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Why supercritical CO, power cycles? B
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sCO, power cycles — materials considerations
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Exposure Conditions
* Fluid = 99.999% CO,

Alloy 617 composition

« T=700 °C
« P =0.1 MPa (atmospheric) or 20 MPa (supercritical) _-
* t=5min—500 h Ni 53.3
Cr 22.4
EXxposure Apparatus Co 11.5
+ High-temperature confocal scanning laser microscope Mo 9.6
» t=5min, P=0.1 MPa Al 11

* Tube furnace

F 1.1
> t=1-500h, P=0.1MPa ©
 Autoclave Ti 0.3
» t=500 h, P=20 MPa C, Si,Mn,Cu <0.1
B,P,S <0.01

Analysis
» Cross-sectional transmission electron microscopy

« Samples generated using focused ion beam lift-out method
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Mass change
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Evolution of surface morphology 'T:Jﬁt:;m
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_ _ o More uniform
Some grains are preferentially oxidized coverage
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Sub-surface void formation i

BSE surface image Voids are formed at the wl t =5 min

oxide/metal interface

during the initial stages

of oxidation, most likely

due to condensation of N
. \Time (hours )

Cr vacancies.

0.04 0.1 MPa
20 MPa

Mass gain (mgIcmz)

These voids are formed
preferentially along
micro-scratches and
grain boundaries.

Sub-surface

voids : : :
Cross-sectional TEM image Sub-surface void
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Selective oxidation of Cr B
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Continued oxide growth

Mass gain (mglcmz)
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| t=100 h
Q 0.1 MPa

20 MPa

0 5 10 15 20 25

Sub-surface voids continue
to grow. Al is oxidized inside
and adjacent to the voids.

Cr-oxide forms above and
below voids.

This suggests that both
outward and inward oxide
growth has occurred.
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Continued oxide growth N
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wf 1 =500 h @

N

iVoids Grain boundary

Continued void growth.

Cr-depletion and recrystallization
near the alloy surface.

Short-circuit diffusion paths
created by voiding and
recrystallization lead to further
internal oxidation of Al.
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Role of voids during oxidation =
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As voids form near the
oxide/alloy interface, metal
that is depleted of Cr
becomes trapped and is
incorporated into the scale.

Over time, the voids are
filled with Al-oxide.




The effects of pressure N=|uow

TL TECHNOLOGY
LABORATORY

o £ =500 h
wsf 20 MPa

0.04 - 0.1 MPa

Xo,

As with the 0.1 MPa
exposure, we observe:

« Sub-surface voids

* Recrystallization

» Trapping of
Cr-depleted metal

« Oxidation of Al inside
and adjacent to voids




Atmospheric vs. Supercritical exposure [N=|ue
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0.1 MPa, 500 h 20 MPa, 500 h

20 MPa exposure is controlled by similar processes as 0.1 MPa, but proceeds to a
larger extent.

« 20-30% thicker oxide layer.

« More extensive sub-surface effects including voiding and recrystallization.
 Increased inward oxide growth (note Cr-depleted metal and voids that are

incorporated into the oxide layer).
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* Ni-Cr-Al alloy (617) was oxidized in CO, at 700 °C for 5 min — 500 hours.

« Good oxidation resistance was observed.
* Protective Cr,0O5-type surface forms in <5 min.
« < 0.1 mg/cm? mass gain after 500 h (both 0.1 MPa and 20 MPa).

« Similar oxidation processes were observed in 20 MPa (supercritical) and 0.1
MPa (atmospheric) exposures, however these processes were more extensive
in 20 MPa exposure.

« Significant sub-surface voiding associated with surface oxidation.

« Scale thickens by both outward (leading to void formation) and inward
(leading to void filling with oxide) growth mechanisms.

« Cr-depleted metal is trapped in the scale during voiding.

« The low concentration, highly stable oxide-former (i.e., Al) is oxidized
Inside and adjacent to these voids—implications for scale adhesion and
long-term stability.
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Thank you for listening.

Questions?
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