAP 2920

• Pellet surface area increases with extent of solid conversion
• Complementary increase in pore volume associated with ~22Å and 

50-800Å pores
• Surface area and micro-porosity maintained after regeneration 
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Determining the morphology and surface changes through 
examination of TGA controlled reduction sampling
SEM Comparative Analysis of Fresh and Partially Reduced OC

Fresh Reduced 10 min at 800°C
• Surface morphology alters

• Pores arise in product layer 20-500 Angstroms
• Collective nodular phases of Cu0

• Correlates with SA & Pore distribution findings 
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Particle Size impact of reduction Behavior 

• Prevalence of diffusion controlled regime resides in particle sizes 25-582 micron
• Particle size does not impact rate of conversion and presence of diffusion 

controlled regime
• Regime influenced by individual granular complexes

TGA: 25-500 micron PS impact 20% H2 @ 800°C
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Overview:
• Background

• Chemical Looping Combustion 
• Problem Statement 

• CuFeAlO4 – Gas Phase System (H2 and CO)
• Modeling of Gas-Solid Reactions (Underlying assumptions of the SCM model)

• Thermogravimetric Analysis 
• Reduction Pathway (Solid State Chemical Changes associated with O2- extraction)
• Physical properties (BCs & Const.)
• Surface Morphology Changes due to reduction (SEM)

• Kinetic Modeling
• Iso-conversional Techniques (Determination of Conversion dependent activation energy)
• Model descriptions and comparisons between gas phase components

• Summary
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CuFeAlO4 OC – Impact of reducing gas at 700 & 850°C-
Comparative reactivity with CO and H2
TGA – Reducing gas and temperature effect

TG – 700 & 850°C 

• Reactivity comparison
• Temperature: 700°C

• CO > H2 
• Temperature: 750-850 °C  

• H2 > CO
• Extent of reduction increases with 

rise in temperature (no sintering 
effects seen in this temperature 
range)

• Range of temperatures used for 
extraction of activation energies
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CuFe2-xAlxO4 Pelletized OC – Overall Activation Energy 
Determination for CO & H2

Reduction Activation Energy: Temperature Range 700-850°C 

• Overall Activation Energies determined through model free iso-conversional methods
• 𝑙𝑙𝑙𝑙 𝑡𝑡 = −𝑙𝑙𝑙𝑙𝑙𝑙+ 𝑙𝑙𝑙𝑙∫0

𝑋𝑋 𝑑𝑑𝑑𝑑
𝑓𝑓 𝑥𝑥

+ 𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅

, By plotting ln(t) with respect to 1/T for given value of Xp (Slope of 
regression line)

• Provides Ea as a function of Xp: Denoting possible controlling regime shifts
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CuFe2-XAlXO4 Pelletized OC –Kinetic Particle Scale Representation 
Approach

TG Profile Examination

• Proposed Representation: 
• Series based mechanism bound by conversion limits. Transition from reaction control to diffusion based 

control. When one step ends the other begins denoted by a transition region solid conversion value, Xi.

Inert Purge: 
Uncoupling

Inert 
Purge: OxidationReduction

Fast 
Reaction 
Segment-
Reaction 
Control

Transition 
Region

Slow 
Reaction 
Segment –
Diffusion 
Based 
Control

Reduction Profile: 750°C with 20% H2

• Reduction Reactions under consideration: 
• 5H2 + 2CuFeAlO4→ 2Cu + 2Fe + Al2O3 + 5H2O
• 5CO + 2CuFeAlO4→ 2Cu + 2Fe + Al2O3 + 5CO2
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CuFeAlO4 Pelletized OC –Kinetic Particle Scale Representation 
Approach

• Proposed Representation: 
• Series based reduction mechanism where reaction control and diffusion based control are 

represented by the Shrinking core model. 
• Shrinking Core model with reaction-diffusion resistances in series:

• Kinetic-Reaction Controlled Reduction Segment: 

• 𝑡𝑡 = 𝜏𝜏𝑅𝑅 1− 1−𝑋𝑋𝑝𝑝
1
3 0 ≤ 𝑋𝑋𝑝𝑝 ≤ 𝑋𝑋𝑖𝑖

• Diffusion controlled Reduction Segment 

• t = 𝜏𝜏𝐷𝐷 1− 3 1−𝑋𝑋𝑝𝑝
1−𝑋𝑋𝑖𝑖

2
3 + 2 1−𝑋𝑋𝑝𝑝

1−𝑋𝑋𝑖𝑖
+ 𝜏𝜏𝑅𝑅 1− 1 −𝑋𝑋𝑖𝑖

1
3 , 𝑋𝑋𝑖𝑖 ≤ 𝑋𝑋𝑝𝑝 ≤ 1

• Series based mechanism is bound by conversion limits. When one step ends the other begins 
denoted by a transition region conversion value, 𝑋𝑋𝑖𝑖, Transition region occurring from 0.4-0.6

• This representation is influenced by Park and Levenspiel’s derivation of the Crackling core 
model
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CuFeAlO4 Pelletized OC –Kinetic Particle Scale Representation 
Approach cont.

• Proposed Representation (cont.): 
• Model Parameters:

• 𝑋𝑋𝑝𝑝 = Oxygen Carrier conversion
• 𝜏𝜏𝑅𝑅 = 𝜌𝜌𝐵𝐵𝑅𝑅𝑃𝑃

𝑏𝑏𝑘𝑘𝐴𝐴𝐴𝐴" 𝐶𝐶𝐴𝐴𝐴𝐴𝑛𝑛

• 𝜌𝜌𝐵𝐵 = particle density [g/cm3]
• 𝑅𝑅𝑃𝑃 = mean particle radius [cm]
• b = stoichiometric factor
• 𝑘𝑘𝐴𝐴𝐴𝐴" = reaction rate constant [cm/s]
• 𝐶𝐶𝐴𝐴𝐴𝐴𝑛𝑛 = concentration of reactant in gas phase [g/ cm3], with n = order of 

concentration dependence
• 𝜏𝜏𝐷𝐷 = 𝜌𝜌𝐵𝐵𝑅𝑅𝑃𝑃2

6𝑏𝑏𝐷𝐷𝑒𝑒,𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝑛𝑛

• 𝐷𝐷𝑒𝑒,𝐴𝐴𝐴𝐴= effective diffusivity of reactant [cm2/s]
• 𝑋𝑋𝑖𝑖 = Transition region conversion value 
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CuFeAlO4 Pelletized OC –Kinetic Particle Scale Representation: H2

• 𝑘𝑘𝐻𝐻𝐻" (800°C) = 0.068 [cm/s]
• 𝐷𝐷𝑒𝑒 ,𝐻𝐻𝐻(800°C) = 5.80E-6 [cm2/s]
• Based on model: 𝑡𝑡 𝑋𝑋𝑝𝑝 = 0.5 , @800°𝐶𝐶 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 100%𝐻𝐻2 = 13.16 𝑠𝑠𝑠𝑠𝑠𝑠

• 𝑋𝑋𝑝𝑝 = 0.5, 𝑂𝑂𝑂𝑂𝑂𝑂 = 6.65 𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• R2=0.986

Complete Reduction Representation with 20%H2 @ 800°C, 60 min reduction 
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CuFeAlO4 Pelletized OC –Kinetic Particle Scale Representation: 
CO

Complete Reduction Representation with 20%CO @ 800°C, 60 min reduction 

• 𝑘𝑘𝐶𝐶𝐶𝐶" (800°C) = 0.032 [cm/s]
• 𝐷𝐷𝑒𝑒 ,𝐶𝐶𝐶𝐶(800°C) = 2.88E-07 [cm2/s]
• Based on model: 𝑡𝑡 𝑋𝑋𝑝𝑝 = 0.5 , @800°𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤 100%𝐶𝐶𝐶𝐶 = 14.2 𝑠𝑠𝑠𝑠𝑠𝑠

• 𝑋𝑋𝑝𝑝 = 0.5,𝑂𝑂𝑂𝑂𝑂𝑂 = 6.65 𝑤𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
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Summary

• CuFeAlO4 OC reduction pathway uncovered through coupling 
of TGA- ambient temperature XRD and In-Situ XRD
– Phase distribution link to model 

• Showed that key assumptions for the Simplified Grainy Pellet 
(SCM) model can be applied for the CuFeAlO4 OC

• Application of a series based SCM provided an accurate means 
to describe reduction behavior

• Experimentally observed phenomena support model selection
– Initial fast reaction controlled step followed by a diffusion 

controlled step
– 𝑘𝑘𝐻𝐻2

" >𝑘𝑘𝐶𝐶𝐶𝐶" and 𝐷𝐷𝑒𝑒,𝐻𝐻2
>𝐷𝐷𝑒𝑒,𝐶𝐶𝐶𝐶
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Future Work

• Refinement of grain size distribution for application in model:
– XRD & Rietveld Refinement

• Application of derivations that incorporate grain shapes other 
than spherical

• Application of non-isothermal models to incorporate:
– ΔHrxn

– Explore ΔT in particle
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TGA Comparison of Spinel Aluminates

• Fe-aluminate reducible with H2
• Does not exhibit same rate as diffusion controlled regime in CuFeAlO4
• Slowing of oxygen transfer rate is not solely dependent up reduced material presence 
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Thermochemical differentiation (TGA-DSC)
Using Characteristic Heat Flow measurements for Component differentiation

• Characteristic Heat flow curves can be used to differentiate metal oxides with 
close lattice structure
• Provides support of XRD findings for primary phase
• CuFeAlO4 unique in comparison to base metal oxides and bi-tri metallic variants

• Provides indication of exo/endothermicity

Heat Flow Reduction Rate
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