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Abstract

This paper explores the problem of motion
segmentation in video sequences in the context of
multibody motion tracking with a moving camera.
A common approach is to use the locations of
tracked feature points and cluster their trajectories
into different motions. Some motion tracking algo-
rithms will also include object detection. Herein
we consider the use of a relatively recent frame-
work to view dynamical systems theory, which nat-
urally finds application in data science, known as
Koopman spectral analysis (KSA). In particular,
we apply KSA to times series of distances between
feature points. We do this through the use of dy-
namic mode decomposition (DMD) with pairwise
distances of feature points as observables. DMD is
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a relatively inexpensive algorithm that can extract
spatio-temporal patterns which have intuitive dy-
namic interpretations. We demonstrate the use of
DMD on data from tracked feature points in mul-
tiple video sequences without the use of any object
recognition. We show that DMD can be used to
generate features which could be exploited by other
machine learning tools.

1. Introduction

Autonomous cars, video surveillance, multi-
robot collaboration, and medical imaging are all ap-
plications which involve analysis and classification
of large amounts of dynamic image sequences in
real time. Better approaches to these problems have
largely been obtained by addressing smaller ones
of computer vision, e.g. object detection, iden-
tification, tracking, motion estimation in 3D, and
forecasting of future dynamics, or integrating their
advancements. The idea of motion segmentation,
the partitioning of images, or trajectories of tracked
feature points, in a video into regions of similar dy-
namics so that each element of the partition has a
corresponding element in the partition of the previ-
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ous or following image, plays a key role in this area
of research.

Object tracking has mostly been approached
through unsupervised methods [23, 29, 26]. One
might think that the problem would be greatly sim-
plified by using object detection. However, using
purely bottom up approaches in combination with
detection seems to be optimal [1, 7, 11]. Unsu-
pervised approaches are surely justified in contexts
where tracking undetectable objects is necessary.
In addition, they can be used to make object de-
tection more robust and computational efficient and
streamline the training of object detectors by find-
ing undetectable moving objects in large amounts
of video sequences.

In the early 1930s, Bernard Koopman and John
von Neumann introduced a new operator theor-
tic view of dynamical systems [14, 13]. In the
2000s, it was discovered to be a useful frame-
work for data-driven analysis of high-dimensional
nonlinear systems [22, 20]. Since then, numeri-
cal methods used to approximate Koopman spec-
tral objects have been used as data analysis tools in
the contexts of fluid dynamics [2], neurodynamics
[5], energy efficiency [8], and molecular dynam-
ics [31]. A particular class of algorithms for ap-
proximating Koopman spectral objects, known as
dynamic mode decomposition [27, 25], has even
been used in background/foreground separation in
videos taken from a stationary camera [17]. Herein,
we consider videos taken from a moving camera
and perform dynamic mode decompostion on a dif-
ferent set of observables - measurements we take
of a dynamical system (defined more precisely in
the next section).

Standard observables used in the context of mo-
tion segmentation included feature point coordi-
nates [24] and optical flow [10] components. In
combintation with DMD, Kutz et al. used grayscale
pixel data [17]. One element of the work herein
which distinguishes it is the choice of observables
- pairwise distance of feature points.

The paper is organized as follows: In section 2
we give a brief introduction to the Koopman view
of dynamical systems. In section 3 we introduce
dynamic mode decomposition (DMD) and explain

its relation to Koopman spectral analysis. In sec-
tion 4 we demonstrate the use of Koopman spectral
analysis on pairwise distance observables of feature
points for several movies through the use of DMD.
We conclude in section 5.

2. The Koopman View of Dynamical
Systems

In the context of deterministic dynamical sys-
tems, state-variables are the variables whose
knowledge at a particular time determines their val-
ues for all of time (e.g. angle and angular velocity
for the mathematical pendulum). The classical ap-
proach in dynamical systems theory is to work in a
mathematical framework centered around the state-
space viewpoint. When recording dynamic data
from complex systems such as video sequences, the
state variables which fully describe the observed
system are not known and there is no model to de-
scribe their evolution. In these circumstances, the
Koopman view of dynamical systems, in which the
main objects of interest are functions whose do-
main is the state-space (called observables), is a
natural one to take. In the case of the pendulum, ob-
servables include kinetic energy, potential energy,
or any function of angle and angular momentum
one could think of. In this view, we can think of any
measurements we take of a system of interest as a
function of some unknown state. In addition, we
can always construct new observables from mea-
sured ones - e.g. composing vectors of measured
observables on the left with any complex valued
function on n-dimensional complex space or on the
right with any function from the state-space to it-
self. In the context of video sequences, observables
then include pixel data, optical flow field compo-
nents at each location, and feature point locations.

The simplest context in which to introduce the
Koopman view is for discrete-time dynamical sys-
tems which can be described by repeated applica-
tion of a single function T : M M, i.e.

x' = T(x) (1)

where M is the state-space and x' is the updated
state, corresponding to x, after a single time step.



The reader should note that the Koopman frame-
work was originally described for time-invariant
continuous-time systems [14] and has been ex-
tended to the case of time-varying[19] and even
random and stochastic[6] dynamical systems. For
the dynamical system described by Eq. 1 the
induced Koopman operator U represents a new
discrete-time dynamical system whose state-space
is the set of all complex-valued functions with do-
main M (denoted by CM):

:= U(f) = f 0 T. (2)

In Eq. 2, the symbol o denotes function compo-
sition. It is easy to show that U is linear (c E
C and f, g E (CM),

U(cf + g) = (c f + o T (3)

=c(foT)-FgoT (4)

= cU(f) + U(g), (5)

thus we can consider eigenvalues A and eigenfunc-
tions 0,

U(0) = Aq5. (6)

In particular, we call A and 0 Koopman eigenvalues
and Koopman eigenfunctions, respectively, of T.

Let {A_ , . . . , fn} denote a finite collection of ob-
servables on the state-space of T. Assume that

ffi, • • • , fnl lie in the span of m eigenfunctions
NJ., • • • , Om} of U associated with eigenvalues
{A1, . An2}. Let {01, . , } denote the dual
basis of {01, . , 0m}. We can then write a special
case of the Koopman Mode Decomposition (KMD)
for the q times repeated action of U on a finite col-
lection of n observables • • • ,

[uq ( fl )1

[Uq (fn)]

E AgkOkOk(f1)
k=1

•

m 

AZCbkOk (fn)

k=1

m (f1)1

= Azok
k=1 ok(fn)

(7)

(8)

This is simply an eigendecomposition in each com-
ponent acting on different vectors in each compo-
nent where the Ibk8 are linear coordinate functions.
This decomposition allows us to evolve our ob-
servables {fi , . , fn} by simply multiplying each
term in the sum above by its corresponding eigen-
value Ai,. This gives us the intuitve interpretations
of the magnitude and complex phase of Ak as cor-
responding to rate of growth and rate of oscillation,
respectivley. If we are only interested in the evolu-
tion of the observables along a single trajectory of
(1) starting at x, then the Oks could be chosen so
that 0k (x) = 1, and KIVID would take the follow-
ing simpler form

[UP(fi)] (x) m vic

[UP ( in)] (x)] k=1

[Ok (f]. )1

• (9)

(fn)

The last column vector appearing in (8) and (9)
is known as the Koopman mode corresponding to
the pair (4, 01c) and the vector of observables
V]. , . . , fnF relative to the discrete-time system
descibed by (1). From (9) we see that the magni-
tude of IN(L) tells us how much the growth and os-
cillations rates (as a pair) given by Ai, play a role in
the evolution of f, along the single trajectory start-
ing at x and locally in time. Similarly, the complex
phase of IN( A) gives a relative phase correspsond-
ing to the oscillations give by Ak •

As an example, consider the special case that
M is a n-dimensional Euclidean space and T
is a diagonalizable linear operator. In addi-
tion, let th, , fn} be the dual basis of the
standard ordered basis for C. Given any basis
{vi , . . . , vn} of eigenvectors for T with eigen-
values {A1, . , An}, we have that its dual basis
{01, . , 0n} is a set of eigenfunctions for U with
eigenvalues 01, , Anl. We see that for any



x E M = 111n, we have

[UP(fl)](x)1

[UP (f n)](x)]

[ fi(TP(x))1

[fn,(TP(x))]
= TP (x)
= E 40k(x)yk.

k=1

We can split D into the matrix X of the first rn
columns and Y of the last m columns, i.e.

(10)

(11) (15)

rfi(7'(x)) (T2 (x)) •. f (Tr' (x))
(12)

Y=

By comparing with equation (8) we see that

{vi, • • • , vn} are the Koopman modes correspond-
ing to the pairs {(Ai, 01), • • • , (An, On)} and the
vector of observables [fi , . , f n]T , relative to the
discrete-time system descibed by (1). With this
example we see that eigendecomposition can be
viewed as a special case of KMD; the extension that
KMD provides is flexibilty in both { fl, . , Li}
and T , in particular, these can be nonlinear.

For more detail on the spectral expansion of the
Koopman operator for data-driven analysis of the
underlying dynamical system see [22, 20].

3. Koopman Spectral Analysis and Dy-
namic Mode Decomposition

Consider the case where we have a discrete-time
dynamical system as in (1) and we have evaluated a
set of observables { fl, . , Li} along the first m+1
time points of a trajectory starting at x. We can put
this into a matrix D such that each row corresponds
to a different observable and the columns are or-
dered by time:

D=

.h.(T(x)) h(Tm (x))

fn(T (x)) . . . fn(Tm (x))

(13)

[11 (fi)](x) [Um ( fi)](x)

[U (.fn)](x) [Um (.fn)](x)
(14)

(x) (T (x)) .. . f (T71 (x))

X =

fri.(x) fn(T(x)) .. . f n(Tm— (x))

L.fn(T(x)) f n(T2 (x)) . . . fn(Tm(x))

(16)

The main idea in dynamic mode decomposition
(DMD) is to find a matrix A such that AX is close
to Y in some sense. In this way A would be map-
ping the vector of measurements taken at the point
TZ (x) close to those taken at the point Ti+1(x), for
all i e {0, . , Tri — 1}. With this, it may seem
intuitive to the reader that as our number of time
points goes to infinity or as we add more observ-
ables (which could just be functions of our original
ones), we should better and better approximate the
Koopman operator U (and its spetral objects) by the
linear operator we are representing by the matrix A;
in fact, in some cases this has be proven to be the
case [30, 12, 16, 3, 21]. One such A we could use
is A = YXt , where Xt is the pseudo-inverse of
X . Such an A happens to satsfy the following [4]

IIAX—YIIF= inf YI1F , (17)
BER"n

where F denotes the Frobenius norm. Note that
we are particularly considering extended dyanmic
mode decomposition. [16, 30]

Consider S : 118n RTh defined by S(y) = Ay
- known as the DMD operator. Since this is a linear
operator on Rn, a Koopman mode decompostion
of the dual basis to the standard order basis on
with respect to the discrete time map

y/ = SW,

n

(18)

is given by an eigendecomposition of S as ex-
plained at the end of the previous section. It is com-
mon to call these resulting Koopman eigenvalues,
eigenfunctions, and modes (coming from the DMD
operater), DMD eigenvalues, eigenfunctions, and
modes, respectively.



4. Koopman Mode Decomposition of
Pairwise Distance Observables

In this section we apply Koopman spectral anal-
ysis to three real-life videos (with a moving cam-
era) via the use of DMD. The first image of each
sequence can be found in the first row of figure 1.
From left to right the image sequences increase in
their number of motions from two to four where the
background is treated as a motion since the cam-
era is moving. Note that feature points belonging
to the same motion have the same color and fea-
ture point trajectories for the length of the video
are plotted in the second row. The first video was
taken from the data set used in [28, 29]. The second
video was shared by the authors of [23]. Finally,
the last video is from the data set used in [24]. With
each of these movies we have a set of feature points
{pi , . pr}, where we make the identification

pi = . • , Xim) Yil, • • • Yim) (19)

with xi3 and yi3 denoting the x and y coordinates of
feature point i in frame j. Thus, we are letting r and
m denote the number of feature points and the num-
ber of frames, respectively. In the four motion se-
quence, some of the feature points are outliers[24]
(see figure 1).

The main assumption here is that there is some
underlying dynamical system which describes the
real-world motions which were captured by a video
camera, with a constant frame rate, and that we can
represent the restriction of this dynamical system
to a discrete time set (with difference between time
points corresponding to the frame rate) as in (1).
We can then use DMD by choosing a set of observ-
ables. For a single movie, we view each color or
grayscale component of each pixel as providing us
with an observable along a single trajectory; even
though we do not know the state-space of the un-
derlying system we are observing,i.e. the domain
of T, we assume that the processes of capturing
an image is a sampling of a set of observables at
a single point in state space and at a single point in
time. The coordinates of a feature point can then
be thought of as real-valued functions composed
with a vector of our pixel level observables. In this

way, the coordinates of each feature point are again
observables. Finally, pairwise Euclidean distances
of feature points are the observables which will be
subject to our Koopman spectral analysis.
We denote the value of the Euclidean distance

between feature point i and j in frame k by

dijk = 11(xik, yik) — (xjklyjk)112. (20)

Using these values, except those pairwise distances
with j < i (to keep prevent unnecessary redun-
dancy), we construct the vectors

Dk =[d12k • • dlrk d23k • • d2rk d(r-1)rldT •
(21)

Thus Dk is a vector of length 1 + • • • + (n — 1) =
n(n-1) and we can use the matrices2

[X = D1 D2 • • • D(m-1) 
1

[ 1 
Y = D2 D3 Dm

. and (22)

(23)

in a DMD algorithm. In particular we used the
DMD algorthim in [5], which includes a way to as-
sign a "power" that each DMD mode represents in
the data matrix X. The resulting power is higher
if the mode is more parallel to left singular vectors
with large corresponding singular values and low
otherwise. We can use this to order modes based
on the level of important they play in our data ma-
trix as opposed to using the coefficients from the
projection of a column of the data matrix onto the
DMD modes. Finally, since the algorithm invovles
inverses of the diagonal matrix of singular values
of X, we treat any singular value less than t, as
zero, where a is the largest singular value.

Using the DMD algorithm mentioned, we obtain
DMD eigenvalues and modes. The DMD eigen-
values are plotted in row three of figure 1 and are
colored according to their associated percent to-
tal power. The DMD modes corresponding to the
the eigenvalues with the top three highest powers
(identifying complex conjugate pairs), are repre-
sented in the remaining three rows of figure 1. We
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Figure 1: Koopman spectral quantities of the DMD
matrix obtained from pairwise distance observables
on three real-world video sequences. Each movie
and its computed Koopman quantities correspond
to a single column. The first row contains a picture
from each video sequence with feature points la-
beled by different motions or outliers. In the second
row, the paths the feature points trace are plotted,
for the full video sequence, and colored to match
the pictures above them. The third row contains
eigenvalues of the DMD matrix colored by their
percent power. The last three rows contain the three
highest power eigenvectors of the DMD matrix rep-
resented as symmetric matrices; the i, j-th entry
corresponds to the pairwise distance observable be-
tween the ith and jth feature points. The rows (and
columns) of these matrices are ordered by motion
with outliers first (if any). Note that in the 4 mo-
tion movie, the last 15 frames were not used due to
obvious mistracked feature points in those frames.

represent the modes by symmetric matrices such
that the i, j—th element corresponds to the pairwise
distance between feature points i and j. Since these
modes are in general complex, we only plot the
magnitude of the components. Our feature points
are already labeled according to different motions,
thus we order the rows and columns of these ma-
trices by color of the corresponding feature point:
magenta (outiers), blue, green, red, and, finally,
yellow. This leads to some block structure which
is evident from the figure.

The first thing to notice is that the highest power
DMD mode and eigenvalue pair has the eigenvalue
closest to one in all three examples. We call this
the stationary mode since it evolves in time by re-
peatedly multiplying it by one. For the two motion
video (first column), this mode (fourth row) has a
19 by 19 principle submatrix in the upper left cor-
ner which is almost zero. We also see this in the
lower power modes. This block appears in the sta-
tionary mode because the feature points are close
together and in the remaining (dynamic) modes be-
cause these feature points do not move much rela-
tive to eachother. On the other hand, the remaining

motion of the two motion video is the background;
the background points are fairly spreadout and so
we do not see a similar block of zeros in the station-
ary mode as we did for the localized object (car).
However, we do see such blocks in the dynamic
modes. As one might expect, the dynamic modes
have large components outside of the zero blocks
on the diagonal; this is due to the relative motion of
the car and the background. These symmetric ma-
trix representations of the dynamic modes are static
pictures which capture dynamic information.

Looking to the second column of figure 1, we
notice similar structure in the DMD modes as men-
tioned for the two motion video. All three plotted
modes have two fairly homogeneous blue blocks
on the diagonal, in the bottom right corners, which
correspond to the green hand (smaller block) and
red hand (bottom right). A similar block for the
backgound points only appears in the dynamic
modes. As with the two motion case, the dynamic
modes have larger components outside of these
zero blocks on the diagonal. Similar structures are
again seen in modes for the remaining four motion
video (third column of figure 1).

5. Conclusion and Outlook

The main contribution of this work, distinguish-
ing it from that in [17], is the consideration of KMD
on pairwise distance observables of tracked fea-
ture points as opposed to grayscale intensity ob-
servables. The coordinates of these feature points,
derived from optical flow based video processing
methods such as the Kanade-Lucas-Tomasi feature
tracking algorithm, yield a sparser spatial dataset
for processing than the full pixel-space. Moreover,
using pairwise distance observables derived from
these coordinates not only gives us many more
meaningful observables, it also leads to the intu-
itive block structures seen in figure 1. In addition,
the intensity-based algorithm of [17] relies on sep-
aration of slow versus fast time-scales for separat-
ing motions in different spatial regions with similar
time-scales; in contrast, the pairwise distance ob-
servables separate local motions at varying speeds
and directions in a single instance of the algorithm
and are independent of the color/intensity space.



Finally, while the results in [17] were impressive
and multi-resolution DMD has many applications
other than object tracking, the approach does not
seem to easily extend to videos with a dynamic
background. Figure 1 above shows that Koopman
modes of pairwise distance observables can seg-
ment motion even with a moving background.

We have represented the absolute value of DMD
modes obtained from pairwise distance observables
as non-negative symmetric matrices which can be
interpreted as a distance matrix for a graph whose
nodes are the tracked feature points. An amazing
feature of this approach is that object separation
can be obtained from a single dynamic mode; this
is very clearly seen, for example, in the bottom left
plot of the figure. Similar to how the problem of
motion segmentation is stated in [24], one approach
to clustering would be to permute these matrix rep-
resentations, and obtain the approximately block-
diagonal structures as seen in figure 1. On the other
hand, [23] achieves image segmentation by cluster-
ing data by eigenvectors of a certain distance (com-
mute time) matrix and suggest this could also be
done with feature point data from videos. Thus an-
other possible route to automatically separating the
motions based on DMD modes would be to clus-
ter based on the eigenvectors of their non-negative
symmetric matrix representations.

From the above discussion it is clear that choice
of observables is key to the success of applying
KMD to data. We merely note that observables
can be choosen using a neural network approach
[32, 18].

In applications involving non-rigid motions,
such as tracking people, their may me significant
relative motion of feature points on a single object
to be tracked. In the case of tracking a few peo-
ple walking, this may result in serveral dynamic
modes, represented as in figure 1, with a single
nonzero block on the diagonal and zeros elsewhere;
we would expect such modes to have correspond-
ing eigenvalues with oscillation rates given by the
different cadences of the walkers.

In applications such as autonomous cars, esti-
mating and forecasting motions of tracked objects
is also relevant. We note that KIVID can be used

for prediction of future dynamics [9, 15] and co-
ordinates of estimated motions of tracked objects
would be the natural observables to use.
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