
Analysis and Modeling of the End-to-End I/O
Performance on OLCF’s Titan Supercomputer

Lipeng Wan, Matthew Wolf, Feiyi Wang, Jong Youl Choi, George Ostrouchov and Scott Klasky
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831

Email: {wanl, wolfmd, fwang2, choij, ostrouchovg, klasky}@ornl.gov

Abstract—With the increase of scale and complexity seen in a
variety of leadership-class scientific computation and simulation
applications, it has become more important to understand their
I/O performance characteristics. The user-observed performance
is a combination of properties of how the application is using
the HPC facility, as well as how others’ use of the facility causes
variability in the static machine capabilities. Our work leverages
statistical analysis of I/O performance data gathered with fine
time resolution over a full week from Titan supercomputer. Based
on observed properties of the distribution of I/O latencies, we
build a three-state hidden Markov model (HMM) to characterize
the end-to-end I/O performance on Titan. We parameterize our
model using part of the field-gathered I/O performance data and
validate it against the rest. The validation results demonstrate
that our model can capture the dynamics of end-to-end I/O
performance on Titan accurately.

I. INTRODUCTION

The scale and complexity of high-performance parallel

storage facilities have increased significantly during the past

decade. As has been observed repeatedly, since these large-

scale storage systems are shared by many users and applica-

tions, a side-effect of this complexity is that it also exacerbates

the potential resource contention and load imbalance in the

storage systems, which leads to I/O performance variability

for end-user applicatons. Such variability is rooted in the

confluence of the application’s utilization of the interconnect,

the nature of the interconnect network design, and the nature

of the I/O from the other users’ jobs.

This variability in performance is one source of jitter in

the OS operation on leadership-class machines. For example,

recent studies by Lofstead et al. [1], Liu et al. [2], Luu et

al. [3] and Wan et al. [4] demonstrate the impact of such

variability and jitter on real, production applications at scale.

We observe that the source of this variability involves both

intrinsic (e.g. user-controllable choices on I/O) and extrinsic

(e.g. other users, system failures [5], etc.) factors. The core

research question we seek to address can therefore be simply

expressed: How best can we quantify the external, extrinisic

factors that effect an application’s performance so that it

can effectively modify its behavior to reduce its exposure to

performance inconsistencies.

Simplistic models for such mitigation are routinely gener-

ated based on worst-case analysis that gets hard-coded into the

application. For instance, an application developer may notice

that the timing on a particular I/O routine might vary over an

order of magnitude. In order to make sure that I/O does not

exceed 10% of total runtime, therefore, the developer might

choose the pessimistic time, and therefore only write data out

1/10th as often as in the more optimistic case. Even if the

available I/O bandwidth is high and stable for the machine

when the job is running, these simplistic approaches would

not be able to capitalize on it.
The work presented here, therefore, is one step towards

presenting a more functional and yet easily programmable

interface for end users. Scientific end users frequently have

complex knowledge about the form and type of data, including

conservation laws the data must obey, boundary conditions,

and so on. Literal byte-by-byte transfer of data is not always

needed; as long as the data conforms to the appropriate

conservation laws, etc. and is close enough to the original,

the relevant scientific intent can still be achieved [6]. Runtime

systems need a dynamic and expressive way of understanding

such user quality-of-information priorities along with a good

model of system performance if you are going to offer services

that do better than the simple, static time slicing. In future

work, we are looking at different approaches for the former

– How is it best to say I could tolerate a losy compression

as long as it is within 95% of correct? How to express the

desire to write as often as possible, as long as it is less than

10% of the total runtime, but not less than once an hour? The

focus of this work, though, is in the connection between such

a runtime and the characterization of the variability of the I/O

system that it works on.
Thus, before one can build such a system, it is necessary

to have a predictive performance model that has sufficient

robustness to allow for adaptation of the user’s I/O. This also

has to be fast enough so that its results can be used in near-

realtime to make control decisions. Importantly, the model

does not need to be cycle accurate; it only needs to provide

the information necessary to make a control decision. Based

on detailed observations of system behavior on Titan super-

computer, which is DOE’s largest HPC facility maintained by

Oak Ridge Leadership Computing Facility (OLCF), we have

demonstrated that one can construct a hidden Markov model

(HMM) that, although missing in some details, is sufficient to

make the sorts of decisions our eventual runtime will require.
The contribution of this paper can be summarized as three

aspects:

• We present fine-grained I/O measuring tests on a pro-

2017 IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International

Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems

1

2017 IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International

Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems

1

duction leadership-class storage system (OLCF’s Titan

supercomputer and its backend file system) and collect

time-dependant I/O traces demonstrating I/O performance

variability.

• We build a three-state hidden Markov model based on

observed characteristics of the time-varying I/O perfor-

mance traces.

• We demonstrate the effectiveness of leveraging the three-

state hidden Markov model to characterize the dynamics

of the end-to-end I/O performance in the leadership-class

computing environment, with pointers to situations where

a more complex model may be needed in future work.

The remainder of this paper is organized as follows. In

Section II we introduce some background knowledge about our

evaluation and testing platform, OLCF’s Titan supercomputer

and its center-wide file system Spider II. We describe the

methodology of our I/O measurements and do an initial

analysis of them in Section III. Based on these results, we next

develop our hidden Markov model in Section IV and demon-

strate its effectiveness in Section V. In Section VI, we provide

a survey of existing studies that concentrate on characterizing

and modeling I/O performance in HPC environment. Finally,

we conclude with our findings and future work in Section VII.

II. BACKGROUND

We conduct our end-to-end I/O measurement on one of

the largest leadership-class computing facilities in the world,

OLCF’s Titan supercomputer and its center-wide file system,

Spider II. Herein we provide an overview of Titan and Spider

II to facilitate the follow-up discussion.

Titan is a Cray XK7 system with 18,688 compute nodes,

and a total system memory of 710 TB. This high capability

compute machine is backed by a center-wide parallel file

system known as Spider II [7]. Spider II, which is based

on the Lustre storage architecture [8], is one of the world’s

fastest and largest POSIX-complaint parallel file systems. It

is designed to serve write-heavy I/O workloads and perform

approximately six times faster with three times the capacity

of its predecessor, Spider [9]. Figure 1 shows the topology

diagram, and in particular, the multi-layered I/O path between

Titan and Spider II.

In order to provide connectivity over different networks

and communicate between file system clients and servers over

these networks, Lustre provides a network abstraction layer

called LNET (Lustre Networking). In fact, on the frontend

at the compute side of Titan computing facility, there are two

different types of nodes: compute and Lustre I/O router nodes.

Both types of nodes are part of the Gemini network [10]

in 3D torus topology. Each node has a unique network ID

(NID) for addressing purposes. According to [11], 440 XK7

service nodes are configured as Lustre LNET routers on Titan.

Of these, 432 are used for file I/O and 8 are for metadata

communication. Titan I/O routers are connected to the Spider

II TOR switches via InfiniBand FDR links, and the Spider II

TOR switches enable these I/O routers to reach to the backend

storage system. The backend storage system of Titan consists

...

...

...

...

Titan Compute
Cluster

Cray XK-7 3D Torus Interconnect

IB Switch
Network

OSSs

OSTs

LNET
Routers

Fig. 1: Infrastructure and I/O path between Titan and its

backend storage.

of 288 Lustre Object Storage Servers (OSSs) and 2,016 Lustre

Object Storage Targets (OSTs), which are divided into two

independent file systems, atlas1 and atlas2. Specifically, each

TOR switch (36 in total) is connected with a total of 8 OSSs

while each OSS is connected to 7 OSTs over direct InfiniBand

(IB) FDR links.

In summary, Titan computing facility has complicated large-

scale I/O subsystems, where multiple hardware and software

components are involved along each I/O path between the

compute nodes and the storage backend. Since some of these

components, such as the routers and switches, are shared by

I/O traffic from many different jobs, the I/O congestion and

interference, which can cause significant variability or even

degradation of I/O performance, might occur more often.

III. END-TO-END I/O PERFORMANCE MEASUREMENT

AND ANALYSIS

In this section, we start by describing our measurement

methodology, then present the detailed analysis of performance

data collected from Titan.

A. Measurement Methodology

Due to the complexity and scale of the storage systems in

HPC environment, I/O path follows complex routes, which

involves multiple hardware and software components. More

importantly, components such as the routers and switches, are

resources shared by many I/O paths. Therefore, I/O congestion

and interference are prone to occur, which can cause signifi-

cant variability or even degradation of I/O performance. On the

other hand, the elapsed time between the calling and returning

of the I/O function measured at the application level might not

reflect the actual delay caused by all the components on the I/O

path. For example, if the application calls the POSIX “write”

function to write some data, rather than being transmitted to

the storage backend immediately, the data might just be cached

in the OS kernel or the buffer of those intermediate hardware

devices when the “write” function returns. Therefore, in order

to have a stable and true understanding of the performance

variability along each I/O path in HPC storage systems, we

focus on the end-to-end I/O latency and conduct periodic

22

probing and measurement during an one-week time period on

Titan supercomputing facility.

1) Measurement Setup: Since our study focuses on the end-

to-end I/O latency, when we design and implement the measur-

ing tests, we have taken three requirements into consideration.

First, we need to be able to control which OST (the object

storage target) the data will be written to. This can be achieved

by leveraging the llapi provided by Lustre file system. We also

need to mitigate the caching effect in Lustre file system so

that the elapsed time measured at the application level can be

treated as a rough estimate of the end-to-end I/O latency. Thus,

in our code, we enable the O DIRECT option for POSIX

I/O to bypass the system buffers and call fdatasync function

after the POSIX write to force the data to be committed to

the storage backend. The end-to-end write latency includes

both the time spent on POSIX write and the delay caused by

fdatasync.

Second, in order to study how the end-to-end I/O perfor-

mance varies over time, our I/O measuring job needs to issue

the I/O requests to the OSTs periodically and the time interval

between two consecutive I/O requests should be short enough

so that more I/O performance dynamics can be captured. For

example, in each run of our measurement job on Titan, we

reserved 18 compute nodes and launched one MPI process per

node. Each of these processes writes 1MB data to a specific

OST and then read the same 1MB data back every minute.

In an ideal case, we would like to have the measurement

job run continuously for one week. In practice though, the

scheduling policy of Titan does not allow jobs at this scale to

run for very long. For example, our job is allowed to run for

at most 1 hour on Titan during each submission. Therefore, in

order to conduct continuous measurement for longer period of

time, we implement a background process and automatically

resubmits the measurement job based on the status of the job

queue. Specifically, the daemon process continuously monitors

the job queue associated with our account, and resubmit the

measurement job immediately once the previous submission

has been completed. Although the new submission might not

be scheduled to run right after the previous job’s completion,

the time intervals between two consecutive job runs are usually

not very long given the small job size (small jobs usually have

less waiting time in the job queue).

Third, we need to carefully select the size of each I/O

request as well as the OST each I/O request is sent to. The goal

is to minimize the overhead caused by our I/O measurement

job. As we have already mentioned, for both write and read

request, the size of each request in our measurement is 1MB.

The reason we only measure the latency of 1MB I/O request

is that the Lustre file system for Titan sets 1MB as the default

RPC transfer size. If an I/O request from the application level

is larger than 1MB, Lustre will split it into multiple 1MB

data chunks and send them to the storage backend through

the RPC protocol. In other words, the latency of I/O requests

larger than 1MB can be estimated as the sum of multiple 1MB-

requests’ latency. In our measurement on Titan, we select 18

OSTs from atlas1 file system based on the system topology so

that no two of these OSTs are under the same OSS in Figure

1. This strategy can make sure the I/O requests issued by our

measurement job do not interfere each other.

2) I/O Trace Collection: In order to obtain accurate timing

information, we adopt the similar technique used by [12] to

measure the latency of different I/O operations. By leveraging

the dynamic library preloading technique, we can intercept

each low-level I/O function call and record the elapsed time

spent on each function call in a lightweight manner. At the

end of each run of the measurement job, the I/O traces of

each process are stored in an individual trace file. Since we

only focus on several I/O function calls, the size of those trace

files are negligible.

B. Measurement Results and Analysis

1) Characteristics of End-to-End I/O Latency in
Leadership-Class HPC Systems: In leadership-class

computing facilities, the I/O subsystem is shared by many

scientific simulation and analysis jobs running concurrently,

each of which might have different spatial and temporal I/O

access patterns. For example, some of these jobs stripe their

data across all the OSTs in the system while the others only

use a small portion of the OSTs. Additionally, the intensity

of I/O operations from different jobs is also different from

each other. Therefore, how the I/O performance varies over

time and across different OSTs needs to be carefully studied.

Figure 2 shows the histograms of the end-to-end latency

of 1MB writes issued to 9 different OSTs in Titan’s Spider

II Lustre file system. Each row of the set of histograms

represents samples from specific OSTs averaged over a week

(for the first row) or a specific day (for the rest). From

the histograms, we can observe that: 1) On the same day

of the week, the distribution of end-to-end I/O latency of

different OSTs looks similar to each other, even though we

intentionally select the OSTs from different I/O congestion

domains (These OSTs belong to different IB switches and

OSSs) for our measurement. This observation demonstrates

that the data striping strategy adopted by Lustre file system

can evenly distribute the I/O traffic to all OSTs most of the

time. 2) Even for the same OST, the distribution of end-to-end

I/O latency on different days of the week are different. This is

because the intensities of the I/O operations from jobs running

on different days are usually different.

Now let us look into more details of the end-to-end I/O

latency on Titan’s Lustre file system. Here we use performance

numbers collected from OST-0 as an example. The histogram

of the end-to-end latency of 1MB write requests issued to

OST-0 on Titan during the entire week is shown in Figure 3.

From the figure, we can observe that the distribution of the

single OST’s end-to-end I/O latency shows some multi-modal

characteristics. Specifically, the probability density function

of the end-to-end I/O latency given by the kernel density

estimation has two local minimas, which divide the values

of the end-to-end latency into three sections. We can also ob-

serve similar multi-modal characteristics from the performance

numbers collected from other OSTs (see Figure 2).

33

0 4 12 20 28 36 44 52 60

0
50

100
150
200

0
10
20
30
40

0

20

40

0
10
20
30
40

0
10
20
30

0

10

20

30

0

10

20

30

0
10
20
30

O
ne W

eek
M

onday
Tuesday

W
ednesday

T
hursday

F
riday

S
aturday

S
unday

0.1 10.0 0.1 10.0 0.1 10.0 0.1 10.0 0.1 10.0 0.1 10.0 0.1 10.0 0.1 10.0 0.1 10.0
End−to−end latency of 1MB write request (s)

C
ou

nt

Fig. 2: Histograms of the end-to-end latency of 1MB write requests issued to 9 different OSTs (the ID of each OST is labeled

above each column) in Titan’s Spider II Lustre file system during one week (Mar. 6-13, 2017) and on each day of that week.

Note that the log-10 scale is used for x-axis.

0

25

50

75

100

125

0.00 0.01 0.02 0.03 0.04 0.05
End−to−end latency of 1MB write request (s)

C
ou

nt

Titan, OST−0

Fig. 3: End-to-end latency of a single OST in Titan’s Lustre

file system. The blue curve illustrates the estimated probability

density function given by kernel density estimation, while the

two red dash lines indicate the two local minimas.

These observations indicate that the degree of busyness of

each end-to-end I/O path in HPC systems can be characterized

by three performance states: idle, transitional and busy state.

In fact, here is an intuitive explanation of the existence of

these performance states. On each end-to-end I/O path, the

devices (such as routers, switches, and OSSs) which are shared

by I/O traffic from different jobs can be simplified as queues

that hold the I/O requests from the applications. When those

queues are relatively empty, the I/O requests can be forwarded

to the storage backend quickly, meaning the I/O path is in the

idle state. With the increase of the I/O traffic, those queues are

getting saturated and the I/O path enters the transitional state.

Finally, when those queues are full and the waiting time of I/O

requests increases significantly, the I/O path is in busy state.

Moreover, since the waiting time of each queue is random,

given the I/O path is in a specific performance state, the latency

on that I/O path is a random variable following a probability

distribution rather than some deterministic values.

2) Characteristics of Performance State Transitions on I/O
Paths: If our conjecture about the three performance states on

each end-to-end I/O path is true, a more interesting question

we should think about is how the I/O performance transits

between these three states over time.

Here we still use the performance numbers collected from

OST-0 on Titan as an example. As shown Figure 3, though

the actual I/O latency distributions of different states overlap

each other and the boundaries are not clearly distinguishable,

we can still use the two local minimas of the estimated

probability density function to roughly estimate the boundaries

between different performance states. According to Figure 3,

the two local minimas are achieved when the end-to-end I/O

latency values are 0.005 seconds and 0.008 seconds. Therefore,

we can manually label each data points in our performance

measurement results in this way: If the measured end-to-end

latency at a specific time is less than 0.005 seconds, we label

the state of the I/O path at that time as idle. If it is greater

than 0.008 seconds, we label the state at that time as busy. If

it falls within the interval between 0.005 and 0.008, we label

the state as transitional. Since the timestamp of each latency

value was also recorded in our measurement, we can calculate

the time between state transitions using the labeled time series

latency data and analyze the statistical properties of it.

First, we obtain the time between state transitions using

the performance data measured in time periods with different

44

lengths: the first 12 hours, the first 24 hours and the first 72

hours of our measurement. We use five different probability

distributions to fit to the time between state transitions during

these three time periods. In order to illustrate the fitness of

these five distributions, we present the Q-Q plot for each

distribution in Figure 4. Specifically, each Q-Q plot compares

the quantiles drawn from the measurement data (y-axis) to

theoretical quantiles calculated from a particular distribution

using parameters estimated by the probability distribution

fitting. If the quantiles of the time between state transitions

extracted from our measurement data came from the same

distribution, the points in the Q-Q plot will approximately

lie on the line y = x. As shown in Figure 4(a) and 4(b),

in the first 12 hours and 24 hours of our measurement, the

exponential distribution fits the time between state transitions

best. In other words, this indicates if we treat the transition

between the performance states as an event, the occurrence of

this event satisfies a Poisson distribution during a time-period

less than 24 hours. However, when the time period is greater

than 24 hours, this property might not exist anymore. For

instance, as shown in Figure 4(c), the exponential distribution

does not fit the time between state transitions when the time

period increases to 72 hours, which means the transition rates

between performance states on different days are different.

This is mainly because the intensities of I/O operations from

jobs running on different days are significantly different.

Second, we need to validate whether the property of the time

between state transitions we illustrated above is temporary or

lasting. We obtain the time between state transitions using the

performance data measured on each day of the week. Then

we again use the exponential distribution to fit each dataset

and present the Q-Q plots in Figure 5 to show the fitness.

From the fitting results, we can observe that the exponential

distribution fits to the time between state transitions well

except that on Thursday and Friday. As discussed in more

detail in Section III, the fit to an exponential disribution

is an important property for our modeling effort. We also

did the Kolmogorov-Smirnov test (K-S test) for each dataset

to quantify the distance between the empirical distribution

function of the sample and the cumulative distribution function

of the exponential distribution. The results of K-S test also

indicate that the empirical distribution of the time between

state transitions is close to exponential distribution, with a

somewhat greater divergence on Thursday and Friday. This

divergence should not significantly impact our short-range

predictive goals, but it does point the way to further future

work.

In summary, our analysis of the one-week I/O performance

measurement results not only demonstrates the existence of

different performance states on each end-to-end I/O path

in HPC systems, but also reveals some important statistical

properties of transitions between these performance states. In

the next section, we are going to introduce how to leverage

these findings to build a performance model for each end-to-

end I/O path in leadership-class computing facilities.

0

500

1000

0 500 1000
theoretical

sa
m

pl
e

Exponential

0

500

1000

0 300 600 900
theoretical

sa
m

pl
e

Weibull

0

500

1000

0 500
theoretical

sa
m

pl
e

Normal

0

500

1000

0 500 1000 1500
theoretical

sa
m

pl
e

Log−normal

0

500

1000

0 250 500 750 1000
theoretical

sa
m

pl
e

Gamma

(a) End-to-end latency of OST-0 sampled during the first 12 hours are
used.

0

500

1000

0 500 1000
theoretical

sa
m

pl
e

Exponential

0

500

1000

0 300 600 900
theoretical

sa
m

pl
e

Weibull

0

500

1000

0 500
theoretical

sa
m

pl
e

Normal

0

500

1000

0 500 1000 1500
theoretical

sa
m

pl
e

Log−normal

0

500

1000

0 250 500 750 1000
theoretical

sa
m

pl
e

Gamma

(b) End-to-end latency of OST-0 sampled during the first 24 hours are
used.

0

1000

2000

3000

0 500 1000 1500
theoretical

sa
m

pl
e

Exponential

0

1000

2000

3000

0 500 1000 1500
theoretical

sa
m

pl
e

Weibull

0

1000

2000

3000

−500 0 500 1000
theoretical

sa
m

pl
e

Normal

0

1000

2000

3000

0 500 100015002000
theoretical

sa
m

pl
e

Log−normal

0

1000

2000

3000

0 500 1000
theoretical

sa
m

pl
e

Gamma

(c) End-to-end latency of OST-0 sampled during the first 72 hours are
used.

Fig. 4: Q-Q plots for visualizing the fitness of using different

distributions to fit to the time between state transitions of

OST-0 in Titan’s Spider II Lustre file system. The dataset of

time between state transitions is generated by using end-to-end

latency sampled during time periods with different lengths.

IV. MODEL OF END-TO-END I/O PERFORMANCE

The analysis of the end-to-end I/O latency measured on

Titan has shown that the time between state transitions might

follow exponential distributions during a time period less

than 24 hours. Statistically speaking, if the time between the

occurrence of an event follows an exponential distribution, the

stochastic process has the memoryless property, which is also

referred to as Markov property. Therefore, we leverage the

Markov property revealed by our measurement and analysis

to model the end-to-end I/O performance of HPC systems in

this section.

A. Continuous-Time Hidden Markov Model

The aforementioned three performance states are artificial

definitions, given the dataset characteristics. We can only

speculate their existence based on the estimated probability

density function of the end-to-end I/O latency we measured.

On the other hand, our analysis indeed finds some Markov

property from the measurement results. Therefore, we estab-

lish a continuous-time hidden Markov model to characterize

the end-to-end I/O latency.

As shown in Figure 6, the three performance states are the

hidden states of our hidden Markov model. The transitions

55

0

500

1000

1500

0 500 1000
theoretical

sa
m

pl
e

Monday

0

250

500

750

1000

1250

0 300 600 900 1200
theoretical

sa
m

pl
e

Tuesday

300

600

900

0 300 600 900
theoretical

sa
m

pl
e

Wednesday

0

1000

2000

0 500 1000
theoretical

sa
m

pl
e

Thursday

0

500

1000

1500

2000

0 2505007501000
theoretical

sa
m

pl
e

Friday

0

500

1000

1500

0 500 1000
theoretical

sa
m

pl
e

Saturday

0

500

1000

1500

0 250 500 7501000
theoretical

sa
m

pl
e

Sunday

Fig. 5: Q-Q plots for visualizing the fitness of using exponential distribution to fit to the time between state transitions of

OST-0 in Titan’s Spider II Lustre file system on each day of the week.

Idle
(State 0)

Transitional
(State 1)

Busy
(State 2)

Observation
(I/O latency)

Observation
(I/O latency)

Observation
(I/O latency)

Fig. 6: Continuous-time hidden Markov model for end-to-end

I/O latency of single OST in leadership-class storage systems.

between these states are determined by the transition rates,

which can be represented by a matrix Q, called the transition
rate matrix or infinitesimal generator of the continuous-time

Markov process. In our case, Q is a 3× 3 matrix as follows:

Q =

⎛
⎝
−(λ01 + λ02) λ01 λ02

λ10 −(λ10 + λ12) λ12

λ20 λ21 −(λ20 + λ21)

⎞
⎠ (1)

Several important properties of a continuous-time Markov

process can be derived using the matrix Q. Specifically, the

holding time of state i follows an exponential distribution with

rate
∑

j λij for i �= j. If a transition occurs on state i, the

probability that the Markov process will transit to j as the next

state is
λij∑
j λij

for i �= j. Moreover, the transition matrix of

a continuous-time Markov process, P (t), which is a function

of time, can be represented as P (t) = eQt.

Figure 6 also illustrates, given the Markov process is in

hidden state i at time t (Xt = Si), the observed variable Yt,

which is the I/O latency in our case, follows a distribution with

Fi(y, θi) as the cumulative distribution function (CDF), where

θi represents the parameter set of the CDF. This distribution

is also called the emission probability distribution of hidden

state i. Since the I/O latency is always greater than 0 and its

histogram shown in Figure 3 has a long tail, we use the log-

normal distribution as the emission probability distribution for

all three hidden states in our case.

In summary, we can consider the end-to-end I/O latency we

observed in Figure 3 were drawn from a mixture model where

the hidden variables (the three performance states in our case),

which control the mixture component to be selected for each

observation, follows a Markov process rather than independent

of each other.

B. Model Parameter Estimation

The most critical step toward making our model useful in

practice is finding a set of parameters for the model so that

the it can accurately capture the statistical properties of the

observed variable. In our model, the parameters that need

to be estimated include the transition rates between different

hidden states and the parameters of the emission probability

distribution of each hidden state, while the observed variable

is the end-to-end I/O latency.

The most commonly used method to estimate the param-

eters of a statistical model given observations is maximum
likelihood estimation (MLE). Since this method is simple and

efficient, we also adopt it to estimate the parameters of our

continuous-time hidden Markov model. First, we need to build

the likelihood function for our model. Let us assume we

have observed m I/O latency values {yt1 , yt2 , . . . , ytm} at m
different time points {t1, t2, . . . , tm}, the likelihood function

can be formulated as

L =P (yt1 , yt2 , . . . , ytm)

=
∑

P (yt1 , yt2 , . . . , ytm |Xt1 , Xt2 , . . . , Xtm)

P (Xt1 , Xt2 , . . . , Xtm),

(2)

where {Xt1 , Xt2 , . . . , Xtm} are random variables represent-

ing which hidden state the Markov process is in at time

{t1, t2, . . . , tm}, and the sum is taken over all possible paths of

state transitions. Thanks to the Markov property, we can have

P (Xti |Xt1 , Xt2 , . . . , Xti−1
) = P (Xti |Xti−1

). Then with the

assumption that the observed I/O latency values are condi-

tionally independent given the values of the hidden states, the

likelihood function can be further simplified as

L =
∑
Xt1

P (yt1 |Xt1)P (Xt1)
∑
Xt2

P (yt2 |Xt2)P (Xt2 |Xt1)

· · ·
∑
Xtm

P (ytm |Xtm)P (Xtm |Xtm−1),
(3)

66

Algorithm 1 EM algorithm for parameter estimation

Require: Observed values Y , initial guess of parameters Θ0, accu-
racy ε

1: Set Θ̃ = Θ0;

2: Determine Θ, such that
∂F (Θ,Θ̃)

∂Θ
= 0;

3: Compute ΔL = log(L(Y |Θ))− log(L(Y |Θ̃));
4: if ΔL > ε then
5: Set Θ̃ = Θ;
6: Go to step 2;
7: end if

where P (yti |Sti) is determined by the emission probability

density (the density of log-normal distribution in our case)

and P (Xti |Xti−1
) is the (Xti−1

, Xti) entry of the transition

matrix P (t) evaluated at time t = ti − ti−1.

Second, we need to find the set of parameters that maxi-

mize the likelihood function. The representation of the like-

lihood function given above contains too many details. In

order to make our description simple, we use L(Y |Θ) =∫
L(Y,X|Θ)dX to denote the likelihood function, where

Y = {yt1 , yt2 , . . . , ytm} are the observed values and X are

the hidden variables. Since it is too complex to maximize the

likelihood function directly, an iterative algorithm called the

expectation-maximazation (EM) algorithm is usually used. In

order to use the EM algorithm, we need to make an initial

assumption on the parameters Θ0. Then we use the expectation

value of the log-likelihood to build the following function

F (Θ,Θ0) = E[log(L(Y,X|Θ))|Θ0] (4)

Now instead of maximizing the likelihood function directly,

we can maximize the function F using the EM algorithm iter-

atively as shown in 1. More details about maximum likelihood

estimation and EM algorithm can be found in [13].

V. MODEL VALIDATION

In order to demonstrate the effectiveness of using the three-

state hidden Markov model to characterize the end-to-end

I/O performance in Titan, we build a simulator to mimic

our parametrized hidden Markov model based on Monte

Carlo method. Then we validate our model by comparing the

simulation results with the field-gathered performance data.

As described in Section III, we collected performance

numbers of each OST continuously for one week. As part

of our evaluation, we use the performance numbers collected

within a 12 hour window to train the hidden Markov model for

each OST, and then we use that parameter set for prediction

during the subsequent 12 hours. In particular, we use them

to drive a Monte Carlo simulation that can then be compared

to the actual measurements. Specifically, the simulation of the

Markov process produces a series of state transition events

with the timing information attached to each event. Given the

Markov process is in a specific state at a specific time, the

parametrized emission probability distribution of that state is

used to generate the performance number as an observation at

that specific time. In the end, our simulation produces a time

series in which each data point represents the performance

value observed at a specific time.

Now for each OST, we compare the time series of the

performance values generated by our model with the actual

performance numbers collected during the subsequent 12

hours. Here we still use OST-0 as an example. Validating the

models of the other OSTs follows the same steps. As shown

in Figure 7, the top sub-figure is the histogram of the write

throughput numbers from the I/O traces collected within the

second 12 hours on Monday, while the bottom one is the the

histogram of the the performance numbers generated by the

simulation that was parameterized by the preceding 12 hours.

In order to have a fair comparison, we let the simulation

generate the same number of performance values as the I/O

trace. From the figure, we can observe that the distribution

of the performance values generated by simulation appears

similar to that calculated from the actual performance data.

0.0
2.5
5.0
7.5

10.0

0 50 100 150 200 250
Throughput of 1MB write (MB/s)

C
ou

nt

I/O traces

0.0
2.5
5.0
7.5

10.0

0 50 100 150 200 250
Throughput of 1MB write (MB/s)

C
ou

nt

Simulation results

Fig. 7: Histogram of throughput of 1MB write requests ob-

tained from actual I/O traces and simulation respectively

0

100

200

300

0 50 100 150 200 250
sample of actual trace

sa
m

pl
e

of
 s

im
ul

at
io

n
re

su
lt

Monday

0

100

200

300

0 50 100 150 200 250
sample of actual trace

sa
m

pl
e

of
 s

im
ul

at
io

n
re

su
lt

Thursday

0

100

200

300

0 50 100 150 200 250
sample of actual trace

sa
m

pl
e

of
 s

im
ul

at
io

n
re

su
lt

Sunday

Fig. 8: Q-Q plots for visualizing the fidelity of our model

in characterizing the performance data collected on Monday,

Thursday and Sunday

But how close are these two distributions statistically?

Again, we adopt Q-Q plots to visualize the similarity be-

tween the performance data traces and the simulation results

parametrized by a non-overlapping window. In Figure 8, we

illustrate three Q-Q plots for measured and simulated data

from windows on Monday, Thursday and Sunday respectively.

As one can see in Figure 2, our experimental traces show some

substantial changes in the nature of the external interference

traffic over the course of the week, and these three days allow

us to explore how well the restriction to only three states does

within the Markov model.

As already shown in Figure 5, the exponential distribution

fits to the time between state transitions well on Monday,

77

Tuesday, Wednesday and Saturday, implying strong Markov

property on these days, while on Thursday and Friday such

property is relatively weak. The Markov property of Sunday

data is stronger than that of Thursday and Friday data, but

weaker than the other days’ data. Now let us look at the Q-

Q plots shown in Figure 8. Similarly, our model achieves the

best fidelity in characterizing the performance data collected

on Monday, and the fidelity in characterizing data collected on

Sunday is better than that on Thursday. This result indicates

that although our model works well as long as the Markov

property holds over the 12 hour window period on most of the

days of that week, its fidelity might degrade if the transition

rates between different performance states are changing dra-

matically in relatively short time period (like what happened

on Thursday and Friday), since the Markov property requires

time-independent transition rates. A future exploration of this

data will be to see if updating the model dynamically using

smaller collection windows can adequately adapt to the chang-

ing state transition rates. Additionally, although the fidelity

of the simulation distribution may be less than desirable for

purely prediction purposes, its appropriateness as feedback for

a control model can also be evaluated as further work.

VI. RELATED WORK

In this section, we present a brief literature review on

existing efforts to understand and model the I/O performance

of scientifc computation and analysis workloads in high-

performance computing systems.

In order to understand the performance characteristics of

large-scale parallel I/O, existing studies have conducted dif-

ferent kinds of I/O performance measurements and analysis on

different HPC systems. For example, the I/O performance of

newly deployed leadership-class computing facilities, such as

Intrepid, Edison and Titan, are usually extensively measured

and studied [14], [15], [11] using the synthetic I/O benchmarks

like IOR (Interleaved or Random parallel I/O benchmark) [16]

before being put into production. Since the I/O subsystems

in high-performance computing facilities are often shared by

many users, the I/O congestion and interference are common

and might significantly degrade the I/O performance. Thus

some other studies, like those presented in [1], [17], [18] [4],

focus on measuring and analyzing I/O performance variability

in production HPC environments. For developers and users

of those scientific applications, they usually only study the

I/O behavior and performance of their own applications by

analyzing the runtime traces collected from the execution

of their application jobs. For example, [19] presented the

analysis of two-month application-level I/O traces collected

from Intrepid, a 557-teraflop IBM Blue Gene/P system, using

Darshan I/O tracing tool [20]. [3] analyzed Darshan traces

collected from three different supercomputing facilities during

a much longer time period (6 years). Although all these

studies provide some valuable insight into the I/O performance

characteristics of HPC systems and applications, few of them

comes up with models that are generic enough for application

developers to understand the I/O performance variabilities in

HPC environment.

Due to the limitation of studying the I/O performance

through pure measurement, some existing work concentrate

on building generic I/O performance models for either the

storage systems or the HPC applications. For example, in [21]

the authors apply machine learning techniques to building a

decision tree based model to predict the I/O performance in

HPC environments. In [22], techniques for modeling HPC

I/O workloads are proposed, which can be used to generate

synthetic I/O workloads to mimic I/O workloads from real

HPC applications based on researchers’ requirements and

make the I/O performance study more flexible. A grammar-

based appraoch is proposed in [23], which can predict spatial

and temporal I/O patterns. In [24], [25], [26], models are

built to study the checkpoint/restart I/O in heterogeneous HPC

storage systems. All these models introduce some interesting

ideas to characterize the performance or patterns of HPC I/O,

but few of them is able to adapt to the I/O variabilities we

observed in the HPC systems.

Since running large-scale I/O performance measurements

on production supercomputing facilities is not only difficult

but also expensive, analyzing and understanding the I/O per-

formance characteristics of HPC systems through simulation

is another approach adopted by existing studies. For example,

[27] proposes a parallel discrete-event simulation tool named

CODES for analyzing performance of exascale storage sys-

tems. Built upon CODES, FusionSim is developed to simulate

a newly designed parallel file system [28]. Similar simulation

tools also include PFSsim [29] and SIMCAN [30], which

are two parallel file system simulators developed under the

OMNeT++ framework [31]. Although these simulation tools

provide more flexibilities in I/O performance analysis, they

often require a lot of computational resources and need a long

time to produce some useful results.

VII. CONCLUSION AND FUTURE WORK

Characterizing the dynamics of I/O performance at high

performance computing facilities has been a challenging re-

search problem for many years. This work has become more

necessary due to all of the technical changes in the decade,

including: the deepening of the storage hierarchies, the in-

crease of system scales (both on-node and the number of

nodes), the complex end-to-end I/O paths, and the sharing

nature of critical I/O resources without centralized control

mechanisms. In this study, we analyzed the I/O performance

data we gathered over a full week with a fine time resolution

on the Titan supercomputer, which is deployed and managed

by the Oak Ridge Leadership Computing Facility (OLCF). The

analysis results not only provided us valuable insight into the

I/O performance and variability, but it also allowed us to build

a three-state hidden Markov model (HMM) which we used to

characterize and validate the end-to-end I/O performance of

the Titan supercomputer.

We have started to use this model to predict the I/O

performance, and our latest results have already showed the

88

same characteristics, which further indicate that our findings

in this paper are consistent, and are valid for long-term I/O

performance characterization. We will work to collect more

data over much longer time periods and refine our model and

publish the new findings. Furthermore, we will use our model

to understand more complicated I/O control mechanisms, such

as dynamic data refactoring, compression, and I/O-aware job

scheduling.

REFERENCES

[1] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing Variability in the IO Performance
of Petascale Storage Systems,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’10, 2010, pp. 1–12.

[2] Q. Liu, N. Podhorszki, J. Logan, and S. Klasky, “Runtime I/O Re-
Routing+ Throttling on HPC Storage,” in HotStorage, 2013.

[3] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat,
S. Byna, and Y. Yao, “A Multiplatform Study of I/O Behavior on
Petascale Supercomputers,” in Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’15, 2015, pp. 33–44.

[4] L. Wan, M. Wolf, F. Wang, J. Youl Choi, G. Ostrouchov, and S. Klasky,
“Comprehensive Measurement and Analysis of the User-Perceived I/O
Performance in a Production Leadership-Class Storage System,” in IEEE
37th International Conference on Distributed Computing Systems, ser.
ICDCS ’17, 2017, pp. 1022–1031.

[5] L. Wan, F. Wang, S. Oral, S. S. Vazhkudai, and Q. Cao, “A Report on
Simulation-Driven Reliability and Failure Analysis of Large-Scale Stor-
age Systems,” Oak Ridge National Laboratory, Tech. Rep. ORNL/TM-
2014/421, December 2014.

[6] S. Klasky, E. Suchyta, M. Ainsworth, Q. Liu, B. Whitney, M. Wolf,
J. Youl Choi, I. Foster, M. Kim, J. Logan, K. Mehta, T. Munson,
G. Ostrouchov, M. Parashar, N. Podhorszki, D. Pugmire, and L. Wan,
“Exacution: Enhancing Scientific Data Management for Exascale,” in
IEEE 37th International Conference on Distributed Computing Systems,
ser. ICDCS ’17, 2017, pp. 1927–1937.

[7] S. Oral, D. A. Dillow, D. Fuller, J. Hill, D. Leverman, S. S. Vazhkudai,
F. Wang, Y. Kim, J. Rogers, J. Simmons et al., “OLCF’s 1 TB/s, Next-
generation Lustre File System,” in Proceedings of Cray User Group
Conference (CUG 2013), 2013.

[8] P. J. Braam et al., “The Lustre Storage Architecture,” 2004.
[9] L. Wan, F. Wang, S. Oral, D. Tiwari, S. S. Vazhkudai, and Q. Cao,

“A Practical Approach to Reconciling Availability, Performance, and
Capacity in Provisioning Extreme-Scale Storage Systems,” in Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’15, 2015, pp. 75:1–75:12.

[10] R. Alverson, D. Roweth, and L. Kaplan, “The Gemini System Inter-
connect,” in 18th IEEE Symposium on High Performance Interconnects
(HOTI ’10), 2010, pp. 83–87.

[11] S. Oral, J. Simmons, J. Hill, D. Leverman, F. Wang, M. Ezell, R. Miller,
D. Fuller, R. Gunasekaran, Y. Kim, S. Gupta, D. Tiwari, S. S. Vazhkudai,
J. H. Rogers, D. Dillow, G. M. Shipman, and A. S. Bland, “Best Practices
and Lessons Learned from Deploying and Operating Large-scale Data-
centric Parallel File Systems,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’14, 2014, pp. 217–228.

[12] H. Luu, B. Behzad, R. Aydt, and M. Winslett, “A Multi-Level Approach
for Understanding I/O Activity in HPC Applications,” in 2013 IEEE
International Conference on Cluster Computing, ser. CLUSTER ’13,
2013, pp. 1–5.

[13] M. R. Gupta and Y. Chen, “Theory and Use of the EM Algorithm,”
Foundations and Trends in Signal Processing, vol. 4, no. 3, pp. 223–
296, 2011.

[14] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock,
“I/O Performance Challenges at Leadership Scale,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’09, 2009, pp. 40:1–40:12.

[15] Z. Zhao, D. Petesch, D. Knaak, and T. Declerck, “I/O Performance on
Cray XC30,” in Proceedings of the Cray User Group Conference, ser.
CUG ’14, 2014.

[16] LLNL, “The Interleaved Or Random (IOR) Benchmark,” https://github.
com/chaos/ior, 2016.

[17] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and
N. Podhorszki, “Characterizing Output Bottlenecks in a Supercomputer,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’12, 2012, pp.
8:1–8:11.

[18] B. Dong, S. Byna, and K. Wu, “Heavy-tailed Distribution of Parallel
I/O System Response Time,” in Proceedings of the 10th Parallel Data
Storage Workshop, ser. PDSW ’15, 2015, pp. 37–42.

[19] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross, “Understanding and Improving Computational Science Storage
Access through Continuous Characterization,” in IEEE 27th Symposium
on Mass Storage Systems and Technologies, ser. MSST ’11, 2011, pp.
1–14.

[20] P. H. Carns, R. Latham, R. B. Ross, K. Iskra, S. Lang, and K. Riley,
“24/7 Characterization of Petascale I/O Workloads,” in Proceedings of
the First Workshop on Interfaces and Abstractions for Scientific Data
Storage, 2009.

[21] J. Kunkel, M. Zimmer, and E. Betke, “Predicting Performance of Non-
contiguous I/O with Machine Learning,” in 30th ISC High Performance
Conference, 2015, pp. 257–273.

[22] S. Snyder, P. Carns, R. Latham, M. Mubarak, R. Ross, C. Carothers,
B. Behzad, H. V. T. Luu, S. Byna, and Prabhat, “Techniques for
Modeling Large-scale HPC I/O Workloads,” in Proceedings of the 6th
International Workshop on Performance Modeling, Benchmarking, and
Simulation of High Performance Computing Systems, ser. PMBS ’15,
2015, pp. 5:1–5:11.

[23] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross, “Omnisc’IO: A
Grammar-based Approach to Spatial and Temporal I/O Patterns Pre-
diction,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’14,
2014, pp. 623–634.

[24] L. Wan, Z. Lu, Q. Cao, F. Wang, S. Oral, and B. Settlemyer, “SSD-
Optimized Workload Placement with Adaptive Learning and Classifica-
tion in HPC Environments,” in 30st International Conference on Massive
Storage Systems and Technology, ser. MSST ’14, 2014.

[25] L. Wan, “Achieving High Reliability and Efficiency in Maintaining
Large-Scale Storage Systems through Optimal Resource Provisioning
and Data Placement,” Ph.D. dissertation, University of Tennessee,
Knoxville, 2016.

[26] L. Wan, Q. Cao, F. Wang, and S. Oral, “Optimizing Checkpoint Data
Placement with Guaranteed Burst Buffer Endurance in Large-Scale
Hierarchical Storage Systems,” Journal of Parallel and Distributed
Computing, vol. 100, pp. 16–29, 2017.

[27] N. Liu, C. Carothers, J. Cope, P. Carns, R. Ross, A. Crume, and
C. Maltzahn, “Modeling a Leadership-scale Storage System,” in Pro-
ceedings of the 9th International Conference on Parallel Processing and
Applied Mathematics - Volume Part I, ser. PPAM ’11, 2011, pp. 10–19.

[28] D. Zhao, N. Liu, D. Kimpe, R. Ross, X.-H. Sun, and I. Raicu,
“Towards Exploring Data-Intensive Scientific Applications at Extreme
Scales through Systems and Simulations,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 6, pp. 1824–1837, 2016.

[29] Y. Liu, R. Figueiredo, D. Clavijo, Y. Xu, and M. Zhao, “Towards
Simulation of Parallel File System Scheduling Algorithms with PFSsim,”
in Proceedings of the 7th IEEE International Workshop on Storage
Network Architecture and Parallel I/O, ser. SNAPI ’11, 2011.

[30] A. Núñez, J. Fernández, J. D. Garcia, F. Garcia, and J. Carretero,
“New Techniques for Simulating High Performance MPI Applications
on Large Storage Networks,” The Journal of Supercomputing, vol. 51,
no. 1, pp. 40–57, 2010.

[31] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation
Environment,” in Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, ser. Simutools ’08, 2008, pp. 60:1–60:10.

99

