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ABSTRACT
Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics
analysis. Over the years, the LAMÉ advanced material model library has grown to address this
challenge by implementing models capable of describing material systems spanning soft
polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors
including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses.
This multitude of options and flexibility, however, comes at the cost of many capabilities,
features, and responses and the ensuing complexity in the resulting implementation. Therefore, to
enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks
to document and verify the various models in the LAMÉ library. Specifically, the broader
strategy, organization, and interface of the library itself is first presented. The physical theory,
numerical implementation, and user guide for a large set of models is then discussed. Importantly,
a number of verification tests are performed with each model to not only have confidence in the
model itself but also highlight some important response characteristics and features that may be
of interest to end-users. Finally, in looking ahead to the future, approaches to add material models
to this library and further expand the capabilities are presented.
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1. OVERVIEW

Constitutive modeling is a fundamental aspect of solid mechanics modeling and simulation. The
wide range of behaviors of solid materials requires a vast number of models capable of modeling
all (or even some of) the different responses. This is in contrast to fluid mechanics, for example.
As such, constitutive modeling is arguably the major problem in solid mechanics. A constitutive
model is necessary for accurately predicting the state of a material. This determination includes
both the stress state whose resolution is essential for many phenomena of interest like fracture and
failure as well as capturing inelastic responses like damage or multiphysics couplings.

One aspect of obtaining an accurate resolution of the stress field is, in one sense, easy to
understand. It is mesh discretization. More degrees of freedom in a simulation enables better
resolution and results in a more accurate stress field if we look just at the mathematics. If all
materials followed an elastic law, then mesh resolution on its own would be all that is needed to
resolve the stress field. In reality, however, materials do not exhibit elastic responses except in
very limited cases.

This leads us to a second aspect of calculating accurate stress fields, which is much harder to
understand. This one concerns the physics. The specific behavior of a material depends on the
physical processes specific to that material, and this must be included in a constitutive model in
some form or another. The main goal of the Library of Advanced Materials for Engineering -
LAMÉ - is to provide a simple means to implement the wide variety of models in a library that
can be used by our solid mechanics application codes.
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2. STRATEGY

As a third party library, the Library of Advanced Materials for Engineering (LAMÉ) is renewing
a commitment to accurate, robust, and efficient constitutive modeling for solid mechanics. There
are three distinct groups that require services from LAMÉ: constitutive model developers,
application code developers, and analysts. Each group has different, but related, requirements on
LAMÉ.

Constitutive modelers who develop the mathematical models describing the response of interest
and the associated numerical methodologies require a framework for developing and
implementing these models. This framework must be well documented so that these developers
can easily develop and implement a model that can, when the model is sufficiently robust, be used
reliably in production calculations.

Application code developers, on the other hand, require that the library of constitutive models
share a common, simple interface. This requires that the conceptual division between a
constitutive model and the application code be well understood. The application codes also
require verified behavior of the models along with certain performance requirements as these
models can be called billions of times in an analysis.

Analysts require constitutive models that are both verified and well documented. The responses
of interest can very greatly depending on the material utilized and the conditions under which it is
loaded. This accounts for the wide range and sheer volume of constitutive models in the
literature. Furthermore, there may be nothing that affects the results of an analysis more then the
constitutive model. Therefore, the analyst needs a thorough knowledge of the behavior of the
models along with how to use it in an application code. Such an understanding is also essential
for the accurate determination and calibration of different material and model parameters. In
some cases, even subtle changes in a material specimen’s history can lead to large variation in
properties and responses. As such, a clear description and understanding of this input data is
essential for appropriate utilization of different models.

Due to the varied requirements on LAMÉ, a strategy for supporting these various user groups has
been developed. This strategy is described here.
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2.1. CODE DEVELOPMENT

There are many strategies that can be employed for a code development process. The choice of
such a procedure depends on what the overall project is creating. And even after a development
process has been selected, it is often tailored to the needs of the specific code project.

The LAMÉ code development team has spent some time deciding on an appropriate process that
reflects the needs of the project and its stakeholders.

Given that LAMÉ has two roles, as an interface to a host code that will supply a material model
response and as a repository for constitutive models, this led us to consider two different code
development processes: one for the interface and one for the constitutive models.

For the interface an iterative process was chosen. The iterative process allows us to plan and
generate requirements, perform analysis and design, implement and deploy code changes and
finally test and evaluate the code. This process can work well for the interface design where we
implement the conceptual changes that we want to the interface. The models beneath the interface
should be unaffected by these changes, and where they are affected it will be on the surface.

For the constitutive models a waterfall process was chosen. Generally the process of developing
and implementing a constitutive model is a linear process that is followed by a single person. That
person generates requirements, designs the solution, implements the solution as a piece of code,
verifies the code and maintains the code. Much of the constitutive modeler’s work involves
formulating the model, which is a solid mechanics and applied mathematics problem first and
foremost. This can be seen as either the gathering requirements phase or part of the design phase.
The design and implementation phases are where the code development occur. All models are
verified after they are implemented. However, model verification itself is quite complicated, so
this step is not simple. Finally the model is maintained through documentation and user support.
Bug fixes are also an aspect of code maintenance in this process.
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2.2. MODEL IMPLEMENTATION

The key feature in LAMÉ that allows constitutive models to be implemented easily and
application codes to be able to use those models is the interface. The key concept to understand

concerning the interface is that it defines what roles the constitutive models have, what roles the

application codes have, and how the models and the codes transfer information.

From the application code perspective we would like all of the constitutive models to look the
same. Of course this is not the case. This is why, if we were to look at our legacy finite element
codes, we see information regarding specific constitutive models show up in the application
codes. Even a piece of information as simple as a material model ID will show up in the
application code in order that the code call the correct model. Modern programming
languages/styles allow us to avoid this confusion.

From a constitutive modeling perspective we would like a simple interface for implementing
constitutive models. Constitutive modelers are only part-time code developers. They can have
strengths in many areas in addition to code development, including physics, chemistry, continuum
mechanics, applied mathematics, numerical methods and experimental mechanics. Having a code
development environment that is useful for a constitutive model developer is necessary in the
design of the constitutive model library.

2.2.1. Code Standards

The need to supply not only robust constitutive models, but also a robust constitutive modeling
environment, requires strict adherence to code standards. Some code standards are stylistic.
These are necessary to support the code (promoting readability) and to simplify the effort needed
by the constitutive modeler to implement a model. Other code standards are necessary to support
the code on various platforms and to prevent unintended behavior like memory leaks.

2.2.2. Testing Standards

Ensuring robust and reliable constitutive models also requires testing. There are two main
concerns in providing constitutive modeling to an application code: accuracy and speed. Both of
these concerns can be addressed to a large degree through testing. Toward this end two testing
systems are developed: a verification test suite and a performance test suite.

2.2.2.1. Verification Testing

Constitutive models for the large deformation of materials can be extremely complex. This
complexity is added to by the issues associated with implementing the model in the code. There
are two questions associated with assessing this complexity. First, what is the expected result of
the model, independent of its implementation? Second, does the implementation model that
response?
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2.2.2.2. Performance Testing

In a nonlinear solid mechanics analysis, the constitutive models are called often. For an explicit
transient dynamics problem, the model is called once for each time step for each integration point
in the finite element model. On the other hand, implicit quasi-static analyses call the model every
iteration of every time step for each integration point in the finite element model.

Given the amount of time that a nonlinear solid mechanics finite element analysis spends
calculating the stresses in a constitutive model, the performance of the constitutive model can
have a large effect on the performance of the host code.

In order to ensure some measure of performance, a procedure for testing the performance of the
models is proposed. First, a baseline set of performance data must be generated. Given that the
CPU time used by the model can depend on many things, including the current loads on the
machine where the test is being run, developing an approach for modeling the performance is not
straightforward. If we call the various states of the machine "configurations", then the best
approach appears to be to generate a large set of data for the performance of the constitutive
model that reflects the performance on a single machine over a large variety of its
configurations.

Specifically, since we want to test only the speed of the constitutive model, we run tests that are
fully prescribed strain paths. This eliminates any need for the material driver to solve an
equilibrium state. We also want to test as many of the features of the constitutive model as
possible. This requires a prescribed strain path that pushes the model into regimes of interest. For
example, for an elastic-plastic model the performance test has to trigger plasticity, otherwise it
will not reflect accurately on how the model performs in an analysis. We also want the strain path
to push the plasticity model deep enough into the plastic range.

Determination of an appropriate strain path is not clear cut for all materials. Recognizing this, the
performance tests should be documented clearly so that we know exactly what we are testing and
we can go back and modify a test if there is some feature of the model that doesn’t appear in the
performance test.

2.2.3. Documentation Standards

In order to disseminate information about the models in LAMÉ, there must be a commitment to
documentation. The theory behind the models and their implementation must be documented.
Furthermore, much of the success of the verification and performance testing depends on
documentation too. Finally, documentation must be generated for analysts that allows them to
understand what materials and behavior the model can represent, along with the inputs necessary
to use the model and the outputs that come from the model.
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3. INTERFACE

LAMÉ is designed to have a simple interface that allows the easy implementation of a wide range
of constitutive models. This interface is between the application code (sometimes referred to as
the “host code”) and the constitutive model.

The interface has two main aspects: the data that is passed between the application code and the
model, and the functions that pass this data. Given that the interface consists of data and
functions, the most reasonable way to set up this interface is through a class.

The class that defines this interface is the Material class, which is declared in
include/interface/Material.h.

There are two types of data that are passed between the application code and the model. The first
is the material property information. This is done using an object in the MatProps class. This is
used when constructing a material model at the beginning of an analysis.

The second type of data that is passed between the application code and the material model is the
data that the material model uses during an analysis. This data is in the MatParams struct. This
data consists of the stress, the kinematics, the time and time step, etc.

More detail can be found in [1].
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4. MATERIAL MODELS

This section details the constitutive models that are implemented and supported in LAMÉ. The
description of each model has four sections. First, a section discussing the theory of the model is
found. This is the mathematical description of the model in a continuum mechanics framework,
independent of its implementation in a computational code. As these models are intended for
solid mechanics analysis, the following section describes the numerical implementation of the
model. This delves into how the model is implemented in the code and any special numerical
techniques that are used to integrate the model. The subsequent section presents the verification

problems that are run for the model. Through the results of such problems, evidence is provided
that, to the best of our understanding, the model is behaving as expected. Finally, documentation
of the model user inputs and user outputs are given for analyst reference.

It is our belief that this collection of documentation is important for the use of our constitutive
models, and it provides confidence that our models are implemented correctly for the capabilities
that are tested.

What this documentation does not provide is guidance on how to use the models. Different
materials behave differently, and it is the responsibility of the user to ensure that the material
model chosen can accurately model the behavior of a particular material. Furthermore, even with
a single material, many models might be capable of modeling the material depending on the
loading in a given analysis. It is the responsibility of the analyst to ensure that the model they
choose is the best model for their problem. Across the different models, parameters may also vary
in value or have slight changes in interpretation. Care needs to undertaken to ensure that material
and model parameters used accurately reflect the specific material being investigated (some
parameters may vary with simple changes in processing route) and capture the behaviors that of
interest. If emphasis needs to be placed on initial yield rather than failure, subtle differences in
some parameters may be expected.

4.1. HYPOELASTIC MODELS

Many models presented in this report are derived starting with small deformation formulations.
These models are implemented in finite deformation codes by substituting the rate of deformation
for the strain rate1, and making the stress rate objective. There are many objective stress rates to
choose from, the two most common being the Jaumann and the Green-McInnis.

Models that are implemented using the Jaumann or Green-McInnis stress rate are done so in an
unrotated configuration. This means that the incremental constitutive relations are written in this

1It should be noted that the rate of deformation is not the rate of any strain measure.
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configuration. The tensor components of the Cauchy stress, σi j, and the rate of deformation, Di j,
are unrotated using some orthogonal tensor, Q−1

i j = Q ji, such that

Ti j = QkiσklQl j ; di j = QkiDklQl j (4.1.1)

where Ti j and di j are the components of the unrotated stress and rate of deformation respectively.
The choice of orthogonal tensor, Qi j, depends on the objective stress rate. The incremental
constitutive relation is then written as

T n+1
i j = T n

i j+ fi j (dkl,∆ t) (4.1.2)

After the stress is updated in the unrotated configuration, it is rotated forward to the current
configuration [1].2

If the Green-McInnis stress rate is used, then the unrotated configuration is found using the
rotation tensor from the polar decomposition of the deformation gradient

dxn+1
i = Fi jdX j ; Fi j = RikUk j = VikRk j ; Qi j = Ri j (4.1.3)

If the Jaumann stress rate is used, then the unrotated configuration is found using the rotation
tensor from the polar decomposition of the incremental deformation gradient

dxn+1
i = F̂i jdxn

j ; F̂i j = R̂ikÛk j = V̂ikR̂k j ; Qi j = R̂i j (4.1.4)

Without loss of generality we will assume the Green-McInnis stress rate. The algorithm for the
Jaumann stress rate can be recovered by substituting F̂i j for Fi j and R̂i j for Ri j in what follows.

Before updating the stress, the rotation is calculated from the deformation gradient in the current

configuration, Fi j. The unrotated rate of deformation is then

di j = Rn+1
ki DklR

n+1
l j (4.1.5)

and the unrotated stress is updated using (4.1.2). Then the stress is rotated to the current
configuration, using the same rotation that we used to unrotate the rate of deformation

σn+1
i j = Rn+1

ik T n+1
kl Rn+1

jl (4.1.6)

The unrotated stress from the previous time step is simply T n
i j = Rn

kiσklR
n
l j. Furthermore, for the

elastic model (Section 4.3) the stress update algorithm can be reduced to

2The terminology used in describing the unrotated configuration with the rotations backward and forward is infinitely
confusing. It is simply one of the many difficulties encountered using finite deformation hypoelastic models.
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σn+1
i j = Rn+1

ik Rn
mkσmnRn

nlR
n+1
jl +λδi j∆tDkk +2µ∆tDi j (4.1.7)

One final note about this algorithm. While it is convenient to use the rotation tensor Rn+1
i j , strictly

this is not correct. Since the rate of deformation is most often computed at the mid-step
configuration, the rotation used to unrotate the rate of deformation should be the rotation from the
mid-step deformation gradient, i.e. the deformation gradient that relates the mid-step
configuration to the reference configuration. Other consistency considerations should also be
considered, but we will not discuss them here. Suffice it to say that the solutions all converge in
the limit of infinitesimal time steps. In a future release of LAMÉ other options might be added.
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4.2. HYPERELASTIC MODELS

Hyperelastic materials are in many ways easier to understand than hypoelastic materials, and are
often considered more thermodynamically consistent. On the other hand, it may be difficult to
consistently extend a small deformation model to the finite deformation regime in a hyperelastic
framework. Regardless of the pluses and minuses of the two formulations, hyperelastic models
are in LAMÉ and will be reviewed here.

Hyperelastic models generally assume a scalar valued strain energy density that is a function of
invariants of the deformation through the deformation gradient, Fi j. Using the principle of
material frame indifference, the strain energy density is written as a function of the symmetric
right Cauchy-Green tensor, Ci j = FkiFk j

W =W
(

Ci j

)

(4.2.1)

The stress, in particular the second Piola-Kirchhoff stress, is found by taking the derivative of W

with respect to Ci j. This relation comes from the stress-power relations. From the second
Piola-Kirchhoff stress, we can find the Cauchy stress

S i j = 2
∂W

∂Ci j
; σi j =

1
J

FikS klF jl (4.2.2)

Hyperelastic models are generally of two types. The most common are written in terms of the
three invariants of Ci j: I1, I2, and I3

I1 = trC =Cii ; I2 =
1
2

(

CiiC j j−Ci jCi j

)

; I3 = detC (4.2.3)

The second Piola-Kirchhoff stress is then

S i j = 2

(

∂W

∂I1

∂I1

∂Ci j
+
∂W

∂I2

∂I2

∂Ci j
+
∂W

∂I3

∂I3

∂Ci j

)

(4.2.4)

Evaluating this expression requires the derivatives of the invariants with respect to the
components Ci j

∂I1

∂Ci j
= δi j ;

∂I2

∂Ci j
= I1δi j−Ci j ;

∂I3

∂Ci j
= I3C−1

i j (4.2.5)

Using this in the expression for the second Piola-Kirchhoff stress, and converting it to the Cauchy
stress, we have
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σi j =
2
J

{

∂W

∂I3
δi j+

(

∂W

∂I1
+ I1

∂W

∂I2

)

Bi j−
∂W

∂I2
B2

i j

}

(4.2.6)

The majority of hyperelastic models calculate the stress in this manner.

Some hyperelastic models, however, have their strain energy densities written in terms of the
principal stretches [2]. When this is the case the calculation of the stress is more complex. The
right stretch can be written as

U =

3
∑

i=1

λiēi⊗ ēi (4.2.7)

where λi are the principal stretches, or eigenvalues, and ēi are the principal directions, or
eigenvectors. The strain energy density is W(λi). We calculate the stress components of the
second Piola-Kirchhoff stress, S̄ i j, with respect to the principal directions

S = S̄ i jēi⊗ ē j (4.2.8)

This is done by calculating ∂W/∂C in the following manner

δW =
∂W

∂λi
δλi =

∂W

∂C
: δC (4.2.9)

Writing the right Cauchy-Green tensor with respect to the principal directions we have

C =

3
∑

i=1

λ2
i ēi⊗ ēi ; δC =

3
∑

i=1

2λiδλiēi⊗ ēi+λ
2
i δω̄i j

(

ēi⊗ ē j+ ē j⊗ ēi

)

(4.2.10)

Equating terms on both sides of (4.2.9) we get

S̄ 11 =
1
λ1

∂W

∂λ1
; S̄ 22 =

1
λ2

∂W

∂λ2
; S̄ 33 =

1
λ3

∂W

∂λ3
; S̄ i j = 0 otherwise (4.2.11)

These calculations can also be checked by writing the invariants in terms of the principal
stretches. For a hyperelastic model written in terms of the invariants the results should be the
same.

The differences between hypoelastic and hyperelastic models should not matter for the analyst.
For the constitutive modeler, however, the benefits and drawbacks of the two formulations must
be considered.
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4.3. ELASTIC MODEL

4.3.1. Theory

The elastic model is a hypoelastic extension of isotropic, small-strain, linear elasticity [1] [2] [3].
The stress-strain response for an isotropic, elastic material is

σi j = λδi jεkk +2µεi j (4.3.1)

where the Lamé constants, λ and µ, are given by

λ =
Eν

(1+ ν) (1−2ν)
; µ =

E

2(1+ ν)
(4.3.2)

This model is extended to a finite-deformation, hypoelastic model by first making it a rate
equation. Then the stress rate is replaced with an objective stress rate and the strain rate is
replaced with the rate of deformation. This gives us

◦
σi j= λδi jDkk +2µDi j (4.3.3)

The stress rate is arbitrary, as long as it is objective. Two objective stress rates are commonly
used: the Jaumann rate and the Green-McInnis rate. For problems with fixed principal axes of
deformation, these two rates give the same answers. For problems where the principal axes of
deformation rotate during the deformation, the two rates can give different answers. Generally
speaking there is no reason to pick one objective rate over another. Sierra/SM uses the
Green-McInnis rate.

The fourth-order elastic moduli are used in many constitutive models. There are many equivalent
representations for the elastic moduli. In index notation we present the following three
representations

◦
σi j= Ci jklDkl

Ci jkl =
E

1+ ν

[

ν

1−2ν
δi jδkl+

1
2

(

δikδ jl+δilδ jk

)

]

(4.3.4)

Ci jkl = λδi jδkl+µ
(

δikδ jl+δilδ jk

)

(4.3.5)

Ci jkl = Kδi jδkl+µ

(

δikδ jl+δilδ jk −
2
3
δi jδkl

)

(4.3.6)

where K is the elastic bulk modulus and is given by
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K =
E

3(1−2ν)
(4.3.7)

4.3.2. Implementation

The elastic model is a hypoelastic model and is implemented using an unrotated configuration in
order to preserve objectivity. Given an unrotated rate of deformation, di j, and the unrotated stress
at time tn, T n

i j, the unrotated stress is updated by integrating the constant unrotated rate of
deformation

T n+1
i j = T n

i j+λδi j∆tdkk +2µ∆tdi j (4.3.8)

4.3.3. Verification

Three verification problems are run for the elastic model: uniaxial stress, pure shear, and biaxial
stress. The results of these test problems serve as verification for the elastic model.

4.3.3.1. Uniaxial Stress

The elastic model was verified in uniaxial stress. The problem was run with a Young’s modulus of
200 GPa and a Poisson’s ratio of 0.3. The axial stress is simply

σ11 = Eε11 (4.3.9)

The axial stress is shown in Figure 4-1. The axial stress is linear with the axial strain and has a
slope of E = 200×103 MPa.

The lateral strains for uniaxial stress are

ε22 = ε33 = −νε11 (4.3.10)

The lateral strains are shown in Figure 4-2.
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Figure 4-1. The axial stress component σ11 in uniaxial stress using
the elastic model.

4.3.3.2. Biaxial Stress

The elastic model is verified in biaxial stress. Biaxial stress is a plane stress state where σ11 = σ1,
σ22 = σ2, and all other stress components are zero. The problem is displacement controlled in the
x1 and x2 directions. If the applied strains are ε11 = ε and ε22 = αε where α ∈ [0,1], then the
applied displacements are

u1 = λ1−1 ; λ1 = exp(ε)

(4.3.11)

u2 = λ2−1 ; λ2 = exp(αε).

In the following results, α will be taken to be 0.45. For the plane stress state, we have σ33 = 0,
which allows us to solve for ε33

ε33 = −
ν

1− ν
(1+α)ε. (4.3.12)

The component ε33 is shown in Figure 4-3. The in-plane stress components are
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Figure 4-2. The lateral strain components ε22 and ε33 in uniaxial
stress using the elastic model.

σ11 =
E

1− ν2 (1+αν)ε

(4.3.13)

σ22 =
E

1− ν2 (α+ ν)ε.

The in-plane stress components are shown in Figure 4-4.
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Figure 4-3. The strain component ε33 in biaxial stress using the
elastic model.

4.3.3.3. Pure Shear

The elastic model is verified in pure shear. Pure shear gives a stress state where σ12 is the only
non-zero stress component. The problem is completely displacement controlled and the applied
shear strain is ε12 = ε(t).

The shear stress in the problem is

σ12 = 2µε (4.3.14)

The shear stress-strain response is shown in Figure 4-5.
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Figure 4-4. The normal stress components σ11 and σ22 in biaxial
stress using the elastic model.
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Figure 4-5. The shear stress component σ12 in pure shear using the
elastic model.
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4.3.4. User Guide

BEGIN PARAMETERS FOR MODEL ELASTIC

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
END [PARAMETERS FOR MODEL ELASTIC]

There are no output variables available for the elastic model. For information about the elastic
model, consult [4].
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4.4. ELASTIC THREE DIMENSIONAL ORTHOTROPIC
MODEL

4.4.1. Theory

The ELASTIC 3D ORTHOTROPIC model is an extension of the previously discussed ELASTIC
routine and describes the linear elastic response of a material which exhibits orthotropic
symmetry, where the orientation of the principal material directions can be arbitrary with respect
to the global Cartesian axes as specified by the user.

First, a rectangular, cylindrical, or spherical reference coordinate system is defined. The material
coordinate system can then be defined through two successive rotations about axes in the
reference coordinate system. These principal axes are denoted as A, B, and C in the following.
Thermal strains are also defined with respect to these principal material axes.

The elastic stiffness for an orthotropic material can be described in terms of the elastic compliance
which relates the strain to the stress, εi j = Si jklσkl. For a material with an orthogonal ABC
coordinate system, and written in that reference frame, the elastic compliance tensor is given by

[

S̃
]

=












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
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







, (4.4.1)

where the “ ·̃ ” is used to denote a variable in the ABC material system.

From the definition (4.4.1), it can be seen that requiring symmetry leads to relations of the
form,

νBA = νAB
EBB

EAA

; νCB = νBC
ECC

EBB

; νAC = νCA
EAA

ECC

. (4.4.2)

Therefore, only 9 independent constants are needed to fully define the model behavior.

The orthotropic model is also formulated in a hypoelastic fashion, leading to a constitutive
equation (in the ABC material frame) of,
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◦
σ̃i j= C̃i jkl

(

D̃kl− D̃th
kl

)

, (4.4.3)

where D̃th
i j is the thermal strain rate.

The elastic stiffness tensor, C̃i jkl, is the inverse of the compliance, C̃i jkl = S̃
−1
i jkl, and as such may be

determined to be,

[

C̃
]

=
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
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













. (4.4.4)

where

CAAAA =
1− νBCνCB

∆
EAA ; CBBBB =

1− νCAνAC

∆
EBB ; CCCCC =

1− νABνBA

∆
ECC

(4.4.5)

CAABB =
νBA+ νCAνBC

∆
EAA ; CBBCC =

νCB+ νABνCA

∆
EBB ; CCCAA =

νAC + νBCνAB

∆
ECC

and ∆ = 1− νABνBA− νBCνCB− νCAνRT −2νABνBCνCA.

See [1] for more information about the elastic three-dimensional orthotropic model.

4.4.2. Implementation

Given the similarities in formulation, the 3D orthotropic and elastic models are integrated in a
similar fashion. Section 4.3.2 discussed many of these issues in detail for the isotropic elastic
formulation. As such, in this section, special attention is paid to the treatment of the complexity
associated with the orthotropic model – namely, the multiple coordinate systems.

To implement the elastic 3D orthotropic model, two coordinate systems need to be considered –
the local ABC material and global XYZ coordinate systems. The former is used in defining the
material response and the latter refers to the larger boundary value problem being analyzed. To
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map between these configurations, a user-defined coordinate system is specified that can be
rotated twice about one of its current axes to give the final, desired directions. A corresponding
rotation tensor, Q̃i j, may also be constructed in this way and used to transform various variables.
Noting that the elastic stiffness tensor is constant throughout loading enables the transformation

Ci jkl = Q̃aiQ̃b jQ̃ckQ̃dlC̃abcd (4.4.6)

to be performed during initialization. The “ ·̃ ” is used with the rotation tensor Qi j to emphasize
that it does not map between the unrotated and rotated configurations (as defined in (4.1.1)) and is
instead associated with transforming between the ABC and XYZ frames.

In the material coordinate system, the thermal strain tensor may be written as,

ε̃th
i j = εth

aa (θ)δiaδ ja+ε
th
bb (θ)δibδ jb+ε

th
cc (θ)δicδ jc, (4.4.7)

where εth
aa (θ) , εth

bb (θ) , and εth
cc (θ) are the temperature (θ) dependent thermal strain functions in the

A, B, and C principal material directions, respectively, and δi j is the Kronecker delta. Using the
same constant transformation, Q̃i j, the XYZ-system thermal strain tensor is determined to be,

εth
i j (θ) = Q̃aiε̃

th
abQ̃ jb. (4.4.8)

Following (4.1.7), the updated Cauchy stress may then be found to be,

σn+1
i j = Rn+1

ik Rn
mkσ

n
mnRn

nlR
n+1
jl +Ci jkl

(

∆tDkl−
(

εth
kl

(

θn+1)−εth
kl

(

θn
)))

, (4.4.9)

where the time dependency in the thermal strains is accounted for through changes in the
temperature field.

4.4.3. Verification

The elastic 3D orthotropic model is verified through both biaxial displacement and uniaxial strain
tests. The first is performed with the material and global coordinate systems aligned to investigate
anisotropy while the second is done with the material coordinate system misaligned with respect
to the global system. The latter also incorporates a thermal loading component to test the thermal
strain contributions. In this case, it is assumed that each of the thermal strain input functions have
linear slopes of αaa, αbb, and αcc for the A, B, and C principal material axes, respectively. A
common zero strain reference temperature, T0, is assumed for all three functions. The set of
material properties used for these tests are given in Table 4-1.
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EAA = E 10,000.0 ksi GAB 100.0 ksi
EBB 200.0 ksi GBC 1,000.0 ksi
ECC 10.0 ksi GCA 5.0 ksi
νAB = ν 0.25 αaa 50 µε

K
νBC 0.2 αbb 500 µε

K
νCA 0.003 αcc 5 µε

K
θ0 293 K

Table 4-1. The material properties for the elastic 3D orthotropic
model used for the varying temperature, uniaxial stress tests.

4.4.3.1. Biaxial Displacement

First, to investigate anisotropic effects, the case of a biaxial applied displacement of the form,

ui = λ1δ1i+λ2δ2i, (4.4.10)

is considered for a material which has its axes aligned with the global Cartesian system –
α1 = α2 = 0 or the A, B, and C frame is the same as the ê1, ê2, and ê3. To simplify the problem,
λ2 =

1
2λ1 and it can be shown that (noting σ33 = 0 from a corresponding traction free condition),

ε11 = ln (1+λ1) ,

ε22 = ln

(

1+
1
2
λ1

)

ε33 = −νAC + νBCνAB

1− νABνBA
ε11−

νBC + νBAνAC

1− νABνBA
ε22. (4.4.11)

With the strain state known, analytical stresses may be found via Hooke’s law. The corresponding
results of both the numerical and analytical results are presented below in Figure 4-6. Numerical
results are found through a single element test. Importantly, by comparing the results of
Figures 4-6a and 4-6b the expected and desired anisotropy may be clearly seen in the vast
difference of stress magnitudes (as indicated by the figure scaling). Additionally, the matching
results serves to verify the model under such conditions.

4.4.3.2. Uniaxial Strain

Secondly, the capabilities of this model under arbitrary rotations are explored. To be able to
analytically consider this problem, a uniaxial strain (εi j = ε11δi1δ j1) loading is investigated. The
material properties are rotated with the specified orientations per Equations (4.4.6) and (4.4.8)
using the specified orientations in Table 4-2. A combined thermal-mechanical loading is
considered. Specifically, the material is first stretched to the specified strain and that strain is then
held fixed during a heating step (∆T =400 K) to investigate the ability of the model to accurately
incorporate anisotropic coefficients of thermal expansion. The results for both the analytical and
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Figure 4-6. Analytical and numerical results of axial σ11 and trans-
verse , σ22 and σ33, as a function of the stretch λ1.

numerical (from a corresponding single element simulation) analyses are shown in Figure 4-7
with the normal and shear stresses presented in Figures 4-7a and 4-7b respectively. Clear
agreement may be seen during both the thermal and mechanical loading stages including the
anisotropic effects further verifying model capabilities.

α1 30 Direction 1 3
α2 60 Direction 2 1

Table 4-2. The coordinate system rotations used with the elastic 3D
orthotropic model for the uniaxial strain test.
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Figure 4-7. Analytical and numerical results of the stress state
through a thermomechanical uniaxial strain loading as a function
of the axial strain ε11.
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4.4.4. User Guide

BEGIN PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Material coordinates system definition

#

COORDINATE SYSTEM = <string> coordinate_system_name

DIRECTION FOR ROTATION = <real> 1|2|3

ALPHA = <real> α1 (degrees)

SECOND DIRECTION FOR ROTATION = <real> 1|2|3

SECOND ALPHA = <real> α2 (degrees)

#

# Required parameters

#

YOUNGS MODULUS AA = <real> EAA

YOUNGS MODULUS BB = <real> EBB

YOUNGS MODULUS CC = <real> ECC

POISSONS RATIO AB = <real> νAB

POISSONS RATIO BC = <real> νBC

POISSONS RATIO CA = <real> νCA

SHEAR MODULUS AB = <real> GAB

SHEAR MODULUS BC = <real> GBC

SHEAR MODULUS CA = <real> GCA

#

# Thermal strain functions

#

THERMAL STRAIN AA FUNCTION = <string> εth
aa (θ)

THERMAL STRAIN BB FUNCTION = <string> εth
bb (θ)

THERMAL STRAIN CC FUNCTION = <string> εth
cc (θ)

#

END [PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC]

There are no output variables available for the Elastic Three-Dimensional Orthotropic material
model.
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4.5. NEO-HOOKEAN MODEL

4.5.1. Theory

The neo-Hookean model is a hyperelastic generalization of isotropic, small-strain linear elasticity.
The stress-strain response for the neo-Hookean model may be determined from a free energy
function - in this case the strain energy density, W. The form of the strain energy density ([1]) is

W(Ci j) =
1
2

K

[

1
2

(

J2−1
)

− ln J

]

+
1
2
µ
(

C̄kk −3
)

, (4.5.1)

where K and µ are the bulk and shear moduli, respectively. The deformation measure is given by
Ci j, the components of the right Cauchy-Green tensor, where Ci j = FkiFk j. The determinant of
the deformation gradient is given by J and is a measure of the volumetric part of the deformation.
C̄i j provides the isochoric part of the deformation and is given by

C̄i j = F̄kiF̄k j, ; F̄i j = J−1/3Fi j . (4.5.2)

The second Piola-Kirchoff stress, with components S i j, may be determined by taking a derivative
of the strain energy density and the Cauchy stress may be found by mapping from the second
Piola-Kirchoff stress. The components of the Cauchy stress are

σi j =
1
2

K

(

J− 1
J

)

δi j+ J−5/3µ

(

Bi j−
1
3

Bkkδi j

)

, (4.5.3)

where Bi j = FikF jk, are the components of the left Cauchy-Green tensor and δi j is the Kronecker
delta.

Linearizing (4.5.3) we recover small strain linear elasticity

σi j =

(

K − 2
3
µ

)

uk,kδi j+µ
(

ui, j+u j,i

)

(4.5.4)

=

(

K − 2
3
µ

)

εkkδi j+2µεi j .

The neo-Hookean model is used for the recoverable (elastic) part for a number of inelastic, finite
deformation constitutive models.

4.5.2. Implementation

As a hyperelastic model, the current state of the material may be determined by the total
deformation. To this end we use the polar decomposition of the deformation gradient,
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Fi j = VikRk j , (4.5.5)

in which Vi j are the components of the left stretch tensor and Ri j is the corresponding rotation.
Noting that,

Bi j = VikVk j , (4.5.6)

and J = det
(

Vi j

)

, the Cauchy stress (via (4.5.3)) is found. The unrotated stress, Ti j, which is
needed for internal force calculations in Sierra/SM, is found using the transformation

Ti j = RkiσklRl j . (4.5.7)

4.5.3. Verification

It is possible to find closed form solutions for a number of loadings. Five problems are described
here: uniaxial stress, pure shear strain, pure shear stress, uniaxial strain and simple shear. One set
of material properties was used for all tests and they are given in Table 4-3. The elastic modulus
and Poisson’s ratio are given in addition to the bulk and shear moduli.

K 0.5 MPa µ 0.375 MPa
E 0.9 MPa ν 0.2

Table 4-3. The material properties for the neo-Hookean model used
for both the uniaxial and simple shear tests.

4.5.3.1. Uniaxial Stress

For uniaxial stress we will assume, without loss of generality, that σ11 , 0. The deformation, in
terms of the components of the left stretch tensor, for this stress state is

V11 = λ1 ; V22 = V33 = λ2 , (4.5.8)

with all other components being zero.

The Cauchy stress is given by (4.5.3), however for simplicity we will use the Kirchhoff stress
instead

τi j = Jσi j , (4.5.9)

where in what follows τ11 = τ. With the lateral stresses being zero we have two equations
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τ =
K

2

(

J2−1
)

+
2
3
µJ−2/3 (λ2

1−λ2
2

)

(4.5.10)

0 =
K

2

(

J2−1
)

− 1
3
µJ−2/3 (λ2

1−λ2
2

)

.

First, we solve for J by looking at the trace of the stress tensor. This gives us

τ =
3K

2

(

J2−1
)

; J =

√

1+
2τ
3K

. (4.5.11)

Once we have J we can write λ2
2 = J/λ1 and solve for λ1 by looking at the deviatoric part of the

Kirchhoff stress. For this we have

τ = µJ−2/3
(

λ2
1−

J

λ1

)

. (4.5.12)

Rearranging we get a cubic equation for λ1

λ3
1−
(

τ

µ
J2/3

)

λ1− J = 0 . (4.5.13)

A solution for this can be found with the following substitution

λ1 = x+
p

3x
; p =

τ

µ
J2/3 , (4.5.14)

which gives a quadratic equation for x3

x6− Jx3+
p3

27
= 0 . (4.5.15)

The one meaningful solution to this polynomial is

x =





J

2
+

√

(

J

2

)2

−
( p

3

)3





1/3

, (4.5.16)

with which we can substitute into (4.5.14) to get λ1. With J and λ1 we can solve for λ2. Note that
in this solution the axial Kirchhoff stress, τ, is the independent variable.

This solution is compared to the solution from a single element problem in Sierra/SM in
Figures 4-8a and 4-8b. It should be noted that the response of the neo-Hookean model is slightly

nonlinear. The linear elastic solution is given by the green line in each figure.
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Figure 4-8. Analytical and numerical results for the (a) uniaxial
stress and (b) lateral strain. The green line gives the linear elas-
tic response.

4.5.3.2. Pure Shear Strain

For pure shear strain the deformation gradient, which is symmetric, is

[

Fi j

]

=
1
2





(

λ+λ−1
) (

λ−λ−1
)

0
(

λ−λ−1
) (

λ+λ−1
)

0
0 0 2



 , (4.5.17)

which gives no volume change, J = 1. Since there is no volume chance, the Kirchhoff stress is
equal to the Cauchy stress: τττ = σσσ. Using (4.5.3), the non-zero stress components are

σ12 =
µ

2

(

λ2−λ−2)

σ11 = σ22 =
µ

3

[

1
2

(

λ2+λ−2)−1

]

(4.5.18)

σ33 =
µ

3

(

2−λ2+λ−2) .

The results of a single element problem in Sierra/SM are compared with the analytical solution in
Figure 4-9. it is interesting to note that the normal stresses, σ11, σ22, and σ33 are not equal to
zero. This is a much different result than what we get for the linear hypoelastic model.
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Figure 4-9. Analytical and numerical results for the neo-Hookean
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lytical results and the boxes are results from Sierra/SM.

4.5.3.3. Pure Shear Stress

Since pure shear strain did not result in a pure shear stress state, we do not expect a pure shear
stress state to result in a pure shear strain state. For pure shear stress the only non-zero stress
component is
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Figure 4-10. Analytical and numerical results for the neo-Hookean
model subjected to a pure shear stress. The curve gives the loga-
rithmic strain component, ε33 =

1
2 ln B. The solid lines are the analyt-

ical results and the boxes are results from Sierra/SM.

51



σ12 = τ = µB12 , (4.5.19)

and using (4.5.3) it can be shown that J = 1. The deformation, in terms of the left Cauchy-Green
deformation tensor, is

[

Bi j

]

=





B B12 0
B12 B 0
0 0 B



 . (4.5.20)

The equation we need to solve for the deformation is detB = 1. This gives us the cubic equation

B3−
(

τ

µ

)2

B−1 = 0 . (4.5.21)

This is a cubic equation of the same form as that in the uniaxial stress problem. We make the
substitution

B = x+
p

3x
; p =

(

τ

µ

)2

. (4.5.22)

This gives us a quadratic equation in x3

x6− x3+
p3

27
= 0 , (4.5.23)

which has the solution

x =

[

1
2
+

1
2

√

1− 4p3

27

]1/3

. (4.5.24)

Substituting this solution into (4.5.22) gives B.

The results of a single element problem in Sierra/SM are compared with the analytical solution in
Figure 4-10. Of interest here is the fact that the normal strains, ε11, ε22, and ε33 are not equal to
zero. Again, this is a different result than what we get for the linear hypoelastic model.

4.5.3.4. Uniaxial Strain

First, utilizing a displacement condition corresponding to uniaxial strain results in a deformation
gradient of the form,
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Fi j = λδ1iδ1 j+δ2iδ2 j+δ3iδ3 j. (4.5.25)

By evaluating relation (4.5.3) with this deformation field produces stresses that may be written
as

σ11 =
1
2 K
(

λ− 1
λ

)

+ 2
3µ
(

λ2−1
)

λ−5/3,

(4.5.26)

σ22 = σ33 = 1
2 K
(

λ− 1
λ

)

− 1
3µ
(

λ2−1
)

λ−5/3

with the shear stress components equal to zero. Both the corresponding analytical and numerical
solutions are presented in Figure 4-11.
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Figure 4-11. Analytical and numerical results for the uniaxial stretch
case.

.

4.5.3.5. Simple Shear

For the simple shear case, a deformation gradient of the form,

Fi j = δi j+γδ1iδ2 j, (4.5.27)

is assumed. Noting this is a volume preserving deformation (J = 1) and again evaluating (4.5.3)
produces stresses that may be written as,
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σ11 =
2
3
µγ2

σ22 = σ33 = −1
3
µγ2 (4.5.28)

σ12 = µγ (4.5.29)

Both the corresponding analytical and numerical solutions are presented in Figure. 4-12.
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Figure 4-12. Analytical and numerical results for the simple shear
case.
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4.5.4. User Guide

BEGIN PARAMETERS FOR MODEL NEO_HOOKEAN

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
END [PARAMETERS FOR MODEL NEO_HOOKEAN]

There are no output variables available for the neo-Hookean model.
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4.6. GENT MODEL

4.6.1. Theory

The Gent model is a hyperelastic model of rubber elasticity developed from phenomenological
continuum mechanics approaches. Specifically, the model is based on the concept of limiting
chain extensibility and is an accurate approximation to the Arruda-Boyce model. To determine
the stress-strain response of the Gent model, a strain energy density of the form ([1]),

W(Bi j) =
1
2

K

[

1
2

(

J2−1
)

− ln J

]

+
1
2
µJm ln

(

1− B̄kk −3
Jm

)

, (4.6.1)

is proposed with K and µ the bulk and shear moduli, J the determinant of the deformation
gradient and Jm an input parameter for limiting the value of B̄kk −3. Jm is the parameter
effectively accounting for limiting chain extensibility. The deformation measure is given by Bi j,
the components of the Left Cauchy Green tensor, where Bi j = FikF jk. B̄kk provides the isochoric
part of the deformation and is given by

B̄i j = F̄ikF̄ jk ; F̄i j = J−1/3Fi j. (4.6.2)

In the limit where Jm→∞ the Gent model reduces to the classical neo-Hookean model
(see (4.5.1)). This can be seen by defining x to be 1

Jm
, taking a Taylor series expansion of

ln
(

1− (B̄kk −3)x
)

about x = 0 and taking the limit as x→ 0.

The second Piola-Kirchoff stress, with components S i j, may be determined by taking a derivative
of the strain energy density. A mapping of the second Piola-Kirchoff may be used to determined
the Cauchy stress. These relations produce components of the Cauchy stress, σi j, that are

σi j =
1
2

K

(

J− 1
J

)

δi j+
J−5/3µJm

(

Bi j− 1
3 Bkkδi j

)

Jm− B̄kk +3
, (4.6.3)

where δi j is the Kronecker delta.

The Gent model is a useful model for rubber elasticity as it is simple and provides similar
predictions to comparatively complicated molecular models. It is also a practical model to use
since analytic solutions to benchmark problems exist for this model.

4.6.2. Implementation

As a hyperelastic model, the current state of the material may be determined by the total
deformation. To this end we use the polar decomposition of the deformation gradient,
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Fi j = VikRk j, (4.6.4)

in which Vi j are the components of the left stretch tensor and Ri j is the corresponding rotation.
Noting that,

Bi j = VikVk j, (4.6.5)

and J = det
(

Vi j

)

, the Cauchy stress (via (4.6.3)) is found. The unrotated stress, Ti j, which is
needed for internal force calculations in Sierra/SM, is found using the transformation

Ti j = RkiσklRl j. (4.6.6)

4.6.3. Verification

It is possible to find closed form solutions for a number of loadings. Three problems are
described here: uniaxial strain, simple shear, and hydrostatic compression. One set of material
properties was used for all tests and they are given in Table 4-4. The elastic modulus and
Poisson’s ratio are given in addition to the bulk modulus, shear modulus, and limiting chain
extensibility parameter, Jm.

K 0.325 MPa µ 0.15 MPa Jm 13.125
E 0.39 MPa ν 0.33

Table 4-4. The material properties for the Gent model used for uni-
axial strain, simple shear, and hydrostatic compression tests.

4.6.3.1. Uniaxial Strain

First, utilizing a displacement condition corresponding to uniaxial strain results in a deformation
gradient of the form,

Fi j = λδ1iδ1 j+δ2iδ2 j+δ3iδ3 j. (4.6.7)

By evaluating relation (4.6.3) with this deformation field, we produce stresses that may be written
as,

σ11 = 1
2 K
(

λ− 1
λ

)

− 2
3

Jmµ(λ2−1)
λ3−(Jm+3)λ5/3+2λ

(4.6.8)

σ22 = σ33 =
1
2 K
(

λ− 1
λ

)

+ 1
3

Jmµ(λ2−1)
λ3−(Jm+3)λ5/3+2λ

,
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with the shear stress components equal to zero. Both the corresponding analytical and numerical
solutions are presented in Figure 4-13.

Figure 4-13. Analytical and numerical results for the uniaxial stretch
case.

4.6.3.2. Simple Shear

For the simple shear case, a deformation gradient of the form,

Fi j = δi j+γδ1iδ2 j, (4.6.9)

is assumed. Noting this is a volume preserving deformation (J = 1) and again evaluating (4.6.3)
produces stresses that may be written as,

σ11 =
2
3

Jmµγ
2

Jm−γ2

σ22 = σ33 = −1
3

Jmµγ
2

Jm−γ2 (4.6.10)

σ12 =
Jmµγ

Jm−γ2

Both the corresponding analytical and numerical solutions are presented in Figure. 4-14.

4.6.3.3. Hydrostatic Compression

The volumetric deformation capabilities of the model are also investigated through displacement
controlled hydrostatic compression. Specifically, hydrostatic compression results in a
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Figure 4-14. Analytical and numerical results for the simple shear
case.

deformation gradient of the form,

Fi j = λδi j, (4.6.11)

where 0 < λ ≤ 1. As there is no deviatoric deformation, evaluation of (4.6.3) produces stresses
that may be written as,

σ11 = σ22 = σ33 =
1
2

K

(

λ3− 1
λ3

)

, (4.6.12)

with the shear stress components equal to zero. Both the corresponding analytical and numerical
solutions are presented in Figure 4-15.
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Figure 4-15. Stress determined analytically and numerically for the
Gent model during displacement controlled hydrostatic compres-
sion.
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4.6.4. User Guide

BEGIN PARAMETERS FOR MODEL GENT

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

Jm Parameter = <real> Jm

END [PARAMETERS FOR MODEL GENT]

There are no output variables available for the Gent model.
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4.7. ELASTIC-PLASTIC MODEL

4.7.1. Theory

The elastic-plastic model is a hypoelastic, rate-independent linear hardening plasticity model. The
rate form of the constitutive equation assumes an additive split of the rate of deformation into an
elastic and plastic part

Di j = De
i j+D

p
i j (4.7.1)

The stress rate only depends on the elastic strain rate in the problem

◦
σi j= Ci jklD

e
kl (4.7.2)

where Ci jkl are the components of the fourth-order, isotropic elasticity tensor.

The key to the model is finding the plastic rate of deformation. For associated flow the plastic rate
of deformation is in a direction normal to the yield surface. The yield surface is given by

f
(

σi j,αi j, ε̄
p
)

= φ
(

σi j,αi j

)

− σ̄
(

ε̄p
)

= 0 (4.7.3)

where φ is the effective stress, αi j are the components of the back stress (used with kinematic
hardening), and σ̄ is the hardening function which is a function of an internal state variable, the
equivalent plastic strain ε̄p. An example of such a yield surface (plotted in the deviatoric π-plane)
is presented below in Figure 4-16. The isotropy of the yield surface is clearly evident.

For the elastic plastic model a linear hardening law is assumed

σ̄ = σy+H′ε̄p (4.7.4)

where σy is the yield stress and H′ is the hardening modulus.

If the stress state is such that f < 0, the the behavior of the material is elastic; if the stress state is
such that f = 0 and ḟ < 0, i.e. the strain rate brings the stress inside the yield surface, then the
behavior of the material is elastic; if the stress state is such that f = 0 and ḟ > 0, i.e. the strain rate
brings the stress outside the yield surface, then plastic deformation occurs.

We assume associated flow in this model, which gives the plastic rate of deformation

D
p
i j = γ̇

∂φ

∂σi j
(4.7.5)

where γ̇ is the consistency parameter. For the elastic-plastic model the yield surface is assumed to
be a von Mises yield surface with a back stress tensor to denote the center of the yield surface.
The effective stress for a von Mises yield surface is
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Figure 4-16. Example von Mises yield surface (J2) used by the
elastic-plastic model presented in the deviatoric π-plane. In this
case the surface is plotted for αi j = 0 and ε̄p = 0.

φ
(

σi j

)

=

√

3
2
ξi jξi j ; ξi j = si j−αi j (4.7.6)

where si j are the components of the deviatoric stress tensor

si j = σi j−
1
3
δi jσkk (4.7.7)

and αi j are the components of the back stress tensor, another internal state variable.

The equivalent plastic strain is found through equating the rate of plastic work

Ẇ p = σi jD
p
i j = σ̄ ˙̄εp → ˙̄εp = γ̇

(4.7.8)

ε̄p =

∫ t

0
γ̇dt

Finally, the model allows for kinematic hardening through the back stress. The back stress is a
symmetric, deviatoric rank two tensor that evolves in the following manner

65



α̇i j =
2
3

(1−β) H′Dp
i j (4.7.9)

The radius of the yield surface can be defined, R =
√

ξi jξi j. The evolution of the radius of the
yield surface is given by

Ṙ =

√

2
3
βH′ ˙̄εp (4.7.10)

In (4.7.9) and (4.7.10) the parameter β ∈ [0,1] distributes the hardening between isotropic and
kinematic hardening. If β = 1 the hardening is isotropic, if β = 0 the hardening is kinematic, and if
β is between 0 and 1 the hardening is a combination of isotropic and kinematic.

4.7.2. Implementation

The elastic-plastic linear hardening model is implemented using a predictor-corrector algorithm.
First, an elastic trial stress state is calculated. This is done by assuming that the rate of
deformation is completely elastic

T tr
i j = T n

i j+∆t
(

λδi jdkk +2µdi j

)

(4.7.11)

The trial stress state can be decomposed into a pressure and a deviatoric stress

ptr =
1
3

T tr
kk ; str

i j = T tr
i j − ptrδi j (4.7.12)

The difference between the deviatoric trial stress state and the back stress is compared to the
current radius of the yield surface

ξtr
i j = str

i j−αn
i j ; ξ2

tr = ξ
tr
i jξ

tr
i j (4.7.13)

If ξ2
tr < R2 then the strain rate is elastic and the stress update is finished. If ξ2

tr > R2 then plastic
deformation has occurred. The algorithm then needs to determine the extent of plastic
deformation.

The normal to the yield surface, Ni j is assumed to lie in the direction of the trial stress state. This
gives us the following expression for Ni j

Ni j =
ξtr

i j

‖ξtr
i j‖

(4.7.14)
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In what follows the change in the yield surface is assumed to be a linear combination of isotropic
and kinematic hardening, i.e. the yield surface grows and or moves. Using a backward Euler
algorithm the final deviatoric stress state is

sn+1
i j = str

i j−∆t 2µd
p
i j (4.7.15)

where the plastic strain increment is

∆t d
p
i j =

√

3
2
∆ε̄pNi j (4.7.16)

The updated back stress is

αn+1
i j = α

n
i j+

√

2
3

(1−β)
(

H′∆ε̄p
)

Ni j (4.7.17)

and the updated radius of the yield surface is

Rn+1 = Rn+β

√

2
3

(

H′∆ε̄p
)

(4.7.18)

Combining these expressions we get an equation for the change in the equivalent plastic strain
over the load step

(

3µ+H′
)

∆ε̄p =

√

3
2

(

‖ξtr
i j‖−Rn

)

; ξtr
i j = str

i j−αn
i j (4.7.19)

With ∆ε̄p we can update the stress and the internal state variables.

4.7.3. Verification

The elastic-plastic material model is verified for a number of loading conditions. The elastic
properties used in these analyses are E = 70 GPa and ν = 0.25. The hardening parameters are
σy = 200 MPa, H′ = 500 MPa, and β = 1. By setting β = 1 the hardening is isotropic.

4.7.3.1. Uniaxial Stress

The elastic-plastic model is tested in uniaxial tension. The test looks at the stress, strain, and
equivalent plastic strain and compares these values against analytical results for the same
problem. The model is tested in uniaxial stress in the x (x1), directions.
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For the uniaxial stress problem, the only non-zero stress component is σ11. In the analysis that
follows σ11 = σ. There are three non-zero strain components, ε11, ε22, and ε33. In the analysis
that follows ε11 = ε. Furthermore, the axial elastic stress, εe

11 = σ/E will be denoted by εe.

Axial Stresses

The uniaxial stress calculated by the model in Adagio is compared to an analytical solution. For
uniaxial loading in the x1 direction, the effective stress is

φ = σ (4.7.20)

If the stress state is on the yield surface, then φ = σ̄ (ε̄p), so the axial stress, as a function of the
hardening function, is

σ = σ̄
(

ε̄p
)

= σy+H′ε̄p (4.7.21)

The stress state can be calculated from the hardening law and the anisotropy parameters.

To evaluate the axial stress we need the equivalent plastic strain as a function of the axial strain. If
we equate the rate of plastic work we get

σ̄ ˙̄εp = σ
(

ε̇− ε̇e) → ˙̄εp = ε̇− ε̇e (4.7.22)

which, when integrated, gives us an equation for the equivalent plastic strain

ε̄p =
Eε−σy

E+H′
(4.7.23)

The equivalent plastic strain can then be used in (4.15.25) to find the axial stress, σ

σ =
σy+H′ε

1+H′/E
(4.7.24)

The axial stresses is shown in Figure 4-17.

Lateral Strains

For the lateral strains we need the plastic strains and therefore the normal to the yield surface. The
components of the normal to the yield surface are
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∂φ

∂σ11
= 1 ;

∂φ

∂σ22
=

∂φ

∂σ33
= −1

2
(4.7.25)

The elastic axial and lateral strain components are

εe
11 =

σ

E
= εe ; εe

22 = ε
e
33 = −ν

σ

E
= −νεe (4.7.26)

The plastic axial strain component is

ε
p
11 = ε11−

σ

E
= ε−εe (4.7.27)

which comes from the additive decomposition of the strain rates. Using the equivalent plastic
strain (4.15.27) we can find the lateral plastic strain components

ε
p
22 = ε

p
33 = −

1
2

(

ε−εe) (4.7.28)

The lateral total stain components prior to yield are ε22 = ε33 = −νε. After yield they are

ε22 = ε33 = −νεe− 1
2
ε̄p (4.7.29)

where εe = σ/E.

Results are shown in Figure 4-18.
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Figure 4-17. Axial stress for loading in the x1 direction for the
elastic-plastic model with linear hardening.

Figure 4-18. Lateral strains for uniaxial stress loading in the x1 di-
rection for the elastic-plastic model with linear hardening.
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4.7.3.2. Pure Shear

The shear stress calculated by the elastic-plastic model in Adagio is compared to analytical
solutions. Considering pure shear with respect to the x1-x2 axes, the only non-zero shear stress is
σ12, and the only non-zero shear strain will be ε12 For pure shear with respect to the x1-x2 axes,
the effective stress is

φ =
√

3σ12 (4.7.30)

If the stress state is on the yield surface, then φ = σ̄ (ε̄p), so the shear stress is

σ12 =
σ̄ (ε̄p)√

3
(4.7.31)

Using this, the pure shear stress state can be calculated from the hardening law and the anisotropy
parameters.

To evaluate the shear stress we need the equivalent plastic strain as a function of the shear strain.
If we equate the rate of plastic work we get

σ̄ ˙̄εp = 2σ12
(

ε̇12− ε̇e
12

)

→ ˙̄εp =
2√
3

(

ε̇12− ε̇e
12

)

(4.7.32)

which, when integrated, gives us an implicit equation for the equivalent plastic strain

ε̄p =
2√
3

(

ε12−
σ̄ (ε̄p)√

3G

)

(4.7.33)

The equivalent plastic strain can now be used to find the shear stress.

Boundary Conditions for Pure Shear

The deformation gradient that gives pure shear for loading relative to the x1-x2 axes is

[F] =












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2

(
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)
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2

(
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)

0

1
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(

λ−λ−1
)

1
2

(
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)

0

0 0 1













→ [εεε] =













0 ε 0

ε 0 0

0 0 0













; ε = lnλ (4.7.34)

For loading relative to the x2-x3 axes and the x3-x1 axes the boundary conditions are modified
appropriately.
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Results

The results for the elastic-plastic model loaded in pure shear are shown in Figure 4-18. We see
that the stress strain curves in pure shear as calculated by Adagio follow the expected stress strain
curves. All other stress and strain components for the three problems are zero.
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Figure 4-19. Shear stress versus shear strain using the elastic-
plastic model. Results are for shear in the x1-x2 plane, x2-x3 plane,
and x3-x1 plane.
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4.7.4. User Guide

BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Hardening Behavior

#

YIELD STRESS = <real> σy

BETA = <real> β (1.0)

HARDENING MODULUS = <real> H′

END [PARAMETERS FOR MODEL ELASTIC_PLASTIC]

Output variables available for this model are listed in Table 4-5 and Table 4-6. For information
about the elastic-plastic model, consult [1].

Table 4-5. State Variables for ELASTIC PLASTIC Model

Name Description

EQPS equivalent plastic strain, ε̄p

RADIUS radius of the yield surface, R

BACK_STRESS back stress (symmetric tensor), αi j
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Table 4-6. State Variables for ELASTIC PLASTIC Model for Shells

Name Description

EQPS equivalent plastic strain, ε̄p

TENSILE_EQPS equivalent plastic strain only accumulated when the material
is in tension (trace of stress tensor is positive)

RADIUS radius of the yield surface, R

BACK_STRESS back stress (symmetric tensor), αi j

ITERATIONS radial return iterations
ERROR error in plane stress iterations
PS_ITER plane stress iterations
TSTRAIN integrated thickness strain
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4.8. ELASTIC-PLASTIC POWER LAW HARDENING
MODEL

4.8.1. Theory

The elastic-plastic power law hardening model is a hypoelastic, rate-independent plasticity model
with power law hardening [1]. The rate form of the constitutive equation assumes an additive split
of the rate of deformation into an elastic and plastic part

Di j = De
i j+D

p
i j (4.8.1)

The stress rate only depends on the elastic strain rate in the problem

◦
σi j= Ci jklD

e
kl (4.8.2)

where Ci jkl are the components of the fourth-order, isotropic elasticity tensor.

The key to integrating the model is finding the plastic rate of deformation. For associated flow the
plastic rate of deformation is in a direction normal to the yield surface. The yield surface is given
by

f
(

σi j, ε̄
p
)

= φ
(

σi j

)

− σ̄
(

ε̄p
)

= 0 (4.8.3)

where φ is the equivalent stress and σ̄ is the hardening function which is a function of the
equivalent plastic strain ε̄p. For this model the hardening function uses a power law

σ̄
(

ε̄p
)

= σy+A
〈

ε̄p−εL

〉n
(4.8.4)

which is shown in Figure 4-20. The yield stress is σy, the hardening constant is A, the hardening
exponent is n, and the Lüders strain is εL. The bracket < · > is the Macaulay bracket defined as

〈x〉 =
{

0, if x ≤ 0

x, if x > 0.
(4.8.5)

By assuming associated plastic flow, the plastic rate of deformation can be written as

D
p
i j = γ̇

∂φ

∂σi j
. (4.8.6)

For this model the yield surface is chosen to be a von Mises yield surface, so
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Figure 4-20. Typical stress-strain response for the power-law hard-
ening model.

φ
(

σi j

)

=

√

3
2

si jsi j (4.8.7)

where si j are the components of the deviatoric stress

si j = σi j−
1
3
δi jσkk (4.8.8)

Unlike the elastic-plastic model 4.7, the power-law hardening model does not allow for kinematic
hardening, so there is no back stress.

4.8.2. Implementation

The elastic-plastic power-law hardening model is implemented using a predictor-corrector
algorithm. First, an elastic trial stress state is calculated. This is done by assuming that the rate of
deformation is completely elastic

T tr
i j = T n

i j+∆t
(

λδi jdkk +2µdi j

)

(4.8.9)

The trial stress state is decomposed into a pressure and a deviatoric stress
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ptr =
1
3

T tr
kk ; str

i j = T tr
i j − ptrδi j (4.8.10)

The effective trial stress is calculated and and used in the yield function (4.8.3).

f
(

str
i j, ε̄

p
)

= φ
(

str
i j

)

− σ̄
(

ε̄p
)

(4.8.11)

If f ≤ 0 then the strain rate is elastic and the stress update is finished. If f > 0 then plastic
deformation has occurred and a radial return algorithm determines the extent of plastic
deformation.

The normal to the yield surface is assumed to lie in the direction of the trial stress state. This
gives us the following expression for Ni j

Ni j =
str

i j

‖str
i j‖

(4.8.12)

Using a backward Euler algorithm, the final deviatoric stress state is

sn+1
i j = str

i j−∆ t2µd
p
i j (4.8.13)

where the plastic strain increment is

∆d
p
i j =

√

3
2
∆ε̄pNi j (4.8.14)

The equation for the change in the equivalent plastic strain over the load step is found as the
solution to

3µ∆ε̄p+ σ̄
(

ε̄n+∆ε̄
p
)

−φtr + fn = 0 (4.8.15)

4.8.3. Verification

The elastic-plastic power-law hardening model is verified for uniaxial stress and pure shear. The
elastic properties used in these analyses are E = 70 GPa and ν = 0.25. The hardening law used for
the model is

σ̄
(

ε̄p
)

= σy+A
〈

ε̄p−εL

〉n
(4.8.16)

For these calculations σy = 200 MPa, A = 400 MPa, n = 0.25, and εL = 0.008.
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4.8.3.1. Uniaxial Stress

The elastic-plastic power-law hardening model is tested in uniaxial tension. The test looks at the
axial stress and the lateral strain and compares these values against analytical results for the same
problem. In this verification problem only the normal strains/stresses are needed, and the shear
terms are not exercised.

For the uniaxial stress problem, the only non-zero stress component is σ11. In the analysis that
follows σ11 = σ. There are three non-zero strain components, ε11, ε22, and ε33. In the analysis
that follows ε11 = ε and ε22 = ε33. Furthermore, the axial elastic strain, εe

11 = σ/E will be denoted
by εe.

The equivalent plastic strain, ε̄p, for this model is equivalent to εp
11, and is

ε̄p = ε− σ̄ (ε̄p)
E

(4.8.17)

This allows us, after yield, to parameterize the problem with the equivalent plastic strain.

For the lateral strains we need the lateral plastic strain. Plastic incompressibility (εp
kk = 0) gives

us

ε
p
22 = −

1
2
ε̄p (4.8.18)

Combined with the lateral elastic strains we have the lateral strain as a function of the equivalent
plastic strain

ε22 = −ν
σ̄ (ε̄p)

E
− 1

2
ε̄p (4.8.19)

The results are shown in Figures 4-21 and 4-22 and show agreement between the model in
Adagio and the analytical results.
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Figure 4-21. The axial stress as a function of axial strain for the
elastic-plastic power-law hardening model.

Figure 4-22. The lateral strain as a function of axial strain for the
elastic-plastic power-law hardening model.
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4.8.3.2. Pure Shear

The elastic-plastic power-law hardening model is tested in pure shear. The test looks at the shear
stress as a function of the shear strain and compares these values against analytical results for the
same problem. For the pure shear problem, the only non-zero strain component is ε12 and the
only non-zero stress component is σ12.

After yield, the shear stress as a function of the hardening curve is σ12 = σ̄ (ε̄p)/
√

3. The elastic
shear strain is εe

12 = σ12/2G; the plastic shear strain is εp
12 =

√
3ε̄p/2. Using this, the shear stress

and strain are given as functions of the equivalent plastic strain

σ12 =
σ̄ (ε̄p)√

3
; ε12 =

√
3

2
ε̄p+

1√
3

σ̄ (ε̄p)
2µ

(4.8.20)

This allows us, after yield, to parameterize the problem with ε̄p.

The results are shown in Figure 4-23 and show agreement between the model in Adagio and the
analytical results.
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Figure 4-23. The shear stress as a function of shear strain for the
elastic-plastic power-law hardening model.
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4.8.4. User Guide

BEGIN PARAMETERS FOR MODEL EP_POWER_HARD

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Hardening behavior

#

YIELD STRESS = <real> σy

HARDENING CONSTANT = <real> A

HARDENING EXPONENT = <real> n

LUDERS STRAIN = <real> εL

END [PARAMETERS FOR MODEL EP_POWER_HARD]

Output variables available for this model are listed in Table 4-7 and Table 4-8. For information
about the elastic-plastic power-law hardening model, consult [2].

Table 4-7. State Variables for EP POWER HARD Model

Name Description

EQPS equivalent plastic strain, ε̄p

TENSILE_EQPS equivalent plastic strain only accumulated when the material
is in tension (trace of stress tensor is positive)

RADIUS radius of yield surface, R

ITERATIONS number of radial return iterations
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Table 4-8. State Variables for EP POWER HARD Model for Shells

Name Description

EQPS equivalent plastic strain, ε̄p

TENSILE_EQPS equivalent plastic strain only accumulated when the material
is in tension (trace of stress tensor is positive)

RADIUS radius of yield surface, R

ITERATIONS number of radial return iterations
ERROR error in plane stress iterations
PS_ITER plane stress iterations
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4.9. DUCTILE FRACTURE MODEL

4.9.1. Theory

The ductile fracture model is identical to the elastic-plastic power-law hardening model with the
addition of a failure criterion and an isotropic decay of the stress to zero during the failure process
within the constitutive model. To accomplish this task, the tearing parameter, tp, proposed by
Wellman [1] is introduced and the functional form as given as

tp =

∫ ε

0

〈 2σmax

3(σmax−σm)

〉4

dε̄p (4.9.1)

where σmax is the maximum principal stress, and σm is the mean stress. It can also be noted that
the tearing parameter evolves during the plastic deformation regime as indicated by integrating
over the effective plastic strain, ε̄p. The angle brackets denoting the Macaulay brackets, where

〈x〉 =
{

0 if x ≤ 0

x if x > 0
, (4.9.2)

are used to ensure that the failure process occurs only with tensile stress states and prevent
“damage healing”. The failure process then initiates at a critical tearing parameter, tcrit

p , and the
corresponding stress decay occurs over a strain interval corresponding to the critical crack

opening strain, εccos. Importantly, the εccos serves a dual role in that it may also be used to control
the energy dissipated during failure. With respect to the latter point, careful selection of the
critical crack opening strain may be used to ensure consistent energy is dissipated through
different meshes. This decay process is isotropic and linear with the current damage value being
equivalent to the ratio of crack opening strain in the direction of the maximum principal stress to
the critical value.

4.9.2. Implementation

The ductile fracture model seeks to capture both the nonlinear elastic-plastic and fracture
responses of a ductile metal. Independently, each of these requirements necessitates the use of a
nonlinear solution algorithm and the combination of the two is even more complex. This
consideration is compounded by the relaxation and softening observed during the failure process
that introduces additional complications for the global finite element solver. For this discussion,
however, the focus is solely on the underlying numerical treatment of the failure process at the
constitutive level. The solution of the elastic-plastic constitutive problem was discussed in detail
in Section 4.8.2 while details of the implications at the global finite element problem are found in
the Sierra/SM User’s Guide [2]. With respect to the latter, it is important to note that in quasistatic
cases the ductile fracture model is tightly integrated with the multilevel CONTROL FAILURE

capabilities although details of this coupling are left to [1, 2].
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Prior to fracture initiation – while tn+1
p < tcrit

p – the ductile fracture model is exactly that of the
elastic-plastic power law. Through this process the tearing parameter is continually calculated at
the plastically converged state. When fracture initiation is first detected – tn+1

p ≥ tcrit
p – the

direction of the maximum principal stress, denoted by the normalized vector ncr
i , is determined

and stored. Regardless of loading path, this vector does not change during the unloading process.
Additionally, for this first initial failure step, the unrotated stress tensor, Ti j must be set equal to
its maximum value, T crit

i j before any unloading may be performed. This maximum value is simply
given by,

T crit
i j = T n

i j+
(

T tr
i j −T n

i j

) tcrit
p − tnp

tn+1
p − tnp

(4.9.3)

with T tr
i j being the elastic trial stress. As alluded to in the prior section, a linear decay based on the

crack opening strain in the direction of maximum stress, εcos, is utilized. To determine this decay
value, the crack opening strain increment is first found via

dεn+1
cos =< βncr

i dn+1
i j ncr

j >, (4.9.4)

where dn+1
i j is the total unrotated rate of deformation and β is a partitioning factor between plastic

and crack opening strains and takes the value of 1 for all loading steps except the initiation step.
The “< · >” are the Macaulay brackets. During the first fracture step,

β =
tn+1
p − tcrit

p

tn+1
p − tnp

. (4.9.5)

The current crack opening strain is then simply,

εn+1
cos = ε

n
cos+dεn+1

cos ∆t (4.9.6)

and the decay value, αn+1, is then found as,

αn+1 =max

[

0,
εccos−εn+1

cos

εccos

]

. (4.9.7)

To perform the actual stress decay, the hardening and yield values are proportionally decayed
via,

σ̄n+1 (ε̄p
)

= αn+1σ̄ f ; βn+1
i j = α

n+1βn
i j, (4.9.8)

with σ̄ f = φ
(

T crit
i j

)

being the critical yield stress associated with the yield surface, φ, and βi j is

the backstress tensor used with kinematic hardening. The decayed stress is then found by radially
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returning to the reduced yield stress, σ̄n+1 (ε̄). As a J2 deviatoric yield stress is used for the plastic
response, the hydrostatic component of the stress tensor is similarly decayed.

4.9.3. Verification

The ductile fracture model is tested in uniaxial stress and pure shear. For these test problems, the
Young’s modulus and Poisson’s ratio are E = 70 GPa and ν = 0.25. The yield stress is taken to be
σy = 200 MPa while the hardening constant and exponent are A = 400 MPa and n = 0.25,
respectively, and the Lüders strain is 0.008. To describe failure, the critical tearing parameter is
tcrit
p = 0.025 and the critical crack opening strain is εccos = 0.001.

4.9.3.1. Uniaxial Stress

For loading in uniaxial stress the only non-zero stress component is σ11. All other stress
components are zero. If the stress state is on the yield surface then this stress is

σ11 = σ̄(ε̄p), (4.9.9)

with σ̄ being the yield stress including any hardening effects associated with the evolution of the
effective plastic strain, ε̄p. To evaluate the axial stress we need the equivalent plastic strain as a
function of the axial strain, ε11. If we equate the rate of plastic work we get

σ̄ ˙̄εp = σ11
(

ε̇11− ε̇e
11

)

→ ˙̄εp = ε̇11− ε̇e
11 = ε̇

p
11 (4.9.10)

which, when integrated, gives us an implicit equation for the equivalent plastic strain

ε̄p =

(

ε11−
σ̄(ε̄p)

E

)

. (4.9.11)

Alternatively, we write the axial strain as a function of the equivalent plastic strain, which allows
us to parameterize the problem with ε̄p

ε11 = ε̄
p+

σ̄(ε̄p)
E

. (4.9.12)

In uniaxial stress the pressure is σ11/3 and the maximum principal stress is σmax = σ11. Using
this in (4.9.1) we get

tp = ε̄
p (4.9.13)
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i.e. the tearing parameter is equal to the equivalent plastic strain. This result is shown in
Figure 4-24a. The final value for the tearing parameter is a function of the number of steps, or the
step size. The smaller the step size the closer the final value is to tcrit

p .

The axial stress as a function of axial strain is shown in Figure 4-24b. The axial stress depends on
the elastic-plastic response until the critical tearing parameter is reached. As with the tearing
parameter results, this point is time step dependent. Once the critical tearing parameter is reached
the stress decay occurs over the critical crack opening strain.
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Figure 4-24. The (a) tearing parameter, tp, and (b) axial stress-strain
response for the ductile fracture model in uniaxial stress. The post
failure reduction in stress depends on the time discretization or
step size.

4.9.3.2. Pure Shear

For loading in pure shear the only non-zero stress component is σ12. All other stress components
are zero. If the stress state is on the yield surface then the shear stress is

σ12 =
σ̄(ε̄p)√

3
. (4.9.14)

To evaluate the shear stress we need the equivalent plastic strain as a function of the shear strain.
If we equate the rate of plastic work we get

σ̄ ˙̄εp = 2σ12
(

ε̇12− ε̇e
12

)

→ ˙̄εp =
2√
3

(

ε̇12− ε̇e
12

)

(4.9.15)

which, when integrated, gives us an implicit equation for the equivalent plastic strain
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ε̄p =
2√
3

(

ε12−
σ̄(ε̄p)√

3G

)

. (4.9.16)

Alternatively, we write the shear strain, ε12 as a function of the equivalent plastic strain, which
allows us to parameterize the problem with ε̄p

ε12 =

√
3

2
ε̄p+

σ̄(ε̄p)√
3G

. (4.9.17)

In pure shear the pressure is zero, and the maximum principal stress is σmax = σ12. Using this
in (4.9.1) we get

tp =

(

2
3

)4

ε̄p. (4.9.18)

This result is shown in Figure 4-25, where the tearing parameter is a function of the shear strain.
The final value for the tearing parameter is a function of the number of steps, or the step size. The
smaller the step size the closer the final value is to tcrit

p .

The shear stress as a function of shear strain is shown in Figure 4-26. The shear stress depends on
the elastic-plastic response until the critical tearing parameter is reached. As with the tearing
parameter results, this point is time step dependent. Once the critical tearing parameter is reached
the stress decay occurs over the critical crack opening strain.
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Figure 4-25. The tearing parameter, tp, in pure shear. The maximum
tearing parameter depends on the time discretization or step size.

Figure 4-26. Shear stress vs. shear strain for the ductile fracture
model in pure shear. The post failure reduction in stress depends
on the time discretization or step size.
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4.9.4. User Guide

BEGIN PARAMETERS FOR MODEL DUCTILE_FRACTURE

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Yield surface parameters

#

YIELD STRESS = <real> σy

HARDENING CONSTANT = <real> A

HARDENING EXPONENT = <real> n

LUDERS STRAIN = <real> εL

#

# Failure parameters

#

CRITICAL TEARING PARAMETER = <real> tcritp

CRITICAL CRACK OPENING STRAIN = <real> εccos
END [PARAMETERS FOR MODEL DUCTILE_FRACTURE]

Output variables available for this model are listed in Table 4-9. For information about the ductile
fracture material model, consult [1].
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Table 4-9. State Variables for DUCTILE FRACTURE Model

Name Description

EQPS equivalent plastic strain, ε̄p

RADIUS radius of yield surface, R

BACK_STRESS back stress - tensor αi j

TEARING_PARAMETER Current value of the integrated tearing parameter
CRACK_OPENING_STRAIN Current value of the crack opening strain. Will be zero prior

to reaching the maximum tearing parameter.
FAILURE_DIRECTION Crack opening direction (maximum principal stress direction

at failure) - vector
DF_STRAIN_XX XX component of current strain
DF_STRAIN_YY YY component of current strain
DF_STRAIN_ZZ ZZ component of current strain
DF_STRAIN_XY XY component of current strain
DF_STRAIN_YZ YZ component of current strain
DF_STRAIN_ZX ZX component of current strain
MAX_RADIUS Yield surface radius at failure
MAX_PRESS Stress pressure norm at failure
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4.10. MULTILINEAR ELASTIC-PLASTIC MODEL

4.10.1. Theory

The multilinear elastic-plastic model is a generalization of the standard rate independent plasticity
models already presented - the linear and power law hardening models. However, rather than
having a specific functional form, the multilinear hardening model allows the user to input a
piecewise linear function for the hardening curve. The rate form of the constitutive equation
assumes an additive split of the rate of deformation into an elastic and plastic part such that

Di j = De
i j+D

p
i j. (4.10.1)

The stress rate only depends on the elastic strain rate so that,

◦
σi j= Ci jklD

e
kl, (4.10.2)

where Ci jkl are the components of the fourth-order, isotropic elasticity tensor.

The key to the model is finding the plastic rate of deformation. For associated flow, the plastic
rate of deformation is in the direction normal to the yield surface. With a yield surface given by

φ
(

σi j

)

− σ̄
(

ε̄p
)

= 0 (4.10.3)

then the plastic rate of deformation can be written as

D
p
i j = γ̇

∂φ

∂σi j
. (4.10.4)

For this model the yield surface is taken to be a von Mises yield surface, such that

φ
(

σi j

)

=

√

3
2

si jsi j (4.10.5)

where si j are the components of the deviatoric stress

si j = σi j−
1
3
δi jσkk. (4.10.6)

For simplicity it is easier to write (4.10.4) in terms of the normal to the yield surface

D
p
i j = γ̇Ni j ; Ni j =

∂φ

∂σi j

/

∥

∥

∥

∥

∂φ

∂σi j

∥

∥

∥

∥

(4.10.7)
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Figure 4-27. An example of a multilinear elastic-plastic stress-strain
curve.

The model also incorporates temperature dependence in that the elastic properties and the yield
stress can be functions of temperature. This is not as general as having the yield curves depend on
temperature. For that behavior the thermoelastic-plastic model can be used.

An example stress vs. plastic strain hardening curve is shown in Figure 4-27. This curve was
generated for a loading case of uniaxial strain. In this case, the effective stress is the same as the
uniaxial. Therefore, for use with the multilinear elastic-plastic model this curve would simply
have to be discretized and used as input.

4.10.2. Implementation

The multilinear elastic-plastic model is implemented using a predictor-corrector algorithm. First,
an elastic trial stress state is calculated. This is done in the unrotated configuration (see
Section 4.1) by assuming that the rate of deformation is completely elastic

T tr
i j = T n

i j+∆t
(

λδi jdkk +2µdi j

)

. (4.10.8)

The trial stress state is decomposed into a pressure and a deviatoric stress

ptr =
1
3

T tr
kk ; str

i j = T tr
i j − ptrδi j (4.10.9)

The effective trial stress is calculated and used with the yield function (4.8.3),
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f
(

str
i j, ε̄

p
)

= φ
(

str
i j

)

− σ̄
(

ε̄p
)

. (4.10.10)

If f ≤ 0 then the response is elastic and the stress update is finished. If f > 0 then plastic
deformation has occurred and a radial return algorithm is used to determine the extent of this
behavior.

The model assumes associated flow such that the normal to the yield surface lies in the direction
of the trial stress state. This leads to the following expression for the normal, Ni j,

Ni j =
str

i j

‖str
i j‖
. (4.10.11)

Using a backward Euler algorithm, the final deviatoric stress state may be written as

sn+1
i j = str

i j−∆ t2µd
p
i j (4.10.12)

where the plastic strain increment, ∆d
p
i j, is

∆d
p
i j =

√

3
2
∆ε̄pNi j. (4.10.13)

Thus, to determine the response of the material the increment of the effective plastic strain, ∆ε̄p,
needs to be determined. This may be done by solving the linearized consistency equation over the
load step that is written as,

3µ∆ε̄p+ σ̄
(

ε̄n+∆ε̄
p
)

−φtr + fn = 0. (4.10.14)

4.10.3. Verification

The multilinear elastic-plastic material model is verified for uniaxial stress and pure shear. The
elastic properties used in these analyses are E = 70 GPa and ν = 0.25. In order to appropriately
verify this model, the hardening curve must have a functional form to appropriately determine an
analytical solution. Here, the hardening law used for the model is a Voce law with the following
form

σ̄
(

ε̄p
)

= σy+A
(

1− exp(−nε̄p)
)

. (4.10.15)

In the numerical analyses, this expression is discretized at a series of plastic strain values and
used as input. For these calculations σy = 200 MPa, A = 200 MPa, and n = 20.
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4.10.3.1. Uniaxial Stress

The multilinear elastic-plastic model is tested in uniaxial tension. The test looks at the axial stress
and the lateral strain and compares these values against analytical results for the same problem. In
this verification problem only the normal strains/stresses are needed, and the shear terms are not
exercised.

For the uniaxial stress problem, the only non-zero stress component is σ11. In the analysis that
follows σ11 = σ. There are three non-zero strain components, ε11, ε22, and ε33. In the analysis
that follows ε11 = ε and ε22 = ε33. Furthermore, the axial elastic strain, εe

11 = σ/E will be denoted
by εe.

The equivalent plastic strain, ε̄p, for this model is equivalent to εp
11, and is

ε̄p = ε− σ̄ (ε̄p)
E

(4.10.16)

This allows us, after yield, to parameterize the problem with the equivalent plastic strain.

For the lateral strains we need the lateral plastic strain. Incompressibility gives us

ε̄
p
22 = −

1
2
ε̄p (4.10.17)

Combined with the lateral elastic strains we have the lateral strain as a function of the equivalent
plastic strain

ε22 = −ν
σ̄ (ε̄p)

E
− 1

2
ε̄p (4.10.18)

The results are shown in Figures 4-28 and 4-29 and show agreement between the model in
Adagio and the analytical results.
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Figure 4-28. The axial stress as a function of axial strain for the
multilinear elastic-plastic model with an analytical Voce law for the
hardening model.

Figure 4-29. The lateral strain as a function of axial strain for the
multilinear elastic-plastic model with an analytical Voce law for the
hardening model.
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4.10.3.2. Pure Shear

The multilinear elastic-plastic model is tested in pure shear. The test looks at the shear stress as a
function of the shear strain and compares these values against analytical results for the same
problem. For the pure shear problem, the only non-zero strain component is ε12 and the only
non-zero stress component is σ12.

After yield, the shear stress as a function of the hardening curve is σ12 = σ̄ (ε̄p)/
√

3. The elastic
shear strain is εe

12 = σ12/2G; the plastic shear strain is εp
12 =

√
3ε̄p/2. Using this, the shear stress

and strain are given as functions of the equivalent plastic strain

σ12 =
σ̄ (ε̄p)√

3
; ε12 =

√
3

2
ε̄p+

1√
3

σ̄ (ε̄p)
2G

(4.10.19)

This allows us, after yield, to parameterize the problem with ε̄p.

The results are shown in Figure 4-30 and show agreement between the model in Adagio and the
analytical results.
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Figure 4-30. The shear stress as a function of shear strain for the
multilinear elastic-plastic model with an analytical Voce law for the
hardening model.
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4.10.4. User Guide

BEGIN PARAMETERS FOR MODEL MULTILINEAR_EP

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Hardening behavior

#

YIELD STRESS = <real> σy

BETA = <real> β (1.0)

HARDENING FUNCTION = <string> hardening_function_name

#

# Functions

#

YOUNGS MODULUS FUNCTION = <string> ym_function_name

POISSONS RATIO FUNCTION = <string> pr_function_name

YIELD STRESS FUNCTION = <string> yield_stress_function_name

END [PARAMETERS FOR MODEL MULTILINEAR_EP]

Output variables available for this model are listed in Table 4-10 and Table 4-11.

Table 4-10. State Variables for MULTILINEAR EP Model

Name Description

EQPS equivalent plastic strain
TENSILE_EQPS equivalent plastic strain only accumulated when the material

is in tension (trace of stress tensor is positive)
RADIUS radius of yield surface
BACK_STRESS back stress (symmetric tensor)
YOUNGS_MODULUS the current Young’s modulus as a function of temperature
POISSONS_RATIO the current Poisson’s ratio as a function of temperature
YIELD_STRESS the current yield stress as a function of temperature
ITERATIONS radial return iterations
YIELD_FLAG inside (0) or on (1) the yield surface
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Table 4-11. State Variables for MULTILINEAR EP Model for Shells

Name Description

EQPS equivalent plastic strain
TENSILE_EQPS equivalent plastic strain only accumulated when the material

is in tension (trace of stress tensor is positive)
RADIUS radius of yield surface
BACK_STRESS back stress (symmetric tensor)
YOUNGS_MODULUS the current Young’s modulus as a function of temperature
POISSONS_RATIO the current Poisson’s ratio as a function of temperature
YIELD_STRESS the current yield stress as a function of temperature
ITERATIONS radial return iterations
ERROR error in plane stress iterations
PS_ITER plane stress iterations

104



4.11. MULTILINEAR ELASTIC-PLASTIC FAIL MODEL

4.11.1. Theory

Like the ductile fracture model, the multilinear elastic-plastic fail model is an extension of an
existing plasticity model (multilinear elastic-plastic) to include a ductile failure criteria. Again,
the tearing parameter criterion and failure propagation model of Wellman [1] is selected.
Specifically, this approach uses a failure criterion (the tearing parameter, tp) that is based on the
history of the plastic strain and stress states. Most failure criteria for ductile failure involve some
form of the stress triaxiality, or the ratio of the pressure and the effective (shear) stress. The
tearing parameter, however, is slightly different in that it depends on the pressure and the
maximum principal stress and is given as,

tp =

∫ ε

0

〈

2σmax

3(σmax−σm)

〉m

dεp, (4.11.1)

with σmax and σm being the maximum principal and mean stresses, respectively. The exponent m

is typically taken to be 4 while the 〈·〉 are Macaulay brackets defined as,

〈x〉 =
{

0 x ≤ 0
x x > 0

, (4.11.2)

and introduced so that failure only occurs and propagates under tensile stress states. Failure then
initiates when the tearing parameter, tp, reaches a critical value, tcrit

p . After this point, the stress
decays (to 0) in a linear fashion according to the ratio of the crack opening strain in the maximum
principal stress direction to its critical value, εccos. Modification and control of this latter
parameter is important as it may be used to ensure consistent energy is dissipated through
different meshes.

4.11.2. Implementation

The multilinear elastic-plastic fail model seeks to capture both the nonlinear elastic-plastic and
fracture responses of a ductile metal. Independently, each of these requirements necessitates the
use of a nonlinear solution algorithm and the combination of the two is even more complex. This
consideration is compounded by the relaxation and softening observed during the failure process
that introduces additional complications for the global finite element solver. For this discussion,
however, the focus is solely on the underlying numerical treatment of the failure process at the
constitutive level. The solution of the elastic-plastic constitutive problem was discussed in detail
in Section 4.10.2 while details of the implications at the global finite element problem are found
in the Sierra/SM User’s Guide [2]. With respect to the latter, it is important to note that the ductile
fracture model is tightly integrated with the multilevel CONTROL FAILURE capabilities although
details of this coupling are left to [1, 2].
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Prior to fracture initiation – while tn+1
p < tcrit

p – the multilinear elastic-plastic fail model is the
same as the “normal” multilinear elastic-plastic model. Through this process the tearing
parameter is continually calculated at the plastically converged state. When fracture initiation is
first detected – tn+1

p ≥ tcrit
p – the crack direction (assumed aligned with the maximum principal

stress), denoted by the normalized vector ncr
i , is determined and stored. Regardless of loading

path, this vector does not change during the unloading process. Additionally, for this first initial
failure step, the unrotated stress tensor, Ti j must be updated to its maximum value, T crit

i j before
any unloading may be performed. This is done simply by,

T crit
i j = T n

i j+
(

T tr
i j −T n

i j

) tcrit
p − tnp

tn+1
p − tnp

, (4.11.3)

with T tr
i j being the elastic trial stress. As alluded to in the prior section, a linear decay based on the

crack opening strain in the direction of maximum stress, εcos, is utilized. To determine this decay
value, the crack opening strain increment is first found via

dεn+1
cos =< γncr

i dn+1
i j ncr

j >, (4.11.4)

where dn+1
i j is the unrotated rate of deformation and γ is a partitioning factor between plastic and

crack opening strains and takes the value of 1 for all loading steps except the initiation step and
the “< · >” are the Macaulay brackets. During the first fracture step,

γ =
tn+1
p − tcrit

p

tn+1
p − tnp

. (4.11.5)

The current crack opening strain is then simply,

εn+1
cos = ε

n
cos+dεn+1

cos ∆t. (4.11.6)

and the decay factor, α, may be written as

αn+1 =max

[

0,
εccos−εn+1

cos

εccos

]

. (4.11.7)

Given the temperature dependence, stress decay is slightly more complicated than in the ductile
fracture case. This task is primarily accomplished by decreasing the yield stress (radius)
proportionally with the decay factor,

σ̄n+1 (ε̄p) = αn+1σ̄ f , (4.11.8)

where σ̄ f = φ
(

T crit
)

is the yield stress at failure. The decayed stress is then found by radially
returning to this reduced yield stress. Similarly, the hydrostatic and von Mises effective stress at
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failure (σ f
m and σ̄ f

vM, respectively) are also calculated and stored to appropriately constrain the
stress state. An additional check is then performed to ensure (and if necessary modify) the
decayed stress to ensure that,

σm ≤ ασ f
m; σ̄vM ≤ ασ̄ f

vM. (4.11.9)

4.11.3. Verification

The multilinear elastic-plastic model with failure has been tested with a number of verification
tests. Specifically, uniaxial stress and uniaxial strain loadings are considered. For the
elastic-plastic response, the same material properties as those in Section 4.10.3 are again
considered. To this end, the Young’s modulus and Poisson ratio are E = 70 GPa and ν = 0.25,
respectively, and a Voce hardening model of the form,

σ̄
(

ε̄p
)

= σy+A
(

1− exp
(

−nε̄p
))

, (4.11.10)

is discretized and used. In this case, σy = 200 MPa, A = 200 MPa, and n = 20.

In terms of failure, the critical tearing parameter, tcrit
p is taken to be .04, the critical crack opening

strain, εccos, is .005 and m = 4.0.

4.11.3.1. Uniaxial Stress

To consider the uniaxial response, displacement controlled deformations are applied such that the
only non-zero stress is the axial component, σ11. Through such a loading path, three distinct
regimes result. The first is the elastic domain with tp = 0. Second is the plastic domain. During
this stage,

σ11 = σ̄
(

ε̄p
)

, (4.11.11)

and by considering the rate of plastic work and integrating yields the implicit (in terms of
equivalent plastic strain) relation,

ε̄p =

(

ε11−
σ̄ (ε̄p)

E

)

. (4.11.12)

By rearranging, the axial strain may be found in terms of the plastic strain as,

ε11 = ε̄
p+

σ̄ (ε̄p)
E

. (4.11.13)

With this stress state (σi j = σ11δi1δ j1), the pressure is simply σ11/3 and the maximum principal
stress is σmax = σ11. From (4.11.1), the tearing parameter is then
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tp = ε̄
p. (4.11.14)

The final stage of deformation corresponds to the failure process in which the axial stress is,

σ11 = ασpeak, (4.11.15)

and

α =
εccos−

(

ε11−εpeak
)

εccos
. (4.11.16)

In the preceding relations, σpeak and εpeak are the axial stress and strain, respectively, at failure
initiation. The former is simply σpeak = σ̄

(

tcrit
p

)

and εpeak = tcrit
p +σpeak/E.

The tearing parameter and axial stress evolution as a function of axial strain are presented in
Figures 4-31a and 4-31b, respectively. Good agreement is observed between the results verifying
the model capability under such a loading. Three different numerical load incrementations were
considered in this analysis and some dependence on load step is noted in the post-failure response
of Figure 4-31b. Even with this observation, the resulting agreement between the different
responses is still quite good.
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Figure 4-31. Analytical and numerical results of the tearing param-
eter and axial stress evolution through a uniaxial tension loading
path as a function of the axial strain, ε11.

4.11.3.2. Pure Shear

The analysis of the pure shear loading path follows closely with that of the ductile fracture model
(Section 4.9.3.2). In this case, pure shear deformations are applied such that the only non-zero
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stress and strain are σ12 and ε12, respectively. Therefore, during plastic loading

σ12 =
σ̄√

3
, (4.11.17)

and by comparing the plastic rate of work,

ε12 =

√
3

2
ε̄p+

σ̄ (ε̄p)√
3µ

. (4.11.18)

Additionally, as the stress state is purely in shear there is no hydrostatic stress and the maximum
principal stress is simply σmax = σ12 leading to an expression for the tearing parameter of the
form,

tp =

(

2
3

)4

ε̄p. (4.11.19)

The stress then simply decays after the critical tearing parameter is reached. Numerical (from
Adagio) and analytical results are presented in Figure 4-32. Specifically, the tearing parameter and
shear stress evolutions are presented in Figures 4-32a and 4-32b, respectively. Clear agreement is
noted indicating the ability of the model to capture the response over a variety of loading paths.
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Figure 4-32. Analytical and numerical results of the tearing param-
eter and shear stress evolution through a pure shear loading path
as a function of the shear strain, ε12.
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4.11.4. User Guide

BEGIN PARAMETERS FOR MODEL ML_EP_FAIL

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Hardening behavior

#

YIELD STRESS = <real> σy

BETA = <real> β (1.0)

HARDENING FUNCTION = <string> hardening_function_name

#

# Functions

#

YOUNGS MODULUS FUNCTION = <string> ym_function_name

POISSONS RATIO FUNCTION = <string> pr_function_name

YIELD STRESS FUNCTION = <string> yield_stress_function_name

#

# Failure parameters

#

CRITICAL TEARING PARAMETER = <real> tcritp

CRITICAL CRACK OPENING STRAIN = <real> εccos
CRITICAL BIAXIALITY RATIO = <real> critical_ratio(0.0)

FAILURE EXPONENT = <real> m (4.0)

END [PARAMETERS FOR MODEL ML_EP_FAIL]

Output variables available for this model are listed in Table 4-12 and Table 4-13.
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Table 4-12. State Variables for ML EP FAIL Model

Name Variable Description

EQPS Equivalent plastic strain
RADIUS Radius of yield surface
BACK_STRESS back stress - tensor
BACK_STRESS_XX back stress - xx component
BACK_STRESS_YY back stress - yy component
BACK_STRESS_ZZ back stress - zz component
BACK_STRESS_XY back stress - xy component
BACK_STRESS_YZ back stress - yz component
BACK_STRESS_ZX back stress - zx component
YOUNGS_MODULUS Current Young’s modulus as a function of temperature
POISSONS_RATIO Current Poisson’s ratio as a function of temperature
YIELD_STRESS Current Yield stress as a function of temperature
TENSILE_EQPS equivalent plastic strain only accumulated when the material

is in tension (trace of stress tensor is positive)
ITERATIONS radial return iterations
YIELD_FLAG inside(0) or on(1) yield surface
TEARING_PARAMETER Current integrated value of the tearing parameter. Zero until

yield is reached
CRACK_OPENING_STRAIN Current value of the crack opening strain. Zero until the crit-

ical tearing parameter is reached
FAILURE_DIRECTION crack opening direction at failure - vector
FAILURE_DIRECTION_X crack opening direction at failure - x component
FAILURE_DIRECTION_Y crack opening direction at failure - y component
FAILURE_DIRECTION_Z crack opening direction at failure - z component
MAX_RADIUS maximum radius at initial failure
MAX_PRESSURE maximum stress pressure norm at initial failure
CRITICAL_CRACK_

OPENING_STRAIN

CRITICAL_TEARING_

PARAMETER
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Table 4-13. State Variables for ML EP FAIL Model for Shells

Name Variable Description

EQPS equivalent plastic strain
RADIUS radius of yield surface
BACK_STRESS back stress - tensor
BACK_STRESS_XX back stress - xx component
BACK_STRESS_YY back stress - yy component
BACK_STRESS_ZZ back stress - zz component
BACK_STRESS_XY back stress - xy component
BACK_STRESS_YZ back stress - yz component
BACK_STRESS_ZX back stress - zx component
YOUNGS_MODULUS Current Young’s modulus as a function of temperature
POISSONS_RATIO Current Poisson’s ratio as a function of temperature
YIELD_STRESS Current Yield stress as a function of temperature
ITER radial return iterations
ERROR Error in plane stress iterations
PS_ITER Plane stress iterations
TEARING_PARAMETER Current integrated value of the tearing parameter. Zero until

yield is reached
CRACK_OPENING_STRAIN Current value of the crack opening strain. Zero until the crit-

ical tearing parameter is reached
FAILURE_DIRECTION crack opening direction at failure - vector
FAILURE_DIRECTION_X crack opening direction at failure - x component
FAILURE_DIRECTION_Y crack opening direction at failure - y component
FAILURE_DIRECTION_Z crack opening direction at failure - z component
RADIUS_MAX maximum radius at initial failure
TENSILE_EQPS equivalent plastic strain only accumulated when the material

is in tension (trace of stress tensor is positive)
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4.12. JOHNSON-COOK MODEL

4.12.1. Theory

The Johnson-Cook model [1, 2] is an isotropic, hypoelastic plasticity model. Unlike the
previously discussed models, the Johnson-Cook formulation is rate-dependent and as such is often
considered for high-rate, finite strain simulations like those for impact. The viscoplastic response
is phenomenological in that the form of the model is not derived from any physical mechanisms
like other viscoplastic models, e.g. Zerilli-Armstrong [3], Steinberg-Guinan-Lund [4, 5], BCJ [6],
and the MTS model [7, 8] to name a few. Like most other rate-dependent models, the current
formulation utilizes an effective plastic strain rate, ˙̄εp, to capture rate dependence.

As with other hypoelastic plasticity models, an additive decomposition of of the total rate of
deformation such that,

Di j = De
i j+D

p
i j, (4.12.1)

is used such that an objective stress rate of the form,

◦
σi j= Ci jklD

e
kl, (4.12.2)

with Ci jkl being the fourth-order, isotropic elasticity tensor, may be used.

With respect to the yield behavior, the Johnson-Cook model incorporates both strain rate and
temperature, θ, dependence. This leads to a yield function of the form,

f
(

σi j, ε̄
p, ˙̄εp, θ

)

= φ
(

σi j

)

− σ̄
(

ε̄p, ˙̄εp, θ
)

, (4.12.3)

in which φ
(

σi j

)

is the effective stress – the von Mises effective stress is used – and σ̄ is the
isotropic hardening function. Incorporating the temperature and rate dependency, the hardening
function is written as,

σ̄
(

ε̄p, ˙̄εp, θ
)

=

[

A+B
(

ε̄p
)N
]

[

1+C
〈

ln ˙̄εp∗〉][1− θ∗M
]

(4.12.4)

where ε̄p is the equivalent plastic strain, ˙̄εp∗ = ˙̄εp/ ˙̄ε0 is a dimensionless plastic strain rate, and θ∗

is the homologous temperature. The quantities A, B, C, ˙̄ε0, N, and M are material parameters.
The Macaulay brackets in (4.12.4) ensure that σ̄ is equal to the static flow stress
σ̄s =

[

A+B (ε̄p)N
][

1− θ∗M
]

when ˙̄εp < ˙̄ε0. The homologous temperature is defined as,

θ∗ =
θ− θref

θmelt− θref
, (4.12.5)

with θ, θref, and θmelt being the current, reference, and melt temperatures. Note, the temperature
used internal to the Johnson-Cook model is NOT the standard prescribed “temperature” field.
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Instead, the material temperature is initialized by a model input as θ0. By assuming adiabatic
thermal conditions, subsequent plastic work raises the material temperature via,

∆θ =
β

ρCv
σ̄ ˙̄εp, (4.12.6)

where ρ is the materials density, Cv is the specific heat, and β (0 ≤ β ≤ 1) is the fraction of plastic
work that is converted to heat.

The Johnson-Cook model also has a failure criterion. The Johnson-Cook damage model [2] has a
failure strain that is given by:

ε f =
(

D1+D2 exp(D3η)
)(

1+D4 ln ˙̄εp∗)(1+D5θ
∗) (4.12.7)

with D1, D2, D3, D4, and D5 being material parameters and η is the triaxiality
(η = (1/3)σkk/σ̄vM). The damage in the model is accumulated over time using:

D =

∫ t

0

˙̄εp

ε f
dt. (4.12.8)

When D = 1, the material has failed. For the default behavior of the Johnson-Cook model, the
fracture behavior is not active.

4.12.2. Implementation

The implementation of the Johnson-Cook model requires the effective strain rate to be used for
calculating the rate effects on yield. This is done through a predictor-corrector return mapping
algorithm. In what follows the temperature dependence is not included; this will be addressed
later.

The initial response is assumed to be elastic and a trial stress state is calculated

T tr
i j = T n

i j+Ci jkl∆ tdkl (4.12.9)

Since the plastic response is independent of pressure we can use the deviatoric stress

si j = Ti j−
1
3
δi jTkk

(4.12.10)

str
i j = sn

i j+2µ∆ td′i j,

with d′i j being the total deviatoric rate of deformation – d′i j = di j− (1/3)δi jdkk.
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If this gives a von Mises stress that is greater then the effective stress, i.e.

φtr =

√

3
2

str
i js

tr
i j > A+B

(

ε̄p(n))N
, (4.12.11)

then plastic deformation occurs and we solve the following nonlinear equation for ˙̄εp,

[

A+B
(

ε̄p(n)+∆t ˙̄εp
)N
]

[

1+C ln
(

max
(

1, ˙̄εp/ ˙̄ε0
))]

= φtr−3µ∆t ˙̄εp. (4.12.12)

This simple equation comes from the radial return algorithm

sn+1
i j = str

i j−3µ∆t ˙̄εp
str

i j

φtr → sn+1
i j =

(

φtr−3µ∆t ˙̄εp
) str

i j

φtr (4.12.13)

Taking the inner product of both sides gives (4.12.12).

4.12.3. Verification

The Johnson-Cook model is verified through a series of uniaxial stress and pure shear tests. Given
the emphasis on the strain-rate and temperature dependent nature of the model a series of these
tests are performed at different loading conditions. The material properties and model parameters
used for these tests are given in Table 4-14 and come from the work of Corona and Orient [9].
Note, in this case a modified reference plastic strain rate is used ( ˙̄ε0 = 1×10−4s−1) as the one
reported in [9] was selected based on calibration conditions. Here the value is selected to better
investigate and highlight strain rate dependency.

E 71.7 GPa ν 0.33
A 217 MPa B 405 MPa
C 0.0075 ˙̄ε0 1×10−4 s−1

θref 293 K θmelt 750 K
N 0.41 M 1.1
ρ 2810 kg/m3 Cv 960 J/(kg-K)
D1 0.015 D2 0.24
D3 -1.5 D4 -0.039
D5 8.0

Table 4-14. The material properties and model parameters of the
Johnson-Cook model used for verification testing
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4.12.3.1. Uniaxial Stress

To determine a (semi)-analytical expression of the Johnson-Cook model, the equivalency of
plastic work for uniaxial loading is recalled such that,

σ̄ ˙̄εp = σ
(

ε̇− ε̇e) , (4.12.14)

with σ, ε̇, and ε̇e being the uniaxial stress, total strain rate, and elastic strain rate, respectively.
Assuming ˙̄εp ≥ ˙̄ε0, and noting that ε̇p = ε̇− ε̇e, the expression for the flow stress (4.12.4), the
definition of the homologous temperature (4.12.5), and the dimensionless strain rate, the plastic
work expression (4.12.14) may be rearranged as

˙̄εp = ˙̄ε0 exp

[

σ

C
[

A+B (ε̄p)N
][

1− θ∗M
] − 1

C

]

. (4.12.15)

Given the implicit nature (in terms of effective plastic strain) of (4.12.15), a semi-analytical
approach is used to evaluate the Johnson-Cook model. Specifically, a simple forward Euler
integration scheme is adopted to solve (4.12.15) and then update the remaining state variables.
Using such an approach, Figure 4-33 presents the stress-strain and corresponding damage
evolution of the Johnson-Cook determined at three strain rates. A constant total logarithmic strain
rate is applied by utilizing an applied displacement of the form,

ui (t) =
(

eωt −1
)

δi1, (4.12.16)

where ω is the considered strain rate. Here rates corresponding to a slow quasistatic
(ω = 1×10−3s−1), medium (ω = 1s−1), and high rate (ω = 1×103s−1) loading are considered to
explore a variety of regimes. Temperature effects are not addressed in Figure 4-33 (β = 0) to first
investigate the purely mechanical response. The damage evolution is evaluated by simply
integrating expression (4.12.8) and noting that for a uniaxial loading η = 1/3. In this case, as the
constitutive behavior is being probed the material does not degrade when D ≥ 1.

From the results of Figure 4-33 clear agreement is observed between the numerical and
semi-analytical response verifying the model behavior in a variety of conditions. Next, to explore
the thermomechanical coupling, three different plastic work conversion ratios (β = 0.00, 0.50 and
1.0) are considered for the medium strain rate (ω = 1s−1). The stress, damage, and temperature
evolutions are all presented in Figure 4-34 as a function of axial strains.

From Figure 4-34 the influence of the thermomechanical coupling may be clearly observed. For
instance, a roughly 50 K increase in material temperature over the loading range may be seen in
the β = 1 case leading to a roughly 25% decrease in the damage metric and approximately 10%
drop in final stress. Additionally, clear agreement between the semi-analytical and numerical
responses providing additional verification of the coupled capabilities of the model.
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Figure 4-33. Semi-analytical and numerical (a) stress-strain and (b)
damage evolutions of the Johnson-Cook model subjected to a uni-
axial loading at three different applied strain rates. In these results,
β = 0.

4.12.3.2. Pure Shear

For the pure shear case, a loading like that described in Appendix A.3 is utilized. Specifically,
displacements producing a deformation gradient of,

Fi j =
1
2

(

λ+λ−1)(δi1δ j1+δi2δ j2
)

+
1
2

(

λ−λ−1)(δi1δ j2+δi2δ j1
)

+δi3δ j3, (4.12.17)

are considered with λ = λ (t) = eωt. This loading leads to a logarithmic shear strain rate of ε̇12 = ω

that is constant in time enabling the study of strain rate effects.

In the shear stress case, the plastic work equivalency is written as,

σ̄ ˙̄εp = 2σ12ε̇
p
12. (4.12.18)

Like the uniaxial stress case, the definition of the effective stress may be used with the fact that

ε̇
p
12 =

√
3

2
˙̄εp to find the following form of the effective plastic strain rate when ˙̄εp > ˙̄ε0,

˙̄εp = ˙̄ε0 exp

[ √
3σ12

C
[

A+B (ε̄p)N
][

1− θ∗M
] − 1

C

]

. (4.12.19)

A simple forward Euler scheme is then used to integrate the model at three different strain rates –
ω = .001s−1, 1s−1 and 1000s−1. The stress-strain and damage evolution responses of these cases
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Figure 4-34. Semi-analytical and numerical (a) stress-strain (b) dam-
age and (c) temperature evolutions of the Johnson-Cook model
subjected to a uniaxial loading with three different plastic work con-
version ratios, β. The strain rate for all three cases is ε̇ = 1s−1.

are presented in Figure 4-35 for the purely mechanical case (β = 0). With respect to the damage
evolution, it is noted that for pure shear responses η = 0.

The effect of plastic work is considered for ω = 1s−1 in Figure 4-36. Similar influences like those
reported in the uniaxial stress case are observed. A larger increase in temperature through plastic
loading is noted however. Regardless in both the results of Figures 4-35 and 4-36 clear agreement
between numerical and semi-analytical is observed further verifying the current implementation
of the Johnson-Cook model.
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Figure 4-35. Semi-analytical and numerical (a) stress-strain and (b)
damage evolutions of the Johnson-Cook model subjected to a pure
shear loading at three different applied strain rates. In these re-
sults, β = 0.
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Figure 4-36. Semi-analytical and numerical (a) stress-strain (b) dam-
age and (c) temperature evolutions of the Johnson-Cook model
subjected to a pure shear loading with three different plastic work
conversion ratios, β. The strain rate for all three cases is ε̇ = 1s−1.
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4.12.4. User Guide

BEGIN PARAMETERS FOR MODEL JOHNSON_COOK

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Yield surface parameters

#

YIELD STRESS = <real> A

HARDENING CONSTANT = <real> B

HARDENING EXPONENT = <real> N

RATE CONSTANT = <real> C

REFERENCE RATE = <real> ˙̄ε0 (0.001)

EDOT_REF = <real> (0.0)

#

# Failure strain parameters

#

D1 = <real> D1 (0.0)

D2 = <real> D2 (0.0)

D3 = <real> D3 (0.0)

D4 = <real> D4 (0.0)

D5 = <real> D5 (0.0)

#

# Temperature softening commands

#

RHOCV = <real> ρCv

BETA = <real> β (0.95)

THERMAL EXPONENT = <real> M

REFERENCE TEMPERATURE = <real> θref
MELT TEMPERATURE = <real> θmelt
INITIAL TEMPERATURE = <real> θ0

#

FORMULATION = <int> (0)

#

END [PARAMETERS FOR MODEL JOHNSON_COOK]

Output variables available for this model are listed in Table 4-15.
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Table 4-15. State Variables for JOHNSON COOK Model

Name Variable Description

RADIUS radius of yield surface
EQPS equivalent plastic strain
THETA temperature
EQDOT effective total strain rate
ITER

EFAIL failure strain, ε f

DAMAGE damage, D

YIELD_STRESS yield stress
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4.13. J2 PLASTICITY MODEL

4.13.1. Theory

The J2 plasticity model is a generic implementation of a von Mises yield surface with kinematic
and isotropic hardening features. Unlike other models (e.g. Elastic-Plastic, Elastic-Plastic Power
Law) more flexible, general hardening forms are implemented enabling different isotropic
hardening descriptions and some rate and/or temperature dependence.

As is common to other plasticity models in LAMÉ, the J2 plasticity model uses a hypoelastic
formulation. As such, the total rate of deformation is additively decomposed into an elastic and
plastic part such that

Di j = De
i j+D

p
i j. (4.13.1)

The objective stress rate, depending only on the elastic deformation, may then be written as,

◦
σi j= Ci jklD

e
kl, (4.13.2)

where Ci jkl is the fourth-order elastic, isotropic stiffness tensor.

The yield surface for the J2 plasticity model, f , may be written,

f
(

σi j,αi j, ε̄
p, ˙̄εp, θ

)

= φ
(

σi j,αi j

)

− σ̄
(

ε̄p, ˙̄εp, θ
)

, (4.13.3)

in which αi j, ε̄
p, ˙̄εp, and θ are the kinematic backstress, equivalent plastic strain, equivalent

plastic strain rate, and absolute temperature, respectively, while φ and σ̄ are generically the
effective stress and flow stress. Broadly speaking, the effective stress describes the shape of the
yield surface and kinematic effects while the flow stress gives the size of the current yield surface.
It should also be noted that writing the yield surface in this way splits the dependence on the state
variables between the effective stress and flow stress functions.

As the current model is for J2 plasticity, the effective stress is given as,

φ2 (σi j,αi j

)

=
3
2

(

si j−αi j

)(

si j−αi j

)

, (4.13.4)

with si j being the deviatoric stress defined as si j = σi j− (1/3)σkkδi j. For the flow stress, a general
representation of the form,

σ̄
(

ε̄p, ˙̄εp, θ
)

= σyσ̂y
(

˙̄εp
)

σ̆y (θ)+K
(

ε̄p
)

σ̂h
(

˙̄εp
)

σ̆h (θ) , (4.13.5)

is allowed. In this fashion, the effects of isotropic hardening (K (ε̄p)), rate (σ̂y,h), and temperature
(σ̆y,h) are decomposed although separate temperature and rate dependencies may be specified for
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yield (subscript “y”) and hardening (“h”). Such an assumption is an extension of the
multiplicative decomposition of the Johnson-Cook model [1, 2]. It should be noted that not all
effects need to be included and the default assumption of the hardening classes is that the
response is rate and temperature independent. The following section on plastic hardening will go
into more detail on possible choices for functional representations.

An associated flow rule is utilized such that the plastic rate of deformation is normal to the yield
surface and is given by,

Ḋ
p
i j = γ̇

∂φ

∂σi j
= γ̇

3
2φ

si j, (4.13.6)

where γ̇ is the consistency multiplier enforcing f = 0 during plastic deformation. Given the form
of f , it can also be shown that γ̇ = ˙̄εp.

4.13.1.1. Plastic Hardening

Plastic hardening refers to increases in the flow stress, σ̄, with plastic deformation. As such,
hardening is described via the functional relationship between the flow stress and isotropic
hardening variable (effective plastic strain), σ̄ (ε̄p). Over the course of nearly a century of work in
metal plasticity, a variety of relationships have been proposed to describe the interactions
associated with different physical interpretations, deformation mechanisms, and materials. To
enable the utilization of the same plasticity models for different material systems, a modular
implementation of plastic hardening has been adopted such that the analyst may select different
hardening models from the input deck thereby avoiding any code changes or user subroutines. In
this section, additional details are given to the different models to enable the user to select the
appropriate choice of model. Note, the models being discussed here are only for isotropic

hardening in which the yield surface expands. Kinematic hardening in which the yield surface
translates in stress-space with deformation and distortional hardening where the shape of the
yield surface changes shape with deformation are not treated. For a larger discussion of the
phenomenology and history of different hardening types, the reader is referred to [3, 4, 5].

Given the ubiquitous nature of these hardening laws in computational plasticity, some (if not
most) of this material may be found elsewhere in this manual. Nonetheless, the discussion is
repeated here for the convenience of the reader.

Linear

Linear hardening is conceptually the simplest model available in LAMÉ. As the name implies, a
linear relationship is assumed between the hardening variable, ε̄p, and flow stress. The constant
giving the degree of increase of yield stress with plastic flow is termed the hardening modulus and
is given as, H′, while the expression for the flow stress may be written,

σ̄ = σy+H′ε̄p. (4.13.7)
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The simplicity of the model is its main feature as the constant slope,

dσ̄

dε̄p
= H′, (4.13.8)

makes the model attractive for analytical models and cheap for computational implementations
(e.g. radial return algorithms require only a single correction step). Unfortunately, the simplicity
of the representation also means that it has limited predictive capabilities and can lead to overly
stiff responses.

Power Law

Another common expression for isotropic hardening is the power-law hardening model. Due to its
prevalence, a dedicated ELASTIC-PLASTIC POWER LAW HARDENING model may be found in
LAMÉ (see Section 4.8.1). This expression is given as,

σ̄ = σy+A < ε̄p−εL >
n, (4.13.9)

in which < · > are Macaulay brackets, εL is the Lüders strain, A is a fitting constant, and n is an
exponent typically taken such that 0 < n ≤ 1. The Lüders strain is a positive, constant strain value
(default to zero) giving an initial plastic deformation domain in which the response is perfectly
plastic (see Fig. 4-20). The derivative is then simply,

dσ̄

dε̄p
= nA < ε̄p−εL >

(n−1) . (4.13.10)

Note, one difficulty in such an implementation is that when the effective equivalent plastic strain
is zero, numerical difficulties may arise in evaluating the derivative necessitating special treatment
of the case.

Voce

The Voce hardening model (sometimes referred to as a saturation model) uses a decaying
exponential in terms of the equivalent plastic strain such that the hardening eventually saturates to
a specified value (thus the name). Such a relationship has been observed in some structural metals
giving rise to the popularity of the model. The hardening response is given as,

σ̄ = σy+A
(

1− exp
(

−nε̄p
))

, (4.13.11)

in which A is a fitting constant and n is a fitting exponent describing how quickly the hardening
saturates. Importantly, the derivative is written as,
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dσ̄

dε̄p
= nAexp

(

−nε̄p
)

, (4.13.12)

and is well defined everywhere giving the selected form an advantage over the aforementioned
power law model.

Johnson-Cook

The Johnson-Cook [1, 2] hardening type is a rate-dependent formulation utilizing the assumption
that rate-independent and rate-dependent contributions may be multiplicatively separated.
Specifically, use of this option requires specifying a user-defined hardening function to capture
rate-independent contributions and Johnson-Cook type rate dependent coefficients. The flow
stress may be written in this fashion as,

σ̄ = σ̃y

(

ε̄p
)

[

1+C

〈

ln

(

˙̄εp

ε̇0

)〉]

, (4.13.13)

in which σ̃ (ε̄p) is the user-specified rate-independent hardening function, C is a fitting constant
and ε̇0 is a reference strain rate. The Macaulay brackets ensure the material behaves in a rate
independent fashion when ˙̄εp < ε̇0.

Power Law Breakdown

Like the Johnson-Cook formulation, the power-law breakdown model is also rate-dependent.
Again, a multiplicative decomposition between rate-independent and dependent hardening
contributions. In this case, however, the functional form is derived from the analysis of Frost and
Ashby [6] in which power-law relationships like those of the Johnson-Cook and cease to
appropriately capture the physical response. The form used here is similar to the expression used
by Brown and Bammann [7] and is written as,

σ̄ = σ̃y

(

ε̄p
)

[

1+ asinh

(

(

˙̄εp

g

)(1/m)
)]

, (4.13.14)

with σ̃y (ε̄p) being the user supplied rate independent expression, g is a model parameter related
to the activation energy in going from climb to glide-controlled deformation, and m dictates the
strength of the dependence.

Flow Stress

Unlike the previously described models, the flow-stress hardening method is less a specific
physical representation and more a generalization of the hardening behaviors to allow greater
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flexibility in separately describing isotropic hardening, rate-dependence, and temperature
dependence. As such, the generic flow-stress definition of

σ̄
(

ε̄p, ˙̄εp, θ
)

= σ̃y

(

ε̄p
)

σ̂
(

˙̄εp
)

σ̆ (θ) , (4.13.15)

is used in which σ̂ and σ̆ are rate and temperature multipliers, respectively, that by default are
unity (such that the response is rate and temperature independent) and σ̃y is the isotropic
hardening component that may also be specified as,

σ̃y = σy+K
(

ε̄p
)

, (4.13.16)

with σy being the constant yield stress and K is the isotropic hardening that is initially zero and a
function of the equivalent plastic strain. A multiplicative decomposition such as this mirrors the
general structure used by Johnson and Cook [1, 2] although greater flexibility is allowed in terms
of the specific form of the rate and temperature multipliers.

Given the aforementioned defaults for rate and temperature dependence, the corresponding
multipliers need not be specified. A representation for the isotropic hardening, however, must be
specified and can be defined via linear, power-law, Voce, or user-defined representations. For the
user-defined case, an isotropic hardening function is required and it must be highlighted that the
interpretation differs from the general user-defined hardening model. In this case, as the specified

function represents the isotropic hardening, it should start from zero – not yield.

Although the flow-stress hardening model defaults to rate and temperature independent, a
multiplier may be defined for either (or both) of the terms. For rate-dependence, either the
previously discussed Johnson-Cook or power-law breakdown models or a user-defined multiplier
may be used. For the user-defined capability, the multiplier should be input as a strictly positive
function of the equivalent plastic strain rate with a value of one in the rate-independent limit.

In terms of temperature dependence, the multiplier may be specified given a Johnson-Cook
dependency [1, 2],

σ̆ (θ) = 1−
(

θ− θref

θmelt− θref

)M

, (4.13.17)

with θref, θmelt and M being the reference temperature, melting temperature, and temperature
exponent. The temperature multiplier may also be specified via a user defined function.

Decoupled Flow Stress

Like the flow-stress hardening method, the decoupled flow-stress hardening implementation is a
generalization of the hardening behaviors to allow greater flexibility. In differentiating the two,
for the decoupled model the rate and temperature dependence may be separately specified for the
yield and hardening portions of the flow stress. As such, the generic flow-stress definition of
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σ̄
(

ε̄p, ˙̄εp, θ
)

= σyσ̂y
(

˙̄εp
)

σ̆y (θ)+K
(

ε̄p
)

σ̂h
(

˙̄εp
)

σ̆h (θ) , (4.13.18)

is used in which σ̂ and σ̆ are rate and temperature multipliers, respectively, that by default are
unity (such that the response is rate and temperature independent) with subscripts “y” and “h”
denoting functions associated with yield and hardening. The isotropic hardening is described by
K (ε̄p) and σy is the constant initial yield stress. It may also be seen that if the yield and hardening
dependencies are the same (σ̂y = σ̂h and σ̆y = σ̆h) the decoupled flow stress model reduces to that
of the flow stress case and mirrors the general structure of the Johnson-Cook model [1, 2].

Given the aforementioned defaults for rate and temperature dependence, the corresponding
multipliers need not be specified. A representation for the isotropic hardening, however, must be
specified and can be defined via linear, power-law, Voce, or user-defined representations. For the
user-defined case, an isotropic hardening function should be used and it must be highlighted that
the interpretation differs from the general user-defined hardening model. In this case, as the

specified function represents the isotropic hardening, it should start from zero – not yield.

Although the decoupled flow-stress hardening model defaults to rate and temperature
independent, a multiplier may be defined for any of the terms. For rate-dependence, either the
previously discussed Johnson-Cook or power-law breakdown models or a user-defined multiplier
may be used. For the user-defined capability, the multiplier should be input as a strictly positive
function of the equivalent plastic strain rate with a value of one in the rate-independent limit.

In terms of temperature dependence, the multiplier may be specified given a Johnson-Cook
dependency [1, 2],

σ̆ (θ) = 1−
(

θ− θref

θmelt− θref

)M

, (4.13.19)

where θref, θmelt, and M are the reference temperature, melting temperature, and temperature
exponent. A temperature multiplier may also be specified via a user defined function.

4.13.2. Implementation

The J2 plasticity model is implemented using a radial return predictor-corrector algorithm. First,
an elastic trial stress state is calculated. This is done by assuming that the rate of deformation is
completely elastic,

T tr
i j = T n

i j+∆t
(

λδi jdkk +2µdi j

)

. (4.13.20)

The trial stress state is decomposed into a pressure and a deviatoric stress

ptr =
1
3

T tr
kk ; str

i j = T tr
i j − ptrδi j. (4.13.21)
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A trial yield function value, f tr, is calculated by assuming purely thermoelastic deformations
( ˙̄εp = 0, ε̄p

tr = ε̄
p
n) such that,

f tr
(

str
i j,α

n
i j, ε̄

p
n , ˙̄ε

p
tr = 0, θn+1

)

= φtr
(

str
i j,α

n
i j

)

− σ̄
(

ε̄p
n , ˙̄ε

p
tr = 0, θn+1

)

. (4.13.22)

If f tr ≤ 0 then the strain rate is elastic and the stress update is finished. If f tr > 0 then plastic
deformation has occurred and a radial return algorithm determines the extent of plastic
deformation.

The normal to the yield surface is assumed to lie in the direction of the trial stress state. This
gives the following expression for Ni j,

Ni j =

(

str
i j−αn

i j

)

‖
(

str
i j−αn

i j

)

‖
. (4.13.23)

Using a backward Euler algorithm, the final deviatoric stress state is

sn+1
i j = str

i j−∆ t2µd
p
i j, (4.13.24)

where the plastic strain increment is

∆d
p
i j =

√

3
2
∆ε̄pNi j. (4.13.25)

The equation for the change in the equivalent plastic strain over the load step is found as the
solution to

3µ∆ε̄p+ σ̄
(

ε̄n+∆ε̄
p,∆t, θn+1

)

−φtr + fn = 0, (4.13.26)

in which the plastic strain rate is approximated as, ˙̄εp = ∆ε̄p/∆t.

4.13.3. Verification

The J2 plasticity model is verified through a series of uniaxial and pure shear tests considering a
variety of hardening models. Specifically, the boundary value problems of Appendix A.5 are
used. Throughout these tests, the elastic properties are maintained as E = 70 GPa and ν = 0.25.

4.13.3.1. Plastic Hardening

For the verification of the J2 model, a series of tests using different rate-independent,
rate-dependent, and combinations of these hardening models are investigated for both uniaxial
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stress and pure shear. For these cases, by imposing a constant plastic strain rate as described in
Appendix A.5 the model response may be analytically determined as a function of time. For the
rate-independent cases, a constant plastic ˙̄εp = 1×10−4s−1 is used to replicate quasi-static
conditions.

The various rate-dependent and rate-independent hardening coefficients are found in Table 4-16
while the remaining model parameters are unchanged from the previous verification exercises.
For the current verification exercises, the rate-independent hardening models (linear, Voce, and
power-law) and rate-dependent forms (Johnson-Cook, power-law breakdown) are examined.

C 0.1 ε̇0 1×10−4 s−1

g 0.21 s−1 m 16.4
H̃Linear 200 MPa - -
ÃPL 400 MPa ñPL 0.25
ÃVoce 200 MPa ñVoce 20

Table 4-16. The model parameters for the hardening verification
tests used with the J2 plasticity model during verification tests. Pa-
rameters for the rate-independent hardening functions, σ̃y, are also
given and denoted with a ·̃ while the subscript refers to the func-
tional form.

Rate-Independent

First, the ability of the built-in rate-independent hardening models is assessed in both uniaxial
stress and pure shear. Specifically, the linear, power-law, and Voce hardening models are
considered and the results determined analytically and numerically are presented in Figure 4-37.
As expected, excellent agreement is noted between the two sets of results. Importantly, as the
responses of all three rate-independent isotropic hardening models are presented in the same
figures, the corresponding behaviors can be seen. Note, the given parameterizations are not
selected for any form of equivalency. Nonetheless, the linear post-yielding behavior of the
corresponding model can be seen and compared to the non-linear responses of the Voce and
power-law implementations. The critical difference of the latter two being that the Voce response
saturates at a stress level while the power-law continues to grow.

Rate-Dependent

With the performance of the model under rate-independent conditions established, next the
capabilities of the rate-dependent (Johnson-Cook and power-law breakdown) formulations are
considered. Note, the flow-stress and decoupled flow-stress models that incorporate temperature
dependence are left to later sections. As such, in these cases user-defined analytic functions are
used for each of the specified rate-independent hardening models rather than particular
implementations.
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Figure 4-37. Analytical and numerical (a) uniaxial stress-strain and
(b) pure shear responses of the J2 plasticity model with linear,
power-law, and Voce rate-independent isotropic hardening. Solid
lines are analytical while open symbols are numerical.

The uniaxial stress-strain responses are interrogated for the Johnson-Cook and Power-law
breakdown rate-dependent hardening models considering linear, power-law, and Voce isotropic
hardening in Figure 4-38. Five decades of plastic strain rates ˙̄εp = 1×10−3→ 1×101s−1 are
considered. In comparing the analytical and numerical results between all of the cases exceptional
agreement is noted between every case.

Similarly, the pure shear responses of the six hardening combinations over the five plastic strain
rates are given in Figure 4-39 for both analytical and numerical approaches. As with the normal
cases, outstanding agreement is noted between the various results. Thus, between the plethora of
problems presented in Figures 4-38 and 4-39 the performance of the rate-dependent models may
be considered verified.

Flow Stress

Decoupled Flow Stress
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Figure 4-38. Uniaxial stress-strain responses of the J2 plasticity
model with (a,b) linear, (c,d) power-law, and (e,f) Voce isotropic
hardening with the (a,c,e) Johnson-Cook and (b,d,f) Power-law
breakdown rate-dependent hardening models. Solid lines are an-
alytical while open symbols are numerical.
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(e) Voce, Johnson-Cook

0.0 0.1 0.2 0.3 0.4 0.5
shear strain, ε (-)

0

100

200

300

400

500

600

700

sh
e
a
r 

st
re

ss
, 
τ 

(M
P
a
)

rate: 1.0e-03

rate: 1.0e-02

rate: 1.0e-01

rate: 1.0e+00

rate: 1.0e+01

(f) Voce, Power-Law Breakdown

Figure 4-39. Pure shear responses of the J2 plasticity model with
(a,b) linear, (c,d) power-law, and (e,f) Voce isotropic hardening with
the (a,c,e) Johnson-Cook and (b,d,f) Power-law breakdown rate-
dependent hardening models. Solid lines are analytical while open
symbols are numerical.
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(f) Voce, Power-Law Breakdown

Figure 4-40. Uniaxial stress-strain responses of the J2 plasticity
model using the flow-stress hardening model comprised of (a,b)
linear, (c,d) power-law, and (e,f) Voce isotropic hardening, (a,c,e)
Johnson-Cook and (b,d,f) power-law breakdown rate multipliers,
and (a-f) Johnson-Cook temperature multipliers. Solid lines are an-
alytical while open symbols are numerical.

136



0.0 0.1 0.2 0.3 0.4 0.5
shear strain, ε (-)

0

100

200

300

400

500

600

700
sh

e
a
r 

st
re

ss
, 
τ 

(M
P
a
)

rate: 1.0e-03, θ=473 K

rate: 1.0e-02, θ=423 K

rate: 1.0e-01, θ=373 K

rate: 1.0e+00, θ=323 K

rate: 1.0e+01, θ=293 K

(a) Linear, Johnson-Cook

0.0 0.1 0.2 0.3 0.4 0.5
shear strain, ε (-)

0

100

200

300

400

500

600

700

sh
e
a
r 

st
re

ss
, 
τ 

(M
P
a
)

rate: 1.0e-03, θ=473 K

rate: 1.0e-02, θ=423 K

rate: 1.0e-01, θ=373 K

rate: 1.0e+00, θ=323 K

rate: 1.0e+01, θ=293 K

(b) Linear, Power-Law Breakdown

0.0 0.1 0.2 0.3 0.4 0.5
shear strain, ε (-)

0

100

200

300

400

500

600

700

sh
e
a
r 

st
re

ss
, 
τ 

(M
P
a
)

rate: 1.0e-03, θ=473 K

rate: 1.0e-02, θ=423 K

rate: 1.0e-01, θ=373 K

rate: 1.0e+00, θ=323 K

rate: 1.0e+01, θ=293 K

(c) Power-Law, Johnson-Cook

0.0 0.1 0.2 0.3 0.4 0.5
shear strain, ε (-)

0

100

200

300

400

500

600

700

sh
e
a
r 

st
re

ss
, 
τ 

(M
P
a
)

rate: 1.0e-03, θ=473 K

rate: 1.0e-02, θ=423 K

rate: 1.0e-01, θ=373 K

rate: 1.0e+00, θ=323 K

rate: 1.0e+01, θ=293 K

(d) Power-Law, Power-Law Breakdown
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(e) Voce, Johnson-Cook
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(f) Voce, Power-Law Breakdown

Figure 4-41. Pure shear responses of the J2 plasticity model us-
ing the flow-stress hardening model comprised of (a,b) linear, (c,d)
power-law, and (e,f) Voce isotropic hardening, (a,c,e) Johnson-Cook
and (b,d,f) Power-law breakdown rate multipliers and (a-f) Johnson-
Cook temperature multipliers. Solid lines are analytical while open
symbols are numerical.
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Figure 4-42. Uniaxial stress-strain responses of the J2 plastic-
ity model using the decoupled flow-stress hardening model com-
prised of (a-c) linear (“L"), (d-f) power-law (“PL"), and (g-i) Voce
isotropic hardening (“V"), (a-i) temperature independent hard-
ening, (a-i) Johnson-Cook type temperature multiplier for yield,
(a,d,g) Johnson-Cook (“JC") and power-law breakdown (“PLB")
type yield and hardening rate multipliers, respectively, (b,e,h) rate-
independent (-) yield with Johnson-Cook type hardening rate de-
pendence, and (c,f,i) power-law breakdown yield rate dependence
with rate-independent hardening. Solid lines are analytical while
open symbols are numerical.
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Figure 4-43. Uniaxial stress-strain responses of the J2 plastic-
ity model using the decoupled flow-stress hardening model com-
prised of (a-c) linear (“L"), (d-f) power-law (“PL"), and (g-i) Voce
(“V") isotropic hardening, (a-i) temperature independent yield, (a-
i) Johnson-Cook type temperature multiplier for hardening, (a,d,g)
power-law breakdown (“PLB") and Johnson-Cook (“JC") rate multi-
pliers for yield and hardening, respectively (b,e,h) rate-independent
(-)hardening with Johnson-Cook type yield rate dependence, and
(c,f,i) power-law breakdown hardening rate dependence with rate-
independent yield. Solid lines are analytical while open symbols
are numerical.

139



4.13.4. User Guide

BEGIN PARAMETERS FOR MODEL J2_PLASTICITY

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Yield surface parameters

#

YIELD STRESS = <real> σy

BETA = <real> β (1.0)

#

# Hardening model

#

HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |

FLOW_STRESS | DECOUPLED_FLOW_STRESS | CUBIC_HERMITE_SPLINE |

JOHNSON_COOK | POWER_LAW_BREAKDOWN

#

# Linear hardening

#

HARDENING MODULUS = <real> H′

#

# Power-law hardening

#

HARDENING CONSTANT = <real> A

HARDENING EXPONENT = <real> n (0.5)

LUDERS STRAIN = <real> εL (0.0)

#

# Voce hardening

#

HARDENING MODULUS = <real> A

EXPONENTIAL COEFFICIENT = <real> n

#

# Johnson-Cook hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE CONSTANT = <real> C

REFERENCE RATE = <real> ε̇0

#

# Power law breakdown hardening

#
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HARDENING FUNCTION = <string>hardening_function_name

RATE COEFFICIENT = <real> g

RATE EXPONENT = <real> m

#

# User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name

#

# Spline based hardening curve

#

CUBIC SPLINE TYPE = <string>

CARDINAL PARAMETER = <real> val

KNOT EQPS = <real_list> vals

KNOT STRESS = <real_list> vals

#

#

# Following Commands Pertain to Flow_Stress Hardening Model

#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

USER_DEFINED

#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name

#

# - Rate dependence

#

RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Specifications for Johnson-Cook, Power-law-breakdown

# same as before EXCEPT no need to specify a

# hardening function

#

# User defined rate multiplier

#

RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name

#

# - Temperature dependence

#

TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#
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# Johnson-Cook temperature dependence

#

MELTING TEMPERATURE = <real> θmelt
REFERENCE TEMPERATURE = <real> θref
TEMPERATURE EXPONENT = <real> M

#

# User-defined temperature dependence

TEMPERATURE MULTIPLIER FUNCTION = <string>temp_mult_function_name

#

#

# Following Commands Pertain to Decoupled_Flow_Stress Hardening Model

#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED

#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_function_name

#

# - Rate dependence

#

YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Specifications for Johnson-Cook, Power-law-breakdown same as before

# EXCEPT no need to specify a hardening function

# AND should be preceded by YIELD

#

# As an example for Johnson-Cook yield rate dependence,

#

YIELD RATE CONSTANT = <real> Cy

YIELD REFERENCE RATE = <real> ε̇
y
0

#

# User defined rate multiplier

#

YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_name

#

HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Syntax same as for yield parameters but with a HARDENING prefix

#

# - Temperature dependence

#
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YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

# Johnson-Cook temperature dependence

#

YIELD MELTING TEMPERATURE = <real> θ
y
melt

YIELD REFERENCE TEMPERATURE = <real> θ
y
ref

YIELD TEMPERATURE EXPONENT = <real> My

#

# User-defined temperature dependence

YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_name

#

HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

# Syntax for hardening constants same as for yield but

# with HARDENING prefix

#

END [PARAMETERS FOR MODEL J2_PLASTICITY]

Output variables available for this model are listed in Table 4-17.

Table 4-17. State Variables for J2 PLASTICITY Model

Name Description

EQPS equivalent plastic strain, ε̄p

EQDOT equivalent plastic strain rate, ˙̄εp

SEFF effective stress, φ
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4.14. HOSFORD PLASTICITY MODEL

4.14.1. Theory

Like other elastic-plastic models in Lamé, the Hosford plasticity model is a rate-independent
hypoelastic formulation. Unlike the Hill and other more complex plasticity models, it is isotropic.
In a similar fashion to those models, the total rate of deformation is additively decomposed into
an elastic and plastic part such that

Di j = De
i j+D

p
i j. (4.14.1)

The objective stress rate, depending only on the elastic deformation, may then be written as,

◦
σi j= Ci jklD

e
kl. (4.14.2)

The Hosford plasticity model utilizes a yield surface first put forth by W. F. Hosford in the
1970’s [1] that is isotropic but non-quadratic. This specific form was proposed due to
experimental observations of biaxial stretching in which neither the Tresca or J2 yield surfaces
could describe the results. In contrast to many of the yield surfaces proposed for similar purposes,
only two parameters are utilized. Even with these limited terms, the developed model is quite
versatile and can be reduced to von Mises or Tresca conditions as well as capturing responses in
between. This yield surface is given as,

f
(

σi j, ε̄
p
)

= φ
(

σi j

)

− σ̄
(

ε̄p
)

= 0, (4.14.3)

in which φ
(

σi j

)

is the Hosford effective stress and σ̄ (ε̄p) is the isotropic hardening function. The
Hosford effective stress is a non-quadratic function of the principal stresses (σi, i = 1,2,3) and is
given as

φ
(

σi j

)

=

[

|σ1−σ2|a+ |σ2−σ3|a+ |σ1−σ3|a
2

]1/a

(4.14.4)

in which a is the yield surface exponent. Interestingly, if a = 2 or 4 the yield surface reduces to
that of a J2 von Mises surface while a = 1 or as a→∞ produces a Tresca like shape. If the value
of a is above 4 the yield surface takes a position between the Tresca and J2 limits. Typical values
are a = 6 or a = 8 for bcc and fcc metals, respectively [2]. To highlight this variability the yield
surface is plotted below in Figure 4-44 for three values of a – a = 4, 8, and 100.

For the hardening function, σ̄ (ε̄p), a variety of forms including linear, power law, or a more
general user defined function may be used.

An associated flow rule is utilized such that the plastic rate of deformation is normal to the yield
surface and is given by,
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Figure 4-44. Example Hosford yield surfaces, f
(

σi j, ε̄
p = 0;a

)

, pre-
sented in the deviatoric π-plane. The presented surfaces corre-
spond to the different yield exponents a = 4, 8, and 100.

Ḋ
p
i j = γ̇

∂φ

∂σi j
, (4.14.5)

where γ̇ is the consistency multiplier enforcing f = 0 during plastic deformation. Given the form
of f , it can also be shown that γ̇ = ˙̄εp.

For details, please see [3].

4.14.1.1. Plastic Hardening

Plastic hardening refers to increases in the flow stress, σ̄, with plastic deformation. As such,
hardening is described via the functional relationship between the flow stress and isotropic
hardening variable (effective plastic strain), σ̄ (ε̄p). Over the course of nearly a century of work in
metal plasticity, a variety of relationships have been proposed to describe the interactions
associated with different physical interpretations, deformation mechanisms, and materials. To
enable the utilization of the same plasticity models for different material systems, a modular
implementation of plastic hardening has been adopted such that the analyst may select different
hardening models from the input deck thereby avoiding any code changes or user subroutines. In
this section, additional details are given to the different models to enable the user to select the
appropriate choice of model. Note, the models being discussed here are only for isotropic

hardening in which the yield surface expands. Kinematic hardening in which the yield surface
translates in stress-space with deformation and distortional hardening where the shape of the
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yield surface changes shape with deformation are not treated. For a larger discussion of the
phenomenology and history of different hardening types, the reader is referred to [4, 5, 6].

Given the ubiquitous nature of these hardening laws in computational plasticity, some (if not
most) of this material may be found elsewhere in this manual. Nonetheless, the discussion is
repeated here for the convenience of the reader.

Linear

Linear hardening is conceptually the simplest model available in LAMÉ. As the name implies, a
linear relationship is assumed between the hardening variable, ε̄p, and flow stress. The constant
giving the degree of increase of yield stress with plastic flow is termed the hardening modulus and
is given as, H′, while the expression for the flow stress may be written,

σ̄ = σy+H′ε̄p. (4.14.6)

The simplicity of the model is its main feature as the constant slope,

dσ̄

dε̄p
= H′, (4.14.7)

makes the model attractive for analytical models and cheap for computational implementations
(e.g. radial return algorithms require only a single correction step). Unfortunately, the simplicity
of the representation also means that it has limited predictive capabilities and can lead to overly
stiff responses.

Power Law

Another common expression for isotropic hardening is the power-law hardening model. Due to its
prevalence, a dedicated ELASTIC-PLASTIC POWER LAW HARDENING model may be found in
LAMÉ (see Section 4.8.1). This expression is given as,

σ̄ = σy+A < ε̄p−εL >
n, (4.14.8)

in which < · > are Macaulay brackets, εL is the Lüders strain, A is a fitting constant, and n is an
exponent typically taken such that 0 < n ≤ 1. The Lüders strain is a positive, constant strain value
(default to zero) giving an initial plastic deformation domain in which the response is perfectly
plastic (see Fig. 4-20). The derivative is then simply,

dσ̄

dε̄p
= nA < ε̄p−εL >

(n−1) . (4.14.9)
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Note, one difficulty in such an implementation is that when the effective equivalent plastic strain
is zero, numerical difficulties may arise in evaluating the derivative necessitating special treatment
of the case.

Voce

The Voce hardening model (sometimes referred to as a saturation model) uses a decaying
exponential in terms of the equivalent plastic strain such that the hardening eventually saturates to
a specified value (thus the name). Such a relationship has been observed in some structural metals
giving rise to the popularity of the model. The hardening response is given as,

σ̄ = σy+A
(

1− exp
(

−nε̄p
))

, (4.14.10)

in which A is a fitting constant and n is a fitting exponent describing how quickly the hardening
saturates. Importantly, the derivative is written as,

dσ̄

dε̄p
= nAexp

(

−nε̄p
)

, (4.14.11)

and is well defined everywhere giving the selected form an advantage over the aforementioned
power law model.

Johnson-Cook

The Johnson-Cook [7, 8] hardening type is a rate-dependent formulation utilizing the assumption
that rate-independent and rate-dependent contributions may be multiplicatively separated.
Specifically, use of this option requires specifying a user-defined hardening function to capture
rate-independent contributions and Johnson-Cook type rate dependent coefficients. The flow
stress may be written in this fashion as,

σ̄ = σ̃y

(

ε̄p
)

[

1+C

〈

ln

(

˙̄εp

ε̇0

)〉]

, (4.14.12)

in which σ̃ (ε̄p) is the user-specified rate-independent hardening function, C is a fitting constant
and ε̇0 is a reference strain rate. The Macaulay brackets ensure the material behaves in a rate
independent fashion when ˙̄εp < ε̇0.

Power Law Breakdown

Like the Johnson-Cook formulation, the power-law breakdown model is also rate-dependent.
Again, a multiplicative decomposition between rate-independent and dependent hardening
contributions. In this case, however, the functional form is derived from the analysis of Frost and
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Ashby [9] in which power-law relationships like those of the Johnson-Cook and cease to
appropriately capture the physical response. The form used here is similar to the expression used
by Brown and Bammann [10] and is written as,

σ̄ = σ̃y

(

ε̄p
)

[

1+ asinh

(

(

˙̄εp

g

)(1/m)
)]

, (4.14.13)

with σ̃y (ε̄p) being the user supplied rate independent expression, g is a model parameter related
to the activation energy in going from climb to glide-controlled deformation, and m dictates the
strength of the dependence.

4.14.2. Implementation

The Hosford plasticity model is implicitly integrated using a closest point projection (CPP) return
mapping algorithm (RMA). The resulting nonlinear equations are solved via a line search
augmented Newton-Raphson method and the stress update routine is very similar to that of the
Hill plasticity model. The key difference between the two is the isotropy. Specifically, given that
the Hosford yield surface is isotropic and the functional form is given in terms of principal
stresses, the stress update routine is performed in principal stress space and then converted to
global Cartesian values.

For a loading step, a trial stress state, T tr
i j , may be computed by knowing the rate of deformation,

di j, and time step as,

T tr
i j = T n

i j+∆tCi jkldkl. (4.14.14)

The principal stresses, T tr
i , may then be used to determine the trial yield function value,

φtr = φ
(

T tr
i , ε̄

p(n)
)

. If φtr < 0, the elastic trial solution is acceptable. On the other hand, if the trial
solution is inadmissible, the aforementioned CPP-RMA problem is solved in principal stress
space. The crux of this algorithm is the simultaneous solution of two nonlinear equations – (i) the
flow rule and (ii) consistency condition. The former leads to a residual, Ri, of the form (again in
principal stress space),

Ri = ∆d
p
i −∆γ

∂φ

∂Ti
= 0, (4.14.15)

while the latter is enforced by the yield function,

f = φ (Ti)− σ̄
(

ε̄p
)

= 0, (4.14.16)

and its derivative ( ḟ ) being zero. This system is solved via a Newton-Raphson type approach in
which the state variables (stress, Ti, and consistency multiplier, γ) are iteratively corrected until
the residuals are satisfied. Using (k+1) and (k) to denote the next and current iterations, this
updating takes the form,
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∆γ(k+1) = ∆γ(k)+∆ (∆γ) ,

T
(k+1)
i = T

(k)
i +∆Ti, (4.14.17)

in which T (0) = T tr
i and ∆γ(0) = 0. Consistent linearization of the two equations can be solved to

give correction increments of the form,

∆ (∆γ) =
f (k)−R

(k)
i L

(k)
i j

∂φ(k)

∂T j

∂φ(k)

∂Ti
L

(k)
i j

∂φ(k)

∂T j
+H

′(k)
,

∆Ti = −L (k)
i j

(

R
(k)
j +∆ (∆γ)

∂φ(k)

∂T j

)

, (4.14.18)

with L
(k)

i j being the Hessian of the CPP-RMA problem and H
′(k) is the slope of the hardening

curve.

Previous studies have indicated that the Newton-Raphson method alone may be insufficient to
guarantee convergence with arbitrary stress states in the case of non-quadratic yield
surfaces [11, 12, 3]. To address this, a line search method is adopted. In such an approach, the
incrementation rule (4.14.17) is modified such that,

∆γ(k+1) = ∆γ(k)+α∆ (∆γ) ,

T
(k+1)
i = T

(k)
i +α∆Ti, (4.14.19)

where α ∈ (0,1] is the step magnitude. This parameter enforces that the solution be converging
and is determined via various convergence criteria. The α = 1 case corresponds to the
Newton-Raphson method. Utilization of this approach has been shown to greatly increase the
robustness of this algorithm under large trial stresses [3].

Finally, upon convergence of the algorithm, the Cartesian stress are found from the principal
stresses via,

T n+1
i j =

3
∑

k=1

T n+1
k êk

i êk
j, (4.14.20)

in which êk
i is the eigenvector of the kth principal stress.

Details of this implementation and the line search algorithm may be found in the work of
Scherzinger [3].
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4.14.3. Verification

The Hosford plasticity material model is verified through a variety of loading and material
conditions. For these cases, the elastic properties corresponding to 2090-T3 aluminum [13] given
in Section 4.15.3 are utilized. The elastic properties are E = 70 GPa and ν = 0.25 while a linear
hardening law of the form,

σ̄
(

ε̄p
)

= σy+Kε̄p, (4.14.21)

with σy = 200 MPa and K = E/200 is assumed. For these studies, two different yield surface
exponents will be used, a = 4, 8. The former corresponds to the J2 surface while the latter is a
common value for aluminum.

4.14.3.1. Uniaxial Stress

In the case of uniaxial stress (σ), it is trivial to note that the corresponding principal stress state is
simply σ1 = σ, σ2 = σ3 = 0. As such, regardless of a,

φ = |σ1|. (4.14.22)

With the aforementioned linear hardening, this case reduces to that discussed in Section 4.7.3.1.
Corresponding analytical and numerical results (both with a = 4 and 8) of the axial stress and
lateral strain are presented in Figures 4-45a and 4-45b, respectively. In these figures, the
invariance of response on yield surface exponent through this loading is clearly observed.
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Figure 4-45. (a) Axial stress-strain and (b) lateral strain results of
the Hosford plasticity model determined analytically and numeri-
cally for the case of yield surface exponents a = 4,8.
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4.14.3.2. Pure Shear

To explore the impact of the yield exponent a, the case of pure shear is considered. Specifically,
the only shear component shall be in the Cartesian e1− e2 direction such that σ12 = τ and ε12 are
the only non-zero components. Noting that the three principal stresses are τ,0,−τ, the yield
condition simplifies to

φ =
[

1+2a−1]1/a τ. (4.14.23)

The equivalent plastic strain may then be found as a function of ε12 in the same way as presented
in Section 4.15.3.2. Shear stress-strain results for both a = 4, 8 are presented in Figure 4-46 as
determined both by adagio and analytically. The boundary conditions for this loading are given in
Appendix A.3. In these results, the effect of the yield surface exponent, a, may clearly be seen.
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Figure 4-46. Shear stress-strain results of the Hosford plasticity
model determined analytically and numerically for the case of yield
surface exponents a = 4, 8.

4.14.3.3. Plastic Hardening

To verify the capabilities of the hardening models, rate-independent and rate-dependent alike, the
constant equivalent plastic strain rate, ˙̄εp, uniaxial stress and pure shear verification tests
described in Appendix A.5 are utilized. In these simplified loading cases, the material state may
be found explicitly as a function of time knowing the prescribed equivalent strain rate. For the
rate-independent cases, a strain rate of ˙̄εp = 1×10−4s−1 is used for ease in simulations although
the selected rate does not affect the results. Through this testing protocol, the hardening models
are not only tested at different rates but also different yield surface shapes. In the current Hosford
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case, multiple yield surface exponents, a, are considered to probe this effect. Additionally, the
rate-dependent models are tested for a wide range of strain rates (over five decades) and with all
three rate-independent hardening functions (σ̃y in the previous theory section). Although linear,
Voce, and power-law rate-independent representations are utilized in the rate-dependent tests, in
those cases the hardening models are prescribed via user-defined analytic functions. The
rate-independent verification exercises, on the other hand, examine the built-in hardening models.
This distinction necessitates the different considerations and treatments.

The various rate-dependent and rate-independent hardening coefficients are found in Table 4-18
while the remaining model parameters are unchanged from the previous verification exercises.
For the current verification exercises, the rate-independent hardening models (linear, Voce, and
power-law) will first be considered and then the rate-dependent forms (Johnson-Cook, power-law
breakdown).

C 0.1 ε̇0 1×10−4 s−1

g 0.21 s−1 m 16.4
H̃Linear 200 MPa - -
ÃPL 400 MPa ñPL 0.25
ÃVoce 200 MPa ñVoce 20

Table 4-18. The model parameters for the hardening verification
tests used with the Hosford plasticity model during verification
tests. Parameters for the rate-independent hardening functions,
σ̃y, are also given and denoted with a ·̃ while the subscript refers
to the functional form.

Linear

The aforementioned verification exercises from Appendix A.5 are used to investigate the
numerical implementation of the rate-independent linear hardening model. Results from uniaxial
stress and pure shear exercises determined analytically and numerically are given in Figure 4-47
for three different exponents a = 4, 8, and 20. The first exponent produces a J2 like response with
the latter increasing the curvature of the yield surface. As discussed in Section 4.14.3.1, a purely
uniaxial response is independent of exponent thus producing the collapsed results in Figure 4-47a.
In both the uniaxial stress and pure shear cases, clear agreement is noted between the two sets of
results. The linear slope (tangent modulus) giving the model its name is also observable in the
results of Figure 4-47.

Power-Law

To consider the performance of the common power-law hardening model with the Hosford yield
surface, the uniaxial stress and pure shear exercises of Appendix A.5 are solved analytically and
numerically. These results are presented in Figure 4-48 for three different Hosford exponents –
a = 4, 8 and 20. As expected from previous discussions the uniaxial stress results in Figure 4-48a
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Figure 4-47. (a) Uniaxial stress-strain and (b) pure shear responses
of the Hosford plasticity model with rate-independent, linear hard-
ening. Solid line are analytical while open symbols are numerical.

are independent of a. For both the uniaxial stress and pure shear results, the desired agreement
between analytical and numerical solutions is apparent. These results also highlight the initial
curved response during plastic-deformation eventually transitioning into a more linear type
response.

0.0 0.1 0.2 0.3 0.4 0.5
axial strain, ε (-)

0

100

200

300

400

500

600

a
x
ia

l 
st

re
ss

, 
σ
 (

M
P
a
)

a=4

a=8

a=20

(a) Uniaxial Stress

0.0 0.1 0.2 0.3 0.4 0.5
shear strain, ε (-)

0

50

100

150

200

250

300

350

sh
e
a
r 

st
re

ss
, 
τ 

(M
P
a
)

a=4

a=8

a=20

(b) Pure Shear

Figure 4-48. (a) Uniaxial stress-strain and (b) pure shear responses
of the Hosford plasticity model with rate-independent, power-law
hardening. Solid line are analytical while open symbols are numer-
ical.
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Voce

For the rate-independent Voce hardening model, the problems of Appendix A.5 are used to verify
the model response. Specifically, results for the uniaxial stress and pure shear analyses are
presented in Figure 4-49 as determined analytically and numerically for three different values of a

– a = 4, 8, and 20. From these results, clear agreement is noted between the two sets of results;
including the invariance of the uniaxial stress case to a (Figure 4-49a). Additionally, the results of
Figure 4-49 also exemplify the saturation nature of the Voce hardening model as the stress-strain
response eventually asymptotes.
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Figure 4-49. (a) Uniaxial stress-strain and (b) pure shear responses
of the Hosford plasticity model with rate-independent, Voce hard-
ening. Solid line are analytical while open symbols are numerical.

Johnson-Cook

As noted in Section 4.14.3.1, the uniaxial stress response is independent of a. This is also
reflected Appendix A.5.1 in which the stress weighting coefficients (Γ) for the Hosford uniaxial
case are one. As such in Figure 4-50 the results of the constant equivalent plastic strain rate
uniaxial stress test are presented with a = 8 and using the linear (4-50a), power-law (4-50b), and
Voce (4-50c) rate-independent hardening models for five different rates –
˙̄εp = 1×10−3, 1×10−2, 1×10−1, 1×100 and 1×101 s−1. In all cases in Figure 4-50 excellent
agreement is observed between the results.

Unlike the uniaxial stress case, for pure shear the response depends on the exponent a. Therefore,
in addition to the three hardening models, results are also presented for three different exponent
values – a = 4, 8, and 20. The results for all nine cases are presented in Figure 4-51 and again
excellent agreement is noted in all instances.
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Figure 4-50. Uniaxial stress-strain response of the Hosford plas-
ticity model (a = 8) with rate-dependent, Johnson-Cook type hard-
ening with (a) linear (b) power-law and (c) Voce rate-independent
hardening. Solid lines are analytical results while open symbols
are numerical.

Power-Law Breakdown

As mentioned in the previous Johnson-Cook section, for the Hosford model under uniaxial stress
the response is independent of yield surface exponent, a. Therefore, Figure 4-52 presents the
results of the constant equivalent plastic strain rate verification test of Appendix A.5.1 for strain
rates spanning five decades – ˙̄εp = 1×10−3, 1×10−2, 1×10−1, 1×100 and 1×101 s−1. The tests
are performed for each rate–independent hardening model. In all fifteen cases excellent
agreement is noted between numerical and analytical results.

Similarly, Figure 4-53 gives the results of the pure shear variant of the constant equivalent plastic
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(g) Voce Hardening – a = 4
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Figure 4-51. Stress-strain response of the Hosford plasticity model
with rate-dependent, Johnson-Cook type hardening in pure shear
with (a-c) linear (d-f) power-law and (g-i) Voce rate-independent
hardening. Solid lines are analytical results while open symbols
are numerical.

strain rate verification test of Appendix A.5.2. The same five rates used in the uniaxial stress case
are again utilized although in this instance as the pure shear response does depend on a the results
are given for three yield surface exponents – a = 4, 8 and 20. In the forty-five cases shown in
Figure 4-53 quite acceptable agreement is noted verifying the capabilities of the rate-dependent

Hosford implementation.
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Figure 4-52. Uniaxial stress-strain response of the Hosford plas-
ticity model (a = 8) with rate-dependent, power-law breakdown
type hardening with (a) linear (b) power-law and (c) Voce rate-
independent hardening. Solid lines are analytical results while
open symbols are numerical.
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(g) Voce Hardening – a = 4
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(h) Voce Hardening – a = 8
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Figure 4-53. Stress-strain response of the Hosford plasticity model
with rate-dependent, power-law breakdown type hardening in
pure shear with (a-c) linear (d-f) power-law and (g-i) Voce rate-
independent hardening. Solid lines are analytical results while
open symbols are numerical.
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4.14.4. User Guide

BEGIN PARAMETERS FOR MODEL HOSFORD_PLASTICITY

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Yield surface parameters

#

YIELD STRESS = <real> σy

A = <real> a (1.0)

#

# Hardening model

#

HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |

CUBIC_HERMITE_SPLIT | JOHNSON_COOK | POWER_LAW_BREAKDOWN

#

# Linear hardening

#

HARDENING MODULUS = <real> H′

#

# Power-law hardening

#

HARDENING CONSTANT = <real> A

HARDENING EXPONENT = <real> n (0.5)

LUDERS STRAIN = <real> εL (0.0)

#

# Voce hardening

#

HARDENING MODULUS = <real> A

EXPONENTIAL COEFFICIENT = <real> n

#

# Johnson-Cook hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE CONSTANT = <real> C

REFERENCE RATE = <real> ε̇0

#

# Power law breakdown hardening

#

HARDENING FUNCTION = <string>hardening_function_name
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RATE COEFFICIENT = <real> g

RATE EXPONENT = <real> m

#

# User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name

#

# Spline based hardening curve

#

CUBIC SPLINE TYPE = <string>

CARDINAL PARAMETER = <real> val

KNOT EQPS = <real_list> vals

KNOT STRESS = <real_list> vals

END [PARAMETERS FOR MODEL HOSFORD_PLASTICITY]

Output variables available for this model are listed in Table 4-19.

Table 4-19. State Variables for HOSFORD PLASTICITY Model

Name Description

EQPS equivalent plastic strain, ε̄p

EQDOT equivalent plastic strain rate, ˙̄εp

SEFF effective stress, φ
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4.15. HILL PLASTICITY MODEL

4.15.1. Theory

The Hill plasticity model is similar to other plasticity models except that it is not isotropic. It is a
hypoelastic, rate-independent plasticity model. The rate form of the equation assumes an additive
split of the rate of deformation into an elastic and plastic part

Di j = De
i j+D

p
i j (4.15.1)

The stress rate only depends on the elastic rate of deformation

◦
σi j= Ci jklD

e
kl (4.15.2)

where Ci jkl are the components of the fourth-order, isotropic elasticity tensor.

The Hill plasticity model has an orthotropic yield surface that assumes orthogonal principal
material directions. An example of this yield surface is presented below in Figure 4-54 along with
examples of two isotropic surfaces – the von Mises (J2) and Hosford (with a = 8). The various
surface parameters correspond to 2090-T3 aluminum and the specific Hill strengths are found
in [1]. By comparing the Hill surface to the two isotropic surfaces, the impact of the anisotropy is
clear. Additionally, substantial differences to the normals of the yield surfaces at points of
intersection highlight the impact of the yield function selection on the resulting flow directions.

In functional form, the Hill yield surface looks like a von Mises yield surface except that there are
6 yield stresses: σy

11, σy
22, σy

33, τy
12, τy

23, and τy
31. These yield stresses correspond to 3 normal and

3 shear yield stresses. The yield function takes the form

φ2 (σi j

)

= F (σ̂22− σ̂33)2+G (σ̂33− σ̂11)2+H (σ̂11− σ̂22)2

(4.15.3)

+2Lσ̂2
23+2Mσ̂2

31+2Nσ̂2
12 = σ̄

2 (ε̄p)

The coefficients F, G, H, L, M, and N were introduced by Hill. In terms of the yield stresses they
are:

F =
(σ̄)2

2

[

1
(

σ
y
22

)2 +
1

(

σ
y
33

)2 −
1

(

σ
y
11

)2

]

; L =
(σ̄)2

2

[

1
(

τ
y
23

)2

]

G =
(σ̄)2

2

[

1
(

σ
y
33

)2 +
1

(

σ
y
11

)2 −
1

(

σ
y
22

)2

]

; M =
(σ̄)2

2

[

1
(

τ
y
31

)2

]

(4.15.4)
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σ1

σ2

σ3

fvonMises

fHosford

fHill

Figure 4-54. Example anisotropic Hill yield surface, fHill

(

σi j, ε̄
p = 0

)

,
presented in the deviatoric π-plane fit to 2090-T3 aluminum. Com-
parison von Mises (J2) and Hosford (with a = 8) surfaces are also
presented.

H =
(σ̄)2

2

[

1
(

σ
y
11

)2 +
1

(

σ
y
22

)2 −
1

(

σ
y
33

)2

]

; N =
(σ̄)2

2

[

1
(

τ
y
12

)2

]

where σ̄ is a reference yield stress.

Rather than input the six independent yield stresses, the ratios of the yield stresses to some
reference yield stress are generally used as input. These ratios are

R11 =
σ

y
11

σ̄
; R12 =

√
3
τ

y
12

σ̄

R22 =
σ

y
22

σ̄
; R23 =

√
3
τ

y
23

σ̄
(4.15.5)

R33 =
σ

y
33

σ̄
; R31 =

√
3
τ

y
31

σ̄

These ratios are set up so that if Ri j = 1 then the yield surface is isotropic.
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The orientation of the principal material axes with respect to the global Cartesian axes may be
specified by the user. First, a rectangular or cylindrical reference coordinate system is defined.
Spherical coordinate systems are not currently implemented for the Hill model. The material
coordinate system can then be defined through two successive rotations about axes in the
reference rectangular or cylindrical coordinate system. In the case of the cylindrical coordinate
system this allows the principal material axes to vary point-wise in a given element block.

The plastic rate of deformation, as with the isotropic models, assumes associated flow

D
p
i j = γ̇

∂φ

∂σi j
(4.15.6)

Given the form for φ, the consistency parameter, γ̇ is equal to the rate of the equivalent plastic
strain, ˙̄εp.

The hardening behavior is given by σ̄(ε̄p). This hardening function can be a linear hardening
function, a power law hardening function, or a user defined hardening function.

For more information about the Hill plasticity model, consult [2].

4.15.1.1. Plastic Hardening

Plastic hardening refers to increases in the flow stress, σ̄, with plastic deformation. As such,
hardening is described via the functional relationship between the flow stress and isotropic
hardening variable (effective plastic strain), σ̄ (ε̄p). Over the course of nearly a century of work in
metal plasticity, a variety of relationships have been proposed to describe the interactions
associated with different physical interpretations, deformation mechanisms, and materials. To
enable the utilization of the same plasticity models for different material systems, a modular
implementation of plastic hardening has been adopted such that the analyst may select different
hardening models from the input deck thereby avoiding any code changes or user subroutines. In
this section, additional details are given to the different models to enable the user to select the
appropriate choice of model. Note, the models being discussed here are only for isotropic

hardening in which the yield surface expands. Kinematic hardening in which the yield surface
translates in stress-space with deformation and distortional hardening where the shape of the
yield surface changes shape with deformation are not treated. For a larger discussion of the
phenomenology and history of different hardening types, the reader is referred to [3, 4, 5].

Given the ubiquitous nature of these hardening laws in computational plasticity, some (if not
most) of this material may be found elsewhere in this manual. Nonetheless, the discussion is
repeated here for the convenience of the reader.

Linear

Linear hardening is conceptually the simplest model available in LAMÉ. As the name implies, a
linear relationship is assumed between the hardening variable, ε̄p, and flow stress. The constant

165



giving the degree of increase of yield stress with plastic flow is termed the hardening modulus and
is given as, H′, while the expression for the flow stress may be written,

σ̄ = σy+H′ε̄p. (4.15.7)

The simplicity of the model is its main feature as the constant slope,

dσ̄

dε̄p
= H′, (4.15.8)

makes the model attractive for analytical models and cheap for computational implementations
(e.g. radial return algorithms require only a single correction step). Unfortunately, the simplicity
of the representation also means that it has limited predictive capabilities and can lead to overly
stiff responses.

Power Law

Another common expression for isotropic hardening is the power-law hardening model. Due to its
prevalence, a dedicated ELASTIC-PLASTIC POWER LAW HARDENING model may be found in
LAMÉ (see Section 4.8.1). This expression is given as,

σ̄ = σy+A < ε̄p−εL >
n, (4.15.9)

in which < · > are Macaulay brackets, εL is the Lüders strain, A is a fitting constant, and n is an
exponent typically taken such that 0 < n ≤ 1. The Lüders strain is a positive, constant strain value
(default to zero) giving an initial plastic deformation domain in which the response is perfectly
plastic (see Fig. 4-20). The derivative is then simply,

dσ̄

dε̄p
= nA < ε̄p−εL >

(n−1) . (4.15.10)

Note, one difficulty in such an implementation is that when the effective equivalent plastic strain
is zero, numerical difficulties may arise in evaluating the derivative necessitating special treatment
of the case.

Voce

The Voce hardening model (sometimes referred to as a saturation model) uses a decaying
exponential in terms of the equivalent plastic strain such that the hardening eventually saturates to
a specified value (thus the name). Such a relationship has been observed in some structural metals
giving rise to the popularity of the model. The hardening response is given as,
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σ̄ = σy+A
(

1− exp
(

−nε̄p
))

, (4.15.11)

in which A is a fitting constant and n is a fitting exponent describing how quickly the hardening
saturates. Importantly, the derivative is written as,

dσ̄

dε̄p
= nAexp

(

−nε̄p
)

, (4.15.12)

and is well defined everywhere giving the selected form an advantage over the aforementioned
power law model.

Johnson-Cook

The Johnson-Cook [6, 7] hardening type is a rate-dependent formulation utilizing the assumption
that rate-independent and rate-dependent contributions may be multiplicatively separated.
Specifically, use of this option requires specifying a user-defined hardening function to capture
rate-independent contributions and Johnson-Cook type rate dependent coefficients. The flow
stress may be written in this fashion as,

σ̄ = σ̃y

(

ε̄p
)

[

1+C

〈

ln

(

˙̄εp

ε̇0

)〉]

, (4.15.13)

in which σ̃ (ε̄p) is the user-specified rate-independent hardening function, C is a fitting constant
and ε̇0 is a reference strain rate. The Macaulay brackets ensure the material behaves in a rate
independent fashion when ˙̄εp < ε̇0.

Power Law Breakdown

Like the Johnson-Cook formulation, the power-law breakdown model is also rate-dependent.
Again, a multiplicative decomposition between rate-independent and dependent hardening
contributions. In this case, however, the functional form is derived from the analysis of Frost and
Ashby [8] in which power-law relationships like those of the Johnson-Cook and cease to
appropriately capture the physical response. The form used here is similar to the expression used
by Brown and Bammann [9] and is written as,

σ̄ = σ̃y

(

ε̄p
)

[

1+ asinh

(

(

˙̄εp

g

)(1/m)
)]

, (4.15.14)

with σ̃y (ε̄p) being the user supplied rate independent expression, g is a model parameter related
to the activation energy in going from climb to glide-controlled deformation, and m dictates the
strength of the dependence.
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4.15.2. Implementation

The Hill plasticity model uses a predictor-corrector algorithm for integrating the constitutive
model. Given a rate of deformation, di j, and a time step, ∆ t, a trial stress state is calculated based
on an elastic response

T tr
i j = T n

i j+∆ tCi jkldkl (4.15.15)

If the trial stress state lies outside the yield surface, i.e. if φ(T tr
i j ) > σ̄, then the model uses a

backward Euler algorithm to return the stress to the yield surface. There are two equations that
need to be solved. To ensure that the plastic strain increment is in the correct direction we have

R
p
i j = ∆t d

p
i j−∆γ

∂φ

∂Ti j
= 0 (4.15.16)

while to ensure that the stress state is on the yield surface we require

f = φ
(

Ti j

)

− σ̄
(

ε̄p
)

= 0 (4.15.17)

The primary algorithm for solving these equations is a Newton-Raphson algorithm. Using ∆γ
(which is equal to ∆ε̄p) and Ti jas the solution variables, we set up an iterative algorithm where

∆γ(k+1) = ∆γ(k)+∆ (∆γ)

(4.15.18)

T
(k+1)
i j = T

(k)
i j +∆Ti j

where ∆γ(0) = 0 and T
(0)
i j = T tr

i j and

∆t d
p
i j = C

−1
i jkl

(

T tr
kl −Tkl

)

(4.15.19)

The Newton-Raphson algorithm gives

∆ (∆γ) =
f (k)−R

(k)
i j L

(k)
i jkl

∂φ(k)

∂Tkl

∂φ(k)

∂Ti j
L

(k)
i jkl

∂φ(k)

∂Tkl

+H′ (k)

(4.15.20)

∆Ti j = −L (k)
i jkl

(

R
(k)
kl +∆ (∆γ)

∂φ(k)

∂Tkl

)
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A straightforward Newton-Raphson algorithm does not always converge, so the return mapping
algorithm is augmented with a line search algorithm

∆γ(k+1) = ∆γ(k)+α∆ (∆γ)

(4.15.21)

T
(k+1)
i j = T

(k)
i j +α∆Ti j

where α ∈ (0,1] is the line search parameter which is determined from certain convergence
considerations. If α = 1 then the Newton-Raphson algorithm is recovered. The line search
algorithm greatly increases the reliability of the return mapping algorithm.

4.15.3. Verification

The Hill plasticity material model is verified for a number of loading conditions. The elastic
properties used in these analyses are E = 70 GPa and ν = 0.25. The parameters that are used to
define the yield surface are

R11 = 1.000680 ; R12 = 0.909194

R22 = 0.906397 ; R23 = 0.851434 (4.15.22)

R33 = 1.027380 ; R31 = 0.799066

These parameters correspond to a parameterization of the Barlat model for 2090-T3
aluminum [10] that is fit to the Hill model. The hardening law used for the model is a Voce law
with the following form

σ̄
(

ε̄p
)

= σy+A
(

1− exp(−nε̄p)
)

(4.15.23)

For these calculations σy = 200 MPa, A = 200 MPa, and n = 20. Finally, the coordinate system
used in these calculations is a rectangular coordinate system with the e1,e2,e3 axes aligned with
the x,y,z axes.

4.15.3.1. Uniaxial Stress

The Hill plasticity model is tested in uniaxial tension along the three orthogonal principal material
directions. The tests looks at the stress, the strain, and the equivalent plastic strain and compares
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these values against analytical results for the same problem. In this verification problem only the
normal stresses are needed, and the shear terms are not exercised. Therefore, the parameters R12,
R23, and R31 are not used in the problem and a separate verification test will be needed for shear
response.

The model is tested in uniaxial stress in the x, y, and z directions, giving three test problems. Each
problem can be formulated exactly the same. For the description of the test we will only look at
loading in the x direction (x1 direction).

For the uniaxial stress problem, the only non-zero stress component is σ11. In the analysis that
follows σ11 = σ. There are three non-zero strain components, ε11, ε22, and ε33. In the analysis
that follows ε11 = ε. Furthermore, the axial elastic strain, εe

11 = σ/E will be denoted by εe.

Axial Stresses

The uniaxial stress calculated by the model in Adagio is compared to analytical solutions. For
uniaxial loading in the e1 direction, the effective stress is

φ =
σ

R11
(4.15.24)

If the stress state is on the yield surface, then φ = σ̄ (ε̄p), so the axial stress, as a function of the
hardening function, is

σ = Rkkσ̄
(

ε̄p
)

(4.15.25)

This shows that the stress state can be calculated from the hardening law and the anisotropy
parameters.

To evaluate the axial stress we need the equivalent plastic strain as a function of the axial strain. If
we equate the rate of plastic work we get

σ̄ ˙̄εp = σ
(

ε̇− ε̇e) → ˙̄εp = R11
(

ε̇− ε̇e) (4.15.26)

which, when integrated, gives us an implicit equation for the equivalent plastic strain

ε̄p = R11

(

ε−R11
σ̄(ε̄p)

E

)

(4.15.27)

The equivalent plastic strain can then be used in (4.15.25) to find the axial stress, σ.

The axial stresses for loading in the other directions can be found the same way. The axial
stresses for loading in the e1, e2, and e3 directions are shown in Figure 4-55.
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Lateral Strains

For the lateral strains we need the plastic strains and therefore the normal to the yield surface. The
components of the normal to the yield surface are

∂φ

∂σ11
=

1
R11

;
∂φ

∂σ22
= −HR11 ;

∂φ

∂σ33
= −GR11 (4.15.28)

The elastic axial and lateral strain components are

εe
11 =

σ

E
= εe ; εe

22 = ε
e
33 = −ν

σ

E
= −νεe (4.15.29)

The plastic axial strain component is

ε
p
11 = ε11−

σ

E
= ε−εe (4.15.30)

which comes from the additive decomposition of the strain rates. Using the equivalent plastic
strain (4.15.27) we can find the lateral plastic strain components

ε
p
22 = −

(

ε−εe)HR2
11 ; ε

p
33 = −

(

ε−εe)GR2
11 (4.15.31)

The lateral total stain components prior to yield are ε22 = ε33 = −νε. After yield they are

ε22 = −νεe−HR11ε̄
p

(4.15.32)

ε33 = −νεe−GR11ε̄
p

where εe = σ/E.

For loading in the y direction, a similar analysis leads to the lateral strains, after yield

ε33 = −νεe−FR22ε̄
p

(4.15.33)

ε11 = −νεe−HR22ε̄
p

For loading in the z direction, a similar analysis leads to the lateral strains, after yield
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ε11 = −νεe−GR33ε̄
p

(4.15.34)

ε22 = −νεe−FR33ε̄
p

Results for all three loadings are shown in Figures 4-56, 4-57, and 4-58.

172



Figure 4-55. Stresses when loading in the e1, e2, and e3-directions
using the Hill model with a Voce hardening law.

Figure 4-56. Lateral strain as a function of axial strain for the Hill
model of 2090-T3 aluminum. Loading is in the e1-direction and the
hardening law is a Voce law.
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Figure 4-57. Lateral strain as a function of axial strain for the Hill
model of 2090-T3 aluminum. Loading is in the e2-direction and the
hardening law is a Voce law.

Figure 4-58. Lateral strain as a function of axial strain for the Hill
model of 2090-T3 aluminum. Loading is in the e3-direction and the
hardening law is a Voce law.
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4.15.3.2. Pure Shear

The shear stress calculated by the Hill plasticity model in Adagio is compared to analytical
solutions. Without loss of generality we will look at solutions for pure shear with respect to the
e1-e2 axes. Solutions for shear with respect to the other axes will be similar. In what follows, the
only non-zero shear stress will be σ12, and the only non-zero shear strain will be ε12 In general,
for pure shear with respect to the e1-e2 axes, the effective stress is

φ =
√

3
σ12

R12
(4.15.35)

If the stress state is on the yield surface, then φ = σ̄ (ε̄p), so the shear stress is

σ12 =
R12√

3
σ̄
(

ε̄p
)

(4.15.36)

This shows that the pure shear stress state can be calculated from the hardening law and the
anisotropy parameters.

To evaluate the shear stress we need the equivalent plastic strain as a function of the shear strain.
If we equate the rate of plastic work we get

σ̄ ˙̄εp = 2σ12
(

ε̇12− ε̇e
12

)

→ ˙̄εp =
2R12√

3

(

ε̇12− ε̇e
12

)

(4.15.37)

which, when integrated, gives us an implicit equation for the equivalent plastic strain

ε̄p =
2R12√

3

(

ε12−
R12√

3

σ̄ (ε̄p)
2G

)

(4.15.38)

If we define R̂12 = R12/
√

3 then we get a form similar to what we had for uniaxial stress

ε̄p = 2R̂12

(

ε12− R̂12
σ̄ (ε̄p)

2G

)

(4.15.39)

The equivalent plastic strain can now be used to find the shear stress.

Boundary Conditions for Pure Shear

The deformation gradient that gives pure shear for loading relative to the e1-e2 axes is
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; ε = lnλ (4.15.40)

For loading relative to the e2-e3 axes and the e3-e1 axes the boundary conditions are modified
appropriately.

Results

The results for the Hill plasticity model loaded in pure shear are shown in Figure 4-59. We see
that the stress strain curves in pure shear as calculated by Adagio follow the expected stress strain
curves. All other stress and strain components for the three problems are zero.
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Figure 4-59. Shear stress versus shear strain using the Hill model
with a Voce hardening law. Results are for shear in the three or-
thogonal planes of the material coordinate system.

4.15.3.3. Plastic Hardening

To verify the capabilities of the hardening models, rate-independent and rate-dependent alike, the
constant equivalent plastic strain rate, ˙̄εp, uniaxial stress and pure shear verification tests
described in Appendix A.5 are utilized. In these simplified loading cases, the material state may
be found explicitly as a function of time knowing the prescribed equivalent strain rate. For the
rate-independent cases, a strain rate of ˙̄εp = 1×10−4s−1 is used for ease in simulations although
the selected rate does not affect the results. Through this testing protocol, the hardening models
are not only tested at different rates but also in different principal material directions to consider
the anisotropy of the Hill yield surface. Additionally, the rate-dependent models are tested for a
wide range of strain rates (over five decades) and with all three rate-independent hardening
functions (σ̃y in the previous theory section). Although linear, Voce, and power-law
rate-independent representations are utilized in the rate-dependent tests, in those cases the
hardening models are prescribed via user-defined analytic functions. The rate-independent

verification exercises, on the other hand, examine the built in hardening models. This distinction
necessitates the different considerations and treatments.

The various rate-dependent and rate-independent hardening coefficients are found in Table 4-20
while the remaining model parameters are unchanged from the previous verification exercises.
For the current verification exercises, the rate-independent hardening models (linear, Voce, and
power-law) will first be considered and then the rate-dependent forms (Johnson-Cook, power-law
breakdown).
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C 0.1 ε̇0 1×10−4 s−1

g 0.21 s−1 m 16.4
H̃Linear 200 MPa - -
ÃPL 400 MPa ñPL 0.25
ÃVoce 200 MPa ñVoce 20

Table 4-20. The model parameters for the hardening verification
tests used with the Hill plasticity model during verification tests.
Parameters for the rate-independent hardening functions, σ̃y, are
also given and denoted with a ·̃ while the subscript refers to the
functional form.

Linear

To examine the performance of the rate-independent linear hardening model, the verification
exercises from Appendix A.5 are used. In this case, as the Hill yield surface is being considered,
the responses are determined numerically and analytically in the uniaxial stress case with loading
in three different principal material directions and three different shear planes for the pure shear
case. These results are presented in Figure 4-60. From these responses, superb agreement
between the analytical and numerical results is noted. Additionally, the constant linear
stress-strain response during plastic deformations clearly demonstrates the behavior giving this
model its name.
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Figure 4-60. (a) Uniaxial stress-strain and (b) pure shear responses
of the Hill plasticity model with rate-independent, linear hardening.
Solid lines are analytical while open symbols are numerical.
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Power-Law

The rate-independent power-law hardening model is verified by using the uniaxial stress and pure
shear problems of Appendix A.5. Results of these endeavors determined analytically and
numerically are presented in Figure 4-61 in which the uniaxial stress problem is presented for
loading aligned with the three different principal material directions and three different shear
planes for the pure shear case. From these results, outstanding agreement is noted between both
numerical and analytical results sets verifying the model. Also, the initially stiff hardening
decreasing to a lower linear tangent modulus characteristic of power-law hardening models is
clearly evident in the various result sets of Figure 4-61.
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Figure 4-61. (a) Uniaxial stress-strain and (b) pure shear responses
of the Hill plasticity model with rate-independent, power-law hard-
ening. Solid lines are analytical while open symbols are numerical.

Voce

Verification of the rate-independent Voce hardening model is pursued by considering both the
uniaxial stress and pure shear approaches of Appendix A.5. The results of these investigations
determined analytically and numerically are shown in Figure 4-62. For the uniaxial stress cases,
loadings in each of the three principal material directions is presented while complementary
results from the three shear planes are shown for the pure shear case. In each of these six
instances, exemplary agreement is observed between the different results sets. Additionally, such
stress-strain results also show the “saturation” behavior associated with Voce models in which at
some equivalent plastic strain the material no longer hardens.
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Figure 4-62. (a) Uniaxial stress-strain and (b) pure shear responses
of the Hill plasticity model with rate-independent, Voce hardening.
Solid lines are analytical while open symbols are numerical.

Johnson-Cook

As noted in Appendix A.5.1, the uniaxial stress response depends on the yield surface anisotropy
coefficients (for the Hill model the R′s). The respective coefficients are given in the
aforementioned appendix while Figure 4-63 presents the results of forty-five different verification
exercises corresponding to different combinations of the three material principal directions
(ê1, ê2, and ê3), five equivalent plastic strain rates(1×10−3, 1×10−2, 1×10−1, 1×100 and
1×101 s−1), and three rate-independent hardening models (linear, power-law, and Voce). For each
combination, the analytical and numerical results match to within acceptably small numerical
differences.

For the pure shear case, the problem discussed in Appendix A.5.2 is considered. The results still
depend on the Hill R coefficients and forty-five different loadings are presented in Fig. 4-64. In
this instance, three different shearing planes are used in lieu of the principal directions.
Nonetheless, for these results the key result remains the same – analytical matches numerical
further verifying rate dependent capabilities.

Power-Law Breakdown

For the power-law breakdown model, the same forty-five cases discussed in the previous section
(three directions, five rates, three hardening models) are again solved via the approach of
Appendix A.5.1 in Figure 4-65. Although the impact of rate on the responses differs due to the
assumed representation of the rate-dependent hardening, excellent agreement is still noted
between analytical and numerical results.

To expand on the uniaxial stress results, the response through pure shear is also probed via the
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Figure 4-63. Uniaxial stress-strain response of the Hill plasticity
model with rate-dependent, Johnson-Cook type hardening with (a-
c) linear (d-f) power-law and (g-i) Voce rate-independent hardening.
Solid lines are analytical results while open symbols are numerical.

method of Appendix A.5.2. Again forty-five different cases are investigated and their results are
presented in Figure 4-66. Once again, the results aligning thereby verifying the capability of the
model and producing additional credibility.
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Figure 4-64. Stress-strain response of the Hill plasticity model with
rate-dependent, Johnson-Cook type hardening in pure shear with
(a-c) linear (d-f) power-law and (g-i) Voce rate-independent hard-
ening. Solid lines are analytical results while open symbols are
numerical.
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Figure 4-65. Uniaxial stress-strain response of the Hill plasticity
model with rate-dependent, power-law breakdown type hardening
in with (a-c) linear (d-f) power-law and (g-i) Voce rate-independent
hardening. Solid lines are analytical results while open symbols
are numerical.
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Figure 4-66. Stress-strain response of the Hill plasticity model with
rate-dependent, power-law breakdown type hardening in pure shear
with (a-c) linear (d-f) power-law and (g-i) Voce rate-independent
hardening. Solid lines are analytical results while open symbols
are numerical.
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4.15.4. User Guide

BEGIN PARAMETERS FOR MODEL HILL_PLASTICITY

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Material coordinates system definition

#

COORDINATE SYSTEM = <string> coordinate_system_name

DIRECTION FOR ROTATION = <real> 1|2|3

ALPHA = <real> α1 (degrees)

SECOND DIRECTION FOR ROTATION = <real> 1|2|3

SECOND ALPHA = <real> α2 (degrees)

#

# Yield surface parameters

#

YIELD STRESS = <real> σy

R11 = <real> R11 (1.0)

R22 = <real> R22 (1.0)

R33 = <real> R33 (1.0)

R12 = <real> R12 (1.0)

R23 = <real> R23 (1.0)

R31 = <real> R31 (1.0)

#

# Hardening model

#

HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |

CUBIC_HERMITE_SPLIT | JOHNSON_COOK | POWER_LAW_BREAKDOWN

#

# Linear hardening

#

HARDENING MODULUS = <real> H′

#

# Power-law hardening

#

HARDENING CONSTANT = <real> A

HARDENING EXPONENT = <real> n (0.5)

LUDERS STRAIN = <real> εL (0.0)

#

# Voce hardening
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#

HARDENING MODULUS = <real> A

EXPONENTIAL COEFFICIENT = <real> n

#

# Johnson-Cook hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE CONSTANT = <real> C

REFERENCE RATE = <real> ε̇0

#

# Power law breakdown hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE COEFFICIENT = <real> g

RATE EXPONENT = <real> m

#

# User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name

#

# Spline based hardening curve

#

CUBIC SPLINE TYPE = <string>

CARDINAL PARAMETER = <real> val

KNOT EQPS = <real_list> vals

KNOT STRESS = <real_list> vals

END [PARAMETERS FOR MODEL HILL_PLASTICITY]

Output variables available for this model are listed in Table 4-21.

Table 4-21. State Variables for HILL PLASTICITY Model

Name Description

EQPS equivalent plastic strain, ε̄p

EQDOT equivalent plastic strain rate, ˙̄εp

SEFF effective stress, φ
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4.16. BARLAT PLASTICITY MODEL

4.16.1. Theory

The Barlat plasticity model is a hypoelastic, rate-independent plasticity model. The underlying
yield surface is both anisotropic and non-quadratic [1]. With respect to the former, linear
transformations of the deviatoric stress are used to capture texture and anisotropy effects. The rate
form of this model assumes an additive split of the rate of deformation into an elastic and plastic
part

Di j = De
i j+D

p
i j. (4.16.1)

The stress rate only depends on the elastic rate of deformation

◦
σi j= Ci jklD

e
kl (4.16.2)

where Ci jkl are the components of the fourth-order, isotropic elasticity tensor.

To describe anisotropy in the yield-behavior, two linear transformation tensors, C′i jkl and C′′i jkl, are
introduced such that,

s′i j =C′i jklskl ; s′′i j =C′′i jklskl, (4.16.3)

with si j being the deviatoric stress tensor (si j = σi j−1/3σkkδi j) and s′i j and s′′i j being transformed
stresses. Two transformations are used to capture both the anisotropy of the yield surface and flow
rule. In Voigt notation the two transformation tensors are given as,

[

C′
]

=

















0 −c′12 −c′13 0 0 0
−c′21 0 −c′23 0 0 0
−c′31 −c′32 0 0 0 0

0 0 0 c′44 0 0
0 0 0 0 c′55 0
0 0 0 0 0 c′66

















(4.16.4)

[

C′′
]

=

















0 −c′′12 −c′′13 0 0 0
−c′′21 0 −c′′23 0 0 0
−c′′31 −c′′32 0 0 0 0

0 0 0 c′′44 0 0
0 0 0 0 c′′55 0
0 0 0 0 0 c′′66

















. (4.16.5)

Alternatively, the transformed stresses may be written in terms of the Cauchy stress tensor as,
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s′i j = L′i jklσkl ; s′′i j = L′′i jklσkl, (4.16.6)

where L′i jkl =C′i jmnIImnkl and L′′i jkl =C′′i jmnIImnkl. In this case, IIi jkl is the symmetric deviatoric
projection tensor and takes the form of,

IIi jkl =
1
2

(

δikδ jl+δilδ jk

)

− 1
3
δi jδkl. (4.16.7)

In reduced form,

[

L′
]

=
1
3

















c′12+ c′13 −2c′12+ c′13 c′12−2c′13 0 0 0
−2c′21+ c′23 c′21+ c′23 c′21−2c′23 0 0 0
−2c′31+ c′32 c′31−2c′32 c′31+ c′32 0 0 0

0 0 0 3c′44 0 0
0 0 0 0 3c′55 0
0 0 0 0 0 3c′66

















, (4.16.8)

and an analogous expression may be written for L′′i jkl.

The yield surface, f , is given as,

f
(

σi j, ε̄
p
)

= φ
(

σi j

)

− σ̄
(

ε̄p
)

= 0, (4.16.9)

in which φ
(

σi j

)

is the effective stress and σ̄ (ε̄p) is the (isotropic) hardening function. The
effective stress is written in terms of the principal transformed stresses (s′i and s′′i , respectively)
and the yield surface exponent, a, as,

φ
(

σi j

)

=

{

1
4

[

|s′1− s′′1 |a+ |s′1− s′′2 |a+ |s′1− s′′3 |a

+ |s′2− s′′1 |a+ |s′2− s′′2 |a+ |s′2− s′′3 |a (4.16.10)

+ |s′3− s′′1 |a+ |s′3− s′′2 |a+ |s′3− s′′3 |a
]

}1/a

.

An example of such a yield surface is given in Figure 4-67 along with examples of previously
presented (von Mises, Hosford, Hill) surfaces. The presented Barlat surface corresponds to that of
2090-T3 aluminum first characterized by Barlat et al. [1]. In Figure 4-67, both the anisotropy and
non-quadratic nature of the yield surface is evident leading to differing strengths and flow
directions at various stresses from any of the other models.

The orientation of the principal material axes with respect to the global Cartesian axes may be
specified by the user. First, a rectangular or cylindrical reference coordinate system is defined.
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σ1

σ2

σ3

fvonMises

fHosford

fHill

fBarlat

Figure 4-67. Example Barlat yield surface, fBarlat

(

σi j, ε̄
p = 0

)

, of
2090-T3 aluminum presented in the deviatoric π-plane. Compari-
son von Mises (J2), Hosford (with a = 8), and Hill surfaces are also
presented for comparison.

Spherical coordinate systems are not currently implemented for the Barlat model. The material
coordinate system can then be defined through two successive rotations about axes in the
reference rectangular or cylindrical coordinate system. In the case of the cylindrical coordinate
system this allows the principal material axes to vary point-wise in a given element block.

The plastic rate of deformation, as with the isotropic models, assumes associated flow

D
p
i j = γ̇

∂φ

∂σi j

, (4.16.11)

in which γ̇ is the consistency multiplier. Given the form for φ, γ̇ is equal to the rate of the
equivalent plastic strain, ˙̄εp. As the yield surface is cast in transformed stress space, determining
the flow direction in Cartesian space may be done via the chain rule (details may be found in [2])
leading to an expression of the form,

∂φ

∂σi j

=

3
∑

k=1

(

∂φ

∂s′k

∂s′k
∂s′mn

L′mni j+
∂φ

∂s′′k

∂s′′k
∂s′′mn

L′′mni j

)

. (4.16.12)

The hardening behavior is given by σ̄(ε̄p). This hardening function can be a linear hardening
function, a power law hardening function, or a user defined hardening function.

For more information about the Barlat plasticity model, consult [1, 2].
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4.16.1.1. Plastic Hardening

Plastic hardening refers to increases in the flow stress, σ̄, with plastic deformation. As such,
hardening is described via the functional relationship between the flow stress and isotropic
hardening variable (effective plastic strain), σ̄ (ε̄p). Over the course of nearly a century of work in
metal plasticity, a variety of relationships have been proposed to describe the interactions
associated with different physical interpretations, deformation mechanisms, and materials. To
enable the utilization of the same plasticity models for different material systems, a modular
implementation of plastic hardening has been adopted such that the analyst may select different
hardening models from the input deck thereby avoiding any code changes or user subroutines. In
this section, additional details are given to the different models to enable the user to select the
appropriate choice of model. Note, the models being discussed here are only for isotropic

hardening in which the yield surface expands. Kinematic hardening in which the yield surface
translates in stress-space with deformation and distortional hardening where the shape of the
yield surface changes shape with deformation are not treated. For a larger discussion of the
phenomenology and history of different hardening types, the reader is referred to [3, 4, 5].

Given the ubiquitous nature of these hardening laws in computational plasticity, some (if not
most) of this material may be found elsewhere in this manual. Nonetheless, the discussion is
repeated here for the convenience of the reader.

Linear

Linear hardening is conceptually the simplest model available in LAMÉ. As the name implies, a
linear relationship is assumed between the hardening variable, ε̄p, and flow stress. The constant
giving the degree of increase of yield stress with plastic flow is termed the hardening modulus and
is given as, H′, while the expression for the flow stress may be written,

σ̄ = σy+H′ε̄p. (4.16.13)

The simplicity of the model is its main feature as the constant slope,

dσ̄

dε̄p
= H′, (4.16.14)

makes the model attractive for analytical models and cheap for computational implementations
(e.g. radial return algorithms require only a single correction step). Unfortunately, the simplicity
of the representation also means that it has limited predictive capabilities and can lead to overly
stiff responses.

Power Law

Another common expression for isotropic hardening is the power-law hardening model. Due to its
prevalence, a dedicated ELASTIC-PLASTIC POWER LAW HARDENING model may be found in
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LAMÉ (see Section 4.8.1). This expression is given as,

σ̄ = σy+A < ε̄p−εL >
n, (4.16.15)

in which < · > are Macaulay brackets, εL is the Lüders strain, A is a fitting constant, and n is an
exponent typically taken such that 0 < n ≤ 1. The Lüders strain is a positive, constant strain value
(default to zero) giving an initial plastic deformation domain in which the response is perfectly
plastic (see Fig. 4-20). The derivative is then simply,

dσ̄

dε̄p
= nA < ε̄p−εL >

(n−1) . (4.16.16)

Note, one difficulty in such an implementation is that when the effective equivalent plastic strain
is zero, numerical difficulties may arise in evaluating the derivative necessitating special treatment
of the case.

Voce

The Voce hardening model (sometimes referred to as a saturation model) uses a decaying
exponential in terms of the equivalent plastic strain such that the hardening eventually saturates to
a specified value (thus the name). Such a relationship has been observed in some structural metals
giving rise to the popularity of the model. The hardening response is given as,

σ̄ = σy+A
(

1− exp
(

−nε̄p
))

, (4.16.17)

in which A is a fitting constant and n is a fitting exponent describing how quickly the hardening
saturates. Importantly, the derivative is written as,

dσ̄

dε̄p
= nAexp

(

−nε̄p
)

, (4.16.18)

and is well defined everywhere giving the selected form an advantage over the aforementioned
power law model.

Johnson-Cook

The Johnson-Cook [6, 7] hardening type is a rate-dependent formulation utilizing the assumption
that rate-independent and rate-dependent contributions may be multiplicatively separated.
Specifically, use of this option requires specifying a user-defined hardening function to capture
rate-independent contributions and Johnson-Cook type rate dependent coefficients. The flow
stress may be written in this fashion as,
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σ̄ = σ̃y

(

ε̄p
)

[

1+C

〈

ln

(

˙̄εp

ε̇0

)〉]

, (4.16.19)

in which σ̃ (ε̄p) is the user-specified rate-independent hardening function, C is a fitting constant
and ε̇0 is a reference strain rate. The Macaulay brackets ensure the material behaves in a rate
independent fashion when ˙̄εp < ε̇0.

Power Law Breakdown

Like the Johnson-Cook formulation, the power-law breakdown model is also rate-dependent.
Again, a multiplicative decomposition between rate-independent and dependent hardening
contributions. In this case, however, the functional form is derived from the analysis of Frost and
Ashby [8] in which power-law relationships like those of the Johnson-Cook and cease to
appropriately capture the physical response. The form used here is similar to the expression used
by Brown and Bammann [9] and is written as,

σ̄ = σ̃y

(

ε̄p
)

[

1+ asinh

(

(

˙̄εp

g

)(1/m)
)]

, (4.16.20)

with σ̃y (ε̄p) being the user supplied rate independent expression, g is a model parameter related
to the activation energy in going from climb to glide-controlled deformation, and m dictates the
strength of the dependence.

4.16.2. Implementation

Like the Hill and Hosford models, the Barlat plasticity model uses a elastic predictor-inelastic
corrector closest point projection (CPP) return mapping algorithm (RMA) for integration. Details
of the numerical scheme and forms of the necessary derivatives may be found in the work of
Scherzinger [2]. For this approach, given a rate of deformation, di j, and a time step, ∆t, a trial
stress state is calculated based on an elastic response

T tr
i j = T n

i j+∆tCi jkldkl. (4.16.21)

If the trial stress state lies outside the yield surface, i.e. if φ(T tr
i j ) > σ̄, then the model uses an

implicit, backward Euler algorithm to return the stress to the yield surface. To perform this task,
two nonlinear equations need to be solved. The first is associated with the satisfaction of the
flow-rule and ensures that the plastic strain increment is in the correct direction. Such a relation
leads to a residual of the form,

Ri j = ∆d
p
i j−∆γ

∂φ

∂Ti j

= 0. (4.16.22)
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while the second equation to be addressed enforces that the converged stress state is on the yield
surface and is written as,

f = φ
(

Ti j

)

− σ̄
(

ε̄p
)

= 0. (4.16.23)

The primary method for solving these equations is a Newton-Raphson algorithm. With ∆γ (which
is equal to ∆ε̄p) and Ti j being the solution variables, an iterative algorithm is utilized such that

∆γ(k+1) = ∆γ(k)+∆ (∆γ)

(4.16.24)

T
(k+1)
i j = T

(k)
i j +∆Ti j,

with ∆γ(0) = 0 and T
(0)
i j = T tr

i j . The plastic rate of deformation correction is then simply

∆d
p
i j = C

−1
i jkl

(

T tr
kl −Tkl

)

. (4.16.25)

After linearizing the residual and consistency equations (Equations (4.16.22) and (4.16.23)), the
set of nonlinear equations may be solved for the correction increments leading to expressions of
the form,

∆ (∆γ) =
f (k)−R

(k)
i j L

(k)
i jkl

∂φ(k)

∂Tkl

∂φ(k)

∂Ti j
L

(k)
i jkl

∂φ(k)

∂Tkl

+H′ (k)

(4.16.26)

∆Ti j = −L (k)
i jkl

(

R
(k)
kl +∆ (∆γ)

∂φ(k)

∂Tkl

)

,

and L
(k)

i jkl is the Hessian of the RMA problem (not the yield surface) and is given as,

L
(k)

i jkl =

(

Si jkl+∆γ
(k) ∂2φ(k)

∂σi j∂σkl

)−1

, (4.16.27)

and Si jkl = C
−1
i jkl.

Unfortunately, a straightforward Newton-Raphson algorithm does not always converge, so the
RMA is augmented with a line search algorithm producing modified incrementation relations
with
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∆γ(k+1) = ∆γ(k)+α∆ (∆γ) ,

(4.16.28)

T
(k+1)
i j = T

(k)
i j +α∆Ti j,

where α ∈ (0,1] is the line search parameter which is determined from certain convergence
considerations. If α = 1 then the Newton-Raphson algorithm is recovered. The line search
algorithm greatly increases the reliability of the return mapping algorithm.

4.16.3. Verification

To verify the Barlat plasticity model a similar approach to that used for the Hill plasticity model
(Section 4.15.3) is utilized. Specifically, both uniaxial stress and pure shear loadings are
considered. To this end, the response of a 2090-T3 aluminum with Voce hardening of the form,

σ̄
(

ε̄p
)

= σy+A
(

1− exp
(

−bε̄p
))

, (4.16.29)

is used. The corresponding elastic, plastic, and anisotropy model parameters are given in
Table 4-22.

E 70 GPa ν 0.25
a 8 σy 200 MPa
A 200 MPa b 20
c′12 -0.069888 c′′12 0.981171
c′13 0.936408 c′′13 0.476741
c′21 0.079143 c′′21 0.575316
c′23 1.003060 c′′23 0.866827
c′31 0.524741 c′′31 1.145010
c′32 1.363180 c′′32 -0.079294
c′44 1.023770 c′′44 1.051660
c′55 1.069060 c′′55 1.147100
c′66 0.954322 c′′66 1.404620

Table 4-22. The material and model parameters for the Barlat plas-
ticity model used for verification testing. The anisotropy coeffi-
cients correspond to 2090-T3 aluminum and are from [1].

Finally, the coordinate system used in these calculations is a rectangular coordinate system with
the e1

i ,e
2
i ,e

3
i axes aligned with the x,y,z axes.
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4.16.3.1. Uniaxial Stress

First, the response of the material subject to a uniaxial stress is considered. As such, the Cauchy
stress tensor takes the form σi j = σδi1δ j1. In the transformed stress space, this uniaxial tensor
becomes,

s′i j =
1
3
σ





c′12+ c′13 0 0
0 −2c′21+ c′23 0
0 0 −2c′31+ c′32





(4.16.30)

s′′i j =
1
3
σ





c′′12+ c′′13 0 0
0 −2c′′21+ c′′23 0
0 0 −2c′′31+ c′′32



 .

It is noted from (4.16.30) the that two transformed stress tensors are purely diagonal and therefore
in a principal state. The actual ordering of the components into the corresponding principal
stresses depends on the anisotropy coefficients. By inspection of Table 4-22 it is clear in this
instance that tensors are already ordered (s′1 = s′11, s′′1 = s′′11 etc.). With this observation, the
effective stress may be reduced to,

φ
(

σi j

)

= ω|σ|, (4.16.31)

where ω is a constant dependent on model parameters and is written as,

ω =
1
3

{

1
4

[

|c′12+ c′13− c′′12− c′′13|a+ |c′12+ c′13+2c′′21− c′′23|a+ |c′12+ c′13+2c′′31− c′′32|a

+ |c′23−2c′21− c′′12− c′′13|a+ |c′23−2c′21+2c′′21− c′′23|a+ |c′23−2c′21+2c′′31− c′′32|a (4.16.32)

+ |c′32−2c′31− c′′12− c′′13|a+ |c′32−2c′31+2c′′21− c′′23|a+ |c′32−2c′31+2c′′31− c′′32|a
]

}1/a

.

Axial Stresses

To determine the axial stress, it is first noted that during plastic deformation,

φ
(

σi j

)

= ωσ = σ̄
(

ε̄p
)

, (4.16.33)

where the fact that a tensile loading will be investigated (σ > 0) is leveraged. The stress is then
simply,

σ =
σ̄ (ε̄p)
ω

. (4.16.34)
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This shows that during plastic deformation the stress state can be calculated from the hardening
law and anisotropy parameters.

To evaluate the axial stress, a relationship between the equivalent plastic strain and axial strain is
needed. By noting the uniaxial stress state and equating the rate of plastic work, it is evident
that,

σ̄ ˙̄εp = σ
(

ε̇− ε̇e) → ˙̄εp =
1
ω

(

ε̇− ε̇e) (4.16.35)

which, when integrated, gives an implicit equation for the equivalent plastic strain that is written
as

ε̄p =
1
ω

(

ε− σ̄(ε̄p)
ωE

)

. (4.16.36)

The equivalent plastic strain can then be used in (4.16.34) to find the axial stress, σ.
Corresponding stress-strain results determined analytically in this fashion and numerically via
Adagio are presented below in Figure 4-68.
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Figure 4-68. Axial stress-strain response determined analytically
and numerically for 2090-T3 aluminum using the Barlat plasticity
model with Voce hardening.

Lateral Strains

To determine the plastic strain, the derivatives of the yield surface with respect to the Cauchy
stress (∂φ/∂σi j) are needed. From (4.16.12) it can be seen that these relations are quite complex
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and the reader is referred to [2] for a detailed discussion of how to rigorously evaluate these
derivatives under arbitrary conditions. In this effort, the fact that the principal directions of the
transformed stresses (êk′

i and êk′′
i ) are aligned with the global coordinate system (ê1′

i = e1
i etc.)

simplifies the problem sufficiently to allow for an analytical treatments. In this case,

∂s′k
∂s′i j

= ek
i ek

j. (4.16.37)

With this observation, the lateral flow directions may be written as,

∂φ

∂σ22
=

1
3

[ ∂φ

∂s′1

(

c′13−2c′12

)

+
∂φ

∂s′2

(

c′21+ c′23

)

+
∂φ

∂s′3

(

c′31−2c′32

)

+
∂φ

∂s′′1

(

c′′13−2c′′12

)

+
∂φ

∂s′′2

(

c′′21+ c′′23

)

+
∂φ

∂s′′3

(

c′′31−2c′′32

)

]

(4.16.38)

∂φ

∂σ33
=

1
3

[ ∂φ

∂s′1

(

c′12−2c′13

)

+
∂φ

∂s′2

(

c′21−2c′23

)

+
∂φ

∂s′3

(

c′31+ c′32

)

+
∂φ

∂s′′1

(

c′′12−2c′′13

)

+
∂φ

∂s′′2

(

c′′21−2c′′23

)

+
∂φ

∂s′′3

(

c′′31+ c′′32

)

]

, (4.16.39)

in which the various ∂φ/∂s′i derivatives are functions of the anisotropy coefficients and explicit
forms may be found in [2].

The total strain is written simply as,

εi j = ε
e
i j+ε

p
i j, (4.16.40)

with the elastic strain being

εe
22 = ε

e
33 = −ν

σ

E
, (4.16.41)

and the plastic strains found via the flow rules as,

ε
p
22 = ε̄

p ∂φ

∂σ22
; ε

p
33 = ε̄

p ∂φ

∂σ33
. (4.16.42)

The flow directions were given previously in (4.16.38) and (4.16.39) while the equivalent plastic
strain may be found via (4.16.36). Figure 4-69 presents the lateral strains as a function of the
axial. Clear agreement may be observed both in Figure 4-68 and 4-69 verifying the model.
Additionally, the effect of the anisotropy is plainly evident in Figure 4-69 in which the two lateral
strains differ by approximately a factor of four.
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Figure 4-69. Lateral strain as a function of axial strain of 2090-T3
aluminum with Voce hardening as determined by the Barlat plastic-
ity model both analytically and numerically.

To test the other directions and further examine the anisotropic character of the model, the
coordinate system rotation input options are used to align the “2” and “3” directions of the
material with the applied load. Analytical expressions may be determined by similarly rotating
the coefficients in the previous expressions, although these are not repeated here for brevity. The
corresponding results for the loading aligned with the “2” and “3” directions are presented in
Figures 4-70 and 4-71, respectively. All of the results are given with respect to the original
coordinate system to avoid confusion. Clear agreement between analytical and simulation results
is noted in both cases further verifying the capabilities of the model. Importantly, by comparing
the various stress-strain and lateral strain curves, the influence of the material and model
anisotropy on the responses may readily be observed.

4.16.3.2. Pure Shear

In this section, the pure shear response of the Barlat model is interrogated to assess its
performance under such conditions. Before proceeding, it is important to recall the ordering of
the shear stresses in Sierra/SM. Specifically, the σ12, σ23, and σ31 stresses are associated with the
44, 55, and 66, respectively, anisotropy coefficients.

To explore the shear performance of the Barlat plasticity model, a stress tensor of the form
σi j = τ

(

δi1δ j2+δi2δ j1
)

is considered. The ordered principal stresses of the transformed stress
tensors are,
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(a) Stress-strain
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Figure 4-70. (a) Stress-strain and (b) lateral strain responses of
2090-T3 aluminum with Voce hardening and the Barlat plasticity
model. The material is rotated such that the loading is aligned with
the “2” direction.
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Figure 4-71. (a) Stress-strain and (b) lateral strain responses of
2090-T3 aluminum with Voce hardening and the Barlat plasticity
model. The material is rotated such that the loading is aligned with
the “3” direction.
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thereby simplifying the effective stress to,

φ
(

σi j

)

= τζ, (4.16.44)

with

ζ =

{

1
2

[

|c′44− c′′44|a+ |c′44+ c′′44|a+ |c′44|a+ |c′′44|a
]

}1/a

. (4.16.45)

During plastic flow,

φ = τζ = σ̄
(

ε̄p
)

, (4.16.46)

producing an expression for the stress in terms of equivalent plastic strain as,

τ =
1
ζ
σ̄
(

ε̄p
)

. (4.16.47)

A relationship between the equivalent plastic and axial strains may be determined by first
considering the equivalency of plastic work,

σ̄ ˙̄εp = 2τ
(

ε̇12− ε̇e
12

)

→ ˙̄εp =
2
ζ

(

ε̇12− ε̇e) . (4.16.48)

Integrating leads to an implicit expression of the form,

ε̄p =
2
ζ

(

ε12−
σ̄ (ε̄p)
ζG

)

. (4.16.49)

The preceding relations may be used to analytically determine the shear stress-strain response.
Corresponding results, along with those produced by Adagio, are presented in Figure 4-72. Shear
responses are also presented for stress tensors of the form σi j = τ

(

δ2iδ3 j+δ3iδ2 j

)

(“23”) and
σi j = τ

(

δ1iδ3 j+δ3iδ1 j

)

(“31”). Analytically, these results were determined by substituting the
relevant anisotropy coefficients in (4.16.43)-(4.16.49). For the results from Adagio, the coordinate
system input commands were used to rotate the material coordinate system accordingly.

In all the cases presented in Figure 4-72 excellent agreement is noted. This not only verifies the
performance of the current model under pure shear loadings but also demonstrates the impact of
the anisotropy and exercises the coordinate system rotation capabilities.
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Figure 4-72. Shear stress-strain results for 2090-T3 aluminum de-
termined analytically and numerically by the Barlat plasticity model
with Voce Hardening

4.16.3.3. Plastic Hardening

To verify the capabilities of the hardening models, rate-independent and rate-dependent alike, the
constant equivalent plastic strain rate, ˙̄εp, uniaxial stress and pure shear verification tests
described in Appendix A.5 are utilized. In these simplified loading cases, the material state may
be found explicitly as a function of time knowing the prescribed equivalent strain rate. For the
rate-independent cases, a strain rate of ˙̄εp = 1×10−4s−1 is used for ease in simulations although
the selected rate does note affect the results. Through this testing protocol, the hardening models
are not only tested at different rates but also in different principal material directions to consider
the anisotropy of the Barlat yield surface. Additionally, the rate-dependent models are tested for a
wide range of strain rates (over five decades) with all three rate-independent hardening functions
(σ̃y in the previous theory section). Although linear, Voce, and power-law rate-independent

representations are utilized in the rate-dependent tests, in those cases the hardening models are
prescribed via user-defined analytic functions. The rate-independent verification exercises, on the
other hand, examine the built-in hardening models. This distinction necessitates the different
considerations and treatments.

The rate-dependent and rate-independent hardening coefficients are found in Table 4-20 while the
remaining model parameters are unchanged from the previous verification exercises. For the
current verification exercise, the rate-independent hardening models (linear, Voce, and
power-law) will first be considered and then the rate-dependent forms (Johnson-Cook, power-law
breakdown).
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C 0.1 ε̇0 1×10−4 s−1

g 0.21 s−1 m 16.4
H̃Linear 200 MPa - -
ÃPL 400 MPa ñPL 0.25
ÃVoce 200 MPa ñVoce 20

Table 4-23. The model parameters for the hardening verification
tests used with the Barlat plasticity model during verification tests.
Parameters for the rate-independent hardening functions, σ̃y, are
also given and denoted with a ·̃ while the subscript refers to the
functional form.

Linear

For the rate-independent linear hardening model, verification is considered via the uniaxial stress
and pure shear exercises of Appendix A.5. As the anisotropic Barlat yield surface is being used
for this examination, the uniaxial stress response is determined for loading in three different
principal material planes while the pure shear response is found along three shear planes. Results
determined analytically and numerically are presented in Figure 4-73. Clear agreement is evident
between the dual solution approaches. Additionally, the linear response and constant tangent
modulus during plastic deformation highlights the characteristic feature of the current model.
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Figure 4-73. (a) Uniaxial stress-strain and (b) pure shear responses
of the Barlat plasticity model with rate-independent, linear harden-
ing. Solid lines are analytical while open symbols are numerical.
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Power-Law

To probe the power-law rate-independent hardening model, analytical and numerical results to the
uniaxial stress and pure shear problems of Appendix A.5 are determined. Given the anisotropic
nature of the current model, responses are determined along the three principal and three shearing
planes for the uniaxial stress and pure shear cases and all six cases are shown in Figure 4-74. In
considering Figure 4-74, it is apparent that the numerical and analytical responses agree quite
well verifying this specific response. These cases also highlight the initially stiff plastic response
that eventually evolves into a more compliant linear like response that is associated with a
power-law hardening model.
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Figure 4-74. (a) Uniaxial stress-strain and (b) pure shear responses
of the Barlat plasticity model with rate-independent, power-law
hardening. Solid lines are analytical while open symbols are nu-
merical.

Voce

Verifying the Voce model is addressed through the methods of Appendix A.5. To this end,
analytical and numerical uniaxial stress and pure shear responses are determined along three
different principal directions and shear planes, respectively. The results for these various cases are
presented in Figure 4-75 and unambiguous agreement is readily seen between the analytical and
numerical results providing further credence to hardening model capabilities. Responses in
Figure 4-75 also exhibit the clear saturation of hardening with sufficient plastic strain that is
usually associated with the Voce model.
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Figure 4-75. (a) Uniaxial stress-strain and (b) pure shear responses
of the Barlat plasticity model with rate-independent, Voce harden-
ing. Solid lines are analytical while open symbols are numerical.

Johnson-Cook

To investigate the uniaxial response of the Johnson-Cook rate-dependent hardening model, the
problem discussed in Appendix A.5.1 is considered. In this analysis, the response depends only
on time and the various c′i and c′′i Barlat yield surface coefficients. For a full-spectrum
verification, forty-five different cases are evaluated using three different material principal
directions (ê1, ê2, and ê3), five different rates ( ˙̄εp = 1×10−3, 1×10−2, 1×10−1, 1×100 and
1×101 s−1), and three different rate-independent hardening models (linear, Voce, and power-law).
All forty-five analytical and numerical results are presented in Figure 4-76 and quite notable
agreement is observed in each instance.

For the pure shear case, the forty-five different permutations are again explored. The same five
rates and three hardening models are used although three different shearing planes are used
instead of the three principal directions. The solution of the pure shear problem is described in
Appendix A.5.2 and the analytical and numerical results are presented in Figure 4-77. As with the
uniaxial stress response excellent correspondence is noted between the two sets of results.

Power-Law Breakdown

In the case of the power-law Breakdown model, verification is again pursued through the problem
of Appendix A.5.1 and using the same forty-five cases discussed with the Johnson-Cook model.
Corresponding results are given in Figure 4-78 and as with the preceding results substantial
convergence is noted between the analytical and numerical results giving further credence to the
hardening models.

As with the uniaxial stress case, the pure shear capabilities are interrogated through the procedure
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Figure 4-76. Uniaxial stress-strain response of the Barlat plastic-
ity model (a = 8) with rate-dependent, Johnson-Cook type harden-
ing with (a-c) linear (d-f) power-law and (g-i) Voce rate-independent
hardening. Solid lines are analytical results while open symbols
are numerical.

of Appendix A.5.2 using the same forty-five cases outlined in the Johnson-Cook discussion. The
analytical and numerical results are presented in Figure 4-79. Again, the two result sets align
beautifully enabling further capability credibility.
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Figure 4-77. Stress-strain response of the Barlat plasticity model
(a = 8) with rate-dependent, Johnson-Cook type hardening in
pure shear with (a-c) linear (d-f) power-law and (g-i) Voce rate-
independent hardening. Solid lines are analytical results while
open symbols are numerical.
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Figure 4-78. Uniaxial stress-strain response of the Barlat plastic-
ity model (a = 8) with rate-dependent, power-law breakdown type
hardening with (a-c) linear (d-f) power-law and (g-i) Voce rate-
independent hardening. Solid lines are analytical while open sym-
bols are numerical.
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Figure 4-79. Stress-strain response of the Barlat plasticity model
(a = 8) with rate-dependent, power-law breakdown type hardening
in pure shear with (a-c) linear (d-f) power-law and (g-i) Voce rate-
independent hardening. Solid lines are analytical results while
open symbols are numerical.
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4.16.4. User Guide

BEGIN PARAMETERS FOR MODEL BARLAT_PLASTICITY

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Material coordinates system definition

#

COORDINATE SYSTEM = <string> coordinate_system_name

DIRECTION FOR ROTATION = <real> 1|2|3

ALPHA = <real> α1 (degrees)

SECOND DIRECTION FOR ROTATION = <real> 1|2|3

SECOND ALPHA = <real> α2 (degrees)

#

# Yield surface parameters

#

YIELD STRESS = <real> σy

A = <real> a (4.0)

CP12 = <real> c′12 (1.0)

CP13 = <real> c′13 (1.0)

CP21 = <real> c′21 (1.0)

CP23 = <real> c′23 (1.0)

CP31 = <real> c′31 (1.0)

CP32 = <real> c′32 (1.0)

CP44 = <real> c′44 (1.0)

CP55 = <real> c′55 (1.0)

CP66 = <real> c′66 (1.0)

CPP12 = <real> c′′12 (1.0)

CPP13 = <real> c′′13 (1.0)

CPP21 = <real> c′′21 (1.0)

CPP23 = <real> c′′23 (1.0)

CPP31 = <real> c′′21 (1.0)

CPP32 = <real> c′′32 (1.0)

CPP44 = <real> c′′44 (1.0)

CPP55 = <real> c′′55 (1.0)

CPP66 = <real> c′′66 (1.0)

#

# Hardening model

#

HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |
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CUBIC_HERMITE_SPLIT | JOHNSON_COOK | POWER_LAW_BREAKDOWN

#

# Linear hardening

#

HARDENING MODULUS = <real> H′

#

# Power-law hardening

#

HARDENING CONSTANT = <real> A

HARDENING EXPONENT = <real> n (0.5)

LUDERS STRAIN = <real> εL (0.0)

#

# Voce hardening

#

HARDENING MODULUS = <real> A

EXPONENTIAL COEFFICIENT = <real> n

#

# Johnson-Cook hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE CONSTANT = <real> C

REFERENCE RATE = <real> ε̇0

#

# Power law breakdown hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE COEFFICIENT = <real> g

RATE EXPONENT = <real> m

#

# User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name

#

# Spline based hardening curve

#

CUBIC SPLINE TYPE = <string>

CARDINAL PARAMETER = <real> val

KNOT EQPS = <real_list> vals

KNOT STRESS = <real_list> vals

END [PARAMETERS FOR MODEL BARLAT_PLASTICITY]

Output variables available for this model are listed in Table 4-24.
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Table 4-24. State Variables for BARLAT PLASTICITY Model

Name Description

EQPS equivalent plastic strain, ε̄p

EQDOT equivalent plastic strain rate, ˙̄εp

SEFF effective stress, φ
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4.17. PLANE STRESS RATE PLASTICITY MODEL

4.17.1. Theory

The plane stress rate plasticity model is the plane stress formulation of a J2 plasticity model given
by Simo and Taylor [1] (and described again in Simo and Hughes [2]) extended to include
rate-dependent hardening and a failure model for use with shell elements.

Like other plasticity models, the components of the objective stress rate,
◦
σi j, are written as,

◦
σi j= Ci jklD

e
kl (4.17.1)

where Ci jkl are the components of the fourth-order, isotropic elasticity tensor and De
i j are the

components of the elastic part of the total rate of deformation tensor. An additive split of the total
rate of deformation tensor into elastic and plastic contributions is assumed such that,

Di j = De
i j+D

p
i j. (4.17.2)

The plane stress formulation recasts the three-dimensional problem into a constrained subspace
with plane stress conditions acting as the constraints. To do this, the plane stress rate plasticity
model follows the approach of Simo and Taylor [1] to enforce σ13 = σ23 = σ33 = 0 and related
conditions.

For the plasticity portion of the model, the formulation of Simo and Taylor [1] is used3 in which a
traditional three-dimensional J2 plasticity model is recast in reduced subspace. To do this, it is
recalled that in three-dimensions the von Mises effective stress, φ, is written,

φ2 =
3
2

si jsi j, (4.17.3)

with si j = σi j− (1/3)σkkδi j the deviatoric stress. To write an equivalent expression in the reduced
subspace, the vector, σ, and matrix, P̄, are introduced as4,

σ =





σ11

σ22

σ12



 , ; P̄ =
1
3





2 −1 0
−1 2 0
0 0 3



 , (4.17.4)

such that,

3In the work of Simo and Taylor [1] (and later Simo and Hughes [2]) hardening is assumed to be rate and temperature
independent. Here, such terms are included but do not materially change the formulation. Similarly, the earlier
works also introduce kinematic hardening which is not used in the current model.

4Note, here the x and X notations are introduced for vector and matrix objects, respectively, to clearly distinguish
that these variables are not tensors. This results from operating in the constrained stress subspace and means that
these terms do not have properties of a tensor and act on each other as traditional matrices and vectors.
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s =





s11

s22

s12



 = P̄ σ. (4.17.5)

In the reduced plane-stress subspace, an alternative effective stress, φ̄, is given as,

φ̄2 = σT P σ =
2
3
φ2, (4.17.6)

where

P =
1
3





2 −1 0
−1 2 0
0 0 6



 , (4.17.7)

in which P and P̄ differ by a two in the shear term to reflect Voigt corrections.

A yield function, f , is introduced as,

f = φ̄2−R2, (4.17.8)

with,

R =

√

2
3
σ̄
(

ε̄p, ˙̄εp, θ
)

, (4.17.9)

where ε̄p and ˙̄εp are the equivalent plastic strain (isotropic hardening variable) and its rate,
respectively. Various hardening options may be used with this model. In general, the current flow
stress is written as,

σ̄
(

ε̄p, ˙̄εp, θ
)

=
(

σy+K
(

ε̄p
))

σ̂
(

˙̄εp
)

(

1−
(

θ− θref

θmelt− θref

)M
)

, (4.17.10)

in which σy is the original yield stress, K is the isotropic hardening function that may take linear,
power-law, or multilinear form, σ̂ the rate multiplier whose specification will be defined later, and
the right-most term is the Johnson-Cook temperature dependence term that may be optionally
used to give temperature dependence of the flow-stress.

To complete the theoretical formulation, the flow rules are specified as,

dεp = λP σ, (4.17.11)

dε̄p = ˙̄εp∆t = λ

√

2
3
φ, (4.17.12)
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where λ is the consistency multiplier enforcing f = 0 during plastic deformation and dεp is the
plastic strain increment in the constrained subspace. It is emphasized here that the yield surface
described in (4.17.8) is not homogeneous of degree one like in other three-dimensional
formulations presented in this manual. As such, the consistency multiplier and equivalent plastic
strain increment are not equivalent. As an example of this, by consideration of the preceding
relations, it is apparent that λ has units of one over stress.

The specification of the rate dependence, σ̂, is important as it enables the consideration of two
different model responses. These behaviors are controlled via the USER RATE DEPENDENCE

command. If this input parameter is zero, then either an analytical or user-defined
rate-dependence may be given. Importantly, in this case failure is not modeled. For the analytical
case, the Johnson-Cook [3, 4] rate-multiplier is used such that,

σ̂
(

˙̄εp
)

=

{

1+C ln
(

˙̄εp

˙̄ε0

)

˙̄εp > ˙̄ε0

1 ˙̄εp ≤ ˙̄ε0
, (4.17.13)

with C being the rate dependence multiplier and ˙̄ε0 is a reference rate. Note, while other models
allow user specification of the reference rate, the plane stress rate plasticity model uses the value
set in the original work of Johnson-Cook [3] such that ˙̄ε0 = 1s−1. Alternatively, a user function
may be specified for the rate multiplier, σ̂.

If USER RATE DEPENDENCE is set to one, both rate dependence and failure may be modeled.
With respect to the rate dependence, (4.17.10) is rewritten,

σ̄
(

ε̄p, ˙̄εp, θ
)

= σ̃
(

ε̄p, ˙̄εp
)

(

1−
(

θ− θref

θmelt− θref

)M
)

, (4.17.14)

in which both isotropic hardening and rate dependence are described via definition of σ̃. In this
case, σ̃ cannot be specified through analytical expressions and must instead be given as a series of
isotropic hardening curves; each at a different strain rate. For rates not explicitly given,
interpolation is performed between relevant curves. Note, no extrapolation is performed with
respect to the rates. If a rate is determined outside any specified curves, the hardening is
calculated with respect to the bounding curve.

For failure, a failure parameter, α, is calculated as

α =

∫ t

0

1

ε f

(

η, ˙̄εp
)

˙̄εpdt =

t
∑

t0

dε̄p

ε f

(

η, ˙̄εp
) , (4.17.15)

in which the summation is used to imply the discrete calculation of the damage variable over a
series of loadsteps and ε f is the rate and triaxiality, η, dependent failure strain. The failure strain,
ε f , is specified in a fashion similar to σ̃. Specifically, a series of triaxiality dependent functions
are defined each at a given strain rate. Interpolation is used at rates between those specified.
Extrapolation outside the defined bounds is not done and the extremum curves are instead used.
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The onset of damage is assumed to occur when α = 1 and the current failure strain is taken to be
the critical one such that εcr

f = ε f (t = tcr) with tcr being the time at which α = 1. Subsequent
damage calculation is performed via,

α (t > tcr) =
∫ tcr

0

1

ε f

(

η, ˙̄εp
)

˙̄εpdt+

∫ t

tcr

1
εcr

f

˙̄εpdt. (4.17.16)

After the critical failure parameter has been reached, an exponential decay relation is used to
decrease the strength of the material. In this fashion, a decay relation of the form,

σ̄ = σ̄eC1(1−α), (4.17.17)

is used in which C1 is the decay coefficient.

For more information about the plane stress rate plasticity model, consult [1, 2].

4.17.2. Implementation

The plane stress rate plasticity model encapsulates both a plasticity and failure model. These
features are implemented in a decoupled, sequential sense. As such, the implementation of these
features will also be presented and discussed in a sequential fashion.

For the plasticity portion, the approach of Simo and Taylor [1] (and Simo and Hughes [2]) in
developing a single scalar equation to solve is adopted. As will be discussed, a slightly different
approach will be used to solve this equation versus that used previously. To get to this single
scalar equation, an elastic-predictor inelastic corrector scheme is adopted. In this scheme, an
elastic predictor is calculated by assuming all deformation is elastic such that,

σtr = σn+∆tC̄ dεn+1, (4.17.18)

in which “n” and “n+1” denote the material states at t = tn and t = tn+1, respectively, with
∆t = tn+1− tn. The plane stress stiffness matrix, C̄, is given as,

C̄ =
E

1− ν2





1 ν 0
ν 1 0
0 0 1−ν

2



 , (4.17.19)

with E and ν being the Youngs Modulus and Poisson’s ratio, respectively, and dεn+1 is the plane
stress total strain increment that is written,

dε = ∆t





d11

d22

2d12



 , (4.17.20)

where di j are the components of the rate of deformation tensor.
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The stress at time t = tn+1 may be given as,

σn+1 = C̄
[

εn+1−εp] , (4.17.21)

which noting the definition of the trial stress in (4.17.18) may be implicitly rewritten,

σn+1 = σtr −λC̄ P σn+1. (4.17.22)

Rearranging yields,

[

I+λC̄ P

]

σn+1 = σtr, (4.17.23)

with I the identity matrix. Importantly, by noting that σtr is known it is clear that (4.17.23) is an
equation for the updated stress vector in terms of only the unknown scalar consistency parameter,
λ. To further simplify the problem, it can be shown that C̄ and P share the same principal
subspaces such that (see Simo and Hughes [2] for details),

P = Q ΛPQT , ; C̄ = Q ΛCQT , (4.17.24)

where QT is an orthogonal matrix such that QT = Q−1 and the matrices Q, ΛP and ΛC are given
as,

ΛP =





1/3 0 0
0 1 0
0 0 2



 , ; ΛC =





E/ (1− ν) 0 0
0 2µ 0
0 0 2µ



 (4.17.25)

Q =
1√
2





1 −1 0
1 1 0
0 0

√
2



 . (4.17.26)

By introducing a transformed stress vector in the principal space of C̄ and P, η, such that,

η =





η11

η12

η12



 = QTσ, (4.17.27)

the effective stress may be rewritten,

φ̄2 = ηTΛPη. (4.17.28)

By rewriting (4.17.23) in the transformed space the premultiplying matrix on the left-hand side
can be analytically inverted such that,
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ηn+1 =











ηtr
11

1+λ E
3(1−ν)
ηtr

22
1+λ2µ
ηtr

12
1+λ2µ











, (4.17.29)

and the effective stress may be written as a scalar function of λ,

φ̄2 (λ) =
1
3

(

ηtr
11

)2

[

1+λ E
2(1−ν)

]2

(

ηtr
22

)2
+2
(

ηtr
12

)2

[

1+λ2µ
]2 . (4.17.30)

Noting that the equivalent plastic strain and rate may be written,

ε̄p(n+1) = ε̄p(n)+λ

√

2
3
φ, ; ˙̄εp =

λ

∆t

√

2
3
φ, (4.17.31)

means determining the updated states reduces to solving the scalar consistency equation,

f (λ) = φ̄2 (λ)− σ̄ (λ) , (4.17.32)

for λ. This is done iteratively by using a line-search augmented Newton-Raphson method like that
described in [5].

Failure is handled separately from plasticity and in a straight-forward fashion. Specifically, if
αn > 1 (above the critical value) then a decay coefficient, βn+1, is calculated via

βn+1 = eC1(1−αn), (4.17.33)

and the yield stress is scaled accordingly such that,

σ̄ = βσ̄. (4.17.34)

Such corrections are done prior to performing the plasticity calculation. Updating the damage
variable, αn+1, is done via relations (4.17.15) (or (4.17.16)) after convergence is achieved for the
inelastic correction.
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4.17.3. User Guide

BEGIN PARAMETERS FOR MODEL PLANE_STRESS_RATE_PLASTICITY

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Optional parameters related to inelastic correction criteria

#

TOLERANCE = <real> tolerance (1.0e-10)

MAX_INEL_CORR_ITER = <int> maximum_correction_iterations (100)

MAX_LS_CORR_ITER = <int> maximum_line_search_cutbacks (20)

#

USER RATE DEPENDENCE = 0|1(0)

YIELD STRESS = <real> σy

#

FORMULATION = <int> formulation (1)

#

# Input Options for USER RATE DEPENDENCE = 0

#

# linear hardening

HARDENING MODULUS = <real> hardening_modulus

# power law hardening

HARDENING CONSTANT = <real> hardening_constant

HARDENING EXPONENT = <real> hardening_exponent (0.5)

# multilinear hardening

HARDENING FUNCTION = <string> K (ε̄p)
#

# Rate dependence

#

# Johnson-Cook rate dependence

RATE CONSTANT = <real> C

# multilinear rate dependence

RATE FUNCTION = <string> rate_function_name

#

# Input Options for USER RATE DEPENDENCE = 1

#

# rate-dependent yield

YIELD STRAIN RATES = <real_list> yield_strain_rates

YIELD CURVES = <string_list> yield_function_names

# rate-dependent damage
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FRACTURE STRAIN RATES = <real_list> fracture_strain_rates

FRACTURE CURVES = <string_list> fracture_function_names

DECAY COEFFICIENT = <real> C1 (1.0)

#

# Thermal softening commands (Johnson-Cook)

INITIAL TEMPERATURE = <real> θ (t = 0)
MELT TEMPERATURE = <real> θmelt
REFERENCE TEMPERATURE = <real> θref
THERMAL EXPONENT = <real> M

#

END [PARAMETERS FOR MODEL PLANE_STRESS_RATE_PLASTICITY]

Output variables available for this model are listed in Table 4-25.

Table 4-25. State Variables for PLANE STRESS RATE PLASTICITY
Model

Name Description

EQPS equivalent plastic strain, ε̄p

EQDOT equivalent plastic strain rate, ˙̄εp

SEFF effective stress, φ
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4.18. MODULAR PLANE STRESS PLASTICITY MODEL

4.18.1. Theory

Like the plane stress plasticity model of Section 4.17, the modular plane stress plasticity (MPSP)
model is a plane stress implementation of a J2 plasticity formulation largely following and
motivated by the works of Simo and Taylor [1] and Simo and Hughes [2]. However, the modular
plane stress plasticity model differs from those prior works and the aforementioned plane stress
plasticity formulation via its specification of the hardening. Specifically, in the current case
kinematic hardening is neglected and expanded isotropic hardening and rate-dependence are
considered by levaraging various modular hardening capabilities used with a variety of solid
plasticity models (i.e. the J2 plasticity model in Section 4.13).

Like other plasticity models, the components of the objective stress rate,
◦
σi j, are written as,

◦
σi j= Ci jklD

e
kl (4.18.1)

where Ci jkl are the components of the fourth-order, isotropic elasticity tensor and De
i j are the

components of the elastic part of the total rate of deformation tensor. An additive split of the total
rate of deformation tensor into elastic and plastic contributions is assumed such that,

Di j = De
i j+D

p
i j. (4.18.2)

With a J2 plasticity model, the effective stress measure, φ, may be written,

φ2 =
3
2

si jsi j ; si j = σi j−
1
3
σkkδi j, (4.18.3)

with si j begin the deviatoric stress tensor. After enforcing the plane-stress conditions
(σ13 = σ23 = σ33 = 0), there are only three non-zero stress components. As such, the problem
may be simplified by introducing the projection matrix, P̄, of Simo and Taylor [1],

P̄ =
1
3





2 −1 0
−1 2 0
0 0 3



 , (4.18.4)

so that,

s = P̄σ (4.18.5)

where,

σ =





σ11

σ22

σ12



 ; s =





s11

s22

s12



 . (4.18.6)
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Note, in the previous and following relations an explicit matrix notation is used to denote
variables in the projected stress space to reinforce that these terms are not tensors. To this end, a
single underline (x) is used for a vector while a twice underlined variable (X) is a matrix.

The projected effective stress measure, φ̄, may then be taken to be,

φ̄2 = σT Pσ, (4.18.7)

in which a superscript “T” denotes transpose and,

P =
1
3





2 −1 0
−1 2 0
0 0 6



 . (4.18.8)

Written in this fashion, there is a small difference between the projected effective stress (φ̄) and
the traditional 3D form (φ) associated with a constant premultiplier. This is due to subtle
differences in notation used by the plane-stress references [1, 2] and is accounted for in the
definition of the yield surface radius, R, ensuring equivalence in forms.

A corresponding yield function, f , is introduced such that,

f = φ̄ (σ)−R2 (ε̄p, ˙̄εp
)

, (4.18.9)

where R is the yield surface radius in the deviatoric π-plane that isotropically hardens via
dependencies on the equivalent plastic strain (isotropic hardening variable) and its rate that are
denoted ε̄p and ˙̄εp, respectively. The radius may be related to the current yield stress, σ̄, via,

R =

√

2
3
σ̄
(

ε̄p, ˙̄εp
)

. (4.18.10)

The distinguishing feature of the modular plane stress plasticity model is a flexible defintion of
the isotropic hardening in which the current yield stress is generically written,

σ̄ = σyσ̂y

(

˙̄εp
)

+K
(

ε̄p
)

σ̂h

(

˙̄εp
)

, (4.18.11)

with σy, K, and σ̂y,h being the constant initial yield stress, isotropic hardening, and separate rate
multipliers for yield and hardening, respectively. A variety of different forms may be assumed as
described below.

To complete the theoretical formulation, the flow rules are specified as,

dεp = λP σ, (4.18.12)

dε̄p = λ

√

2
3
φ̄, (4.18.13)
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where λ is the consistency multiplier enforcing f = 0 during plastic deformation and dεp is the
plastic strain increment in the constrained subspace. It is emphasized here that the current yield
function described in is not homogeneous of degree one like in other three-dimensional
formulations presented in this manual. As such, the consistency multiplier and equivalent plastic
strain increment are not equivalent. As an example of this, by consideration of the preceding
relations, it is apparent that λ has units of one over stress.

For more information about the modular plane stress plasticity model, consult [1, 2].

4.18.1.1. Plastic Hardening

Plastic hardening refers to increases in the flow stress, σ̄, with plastic deformation. As such,
hardening is described via the functional relationship between the flow stress and isotropic
hardening variable (effective plastic strain), σ̄ (ε̄p). Over the course of nearly a century of work in
metal plasticity, a variety of relationships have been proposed to describe the interactions
associated with different physical interpretations, deformation mechanisms, and materials. To
enable the utilization of the same plasticity models for different material systems, a modular
implementation of plastic hardening has been adopted such that the analyst may select different
hardening models from the input deck thereby avoiding any code changes or user subroutines. In
this section, additional details are given to the different models to enable the user to select the
appropriate choice of model. Note, the models being discussed here are only for isotropic

hardening in which the yield surface expands. Kinematic hardening in which the yield surface
translates in stress-space with deformation and distortional hardening where the shape of the
yield surface changes shape with deformation are not treated. For a larger discussion of the
phenomenology and history of different hardening types, the reader is referred to [3, 4, 5].

Given the ubiquitous nature of these hardening laws in computational plasticity, some (if not
most) of this material may be found elsewhere in this manual. Nonetheless, the discussion is
repeated here for the convenience of the reader.

Linear

Linear hardening is conceptually the simplest model available in LAMÉ. As the name implies, a
linear relationship is assumed between the hardening variable, ε̄p, and flow stress. The constant
giving the degree of increase of yield stress with plastic flow is termed the hardening modulus and
is given as, H′, while the expression for the flow stress may be written,

σ̄ = σy+H′ε̄p. (4.18.14)

The simplicity of the model is its main feature as the constant slope,

dσ̄

dε̄p
= H′, (4.18.15)
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makes the model attractive for analytical models and cheap for computational implementations
(e.g. radial return algorithms require only a single correction step). Unfortunately, the simplicity
of the representation also means that it has limited predictive capabilities and can lead to overly
stiff responses.

Power Law

Another common expression for isotropic hardening is the power-law hardening model. Due to its
prevalence, a dedicated ELASTIC-PLASTIC POWER LAW HARDENING model may be found in
LAMÉ (see Section 4.8.1). This expression is given as,

σ̄ = σy+A < ε̄p−εL >
n, (4.18.16)

in which < · > are Macaulay brackets, εL is the Lüders strain, A is a fitting constant, and n is an
exponent typically taken such that 0 < n ≤ 1. The Lüders strain is a positive, constant strain value
(default to zero) giving an initial plastic deformation domain in which the response is perfectly
plastic (see Fig. 4-20). The derivative is then simply,

dσ̄

dε̄p
= nA < ε̄p−εL >

(n−1) . (4.18.17)

Note, one difficulty in such an implementation is that when the effective equivalent plastic strain
is zero, numerical difficulties may arise in evaluating the derivative necessitating special treatment
of the case.

Voce

The Voce hardening model (sometimes referred to as a saturation model) uses a decaying
exponential in terms of the equivalent plastic strain such that the hardening eventually saturates to
a specified value (thus the name). Such a relationship has been observed in some structural metals
giving rise to the popularity of the model. The hardening response is given as,

σ̄ = σy+A
(

1− exp
(

−nε̄p
))

, (4.18.18)

in which A is a fitting constant and n is a fitting exponent describing how quickly the hardening
saturates. Importantly, the derivative is written as,

dσ̄

dε̄p
= nAexp

(

−nε̄p
)

, (4.18.19)

and is well defined everywhere giving the selected form an advantage over the aforementioned
power law model.
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Johnson-Cook

The Johnson-Cook [6, 7] hardening type is a rate-dependent formulation utilizing the assumption
that rate-independent and rate-dependent contributions may be multiplicatively separated.
Specifically, use of this option requires specifying a user-defined hardening function to capture
rate-independent contributions and Johnson-Cook type rate dependent coefficients. The flow
stress may be written in this fashion as,

σ̄ = σ̃y

(

ε̄p
)

[

1+C

〈

ln

(

˙̄εp

ε̇0

)〉]

, (4.18.20)

in which σ̃ (ε̄p) is the user-specified rate-independent hardening function, C is a fitting constant
and ε̇0 is a reference strain rate. The Macaulay brackets ensure the material behaves in a rate
independent fashion when ˙̄εp < ε̇0.

Power Law Breakdown

Like the Johnson-Cook formulation, the power-law breakdown model is also rate-dependent.
Again, a multiplicative decomposition between rate-independent and dependent hardening
contributions. In this case, however, the functional form is derived from the analysis of Frost and
Ashby [8] in which power-law relationships like those of the Johnson-Cook and cease to
appropriately capture the physical response. The form used here is similar to the expression used
by Brown and Bammann [9] and is written as,

σ̄ = σ̃y

(

ε̄p
)

[

1+ asinh

(

(

˙̄εp

g

)(1/m)
)]

, (4.18.21)

with σ̃y (ε̄p) being the user supplied rate independent expression, g is a model parameter related
to the activation energy in going from climb to glide-controlled deformation, and m dictates the
strength of the dependence.

Flow Stress

Unlike the previously described models, the flow-stress hardening method is less a specific
physical representation and more a generalization of the hardening behaviors to allow greater
flexibility in separately describing isotropic hardening and rate-dependence. As such, the generic
flow-stress definition of

σ̄
(

ε̄p, ˙̄εp
)

= σ̃y

(

ε̄p
)

σ̂
(

˙̄εp
)

, (4.18.22)

is used in which σ̂ is the rate multiplier that by default is unity (such that the response is rate
independent) and σ̃y is the isotropic hardening component that may also be specified as,
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σ̃y = σy+K
(

ε̄p
)

, (4.18.23)

with σy being the constant yield stress and K is the isotropic hardening that is initially zero and a
function of the equivalent plastic strain. A multiplicative decomposition such as this mirrors the
general structure used by Johnson and Cook [6, 7] although greater flexibility is allowed in terms
of the specific form of the rate multiplier.

Given the aforementioned default for rate-dependence, the corresponding multiplier need not be
specified. A representation for the isotropic hardening, however, must be specified and can be
defined via linear, power-law, Voce, or user-defined representations. For the user-defined case, an
isotropic hardening function is required and it must be highlighted that the interpretation differs
from the general user-defined hardening model. In this case, as the specified function represents

the isotropic hardening, it should start from zero – not yield.

Although the flow-stress hardening model defaults to rate independent, a multiplier may be
defined. For rate-dependence, either the previously discussed Johnson-Cook or power-law
breakdown models or a user-defined multiplier may be used. For the user-defined capability, the
multiplier should be input as a strictly positive function of the equivalent plastic strain rate with a
value of one in the rate-independent limit.

Decoupled Flow Stress

Like the flow-stress hardening method, the decoupled flow-stress hardening implementation is a
generalization of the hardening behaviors to allow greater flexibility. In differentiating the two,
for the decoupled model the rate dependence may be separately specified for the yield and
hardening portions of the flow stress. As such, the generic flow-stress definition of

σ̄
(

ε̄p, ˙̄εp
)

= σyσ̂y
(

˙̄εp
)

+K
(

ε̄p
)

σ̂h
(

˙̄εp
)

, (4.18.24)

is used in which σ̂ are rate multipliers that by default are unity (such that the response is rate
independent) with subscripts “y” and “h” denoting functions associated with yield and hardening.
The isotropic hardening is described by K (ε̄p) and σy is the constant initial yield stress. It may
also be seen that if the yield and hardening dependencies are the same (σ̂y = σ̂h) the decoupled
flow stress model reduces to that of the flow stress case and mirrors the general structure of the
Johnson-Cook model [6, 7].

Given the aforementioned default to rate dependence, the corresponding multiplier need not be
specified. A representation for the isotropic hardening, however, must be specified and can be
defined via linear, power-law, Voce, or user-defined representations. For the user-defined case, an
isotropic hardening function should be used and it must be highlighted that the interpretation
differs from the general user-defined hardening model. In this case, as the specified function

represents the isotropic hardening, it should start from zero – not yield.

Although the decoupled flow-stress hardening model defaults to rate independent, a multiplier
may be defined. For rate-dependence, either the previously discussed Johnson-Cook or power-law
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breakdown models or a user-defined multiplier may be used. For the user-defined capability, the
multiplier should be input as a strictly positive function of the equivalent plastic strain rate with a
value of one in the rate-independent limit.

4.18.2. Implementation

The integration approach for the modular plane stress plasticity model follows largely from the
elastic-predictor/inelastic-corrector radial return approaches of Simo and Taylor [1] (and Simo
and Hughes [2]) with the exception of an extra line-search step and slightly modified treatment
for the hardening. To this end, the total strain increment dε = ε̇∆t is given as,

dε = ∆t





d11

d22

2d12



 (4.18.25)

where ∆t = tn+1− tn in which t = tn and t = tn+1 are a completely known state and the state to be
determined. The trial stress may then be written,

σtr = C̄
[

εn+dε−εp
n

]

(4.18.26)

with

C̄ =
E

1− ν2





1 ν 0
ν 1 0
0 0 1−ν

2



 (4.18.27)

and E and ν being the elastic modulus and Poisson’s ratio, respectively. The trial yield function is
then simply,

f tr = φ̄2 (σtr
)

−R2 (ε̄p
n,0
)

. (4.18.28)

For the case of plastic loading, if a fully implicit backward Euler scheme is adopted the plastic
strain flow rules are,

ε
p
n+1 = εp

n+λPσn+1, (4.18.29)

ε̄
p
n+1 = ε̄p

n+λ

√

2
3
φ̄n+1. (4.18.30)

By introducing,

σn+1 = C̄
(

εn+1−ε
p
n+1

)

, (4.18.31)
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and using relations (4.18.26) and (4.18.29), the updated stress may be shown to be,

[

I+λC̄ P

]

σn+1 = σ
tr, (4.18.32)

with I being the identity matrix.

As noted by Simo and Taylor [1], C̄ and P share characteristic subspaces Q enabling a principle
decomposition such that,

P = QΛP QT , ; C̄ = QΛC QT , (4.18.33)

in which,

QT =
1√
2





1 1 0
−1 1 0
0 0

√
2



 ; ΛP =





1
3 0 0
0 1 0
0 0 2



 ; ΛC =





E
1−ν 0 0
0 2µ 0
0 0 µ



 . (4.18.34)

In this space, a transformed stress, η, may be given as,

η = QT σ, (4.18.35)

which, when substituted into (4.18.32) yields,

[

I+λΛCΛP]η
n+1
= ηtr. (4.18.36)

Importantly, in (4.18.36) the matrix on the left-hand side is diagonal and easily inverted. The
updated transformed stress is thus a function of the consistency multiplier alone. Substituting the
corresponding evaluation of the stress into the definition of the effective stress produces a scalar
function of λ such that,

φ̄2 =

1
3

(

ηtr
11

)2

[

1+λ E
3(1−ν)

]2 +

(

ηtr
22

)2
+2
(

ηtr
12

)2

[

1+λ2µ
]2 . (4.18.37)

With the effective stress written as a function of λ alone and the flow rules in (4.18.29) and
(4.18.30) only an appropriate approximation for the effective plastic strain rate is needed to arrive
at the single scalar consistency equation to be solve. To that end, using (4.18.30), the effective
plastic strain rate is taken to be,

˙̄εp (λ) ≈
ε̄

p
n+1− ε̄

p
n

∆t
=
λ

∆t

√

2
3
φ̄n+1 (λ) . (4.18.38)

The updated yield function is now written as,
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fn+1 (λ) = φ̄2
n+1 (λ)−R2 (λ) = 0. (4.18.39)

This non-linear equation may be readily solved via a line-search augmented Newton-Raphson
approach (see [10]) by recasting the consistency condition as a residual,

r f (λ) = f (λ) = 0. (4.18.40)

Which, when linearized as,

r
f
k+1 = r

f
k +

d f

dλ
∆λ, (4.18.41)

with “k” being the non-linear correction iteration and ∆λ is the consistency increment yields the
solution (with r

f
k+1 = 0),

∆λ =
−r

f
k

d f
dλ

. (4.18.42)

The derivative is simply given as,

d f

dλ
=

d

dλ

(

φ̄2)− d

dλ

(

R2) , (4.18.43)

where

d

dλ

(

φ̄2) = −2







E

3(1− ν)

1
3

(

ηtr
11

)2

[

1+λ E
3(1−ν)

]3 +2µ

(

ηtr
22

)2
+2
(

ηtr
12

)2

[

1+λ2µ
]3






, (4.18.44)

and

d

dλ

(

R2) =
4
3

(

σyσ̂y+Kσ̂h

)

[

σ̂h
dK

dε̄p

dε̄p

dλ
+

d ˙̄εp

dλ

(

σy

dσ̂y

d ˙̄εp +K
dσ̂h

d ˙̄εp

)]

, (4.18.45)

in which

dε̄p

dλ
=

√

2
3

(

φ+λ
dφ

dλ

)

, (4.18.46)

d ˙̄εp

dλ
=

1
∆t

√

2
3

(

φ+λ
dφ

dλ

)

. (4.18.47)

As only a single equation needs to be solved, a merit function, ψ, is simply given as,
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ψ (λ) =
1
2

(

r f

σ2
y

)2

(4.18.48)

which may be solved via the quadratic approximation line-search scheme of [10].

4.18.3. Verification

Given the modular nature of the modular plane stress plasticity (MPSP) model, a variety of tests
are constructed to ascertain performance under different loadings and and combinations of
hardening models. The model parameters needed for such tests are given below in Table 4-26.
While a large number of combinations of the hardening and/or rate multipliers have been tested
under different conditions (>100 tests), here, for brevity only a sampling of these tests are
presented.

E 70 GPa ν 0.33 (-)
σy 200 MPa H′ 500 MPa
APL 400 MPa nPL 0.25 (-)
AVoce 200 MPa nVoce 20 (-)
C 0.1 (-) ε̇0 1×10−4 s−1

g 0.21 s−1 m 16.4 (-)

Table 4-26. Model parameters for verification tests used with the
modular plane stress plasticity (MPSP) model.

4.18.3.1. Uniaxial Stress

For the uniaxial stress tests, the constant equivalent plastic strain boundary value problem of
Appendix A.5 is used. Although that discussion is for 3D formulations, the plane stress
assumptions agree with the assumed boundary conditions (e.g. traction free out-of-plane stress)
enabling the same results to be used here. Results for such tests and their corresponding analytical
solutions are shown in Figure 4-80 for constant strain rates of ˙̄εp = 1×10−3s−1 (4-80a) and
˙̄εp = 1s−1(4-80b).

4.18.3.2. Balanced Biaxial

To assess performance of the model with multiple stress components, a constant equivalent plastic
strain rate balanced biaxial test is considered. For this test, a stress-state (in the projected plane
stress space) of

σ (t) =





σ (t)
−σ (t)

0



 (4.18.49)
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Figure 4-80. Analytical and numerical constant equivalent plas-
tic strain rate verification tests of the modular plane stress plas-
ticity models with a uniaxial stress state and strain rates of (a)
ε̇p = 1× 10−3s−1 and (b) ε̇p = 1s−1 with linear, power-law, and voce
isotropic hardening and power-law breakdown rate-dependence.
Solid lines are analytical and open symbols are from finite element
calculations.

is assumed. Note, such a loading is equivalent to a pure shear loading in a rotated frame of
reference. As such, many of the pure shear results of Appendix A.5 may be leveraged. To that
end, if elasticity effects are included the total strain, ε (t), may be found to be

ε (t) =
1√
3

σy+ σ̂hK
(

˙̄εp
(

t− tel
))

2µ
+

√
3

2
˙̄εp
(

t− tel) , (4.18.50)

with tel being the time at yield (elastic limit). To produce the desired stress state, the
corrresponding displacements are u1 (t) = exp(ε (t))−1 and u2 (t) = exp(−ε (t))−1. Results of
such tests and their corresponding analytical solutions are presented below in Figure 4-82 with
constant strain rates of ˙̄εp = 1×10−3s−1 (4-81a) and ˙̄εp = 1s−1 (4-81b).

4.18.3.3. Biaxial Shear

As a final set of tests, the pure shear response is probed. To accomplish this loading, the previous
balanced biaxial test is reconsidered with the geometry rotated 45◦ about the out of plane
direction producing a stress state of,

σ (t) =





0
0

σxy (t)



 . (4.18.51)
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Figure 4-81. Analytical and numerical constant equivalent plastic
strain rate verification tests of the modular plane stress plasticity
models with a balanced biaxial stress state and strain rates of (a)
ε̇p = 1× 10−3s−1 and (b) ε̇p = 1s−1 with linear, power-law, and voce
isotropic hardening and power-law breakdown rate-dependence.
Solid lines are analytical and open symbols are from finite element
calculations. Positive valued stresses correspond to σ11 while neg-
ative values are σ22.

The previous results from Section 4.18.3.2 regarding the solution for the balanced biaxial
problem may again be used with σxy (t) = σ (t). Result for this case, both analytical and finite
element, are given in Figure 4-82 with constant applied strain rates of ˙̄εp = 1×10−3s−1 and
˙̄εp = 1s−1 in Figures 4-82a and 4-82b, respectively.
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Figure 4-82. Analytical and numerical constant equivalent plastic
strain rate verification tests of the modular plane stress plastic-
ity models with a pure shear stress state and strain rates of (a)
ε̇p = 1× 10−3s−1 and (b) ε̇p = 1s−1 with linear, power-law, and voce
isotropic hardening and power-law breakdown rate-dependence.
Solid lines are analytical and open symbols are from finite element
calculations.
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4.18.4. User Guide

BEGIN PARAMETERS FOR MODEL MODULAR_PLANE_STRESS_PLASTICITY

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

YIELD STRESS = <real> σy

#

#

# Hardening model

#

HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |

FLOW_STRESS | DECOUPLED_FLOW_STRESS | CUBIC_HERMITE_SPLINE |

JOHNSON_COOK | POWER_LAW_BREAKDOWN

#

# Linear hardening

#

HARDENING MODULUS = <real> H′

#

# Power-law hardening

#

HARDENING CONSTANT = <real> A

HARDENING EXPONENT = <real> n (0.5)

LUDERS STRAIN = <real> εL (0.0)

#

# Voce hardening

#

HARDENING MODULUS = <real> A

EXPONENTIAL COEFFICIENT = <real> n

#

# Johnson-Cook hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE CONSTANT = <real> C

REFERENCE RATE = <real> ε̇0

#

# Power law breakdown hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE COEFFICIENT = <real> g
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RATE EXPONENT = <real> m

#

# User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name

#

#

# Following Commands Pertain to Flow_Stress Hardening Model

#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

USER_DEFINED

#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name

#

# - Rate dependence

#

RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Specifications for Johnson-Cook, Power-law-breakdown

# same as before EXCEPT no need to specify a

# hardening function

#

# User defined rate multiplier

#

RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name

#

#

#

# Following Commands Pertain to Decoupled_Flow_Stress Hardening Model

#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED

#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_function_name

#
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# - Rate dependence

#

YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Specifications for Johnson-Cook, Power-law-breakdown same as before

# EXCEPT no need to specify a hardening function

# AND should be preceded by YIELD

#

# As an example for Johnson-Cook yield rate dependence,

#

YIELD RATE CONSTANT = <real> Cy

YIELD REFERENCE RATE = <real> ε̇
y
0

#

# User defined rate multiplier

#

YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_name

#

HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Syntax same as for yield parameters but with a HARDENING prefix

#

#

END [PARAMETERS FOR MODEL MODULAR_PLANE_STRESS_PLASTICITY]

Output variables available for this model are listed in Table 4-27.

Table 4-27. State Variables for MODULAR PLANE STRESS PLAS-
TICITY Model

Name Description

RADIUS yield surface radius in deviatoric π-plane, R

EQPS equivalent plastic strain, ε̄p

EQDOT equivalent plastic strain rate, ˙̄εp
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4.19. POWER LAW CREEP MODEL

4.19.1. Theory

The power law creep model describes the secondary (or steady-state) creep and is useful in
capturing the time-dependent behavior of metals, brazes, or solder at high homologous
temperatures. It may also be used as a simple model for the time-dependent behavior of geologic
materials such as salt. A general discussion of such creep behaviors and the associated modeling
may be found in the texts of [1, 2] while the specific implementation used here is discussed
in [3].

In the power law creep model, the effective creep strain rate is taken to be explicitly a function of
stress and temperature. A power law relation is used for the stress dependence while an Arrhenius
like expression is used to capture thermal effects. As such, the effective creep strain rate is written
as,

˙̄εc = Aσ̄m
vM exp

(

−Q

Rθ

)

, (4.19.1)

where ˙̄εc is the effective creep strain rate, σ̄vM is the von Mises stress, A is the creep constant, m

is the creep exponent, Q is the activation energy, R is the universal gas constant (1.987 cal/mole
K), and θ is the absolute temperature. As a slip based mechanism, it is assumed that the creep
strains are deviatoric leading to a 3D evolution law of the form,

Dc
i j = ˙̄εc 3

2

si j

σ̄vM

, (4.19.2)

with si j being the deviatoric stress. The corresponding incremental constitutive equation for this
model is then given as,

◦
σi j= Ci jkl

(

Dkl−Dc
kl

)

. (4.19.3)

4.19.2. Implementation

Given the time-dependent nature of the model response, an explicit, forward Euler scheme is used
to integrate the routine. Prior analysis [3] has shown that this implementation is conditionally
stable and found an expression of the form

∆tst <
4(1+ ν)

3EAexp
(

−Q
Rθ

)

mσ̄m−1
vM

(4.19.4)

for the critical time step for stability, ∆tst. This time step is calculated using the previously
determined material state (state n) and compared to the input time step. If necessary, the time step
is cut back to meet this critical limit.
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To determine the updated material state (state n+1) it is first noted that the creep process is purely
deviatoric. Therefore, the stress may be decomposed as,

T n
i j = −pnδi j+ sn

i j (4.19.5)

where p is the pressure (pn = − (1/3)T n
kk) and Ti j is the unrotated stress. Given the decoupled

nature of the hydrostatic and deviatoric components, the updated pressure may be found as,

pn+1 = pn−Kdkk∆t, (4.19.6)

with di j being the unrotated rate of deformation. By similarly decomposing the rate of
deformation,

di j =
1
3

dkkδi j+ d̂i j, (4.19.7)

with d̂i j being the deviatoric part of the rate of deformation, the updated deviatoric stress is

sn+1
i j = sn

i j+2µ

(

d̂i j−
3
2

Aexp

(

−Q

Rθn

)

(

σ̄n
vM

)m−1
sn

i j

)

. (4.19.8)

The updated stress is then simply,

T n+1
i j = −pn+1δi j+ sn+1

i j . (4.19.9)

4.19.3. Verification

The power law creep model is verified through two, time-dependent tests – creep and stress
relaxation. It is noted that given the strong time dependency and form of the differential
constitutive equations, a closed form analytical expression for the response is not readily
available. Semi-analytical approaches in which simple numerical integration is used to solve the
underlying differential equation, however, are well suited to such efforts and are used here to
verify the numerical responses. The set of material properties and model parameters used for
these tests are taken from [4] and are given in Table 4-28 and it is assumed that there are no
thermal strains.

4.19.3.1. Creep

To consider the creep response, the model response is determined both numerically and
semi-analytically. Through such a response, the stress tensor is σi j = σ (t)δi1δ j1 where σ (t) is a
prescribed boundary condition. For this investigation, σ (t) ramps linearly from 0 to σmax over the
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interval t = [0,100 s] and σmax = 300 MPa. The stress is then held constant (σ̇ = 0) for the next
900 s. Inverting the constitutive law (4.19.3) for the strain rate yields,

Di j = Si jklσ̇kl+Dc
i j. (4.19.10)

Furthermore, given the stress tensor form above, the creep deformation rate is,

Dc
i j = Aσ̄m

vM exp

(

−Q

Rθ

)[

δi1δ j1−
1
2

(

δi2δ j2+δi3δ j3
)

]

, (4.19.11)

and

Si jklσ̇kl = σ̇Si j11. (4.19.12)

The total deformation rate may then be determined and easily integrated to find an analytical
response for the strain. To this end, both the semi-analytical and numerical strain and stress
responses (as a function of time) are presented in Figures 4-83a and 4-83b, respectively.
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Figure 4-83. Semi-analytical and numerical results of (a) strain and
(b) stress evolution during a creep test.

E 90.68 MPa ν 0.39
A 5.12 x 10−5 m 4.51
Q/R 19,853.50 K θ 673.00 K

Table 4-28. The material properties and model parameters for the
power law creep model used for the verification testing.
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4.19.3.2. Stress Relaxation

The stress relaxation response of the considered model is evaluated both numerically and
semi-analytically. Specifically, a displacement controlled loading of u1 = λ (t) is investigated. The
other displacement degrees of freedom are not constrained so that a uniaxial stress state results –
σi j (t) = σ (t)δi1δ j1. The displacement is prescribed such that it scales linearly from u1 = 0 at t = 0
to u1 = .01 at t = 100 s and then held fixed for 900 s. Initially the considered element is of unit
length.

To determine the material response, it is noted that: (i) σ22 = σ33 = 0; (ii) De
22 = De

33 due to
isotropy; and (iii) the creep deformation rate takes the form (4.19.11). With these observations,
the elastic deformation rate in the direction of loading (De

11) becomes,

De
11 =

λ̇ (t)
1+λ (t)

−Aσ̄m
vM exp

(

−Q

Rθ

)

. (4.19.13)

Additionally, from (i) and (ii) above, it may be found that,

De
22 = De

33 = −νDe
11, (4.19.14)

leading to an equation for the stress in the direction of loading of,

σ̇11 = (C1111−2νC1122) De
11. (4.19.15)

Additionally, as Di j = De
i j+Dc

i j the strains may easily integrated by using relations (4.19.11),
(4.19.13), and (4.19.14). The resultant numerical and semi-analytical strain and stress responses
are shown in Figures 4-84a and 4-84b, respectively.
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Figure 4-84. Semi-analytical and numerical results of the (a) strain
and (b) stress evolution during a stress relaxation test.
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4.19.4. User Guide

BEGIN PARAMETERS FOR MODEL POWER_LAW_CREEP

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Viscoplastic parameters

#

CREEP CONSTANT = <real> A

CREEP EXPONENT = <real> m

THERMAL CONSTANT = <real> Q/R

MAX SUBINCREMENTS = <integer> max_subincrements(100)

END [PARAMETERS FOR MODEL POWER_LAW_CREEP]

Output variables available for this model are listed in Table 4-29.

Table 4-29. State Variables for POWER LAW CREEP Model

Name Description

ECREEP equivalent creep strain
SEQDOT equivalent stress rate
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4.20. VISCOPLASTIC MODEL

4.20.1. Theory

The viscoplastic model is a rate dependent plasticity model that is useful for modeling solders and
brazes and was developed by Neilsen et al. [1]. This model is formulated in terms of the stress
rate for the material. Like many inelastic models, the rate of deformation, Di j, is additively
decomposed into an elastic, De

i j, and an inelastic, Din
i j part such that,

Di j = De
i j+Din

i j . (4.20.1)

The elastic rate of deformation is the only part that contributes to the stress rate and it does so
through the elastic moduli, Ci jkl, in a linear fashion leading to the relation,

◦
σi j= Ci jklD

e
kl, (4.20.2)

where Ci jkl are the components of the fourth-order, isotropic elasticity tensor. The stress rate is
arbitrary, as long as it is objective. Two objective stress rates are commonly used: the Jaumann
rate and the Green-McInnis rate. For problems with fixed principal axes of deformation, these two
rates give the same answers. For problems where the principal axes of deformation rotate during
the deformation, the two rates can give different answers. Generally speaking there is no reason to
pick one objective rate over another.

The inelastic strain rate is a function of the stress state, σi j, the temperature, θ, and a number of
internal state variables including both scalar isotropic, D, and tensorial kinematic, Bi j, hardening
variables. With these dependencies defined, a general form for the evolution of the inelastic
deformation may be given by,

Din
i j =

3
2
γ
(

σi j, θ; D,Bi j

)

ni j, (4.20.3)

where ni j is the direction of inelastic deformation and is defined as,

ni j =
1
τ

(

si j−
2
3

Bi j

)

, (4.20.4)

and

τ =

√

3
2

(

si j−
2
3

Bi j

)(

si j−
2
3

Bi j

)

, (4.20.5)
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with si j being the deviatoric stress tensor. The inelastic strain rate, γ, is defined via a hyperbolic
sin law,

γ = f (θ)

[

sinh

(

τ

α(θ)D

)]p(θ)

, (4.20.6)

where f (θ) = exp(g(θ)). The expressions g(θ), α(θ), and p(θ) are model parameters that are
functions of temperature.

The evolution laws for the state variables D and Bi j are,

Ḋ =
A1

(D−D0)A3
γ−A2 (D−D0)2 , (4.20.7)

and

Ḃi j =
A4

bA6
Din

i j −A5bBi j, (4.20.8)

where

b =

√

2
3

Bi jBi j. (4.20.9)

The parameters D0, A1, A2, A3, A4, A5 and A6 are model parameters. The parameters A1, A2, A4

and A5 are also functions of temperature. The model can be simplified with the appropriate choice
of these parameters.

The following material parameters are functions of temperature and have the following form

G(θ) =G0hG(θ) ; K(θ) = K0hK(θ)

g(θ) = g0hg(θ) ; p(θ) = p0hp(θ) ; α(θ) = α0hα(θ)

(4.20.10)

A1(θ) = A0
1h1(θ) ; A2(θ) = A0

2h2(θ)

A4(θ) = A0
4h4(θ) ; A5(θ) = A0

5h5(θ)

where the functions h∗(θ) are normalized functions of temperature and the values (∗)0 or (∗)0 are
the reference values that are input in the command block.
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4.20.2. Implementation

An explicit, forward Euler scheme is used to integrate the viscoplastic model. First, during
initialization, the isotropic hardening variable D is set to 1.001D0. This is done to avoid a
singularity in (4.20.7). Additionally, the kinematic variable is set to zero (Bi j = 0).

Like the power law creep model that is integrated in a similar fashion, the chosen numerical
scheme is conditionally stable. As detailed in [1], a critical stability time step of,

∆tn+1 ≤
2α (θ) D

3G f (θ) p (θ) sinhp(θ)−1
(

τ
α(θ)D

)

cosh
(

τ
α(θ)D

) , (4.20.11)

may be determined. For convince, in the following the dependence of f , p, and α will be assumed
and not explicitly written. Instead, f n+1 will be used to refer to f

(

θn+1
)

. Two additional limits are
also imposed to ensure accurate integration of the state variables. Specifically,

∆tn+1 ≤

√

2δD0∆tn

|Ḋn− Ḋn−1|
, (4.20.12)

and

∆tn+1 ≤

√

2δD0∆tn

|ḃn− ḃn−1|
, (4.20.13)

where δ is an allowable error measure (here, 1.0x10−3) and ẋn refers to the time rate of change of
variable x at time step n. The current time step is checked to ensure it meets those criteria or else
it is scaled back to ensure accurate integration.
After assessing the acceptability of the time step, the new material state at time t = tn+1 is
determined. If the time step needs to be cut back, multiple sub-increments are used. To elaborate,
let k denote a specific sub-increment and N represent the total number of sub-increments. Each
kth interval evaluates the numerical routine over a step size δtk where ∆t =

∑N
k=0 δt

k. In such
cases, temperature dependent variables are linearly interpolated between their values at tn and
tn+1. For example,

Gk =Gn+
∆tk

∆t
(Gn+1−Gn) , (4.20.14)

where ∆tk is the current sub-increment time, ∆tk =
∑k

r=0 δt
r. For simplicity and clarity of

presentation, in the discussion below it is assumed that the input time step is acceptable and only
a single increment is needed. If additional sub-increments were needed, the below steps would be
repeated N times with time intervals of δtk.

It is first noted that the unrotated stress, Ti j, and deformation rate, di j, may be decomposed as,
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T n
i j = −pnδi j+ sn

i j, (4.20.15)

dn
i j =

1
3

dn
kkδi j+ d̂n

i j, (4.20.16)

with p being the pressure (p = −1
3Tkk) and d̂i j being the rate of deviatoric deformation. As the

inelastic deformation flows in a deviatoric direction, the hydrostatic and deviatoric components
may be evaluated separately. With this in mind, the pressure may be easily integrated via,

pn+1 = pn Kn+1

Kn
+

1
2

(

Kn+Kn+1)dkk∆t, (4.20.17)

where Kn is abbreviated notation for K (θn). The inelastic deformation rate is then determined
as,

Din
i j =

3
2
γ
(

σn
i j, θ

n; Dn,Bn
i j

)

nn
i j, (4.20.18)

by evaluating expressions (4.20.4)-(4.20.6) at t = tn and θ = θn. The internal state variables may
then be similar evolved via (4.20.7) and (4.20.8). With the inelastic state determined, the updated
deviatoric stress may be found via,

sn+1
i j =

Gn+1

Gn
sn

i j+2∆tGn
(

d̂i j−Din
i j

)

, (4.20.19)

with the updated stress being,

T n+1
i j = −pn+1δi j+ sn+1

i j . (4.20.20)

4.20.3. Verification

The viscoplastic model is verified through two, time-dependent tests – creep and stress relaxation.
To simplify the problem for verification purposes, the isothermal response only considering
isotropic hardening and recovery is investigated. It is noted, however, that given the stress
dependence and evolving internal state variable in the inelastic strain rate, a closed-form
analytical solution may not be found. Semi-analytical approaches numerically integrating the
differential equations are easily obtainable and used for comparison purposes. The considered test
temperature is 450◦C (723 K) and material properties and model parameters are those of
CusilABA taken from Table 3 of [1] and are reproduced for convenience below in Table 4-30.

4.20.3.1. Creep

The creep response of the viscoplastic model is investigated both numerically and
semi-analytically. For such a loading, the stress tensor is σi j = σ (t)δi1δ j1 with σ (t) being a
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prescribed quantity. For this study, σ (t) ramps linearly from 0 to σmax over the interval
t = [0,100 s] with σmax = 300 MPa. That magnitude is then maintained for the next 900 s.

To analytically determine the model response, the constitutive law (4.20.2) is inverted to yield

Di j = Si jklσ̇kl+Din
i j , (4.20.21)

and it is trivial to determine that

Si jklσ̇kl = σ̇S11kl. (4.20.22)

For the inelastic response, for the purely isotropic case it is noted that τ = σ (t) and therefore
ni j =

2
3

[

δi1δ j1− 1
2

(

δi2δ j2+δi3δ j3
)]

. Additionally, the inelastic strain rate reduces to,

γ = f

[

sinh

(

σ (t)
αD

)]p

(4.20.23)

producing a rate of inelastic deformation of,

Din
i j = γ

[

δi1δ j1−
1
2

(

δi2δ j2+δi3δ j3
)

]

. (4.20.24)

Expressions (4.20.21), (4.20.22), (4.20.24), and (4.20.7) can be easily integrated (via forward
Euler or Runge-Kutta) to determine a semi-analytical response. Both the numerical and
semi-analytical responses of the strain and stress (including flow stress, D) are presented below in
Figures 4-85a and 4-85b, respectively.

4.20.3.2. Stress Relaxation

The model response through a stress relaxation type loading is considered here both numerically
and semi-analytically. For this purpose, a displacement controlled loading, u1 = λ (t), is
employed. The other displacement degrees of freedom are not prescribed to ensure that a uniaxial
stress state (σi j = σ (t)δi1δ j1) develops. Specifically, the displacement is set to scale linearly over

E 77.8 GPa ν 0.375
g -13.88 p 2.589
A1 3x104 MPaA3+1 A2 2.07x10−5 1

MPa s
A3 1.746 D0 50.0 MPa
A4 0 MPaA6+1 A5 0.0 1

MPa s
A6 0.0 α 1.0

Table 4-30. Material properties and model parameters used for
isothermal, isotropic hardening/recovery creep and stress relax-
ation tests of the viscoplastic model.
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Figure 4-85. Semi-analytical and numerical results of (a) strain and
(b) external and internal, (D), stress evolution during a creep test
with the viscoplastic model.

100 s (from t = 0 to t = 100 s) obtaining a maximum of u1 = 0.01 at t = 100 s. Initially, a unit
length is assumed. This displacement is held fixed over the next 900 s to investigate the stress
relaxation characteristics of the model.

A similar procedure to the power law creep model (Section 4.19.3.2) is employed here.
Specifically, by noting the elastic isotropy, uniaxial stress state, and (4.20.24) the elastic
deformation rate in the direction of loading (De

11) is found to be,

De
11 =

λ̇ (t)
1+λ (t)

−γ, (4.20.25)

where an expression for γ is given in (4.20.23). By noting σ̇i j = Ci jklD
e
kl and Di j = De

i j+Din
i j , the

material state may easily be found via numerical integration. The result strain and stress
evolutions are given in Figures 4-86a and 4-86b, respectively.
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Figure 4-86. Semi-analytical and numerical results of (a) strain and
(b) external and internal (D) stress evolution during a stress relax-
ation test with the viscoplastic model.
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4.20.4. User Guide

BEGIN PARAMETERS FOR MODEL VISCOPLASTIC

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ

FLOW RATE = <real> g0

SINH EXPONENT = <real> p0

ALPHA = <real> α0

ISO HARDENING = <real> A0
1

ISO RECOVERY = <real> A0
2

ISO EXPONENT = <real> A3

KIN HARDENING = <real> A0
4

KIN RECOVERY = <real> A0
5

KIN EXPONENT = <real> A6

FLOW STRESS = <real> D0

SHEAR FUNCTION = <string> hG(θ)
BULK FUNCTION = <string> hK(θ)
RATE FUNCTION = <string> hg(θ)
EXPONENT FUNCTION = <string> hp(θ)
ALPHA FUNCTION = <string> hα(θ)
IHARD FUNCTION = <string> h1(θ)
IREC FUNCTION = <string> h2(θ)
KHARD FUNCTION = <string> h4(θ)
KREC FUNCTION = <string> h5(θ)
MAX SUBINCREMENTS = <int> itmax (2000)

END [PARAMETERS FOR MODEL VISCOPLASTIC]

Output variables available for this model are listed in Table 4-31.

More information on the model can be found in the report by Neilsen, et. al. [1].
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Table 4-31. State Variables for VISCOPLASTIC Model

Name Description

EQPS equivalent plastic strain
SVB kinematic hardening variable, B

SVB_XX kinematic hardening variable - xx component, Bxx

SVB_YY kinematic hardening variable - yy component, Byy

SVB_ZZ kinematic hardening variable - zz component, Bzz

SVB_XY kinematic hardening variable - xy component, Bxy

SVB_YZ kinematic hardening variable - yz component, Byz

SVB_ZX kinematic hardening variable - zx component, Bzx

SVD isotropic hardening variable, D

EQDOT inelastic strain rate, γ
COUNT number of sub-increments
SHEAR shear modulus, G(θ)
BULK bulk modulus, K(θ)
RATE g(θ) (see(4.20.6))
EXP p(θ) (see(4.20.6))
ALPHA α(θ) (see(4.20.6))
A1 isotropic hardening parameter, A1(θ)
A2 isotropic recovery parameter, A2(θ)
A4 kinematic hardening parameter, A4(θ)
A5 kinematic recovery parameter, A5(θ)
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4.21. MUNSON-DAWSON VISCOPLASTIC MODEL

4.21.1. Theory

The Munson-Dawson (MD) model was originally defined in [1, 2, 3], but several changes were
made in [4]. This section presents the current model in a small strain setting. (Section 4.21.2
briefly mentions how the model is extended into the finite deformation realm.) Note that
compressive stresses and strains are treated as positive in this section, as is common in the
geomechanics literature.

The MD model is an isotropic, unified viscoplastic, material model. The total strain rate ε̇i j is
decomposed into an elastic strain rate ε̇el

i j, a thermal strain rate ε̇th
i j , and a viscoplastic strain rate

ε̇
vp
i j :

ε̇i j = ε̇
el
i j + ε̇

th
i j + ε̇

vp
i j . (4.21.1)

The elastic portion of the MD model utilizes the following simple linear relationship between ε̇el
kl

and the stress rate σ̇i j,

σ̇i j = Ci jklε̇
el
kl = Ci jkl

(

ε̇kl− ε̇th
kl − ε̇

vp
kl

)

(4.21.2)

Ci jkl = (B−2/3µ)δi j δkl+µ
(

δik δ jl+δil δ jk

)

, (4.21.3)

where Ci jkl is the elastic stiffness, which is composed of the bulk modulus B, the shear modulus
µ, and the Kronecker Delta δi j. The thermal strain portion of the model is simply

ε̇th
i j = −αθ̇δi j (4.21.4)

where α is the coefficient of thermal expansion, and θ is the temperature. Sierra/SM also offers
thermal strain functions for adding thermal strain effects to any given model. If α , 0, then MD
model users should not specify a thermal strain function, otherwise thermal strains will be applied
twice.

Plastic deformation is assumed to be isochoric and only occurs in the presence of shear stress.
The MD model utilizes the Hosford stress as its equivalent shear stress measure σ̄. The Hosford
stress is

σ̄ =

{

1
2

[

|σ1−σ2|a+ |σ2−σ3|a+ |σ1−σ3|a
]

}1/a

, (4.21.5)

where σi are the principal stresses and a is a material parameter. This definition for σ̄ was
proposed in [5] because it encompasses the Tresca stress (a = 1), the von Mises stress (a = 2), and
a range of behaviors in-between (1 < a < 2). One can also reproduce the Tresca stress with a =∞,
the von Mises stress with a = 4, and behaviors in-between with 4 < a <∞. This second range
avoids potential singularities in the first and second derivatives of (4.21.5), so the exponent is
restricted to a ≥ 4.

The viscoplastic strain evolves according to an associated flow rule

ε̇
vp
i j =

˙̄εvp ∂σ̄

∂σi j

, (4.21.6)
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where ˙̄εvp is the equivalent viscoplastic strain rate. It can be decomposed into two components

˙̄εvp = ˙̄εtr+ ˙̄εss, (4.21.7)

where ˙̄εtr is the transient equivalent viscoplastic strain rate and ˙̄εss is the steady state equivalent
viscoplastic strain rate.

The MD model decomposes the steady state behavior into four “mechanisms”:

˙̄εss =

3
∑

i=0

˙̄εss
i

˙̄εss
i =Ai exp

(

−Qi

Rθ

) (

σ̄

µ

)ni

for i = 0, 1, and 2

˙̄εss
3 =H(σ̄− σ̄g)

2
∑

i=0

Bi exp

(

−Qi

Rθ

)

sinh

(

q
(σ̄− σ̄g)

µ

)

, (4.21.8)

The variables Ai, Bi, Qi, ni, σ̄g, and q are all model parameters. All four mechanisms have an
Arrhenius temperature dependence, where Qi is an activation energy and R = 8.314 J/(K mol) is
the universal gas constant. Mechanism 3 is only activated when σ̄ exceeds σ̄g, as reflected in the
heaviside function H(σ̄− σ̄g). Typically, the parameters Bi are chosen to produce a smooth
transition to mechanism 3 at σ̄g.

The simple functional forms of (4.21.8) suffice for the steady-state behavior, but the transient
behavior is somewhat more complex. During work hardening under constant stress, ε̄tr

approaches the transient strain limit ε̄tr* from below, and the total viscoplastic strain rate slows
down over time. During recovery under constant stress, ε̄tr approaches ε̄tr* from above, and the
total viscoplastic strain rate speeds up over time. The rate that ε̄tr approaches ε̄tr* is governed by

˙̄εtr = (F −1) ˙̄εss, (4.21.9)

where

F = exp

[

sign (ε̄tr*− ε̄tr)κ

(

1− ε̄tr

ε̄tr*

)2
]

. (4.21.10)

and κ is a quantity that depends on whether the material is work hardening or recovering. These
two behaviors are captured in the following equations

κ =















αh+βh log10

(

σ̄

µ

)

ε̄tr ≤ ε̄tr*

αr+βr log10

(

σ̄

µ

)

ε̄tr > ε̄tr*.

(4.21.11)

where α j and β j are model parameters. Note that the parameter κ must be non-negative, otherwise
(4.21.9) produces a negative/positive ˙̄εtr when ε̄tr is below/above ε̄tr*. (Such behavior occurs
during reverse creep, but the MD model is only designed to model forward creep.) To enforce
this, (4.21.11) is calculated first, and then

κ←max(κ,0) (4.21.12)
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is applied.

The MD model uses two mechanisms to endow ε̄tr* with stress and temperature dependence:

ε̄tr* =

1
∑

i=0

ε̄tr*
i

ε̄tr*
i = Ki exp(ci θ)

(

σ̄

µ

)mi

, (4.21.13)

where Ki, ci, and mi are parameters to be calibrated against experimental results.

4.21.2. Implementation

The full details of the MD model’s numerical implementation are published in [4]. This section
discusses several salient points for the typical MD model user and to define all the input
parameters in Section 4.21.4.

• As discussed in Section 4.21.3, one can obtain an analytical solution to the MD model’s
ordinary differential equations if the exponent in (4.21.10) is changed from 2 to 1, and
sign (ε̄tr*− ε̄tr) = 1. To accommodate this possibility, (4.21.10) is numerically implemented
as

F = exp

[

sign (ε̄tr*− ε̄tr)χ−1 κ

(

1− ε̄tr

ε̄tr*

)χ]

(4.21.14)

where χ is a user specified integer that is equal to 2 by default, but one can set χ = 1 for
verification testing.

• Each steady state creep mechanism is implemented with a viscoplastic rate scale factor s,
such that (4.21.8) becomes

˙̄εss =

3
∑

i=0

˙̄εss
i

˙̄εss
i =s Ai exp

(

−Qi

Rθ

) (

σ̄

µ

)ni

for i = 0, 1, and 2

˙̄εss
3 =s H(σ̄− σ̄g)

2
∑

i=0

Bi exp

(

−Qi

Rθ

)

sinh

(

q
(σ̄− σ̄g)

µ

)

. (4.21.15)

This scale factor can be used to speed up or slow down the equivalent steady-state strain
rate and the total equivalent viscoplastic strain rate, because ˙̄εvp = ˙̄εtr+ ˙̄εss = F ˙̄εss. The
default value is s = 1, but it can be useful to set s to some small value to “freeze” the
material’s viscoplasticity for a period of time, or increase s to larger values to squeeze
hundreds of years into a few seconds. Speeding up the viscoplasticity can allow one to
make quasi-static simulations using explicit dynamics, provided inertial effects are kept to a
minimum. The variable s is implemented as an internal state variable, rather than a material
parameter, so a user can modify it in the middle of a simulation. Internal state variables can
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be altered by creating a “user variable” with the same name as the internal state variable
(viscoplastic_rate_scale_factor in this case) in a Sierra input deck and
modifying the user variable with a user function or user subroutine (see Sections 2.3 and
A.2.1 in [6]).

• The MD model is extended into the finite-deformation realm using hypoelasticity.
Consistent with the Green-McInnis stress rate, the infinitesimal strain rates are replaced
with the corresponding unrotated rates of deformation (i.e. ε̇i j→ Di j) and the stress is
replaced with the unrotated Cauchy stress (σi j→ Ti j).

• Following the lead of Scherzinger [7], the model’s time derivatives are discretized using the
backwards Euler method, and the resulting non-linear algebraic equations are solved with a
line search augmented Newton-Raphson method.

A typical user of the model should not need to adjust the routine’s default numerical parameters,
but the parameters are briefly mentioned here should adjustment become necessary.

• The implementation has some expressions where σ̄ is in the denominator of a fraction. If an
initial calculation of the Hosford stress results in σ̄ < σ̄min, then the initial value is replaced
with σ̄min. The value of σ̄min should be small enough to have negligible impact, yet still
avoid σ̄ = 0.

• Each iteration of the implicit integration routine updates the merit function

ω(k) = 1/2
(

R(k)
i j R

(k)
i j + r(k)2

)

for iteration k, where R(k)
i j and r(k) are the residuals associated

with the differential equations in (4.21.6) and (4.21.9), respectively. An iteration is
considered converged when

√
ω(k) <

√
ωmax. The value of

√
ωmax should be a small

positive value close to zero.

• If a Newton iteration (or a line search iteration) does not produce sufficient decrease in ω(k),
a line search iteration is performed. The line search algorithm selects ζ( j), for each iteration
j, to search for a sufficient decrease in ω(k)(ζ( j)) along the search direction provided by the
Newton iteration. The start and end of the last Newton iteration are ζ( j) = 0 and ζ( j) = 1,
respectively. A decrease in ω(k)(ζ( j)) is considered sufficient if
ω(k)(ζ( j)) < (1−2ξ ζ( j−1))ω(k)(0), where ξ is a positive value usually set close to zero.

• The minimum allowed value of ζ( j) is γ.

• The maximum number of Newton iterations is kmax.

• The maximum number of line search iterations is jmax.

See [4] for further discussion of these numerical parameters.

4.21.3. Verification

The MD model contains ordinary differential equations ((4.21.6) and (4.21.9)) that make it
non-trivial to verify. A straightforward analytical solution, however, can be constructed to these
equations if χ = 1 in (4.21.14) and if the stresses and temperatures remain piecewise constant in
time.
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Temporally constant stresses and temperatures allow (4.21.2), (4.21.3), (4.21.4), (4.21.5),
(4.21.6), (4.21.7), and (4.21.8) to be integrated to

εkl−εkl(t j) = C
−1
klmn

(

σmn−σmn(t j)
)

−α
(

θ− θ(t j)
)

δkl+ε
vp
kl −ε

vp
kl (t j) (4.21.16)

ε
vp
kl −ε

vp
kl (t j) =

[

ε̄tr− ε̄tr(t j)+ ˙̄εss (t− t j)
] ∂σ̄

∂σkl

(4.21.17)

where t j is the time at the end of the previous time period j. The quantities from the previous time
period (εkl(t j), σmn(t j), θ(t j), ε

vp
kl (t j), and ε̄tr(t j)) are assumed to be known. Setting χ = 1 in

(4.21.14) enables the following general analytical solution to (4.21.9):

ε̄tr =
ε̄tr*

κ
ln
{

exp(κ)+ exp
[ κ

ε̄tr* (C1− ˙̄εsst)
]}

. (4.21.18)

One can solve for the integration constant C1 using the initial condition ε̄tr = ε̄tr(t j) at t = t j. After
substituting the result back into (4.21.18), one obtains

ε̄tr =
ε̄tr*

κ
ln

{

exp(κ)+

[

exp

(

ε̄tr(t j)κ

ε̄tr*

)

− exp(κ)

]

exp
[

− κ

ε̄tr*
˙̄εss (t− t j)

]

}

. (4.21.19)

Combining (4.21.16), (4.21.17), and (4.21.19) produces the following closed form expression for
the total strain change over a time period

εkl−εkl(t j) = C
−1
klmn

(

σmn−σmn(t j)
)

−α
(

θ− θ(t j)
)

δkl+
[

ε̄tr*

κ
ln

{

exp(κ)+

[

exp

(

ε̄tr(t j)κ

ε̄tr*

)

− exp(κ)

]

exp
[

− κ

ε̄tr*
˙̄εss (t− t j)

]

}

− ε̄tr(t j)+ ˙̄εss (t− t j)

]

∂σ̄

∂σkl

. (4.21.20)

The next three subsections compare numerical solutions against analytical solutions for
axisymmetric compression, pure shear, and unequal biaxial compression. In each case, the
numerical solution for the total strain is denoted as εi j, while the analytical solution for the total
strain in (4.21.20) is denoted as ε̂i j. All the verification tests only involve principal deformations,
so hypoelasticity simply reinterprets the stress and strain in Section 4.21.1 as the Cauchy stress
and logarithmic strain, respectively. As a reminder, compressive stresses and strains are treated as
positive.

All the verification tests utilize Calibration 3B of the MD model. The full parameter set can be
found in [4], but Fig. 4-87, 4-88 and 4-89 depict much of the calibration graphically. Figure 4-87
shows the shape of the Hosford equivalent stress surface for a = 16. The Hosford surface and the
angle φ of its normal ni j depend on the Lode angle ψ of the deviatoric stress
σdev

i j = σi j−1/3σkk δi j. Figures 4-88 and 4-89 show the individual mechanisms ε̄tr*
i and ˙̄εss

i , as

well as the sums ε̄tr* =
∑1

i=0 ε̄
tr*
i and ˙̄εss =

∑3
i=0

˙̄εss
i , so that one can visualize where each

mechanism dominates the total behavior.
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Figure 4-87. Hosford equivalent stress surface in the π-plane.
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Figure 4-88. Stress and temperature dependence of the transient
strain limit for Calibration 3B.
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262



4.21.3.1. Triaxial Compression

Triaxial compression tests are frequently used to characterize the creep and strength behavior of
geomaterials, such as rock salt. Cylindrical specimens are subjected to a radial confining pressure
σrr and an axial stress σzz. Axisymmetric compression is perhaps a more appropriate name for
these tests, because the hoop stress σϑϑ is equal to σrr, but triaxial compression is the common
name.
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Figure 4-90. Triaxial Compression Verification Test

The applied stress and temperature histories for the test are shown in the top two plots in
Fig. 4-90. The test begins with an isothermal, 20 MPa hydrostatic, hold period for 10 days, where
the strain is purely elastic. At t = 0 d, σzz is increased to 35 MPa, while the other stresses are held
fixed, causing a 15 MPa equivalent stress. This stress state is held for the next 50 days. The strain
evolves quickly at first, but slows down to the steady-state rate as the material work hardens. At
t = 50 d, σzz is decreased to 33 MPa, while the other stresses are held fixed. The 2 MPa drop in σ̄
causes the strain rate to slow down markedly, but it gradually builds to a new steady-state rate as
the material recovers over the next 50 days.

In summary, the numerical and analytical solutions for the total strain match very well throughout
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the test, which verifies:

• Linear elasticity under triaxial compression

• Zero viscoplastic strain evolution under hydrostatic loading

• Viscoplastic strain evolution for ψ = −30◦

• Work hardening (ε̄tr < ε̄tr*) dominated by transient strain limit mechanism 1

• Recovery (ε̄tr > ε̄tr*) dominated by transient strain limit mechanism 1

• Steady-state strain accumulation dominated by transient strain limit mechanism 2.

4.21.3.2. Pure shear

The Hosford equivalent stress depends on a for −30◦ < ψ < 30◦, but it is independent of a for
ψ = −30◦(triaxial compression) and ψ = 30◦ (triaxial extension). Pure shear is a simple stress
state that exercises the Hosford stress at a Lode angle other than ψ = ±30◦. Pure shear can be
expressed in the principal frame as σ3 = −σ1 and σ2 = 0. In addition to exercising the model
under pure shear, this test also varies the temperature to verify thermal expansion and creep at
elevated temperatures.

The applied stress and temperature histories for the test are shown in the top two plots in
Fig. 4-91. The test begins with a 0 MPa hydrostatic hold period for 10 days while the temperature
is linearly ramped from 27◦C to 57◦C. Some thermal strains develop during this time. At t = 0 d,
the temperature ramp stops, σ1 is increased to 5 MPa, σ2 is held at zero, and σ3 is reduced to
-5 MPa. This state is held for the next 50 days, while the material creeps. At t = 50 d, θ is
increased to 112◦C, but the stresses remain fixed. The sharp increase in θ causes a step change in
thermal strain, and then accelerated creep is observed over the over the next 50 days.

In summary, the numerical and analytical solutions for the total strain match very well throughout
the test, which verifies:

• Linear elasticity under pure shear

• Thermal expansion

• Viscoplastic strain evolution for ψ = 0◦

• Temperature dependence of transient strain limit mechanism 1

• Steady-state strain accumulation dominated by mechanism 1

• Steady-state strain accumulation dominated by mechanism 2.

4.21.3.3. Unequal Biaxial Compression

Unequal biaxial compression is another stress state that exercises the Hosford stress at a Lode
angle other than ψ = ±30◦. Unequal compressive stresses σxx and σyy are applied to two faces of
a cube, while σzz = 0. This stress state is slightly more complex than triaxial compression or pure
shear because all three stress magnitudes are unequal. This test also alters the stress component
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Figure 4-91. Pure Shear Verification Test

ratios after 50 days of creep to verify the model’s ability to change Lode angle.

The applied stress and temperature histories for the test are shown in the top two plots in
Fig. 4-92. The test begins with a stress free hold period for 10 days. At t = 0 d, σxx is increased to
3.5 MPa, σyy is increased to 5 MPa, and σzz is held at zero. In this stress state, ψ = 13.0◦ and the
intermediate principal stress is σxx. The intermediate principal strain rate ε̇xx ≈ 0 and ε̇yy ≈ −ε̇zz

because the flow rule (4.21.6) causes ε̇εεvp to be coaxial with the flow potential normal ni j, and ni j

is nearly horizontal at ψ = 13.0◦ in Calibration 3B (see Fig. 4-87). At t = 50 d, σxx is increased to
6.0 MPa, while the other stresses remain fixed. The sharp increase in σxx causes a step change in
elastic strain that is visible because the viscoplastic strains are small at these low values of σ̄. In
this stress state, ψ = 21.1◦ and the intermediate principal stress is σyy. Accordingly, ε̇yy ≈ 0 and
ε̇xx ≈ −ε̇zz. If one looks more closely, however, ε̇yy is slightly positive and ε̇xx > −ε̇zz because
ψ = 21.1◦ is beginning to approach the corner of the Tresca hexagon (see again Fig. 4-87).

In summary, the numerical and analytical solutions for the total strain match very well throughout
the test, which verifies:

• Linear elasticity under unequal biaxial compression
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Figure 4-92. Unequal Biaxial Compression Verification Test

• Viscoplastic strain evolution for ψ = 13.0◦ and a subsequent change to ψ = 21.1◦

• Transient strain accumulation dominated by transient strain limit mechanism 0

• Steady-state strain accumulation dominated by mechanism 0.
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4.21.4. User Guide

BEGIN PARAMETERS FOR MODEL MD_VISCOPLASTIC

# Elastic constants

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
# Steady-state creep parameters

A0 = <real> A0 (0.0)

A1 = <real> A1 (0.0)

A2 = <real> A2 (0.0)

Q0oR = <real> Q0/R (0.0)

Q1oR = <real> Q1/R (0.0)

Q2oR = <real> Q2/R (0.0)

n0 = <real> n0 (0.0)

n1 = <real> n1 (0.0)

n2 = <real> n2 (0.0)

sigma_g = <real> σg

B0 = <real> B0 (0.0)

B1 = <real> B1 (0.0)

B2 = <real> B2 (0.0)

q = <real> q (0.0)

# Transient creep parameters

K0 = <real> K0 (0.0)

K1 = <real> K1 (0.0)

c0 = <real> c0 (0.0)

c1 = <real> c1 (0.0)

m0 = <real> m0 (0.0)

m1 = <real> m1 (0.0)

alpha_h = <real> αh (0.0)

alpha_r = <real> αr (0.0)

beta_h = <real> βh (0.0)

beta_r = <real> βr (0.0)

# Other parameters

alpha = <real> α (0.0)

a = <real> a (1000.0)

# Numerical implementation parameters

_chi = <real> χ (2.0)

_sigma_min = <real> σmin (µ×10−10)

_sqrt_omega_max = <real>
√
ωmax (10−11)

_xi = <real> ξ (10−4)

_gamma = <real> γ (0.1)

_k_max = <real> kmax (100)

_j_max = <real> jmax (10)
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END [PARAMETERS FOR MODEL MD_VISCOPLASTIC]

Output variables available for this model are listed in Table 4-32.

Table 4-32. State Variables for MD_VISCOPLASTIC Model

Name Description

EQ_TR_STRAIN equivalent transient viscoplastic strain, ε̄tr

EQ_VP_STRAIN equivalent viscoplastic strain, ε̄vp

EQ_STRESS equivalent stress, σ̄
VP_RATE_SCALE_FACTOR viscoplastic rate scale factor, s
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4.22. HYPERFOAM MODEL

4.22.1. Theory

The hyperfoam model is a hyperelastic model that can be used for modeling elastomeric foams. It
is based on a strain energy with a form given by Störakers [1] which is similar to a form presented
by Ogden [2]. The strain energy depends on the principal stretch ratios of the material and is
given by

W(λk) =
N
∑

i=1

2µi

α2
i

[

λ
αi

1 +λ
αi

2 +λ
αi

3 −3+
1
βi

(

J−αiβi −1
)

]

(4.22.1)

where µi and αi are input parameters and J is the determinant of the deformation gradient. The
value of βi is calculated from the parameters νi via

βi =
νi

1−2νi
. (4.22.2)

The νi can be thought of as Poisson’s ratios, however in the context of the summation in (4.22.1)
it is best to consider them as fitting parameters.

The strain energy (4.22.1) is a sum of N contributions. The principal Kirchoff stresses for the
hyperfoam model, τk, can be calculated as

τk = λk
∂W

∂λk

(4.22.3)

which can be used to calculate the components of the Kirchoff stress, τi j, through

τi j =

3
∑

k=1

τkêk
i êk

j. (4.22.4)

where êk
i are the components of the kth eigenvector of the left stretch tensor in the global

Cartesian coordinate system. The components of the Cauchy stress are then

σi j =
1
J
τi j. (4.22.5)

Finally, it should be noted that the Hyperfoam model is also capable of reproducing the Blatz-Ko
model [3, 4]. If only one term is chosen, N = 1, and µ1 = µ, α1 = −2, and ν1 = 0.25 we get the
Blatz-Ko strain energy density
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W =
µ

2

(

I2

I3
+2
√

I3−5

)

, (4.22.6)

where I2 and I3 are the second and third invariants of the right Cauchy-Green tensor.

4.22.2. Implementation

The hyperfoam model is evaluated using the left stretch tensor, Vi j. Given the left stretch, the
eigenvalues, λk, and eigenvectors, êk

i , of the stretch are calculated

Vi jê
k
j = λkêk

i ; Vi j =

3
∑

k=1

λkêk
i êk

j. (4.22.7)

Next, the determinant of the deformation gradient is calculated

J = λ1λ2λ3. (4.22.8)

Then the contribution of each term in the expansion is added to the Kirchoff stress

τn
i j = τ

n−1
i j +λ1

∂W(n)

∂λ1
ê1

i ê1
j +λ2

∂W(n)

∂λ2
ê2

i ê2
j +λ3

∂W(n)

∂λ3
ê3

i ê3
j (4.22.9)

where τ0
i j = 0 and

λk
∂W(n)

∂λk

=
2µn

αn

(

λ
αn

k − J−αnβn
)

. (4.22.10)

After summing the terms n = 1, ...,N the Kirchoff stress is converted to the Cauchy stress
using (4.22.5). If necessary the Cauchy stress is transformed back into an unrotated configuration
to be returned to the host code.

4.22.3. Verification

The hyperfoam model is verified for four loading paths: uniaxial strain, biaxial strain, pure shear,
and simple shear. The material parameters used for the verification tests are shown in Table 4-33.
For these problems N = 3.
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4.22.3.1. Uniaxial Strain

Since the hyperfoam model is formulated in terms of principal stretches, a uniaxial strain problem
is a very simple verification problem that can be run.

In uniaxial strain, the stretch ratio in the direction of straining is λ = exp(ε), where ε is the applied
strain. In a direction orthogonal to the direction of straining the stretch ratios are equal to one.
The determinant of the deformation gradient is J = λ.

Since the deformation is aligned with the global coordinate axes, the eigenvectors of the left
stretch are also aligned with the global coordinate axes. Using the derivatives of the strain energy
density given in (4.22.10), the non-zero stress components are

σ11 =
1
λ

N
∑

i=1

2µi

αi

(

λαi −λ−αiβi
)

(4.22.11)

σ22 = σ33 =
1
λ

N
∑

i=1

2µi

αi

(

1−λ−αiβi
)

The results of the analysis in tension are shown in Figures 4-93 to Figure 4-95.

For the results in Figure 4-93, a single element is strained to ε = 0.6 which, in uniaxial strain in
tension, is very large for this model. At some point the stresses begin to increase rapidly. Since
the axial stress and the lateral stresses are both very large, the pressure in uniaxial strain in tension
is also very large. For this extreme loading the model in Adagio shows agreement with the
analytical solution.

The model is also loaded in uniaxial compression. These results are shown in Figure 4-94. The
model again shows agreement with the analytical solution. The behavior in compression is very
different than tension. The maximum stress is an order of magnitude less at a strain of ε = −0.6,
where the axial stress is just over 9 MPa, compared to ε = 0.6 in tension where the axial and lateral
stresses are nearly 450 MPa. The lateral stresses reach a plateau while the axial stress increases.
The stresses in compression also have a different nonlinear form than the stresses in tension.

Finally, both the tension and compression responses are shown in Figure 4-95. Here the
continuity of the behavior at ε = 0 can be seen along with the very different responses in tension
and compression.

µi 25.8 MPa -21.9 MPa 0.0814 MPa
αi 2.536 2.090 -8.807
νi 0.5630 0.5507 0.3662

Table 4-33. The material properties for the hyperfoam model tested
in uniaxial strain.
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Figure 4-93. The axial and lateral stresses for uniaxial strain in ten-
sion using the hyperfoam model. The results show agreement with
the analytical results. The material properties for the model are
given in Table 4-33.
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Figure 4-94. The axial and lateral stresses for uniaxial strain in com-
pression using the hyperfoam model. The results show agreement
with the analytical results. The material properties for the model
are given in Table 4-33.
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Figure 4-95. The axial and lateral stresses for uniaxial strain in both
tension and compression using the hyperfoam model. The results
show agreement with the analytical results and that the response
of the material is very different in tension and compression. The
material properties for the model are given in Table 4-33.
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4.22.3.2. Biaxial Strain

Another simple verification problem for the hyperfoam model is biaxial strain.

In biaxial strain, the stretch ratios are prescribed in two orthogonal directions. For this
λ1 = exp(ε1) and λ2 = exp(ε2), where εi are the applied strains in the x1 and x2 directions. In the
third direction orthogonal to the first two, the stretch ratio is one. The determinant of the
deformation gradient is J = λ1λ2.

σ11 =
1

λ1λ2

N
∑

i=1

2µi

αi

[

λ
αi

1 − (λ1λ2)−αiβi
]

; σ22 =
1

λ1λ2

N
∑

i=1

2µi

αi

[

λ
αi

2 − (λ1λ2)−αiβi
]

(4.22.12)

σ33 =
1

λ1λ2

N
∑

i=1

2µi

αi

[

1− (λ1λ2)−αiβi
]

The results of the analysis in tension are shown in Figures 4-96 to Figure 4-98.

For the results in Figure 4-96, a single element is strained with ε1 = 0.4 and ε2 = 0.2 which, in
biaxial strain in tension, is very large for this model. At some point the normal stresses begin to
increase rapidly. Since the normal stresses are very large, the hydrostatic pressure is also very
large. For this extreme loading the model in Adagio shows agreement with the analytical
solution.

The model is also loaded in biaxial compression. These results are shown in Figure 4-97. The
model again shows agreement with the analytical solution. The behavior in compression is very
different than tension. The maximum stress is orders of magnitude less at a strain of ε1 = −0.4
and ε2 = −0.3, where the maximum normal stress is just over 4.5 MPa, compared to ε1 = 0.4 and
ε2 = 0.3 in tension where the normal stresses from the model are nearly 1.3 GPa. The lateral
stress σzz reaches a plateau while the other two stress increase with increased straining The
stresses in compression also have a different nonlinear form than the stresses in tension.

Finally, both the tension and compression responses are shown in Figure 4-98. Here the
continuity of the behavior at ε = 0 can be seen along with the very different responses in tension
and compression.
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Figure 4-96. The normal stresses for biaxial strain in tension using
the hyperfoam model. The results show agreement with the ana-
lytical results. The material properties for the model are given in
Table 4-33.
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Figure 4-97. The normal stresses for biaxial strain in compression
using the hyperfoam model. The results show agreement with the
analytical results. The material properties for the model are given
in Table 4-33.
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Figure 4-98. The normal stresses for biaxial strain in both tension
and compression using the hyperfoam model. The results show
agreement with the analytical results and that the response of the
material is very different in tension and compression. The material
properties for the model are given in Table 4-33.
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4.22.3.3. Pure Shear

The hyperfoam model is is also tested in pure shear in strain. Note that this is different from pure
shear in stress.

In pure shear, the principal stretch ratios are λ1 = λ, λ2 = 1, and λ3 = λ
−1. The determinant of the

deformation gradient is J = 1, which means the Kirchhoff and Cauchy stress measures are the
same.

The principal stresses are

σ1 =

N
∑

i=1

2µi

αi

(

λαi −1
)

; σ2 = 0 ; σ3 =

N
∑

i=1

2µi

αi

(

λ−αi −1
)

(4.22.13)

The principal axes of deformation are aligned at 45◦ to the coordinate axes. In the global
coordinate system the non-zero stress components are

σ11 = σ22 =

N
∑

i=1

2µi

αi

(

λαi +λ−αi −2
)

(4.22.14)

σ12 =

N
∑

i=1

2µi

αi

(

λαi −λ−αi
)

The results of the analysis in pure shear are shown in Figure 4-99. A single element is strained to
a shear strain of ε = 0.4. The model in Adagio shows agreement with the analytical solution
presented above. It is interesting to note that pure shear strain produces not only normal stresses
with the hyperfoam model, but a non-zero pressure. The deviatoric/volumetric split so often used
with our constitutive model does not occur with the hyperfoam model.
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Figure 4-99. The shear and normal stresses for the hyperfoam
model in pure shear. The material properties for the model are
given in Table 4-33.
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4.22.3.4. Simple Shear

The hyperfoam model is is also tested in simple shear. Note that this is a different deformation
path than pure shear. In simple shear the deformation gradient is

[

Fi j

]

=





1 γ 0
0 1 0
0 0 1



 (4.22.15)

The principal stretch ratios are λ1 = λ, λ2 = 1, and λ3 = λ
−1. The determinant of the deformation

gradient is J = 1, which means the Kirchhoff and Cauchy stress measures are the same. This gives
the same principal stresses as in pure shear when written in terms of the principal stretch ratio, λ.
The principal stresses are

σ1 =

N
∑

i=1

2µi

αi

(

λαi −1
)

; σ2 = 0 ; σ3 =

N
∑

i=1

2µi

αi

(

λ−αi −1
)

(4.22.16)

The principal stretch ratio is

λ =
1+ sinθ

cosθ
; θ = tan−1

(γ

2

)

(4.22.17)

The principal axes of deformation in the current configuration, i.e. the eigenvectors of the left
stretch, are given by

ê1
i = cosφe1

i + sinφe2
i ; ê2

i = e3
i ; ê3

i = −sinφe1
i + cosφe2

i (4.22.18)

where φ = π/4− θ/2.

The results of the analysis in simple shear are shown in Figure 4-100. A single element is strained
to a shear parameter of γ = 0.4. The model in Adagio shows agreement with the analytical
solution presented above. It is interesting to note that simple shear with the hyperfoam model
produces different normal stresses than simple shear, i.e. the two non-zero normal stresses are not
equal. The difference arises from the fact that the principal axes of deformation in pure shear are
fixed, while in simple shear the principal axes rotate. There is still a non-zero pressure which
again shows that the deviatoric/volumetric split does not occur with the hyperfoam model.
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Figure 4-100. The shear and normal stresses for the hyperfoam
model in simple shear. The material properties for the model are
given in Table 4-33.
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4.22.4. User Guide

BEGIN PARAMETERS FOR MODEL HYPERFOAM

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Strain energy density

#

N = <integer> N

SHEAR = <real_list> µi

ALPHA = <real_list> αi

POISSON = <real_list> νi

END [PARAMETERS FOR HYPERFOAM]

There are no output variables available for this model.
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4.23. HYPERELASTIC DAMAGE MODEL

4.23.1. Theory

The hyperelastic damage model is an isotropic, strain rate and temperature independent
continuum damage formulation. In this case, the specific form is that discussed by Holzapfel [1]
and proposed primarily for particulate reinforced (filled) rubber-like materials exhibiting the so
called Mullins effect. Specifically, this model utilizes a Kachanov-like effective stress concept to
propose an effective Helmholtz free energy, W, of the form

W = (1− ζ)W0
(

Ci j

)

, (4.23.1)

in which ζ = [0,1] is the isotropic damage variable and W0 is the Helmholtz free energy of the
undamaged material and Ci j is the right Cauchy-Green tensor (Ci j = FkiFk j with Fi j the
deformation gradient). The free energy expression of the neo-Hookean model (Section 4.5) is
used to describe the undamaged strain energy and is given as,

W0
(

Ci j

)

=
1
2

K

[

1
2

(

J2−1
)

− ln J

]

+
1
2
µ
(

C̄kk −3
)

, (4.23.2)

with K and µ the bulk and shear moduli, J the determinant of the deformation gradient and C̄kk

the isochoric part of the deformation – C̄i j = F̄kiF̄k j and F̄i j = J−1/3Fi j. In the undamaged
configuration, the second Piola-Kirchoff stress, S 0

i j, is the energetic conjugate of the right
Cauchy-Green strain such that

S 0
i j = 2

∂W0

∂Ci j
, (4.23.3)

leading to a damaged stress of the form,

S i j = (1− ζ)S 0
i j. (4.23.4)

To describe the softening process, two damage related variables are needed. The first is the
previously mentioned smooth, continuous effective damage variable, ζ, while the second is the
so-called discontinuous damage variable, α. In essence, this second variable may be considered to
be the maximum strain energy in the undamaged material throughout the entire loading history.
This statement may be expressed as,

α = max
s∈[0,t]

W0 (s) , (4.23.5)

in which s is a history variable representing any time in the loading history and the dependence on
s in (4.23.5) is used to indicate the loading history and not an explicit dependence on time or
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strain rate. The two damage terms are related by assuming ζ = ζ (α). To ascertain this
dependence, it is noted that ζ (0) = 0 and ζ (∞) = 1 the former explicitly stating that the material is
initially undamaged and the latter noting in the limit the material is completely damaged the
strain energy will go to∞. These observations lead to an expression of the form,

ζ (α) = ζ∞
[

1− exp(−α/τ)
]

, (4.23.6)

with τ being a constant referred to as the damage saturation parameter and ζ∞ being the
maximum value of the damage parameter that may be achieved.

The evolution of the damage process is governed by a so-called damage function, f
(

Ci j,α
)

(analogous to the yield function in plasticity), postulated as,

f
(

Ci j,α
)

= φ
(

Ci j

)

−α, (4.23.7)

where φ is the thermodynamic driving of the damage process. In this case, the thermodynamic
conjugate of the damage variable ζ is the undamaged strain energy, W0, such that
φ
(

Ci j

)

=W0
(

Ci j

)

. By enforcing the consistency condition during damage ( ḟ = 0), it can be
shown that,

α̇ = φ̇ =
∂W0

∂Ci j
Ċi j =

1
2

S 0
i jĊi j. (4.23.8)

4.23.2. Implementation

For the hyperelastic damage model, the first step is to calculate the undamaged second
Piola-Kirchoff stress, S

0(n+1)
i j of the current (n+1)th time step. To this end, the deformation

gradient, F
(n+1)
i j , is calculated based on the input stretch, V

(n+1)
i j , and rotation, R

(n+1)
i j , tensors via

the polar decomposition. The second Piola-Kirchoff stress may then be determined as,

S
0(n+1)
i j =

[

1
2

K

(

(

J(n+1))2−1
)

Iil+µ
(

J(n+1))−2/3
(

C
(n+1)
il − 1

3
C

(n+1)
kk Iil

)]

(

C
(n+1)
jl

)−1
. (4.23.9)

To determine the damage state, the undamaged strain energy W
(n+1)
0 , is first calculated as,

W
(n+1)
0 =

1
2

K

(

1
2

(

(

J(n+1))2−1
)

− ln J(n+1)
)

+
1
2
µ
[

(

J(n+1))−2/3
C

(n+1)
kk −3

]

. (4.23.10)

The current discrete damage variable, α(n+1), may then be determined via,

α(n+1) =max
[

α(n),W
(n+1)
0

]

, (4.23.11)
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so that the current continuous damage variable, ζ(n+1), is,

ζ(n+1) = ζ∞
[

1− exp
(

α(n+1)/τ
)]

. (4.23.12)

Finally, these expressions lead to an unrotated Cauchy stress of the form,

T
(n+1)
i j =

1
J(n+1)

(

1− ζ(n+1))R
(n+1)
ki F

(n+1)
km S 0(n+1)

mn F(n+1)
rn R

(n+1)
r j . (4.23.13)

4.23.3. Verification

Given the hyperelastic formulation of the hyperelastic damage model, it is possible to find closed
form solutions for simple loadings. Two such instances (uniaxial strain and simple shear) are
considered here to evaluate and verify the response of this implementation. In this case, the
results explored here are extensions of the neo-Hookean verification tests previously discussed in
Section 4.5.3 and [2]. One set of material properties was used for all tests and they are given in
Table 4-34. The damage parameters are taken from [1].

K 0.5 MPa µ 0.375 MPa
ζ∞ 0.8 τ 0.3 MPa

Table 4-34. The material properties for the hyperelastic damage
model used for both the uniaxial and simple shear tests.

4.23.3.1. Uniaxial Strain

First, utilizing a displacement condition corresponding to uniaxial strain results in a deformation
gradient of the form,

Fi j = λδ1iδ1 j+δ2iδ2 j+δ3iδ3 j. (4.23.14)

As the undamaged material is neo-Hookean, it is noted that the under these loading conditions the
stress field is found by evaluating relation (4.5.3) and may be written as

σ0
11 =

1
2

K

(

λ− 1
λ

)

+
2
3
µ
(

λ2−1
)

λ−5/3,

σ0
22 = σ

0
33 =

1
2

K

(

λ− 1
λ

)

− 1
3
µ
(

λ2−1
)

λ−5/3, (4.23.15)

σ0
12 = σ

0
23 = σ

0
31 = 0.

The damaged, effective stresses are then simply σi j = (1− ζ)σ0
i j and the problem reduces to the

determination of ζ. In this case, given the deformation gradient in (4.23.14), J = λ and
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W0 =
1
2

K

[

1
2

(

λ2−1
)

− lnλ

]

+
1
2
µ
[

λ−2/3 (λ2+2
)

−3
]

. (4.23.16)

During loading, α =W0 while during unloading α =W0 (λmax) and ζ can be determined from
(4.23.6).

Both the corresponding analytical and numerical solutions are presented in Figure 4-101 for a
complete loading and unloading cycle. Note, the damage parameter, ζ, increases during loading
but remains constant during unloading verifying the irreversibility of the proposed model.
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Figure 4-101. Analytical and numerical results of the stress and
damage state for the uniaxial stretch case.

.

4.23.3.2. Simple Shear

For the simple shear case, a deformation gradient of the form,

Fi j = δi j+γδ1iδ2 j, (4.23.17)

is prescribed. Again, from the neo-Hookean model definitions the undamaged stresses may be
determined via (4.5.3) and noting this is a volume preserving definition (J = 1) leading to
expressions of the form,
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σ0
11 =

2
3
µγ2,

σ0
22 = σ33 = −1

3
µγ2,

σ0
12 = µγ, (4.23.18)

σ0
23 = σ

0
31 = 0.

In this case, the undamaged strain energy is simply,

W0 =
1
2
µγ2, (4.23.19)

and ζ may be evaluated via (4.23.6). The effective stresses are then σi j = (1− ζ)σ0
i j

Both the corresponding analytical and numerical solutions are presented in Figure. 4-102 for a
complete loading and unloading cycle. Note, the damage parameter, ζ, increases during loading
but remains constant during unloading given the irreversible form of the damage process.
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Figure 4-102. Analytical and numerical results of the stress and
damage state for the simple shear case.
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4.23.4. User Guide

BEGIN PARAMETERS FOR MODEL HYPERELASTIC_DAMAGE

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

DAMAGE MAX = <real> ζ∞
DAMAGE SATURATION = <real> τ

END [PARAMETERS FOR MODEL HYPERELASTIC_DAMAGE]

Output variables available for this model are listed in Table 4-35. For information about the
hyperelastic damage model, consult [1].

Table 4-35. State Variables for HYPERELASTIC DAMAGE Model

Name Description

DAMAGE continuous isotropic damage variable, ζ
ALPHA discontinuous damage variable, α
PRESSURE reference undamaged tensile pressure, (1/3)(1− ζ)S kk
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4.24. SOIL AND FOAM MODEL

4.24.1. Theory

The soil and crushable foam model is a plasticity model that can be used for modeling soil,
crushable foam, or other highly compressible materials. Given the right input, the model is a
Drucker-Prager model.

For the soil and crushable foam model, the yield surface is a surface of revolution about the
hydrostat in principal stress space. A planar end cap is assumed for the yield surface so that the
yield surface is closed. The yield stress σyd is specified as a polynomial in pressure p. The yield
stress is given as:

σyd = a0+a1 p+a2 p2 , (4.24.1)

where the pressure p is positive in compression. The determination of the yield stress from
Equation (4.24.1) places severe restrictions on the admissible values of a0, a1, and a2. There are
three valid cases for the yield surface. In the first case, there is an elastic–perfectly plastic
deviatoric response, and the yield surface is a cylinder oriented along the hydrostat in principal
stress space. In this case, a0 is positive, and a1 and a2 are zero. In the second case, the yield
surface is conical. A conical yield surface is obtained by setting a2 to zero and using appropriate
values for a0 and a1. In the third case, the yield surface has a parabolic shape. For the parabolic
yield surface, all three coefficients in Equation (4.24.1) are nonzero. The coefficients are checked
to determine that a valid negative tensile-failure pressure can be derived based on the specified
coefficients.

For the case of the cylindrical yield surface (e.g., a0 > 0 and a1 = a2 = 0), there is no tensile-failure
pressure. For the other two cases, the computed tensile-failure pressure may be too low. To
handle the situations where there is no tensile-failure pressure or the tensile-failure pressure is too
low, a pressure cutoff can be defined. If a pressure cutoff is defined, the tensile-failure pressure is
the larger of the computed tensile-failure pressure and the defined cutoff pressure.

The plasticity theories for the volumetric and deviatoric parts of the material response are
completely uncoupled. The volumetric response is computed first. The mean pressure p is
assumed to be positive in compression, and a yield function φp is written for the volumetric
response as:

φp = p− fp (εV) , (4.24.2)

where fp (εV) defines the volumetric stress-strain curve for the pressure. The yield function φp

determines the motion of the end cap along the hydrostat.
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4.24.2. Implementation

The soil and crushable foam model is a rate-independent, hypoelastic model that splits and
sequentially evaluates the volumetric and deviatoric response. To determine the inelastic flow, an
elastic predictor-inelastic corrector approach is adopted for each of the aforementioned
responses.

For the volumetric response, an updated logarithmic volume strain, εn+1
v , is computed by,

εn+1
v = εn

v −∆tdkk. (4.24.3)

Note, in this case, the volume strain is defined such that it is positive in compression. This strain
value is then used to evaluate the volumetric yield function defined in (4.24.2) and determine the
appropriate pressure, p, the material is subject to.

To evaluate the deviatoric response, a trial deviatoric stress, str
i j, is defined as,

str
i j = sn

i j+2µd̂i j∆t, (4.24.4)

with d̂i j being the deviatoric part of the unrotated rate of deformation. The deviatoric yield
function, f , is then used to evaluate if any deviatoric plastic flow is occurring and is written as,

f
(

si j, p
)

= φ
(

si j

)

−σyd (p) , (4.24.5)

where σyd is the yield stress given in (4.24.1) and φ
(

si j

)

the effective stress given as,

φ
(

si j

)

=

√

3
2

si jsi j. (4.24.6)

If an elastic response is evident ( f ≤ 0), then the final stress is simply,

T n+1
i j = str

i j− pδi j. (4.24.7)

Otherwise, if a plastic response is observed, a radial return approach like that discussed in
Section 4.7.2 is utilized to find the equivalent plastic strain increment, ∆ε̄p. Unlike that case,
given the decoupling between the volumetric and deviatoric behaviors, the hardening component
of the yield surface does not change leading to an expression of the form,

∆ε̄p =
f

3µ
, (4.24.8)

and the final stress is,
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T n+1
i j = str

i j−3µ∆ε̄p
str

i j

φ
− pδi j. (4.24.9)

4.24.3. Verification

The soil and foam model is verified for a triaxial compression load path. First the material is
biaxially loaded in plane strain using load control, then the prescribed loads are released while the
material is compressed in displacement control.

4.24.3.1. Triaxial Compression

The soil and foam model is tested in triaxial compression. For this problem, both lateral stresses,
σ11 and σ33, are prescribed along with the axial strain, ε22. Furthermore, the lateral stresses are
equal, σ11 = σ33. For the elastic response, the axial stress is

σ22 = Eε22+2νσ11 (4.24.10)

where E is the elastic modulus and ν is the Poisson’s ratio. The lateral strains are

ε11 = −ν (ε22−σ11/λ) (4.24.11)

where λ is the Lamé constant.
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Figure 4-103. Lateral strain, ε11 and ε33, over the course of the pre-
scribed triaxial loading path.

Figure 4-104. Axial stress, σ22, over the course of the prescribed
triaxial loading path.
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4.24.4. User Guide

BEGIN PARAMETERS FOR MODEL SOIL_FOAM

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Yield surface parameters

#

A0 = <real> a0

A1 = <real> a1

A2 = <real> a2

PRESSURE CUTOFF = <real> pc

PRESSURE FUNCTION = <string> fp(εV )
END [PARAMETERS FOR MODEL SOIL_FOAM]

For information about the soil and crushable foam model, see the PRONTO3D document listed as
Reference [1]. The soil and crushable foam model is the same as the soil and crushable foam
model in PRONTO3D. The PRONTO3D model is based on a material model developed by
Krieg [2]. The Krieg version of the soil and crushable foam model was later modified by Swenson
and Taylor [3]. The soil and crushable foam model developed by Swenson and Taylor is the
model in PRONTO3D and is also the shared model for Presto and Adagio.

Output variables available for this model are listed in Table 4-36.

Table 4-36. State Variables for SOIL FOAM Model

Name Description

EVOL_MAX maximum volumetric strain seen by the material point
EVOL_FRAC volumetric strain for tensile fracture
EVOL current volumetric strain
EQPS equivalent plastic strain
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4.25. SHAPE MEMORY ALLOY MODEL

4.25.1. Theory

The shape memory alloy (SMA) model is used to describe the thermomechanical response of
intermetallics (e.g. NiTi, NiTiCu, NiTiPd, NiTiPt) that can undergo a reversible, diffusionless,
solid-to-solid martensitic transformation. Specifically, the materials have a high-symmetry
(typically cubic) austenitic crystallographic structure at high temperature and/or low stress. At
lower-temperatures and/or high stress the crystallographic structure is transformed to a lower
symmetry (typically orthorhombic or monoclinic) martensitic phase. The change in structure and
symmetry may be taken advantage of to produce large inelastic strains of ≈ 1-8%. Importantly,
this class of materials differentiates itself from TRIP steels in that the transformation is reversible

and a variety of thermomechanical loading paths have been conceived of to take advantage of this
behavior. A notable application of these materials is as an actuator in smart, morphing
structures.

Phenomenologically, the macroscopic behavior of SMAs is typically discussed in effective
stress-temperature space via a phase diagram like in Figure 4-105. The four lines denoted
Ms, M f , As, and A f indicate the martensitic start, martensitic finish, austenitic start, and
austenitic finish transformation surfaces. Forward transformation (from an austenitic to a
martensitic state) is described by the martensitic start and finish surfaces. Specifically, the former
refers to the thermomechanical conditions at which transformation will initiate while the latter
corresponds to complete transformation. The difference between the two surfaces is associated
with internal hardening effects due to microstructure (i.e. texture, back stresses). Transformation
from martensite to austenite is referred to as reverse and is characterized by the austenitic start
and finish surfaces. Detailed discussion of the crystallography and phenomenology may be found
in [1, 2]5.

Two responses characteristic of SMAs may also be represented via the phase diagram. These are
the actuation response and the pseudoelastic (often referred to as superelastic in the literature)
responses. The first (actuation) is indicated by path “A” in Figure 4-105. In this case, a
mechanical bias load is applied to the SMA and the material is then thermally cycled through
forward and reverse transformation. The resulting transformation first produces and then removes
the large transformation strains of SMAs and is commonly used for (surprisingly) actuation
applications. At higher temperatures (T > A f ), mechanical loading may be used induce forward
and, upon unloading, reverse transformation as indicated in path “B” of Figure 4-105. Through
such a cycle, a distinctive flag shape in the stress strain response is observed through which large
amounts of energy may be dissipated while producing no permanent deformations. As such, this
loading path is often considered for vibration isolation or damping applications.

In LAMÉ, the response of SMAs is described by the phenomenological model of Lagoudas and
coworkers [3]. This model was motivated by actuator applications and it describes the inelastic

5In the martensitic configuration, the crystallographic structure can either self-accommodate in a twinned configu-
ration producing no macroscopic inelastic strain or an internal or external stress field may be used to detwin the
microstructure thereby producing the desired inelastic strain. For simplicity, this distinction is bypassed in this
brief text and the interested reader should consult the referenced works.
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Figure 4-105. Representative phase diagram of shape memory al-
loys highlighting characteristic loading paths ((A) and (B)), trans-
formation surfaces, and phases.

deformation associated with martensitic transformation through two internal state variables – the
scalar martensitic volume fraction, ξ, and tensorial transformation strain tensor, εtr

i j. Before
proceeding it should be noted that the structural response of SMA specimens and components
exhibit a rate dependency associated with the strong thermomechanical coupling of SMAs.
Specifically, the transformation process gives off/absorbs large amounts of energy via the latent

heat of transformation. The rate dependence observed is a result of the characteristic time scale
associated with thermal transport of this heat. In pure mechanical analyses (like Sierra/SM), this
means quasistatics loadings are typically considered (a strain rate of ≈ 1x10−4 and/or
heating/cooling rate of ≈ 2◦C/min). Formulations accounting for the full coupling have been
developed but require more complex implementations.

To begin, the model assumes an additive decomposition of the total, elastic, thermal, and
transformation deformation (strain) rates respectively denoted by Di j, De

i j, Dth
i j and Dtr

i j producing
a total deformation rate of the form,

Di j = De
i j+Dth

i j +Dtr
i j. (4.25.1)

With respect to the thermoelastic deformations, it is noted that the different crystallographic
phases have different thermoelastic constants. Previous studies have demonstrated that a rule of
mixtures on the compliance and other material properties of the form,
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Si jkl = S
A
i jkl+ ξ

(

S
M
i jkl−SA

i jkl

)

= SA
i jkl+ ξ∆Si jkl, (4.25.2)

αi j = α
Aδi j+ ξ

(

αMδi j−αAδi j

)

= αAδi j+ ξ∆αδi j, (4.25.3)

in which Si jkl and αi j are the current effective compliance and coefficient of thermal expansion
and the superscripts “A” and “M” denote thermoelastic properties in the austenitic and martensitic
configuration. The symbol “∆” is used to indicate the difference in a property between the
martensitic and austenitic phases while δi j is the Kronecker delta. Isotropy is assumed for all
these properties and the compliances are determined via the definition of elastic moduli and
Poisson’s ratio of the two phases – EA, EM, νM, and νM. The two Poisson ratios are often the
same and take typical values for metals (νA ≈ νM ≈ 0.3) while the elastic moduli can differ by a
factor of more than two. For instance the austenitic modulus of NiTi is typically given as ≈ 70
GPa while the martensitic one is ≈ 30 GPa6. Importantly, this difference means that the
thermoelastic properties and corresponding deformations vary with transformation. As such, the
corresponding rates of deformation are given as,

De
i j = ξ̇∆Si jklσkl+Si jkl

◦
σkl, (4.25.4)

Dth
i j = ξ̇∆αδi j (θ− θ0)+αδi jθ̇, (4.25.5)

where θ and θ0 are the current and reference temperature and σi j is the symmetric Cauchy stress.
Note, in using the SMA model a temperature field must be defined. The stress rate may then be
shown to be,

◦
σi j= Ci jkl

(

Dkl−αδkl
˙theta− ξ̇ (∆Sklmnσmn+∆αδkl (θ− θ0))−Dtr

kl

)

, (4.25.6)

with Ci jkl being the current stiffness tensor defined as Ci jkl = S
−1
i jkl.

To describe the transformation strain evolution, it is assumed that these deformations evolve with
(and only with) the martensitic volume fraction, ξ. The corresponding flow rule is given as,

Dtr
i j = ξ̇Λi j, (4.25.7)

and Λi j is the transformation direction tensor assumed to be of the form,

Λi j =

{

Hcur (σ̄vM) 3
2

si j

σ̄vM
ξ̇ ≥ 0

εtr−rev
i j

ξrev ξ̇ < 0
. (4.25.8)

In (4.25.8), Hcur is the transformation strain magnitude that is dependent on the von Mises
effective stress, σ̄vM, and si j is the deviatoric stress. With forward transformation defined in this

6Given the lower symmetry of the martensitic phase the determination of an isotropic elastic modulus can vary with
characterization methodology. In this case, the apparent elastic modulus measured from macroscopic thermoelastic
tests should be used.
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way, it is assumed that deformation is shear-based and follows a J2 like flow direction. For
reverse transformation (ξ̇ < 0), the postulated form is utilized to ensure complete recovery of
transformation strains with martensitic volume fraction. In other words, all transformation strain
components are zero-valued at ξ = 0. Without enforcing this condition in this way,
non-proportional loading paths could be constructed producing a non-zero transformation strain
when the material is austenitic. The transformation strain at load reversal, εtr−rev

i j , and martensitic
volume fraction at load reversal, ξrev, are then tracked (via the implementation) and used for this
purpose.

The transformation strain magnitude, Hcur, is a function of the von Mises effective stress (σ̄vM)
and is introduced to incorporate detwinning effects without introducing an additional internal
state variable complicating the model. Specifically, at low stress values, this function returns a
minimum value. If the microstructure is self-accommodated this value will be zero. A decaying
exponential is used such that as the stress increases the value of the strain magnitude becomes that
of the maximum value incorporating both crystallographic and texture effects. The given
functional form is,

Hcur =

{

Hmin σ̄vM ≤ σcrit

Hmin+ (Hsat−Hmin)
(

1− exp(−k (σ̄vM −σcrit))
)

σ̄vM > σcrit
, (4.25.9)

where Hmin, Hsat, k, and σcrit are model parameters giving the minimum transformation strain
magnitude, maximum transformation strain magnitude, exponential fitting parameter governing
the transition zone, and critical stress values (in some ways analogous to the detwinning stress).

The evolution of martensitic transformation process is governed by a transformation function
serving an analogous role to the yield function in plasticity. This function is given by,

f
(

σi j, θ, ξ
)

= ±φ
(

σi j, θ, ξ
)

− σ̄
(

σi j

)

, (4.25.10)

with φ begin the thermodynamic driving force for transformation and σ̄ the critical value. The ±
is used to denote either forward (+) or reverse (−) transformation. This transformation function
and the associated forms are derived from continuum thermodynamic considerations and the
details of that process are neglected here for brevity but may be found in [3]. The functional
forms of these variables are given as,

φ
(

σi j, θ, ξ
)

= σi jΛi j+
1
2
σi j∆Si jklσkl+σi j∆αδi j (θ− θ0)+ρ∆s0θ−ρ∆u0− f t (ξ) ,

σ̄
(

σi j

)

= σ0+Dσi jΛi j, (4.25.11)

in which ρ∆s0 and ρ∆u0 are the differences in reference entropy and internal energy of the two
phases, D is a calibration parameter intended to capture variations in dissipation with stress, and
f t (ξ) is the hardening function. With respect to this latter term, empirical observations were used
to arrive at a postulated form of,

f t (ξ) =

{ 1
2a1 (1+ ξn1 − (1− ξ)n2)+a3 ξ̇ ≥ 0
1
2a2 (1+ ξn3 − (1− ξ)n4)−a3 ξ̇ < 0

, (4.25.12)
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with a1, a2, and a3 being fitting parameters and n1, n2, n3, and n4 are exponents fit to match the
smooth transformation from elastic to inelastic deformations at the start of forward, end of
forward, start of reverse, and end of reverse transformation respectively.

Before proceeding, one final note should be given in regards to calibration. Specifically, some of
the model parameters just listed (a1, a2, a3, D, σ0, ρ∆s0 and ρ∆u0) are not easily identified or
conceptualized in terms of common thermomechanical experiments. Some easily identifiable
parameters (Ms, M f , As, and A f ), however, are not evident in the theoretical formulation.
Conditions associated with these terms and some physical constraints may be used to determine
the model parameters in terms of these more accessible properties. These relations are,

ρ∆s0 =
−2
(

CMCA
)

[

Hcur (σ)+σ∂Hcur

∂σ
+σ
(

1
EM − 1

EA

)

]

CM +CA
|σ=σ∗ , (4.25.13)

D =

(

CM −CA
)

[

Hcur (σ)+σ∂Hcur

∂σ
+σ
(

1
EM − 1

EA

)

]

(

CM +CA
)[

Hcur (σ)+σ∂Hcur

∂σ

] |σ=σ∗ , (4.25.14)

a1 = ρ∆s0
(

M f −Ms

)

, a2 = ρ∆s0
(

As−A f

)

, (4.25.15)

a3 = −
a1

4

(

1+
1

n1+1
− 1

n2+1

)

+
a2

4

(

1+
1

n3+1
− 1

n4+1

)

, (4.25.16)

ρ∆u0 =
ρ∆s0

2

(

Ms+A f

)

, σ0 =
ρ∆s0

2

(

Ms−A f

)

−a3, (4.25.17)

in which σ∗ is the scalar stress measure in which the calibration is performed at. For additional
discussion on the characterization of SMAs and calibration of this model, the user is referred
to [4, 5].

4.25.2. Implementation

Similar to the various plasticity models in LAMÉ, an elastic predictor-inelastic corrector
approach is used to perform the stress updating routine. Unlike the other models, however, in the
shape memory alloy routine a convex cutting plane (CCP) return mapping algorithm (RMA) is
used in lieu of the closest point projection. This difference essentially simplifies the integration of
flow rule and the corresponding problem at the cost of some algorithmic stability. Prior
studies [6] have shown that this implementation is sufficient for convergence in most cases while
providing a substantial savings in cost. The specific implementation used here is that of [3].

To compute an elastic trial state, a trial stress is determined assuming purely thermoelastic
deformations such that,

T tr
i j = Ci jkl

(

ξn
)(

dkl∆t−αkl

(

ξn
)

∆θ
)

, ∆θ = θn+1− θn. (4.25.18)

In this case, it is assumed that the temperature fields are known at tn+1 and tn (denoted θn+1 and
θn, respectively) and the thermoelastic properties are computed using the martensitic volume
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fraction at the previous time step ξn. At this stage, a perturbation stress (T per
i j = T n

i j+β
(

T tr
i j −T n

i j

)

with β << 1) is computed and used to determine local variations of the thermodynamic driving
force, φ. This is necessary to determine the direction of transformation (forward or reverse).
Using the full trial stress to this end can produce spurious results in some thermally-driven cases.
The trial yield function value is then computed as,

f tr = f
(

T tr
i j , θ

n+1, ξn
)

= ±φ
(

T tr
i j , θ

n+1, ξn
)

− σ̄
(

T tr
i j

)

. (4.25.19)

If f tr < 0, no nonlinear deformation occurs and the trial solution is accepted as the material state
at t = tn+1. When this condition is not satisfied, the CCP-RMA routine is used to correct the trial
state and return it to the yield surface.

To perform the inelastic correction, the Newton-Raphson method is iteratively used to update the
material state (Ti j and ξ) until convergence is achieved. Denoting the current and next iteration by
(k) and (k+1), respectively, produces updating expressions of the form,

T
(k+1)
i j = T

(k)
i j +∆Ti j,

ξ(k+1) = ξ(k)+∆ξ, (4.25.20)

with ξ(0) and T
(0)
i j initialized to ξn and T tr

i j , respectively. The key difference between the CCP and
closest point projection (CPP) methods is associated with how the inelastic strain flow rules are
integrated. In the former method, an explicit evaluation of the flow direction is utilized while the
latter is associated with a fully implicit expression. For the CPP algorithms, this implicit
expression means the flow rule must be solved in a nonlinear system of equations with the
consistency equation. Relaxing this assumption via the CCP method, however, produces an
explicitly evaluated flow rule of,

ε
t(k+1)
i j = ε

t(k)
i j +∆ξΛ

(k)
i j . (4.25.21)

Importantly, this means that the only nonlinear equation to be solved is the scalar consistency
equation ( f = 0) which can be linearized such that,

∆ξ = − f (k)

∂ f (k)

∂ξ
− ∂ f (k)

∂Ti j
Ci jkl

(

ξ(k)
)

(

∆SklmnT
(k)
mn+∆αkl∆θ+Λ

(k)
kl

) , (4.25.22)

and the stress increment is then found as,

∆T (k) = −Ci jkl

(

ξ(n))
(

∆SklmnT (k)
mn+∆αkl∆θ+Λ

(k)
kl

)

∆ξ. (4.25.23)
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4.25.3. Verification

The shape memory alloy model is verified through a series of thermomechanical loadings. The
material properties and model parameters for these investigations are given in Table 4-37. These
properties correspond to those given in Table 3.4 in [1] with all n′s assumed to be 1 and setting
EM = EA.

EA 55 GPa EM 55 GPa
νA 0.33 νM 0.33
αA 22.0x10−6 1

K αM 22.0x10−6 1
K

Ms 245 K As 270 K
M f 230 K A f 280 K
CM 7.4 MPa

K CA 7.4 MPa
K

Hmin 0.056 Hsat 0.056

Table 4-37. The material and model parameters for the shape mem-
ory alloy model used during verification test.

It should also be clear that because Hmin = Hsat the model response is independent of the values of
σcrit and k. For convenience, values of k = 1.0x106 and σcrit = 0 will be used. Additionally, σ∗

will be taken to be zero although inspection of Equation (4.25.13) and consideration of the
relative magnitudes of the transformation strain and the difference in elastic strain similarly
indicates an invariance in the model response to this parameter with constant Hcur. The default
prestrain values are also utilized such that the SMA is initially austenitic.

4.25.3.1. Uniaxial Stress – Pseudoelasticity

First, the isothermal (θ > A f ) pseudoelastic response through a uniaxial stress loading is explored.
Importantly, the simplifications and model parameters described above (EA = EM = E,
Hcur (σ̄vM) = H, CA =CM =C, ni = 1) allow for a simple analytical description of the
pseudoelastic response (essentially trilinear). For instance, given the constant slopes of the
transformation surfaces, the stresses needed to induce or complete transformation are simply
given by,

σβ (θ) =C (θ−β) , β = Ms, M f , As, A f , (4.25.24)

where σMs (θ) is the stress needed to start forward transformation at temperature, θ. Given a stress
value, the strain and material state may be completely determined by knowing the martensitic
volume fraction, ξ. Specifically, the axial (here taken to be the 1 direction) strain is simply,

ε11 =
σ

E
+ ξH, (4.25.25)

and the lateral strains are
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ε22 = ε33 = −ν
σ

E
− 1

2
ξH, (4.25.26)

in which the fact that the transformation strain tensor is deviatoric is being leveraged. The
martensitic volume fraction may then simply be found by noting that f = 0 during transformation.
Therefore, for forward transformation,

ξ =







0 σ ≤ σMs

1
a1

(σH+ρ∆s0θ−ρ∆u0−a3−σ0) σMs < σ < σM f

1 σ ≥ σM f

. (4.25.27)

A comparable expression is easily determined for reverse transformation.

The results of this simple analytical expression and those determined by Adagio are presented in
Figure 4-106 for three different temperatures. Figure 4-106a presents the stress-strain response
under these conditions while Figure 4-106b presents the evolution of the martensitic volume
fraction.
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Figure 4-106. (a) Axial stress-strain response and (b) martensitic
volume fraction, ξ, evolution determined analytically and via adagio
for three different ambient temperatures θ = 300, 320 and 340 K.

4.25.3.2. Constant Stress Actuation

To consider thermally driven transformation, the constant stress actuation response is
investigated. In such a loading, a mechanical load is applied at high temperature (θ > A f ) and held
constant while the specimen is cooled through forward transformation and then heated back to its
initial state. Given the aforementioned simplifications to the model parameters, the analytical
response is determined in a very similar fashion to that of pseudoelasticity. In this instance,
critical temperatures needed for transformation are first determined by
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βσ = β+
σ

C
, β = Ms, M f , As, A f , (4.25.28)

with Mσ
s being the temperature needed to start forward transformation at an effective stress, σ.

The zero-stress value is Ms. Similarly, the axial and lateral strains may be adjusted as,

ε11 =
σ

E
+ ξH+α (θ− θ0) , (4.25.29)

ε22 = ε33 = −νσ
E
− 1

2
ξH+α (θ− θ0) . (4.25.30)

The martensitic volume fraction is found through relations (4.25.27) albeit with the piecewise
intervals defined in terms of temperature (e.g σMs < σ < σM f ↔ Mσ

f < θ < Mσ
s ). Results for the

axial strain-temperature, lateral strain-temperature, and martensitic volume fraction-temperature
as determined analytically and via adagio are presented below in Figures 4-107a, 4-107b, and
4-107c, respectively.
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Figure 4-107. (a) Axial strain (b) lateral strain and (c) martensitic
volume fraction, ξ, evolution as a function of temperature as de-
termined analytically and numerically (Sierra/SM). Results are pre-
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MPa.
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4.25.4. User Guide

BEGIN PARAMETERS FOR MODEL SHAPE_MEMORY_ALLOY

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Thermoelastic properties of two crystallographic phases

#

ELASTIC MODULUS AUSTENITE = <real> EA

POISSON RATIO AUSTENITE = <real> νA

CTE AUSTENITE = <real> αA

ELASTIC MODULUS MARTENSITE = <real> EM

POISSON RATIO MARTENSITE = <real> νM

CTE MARTENSITE = <real> αM

#

# Phase diagram parameters

#

MARTENSITE START = <real> Ms

MARTENSITE FINISH = <real> M f

AUSTENITE START = <real> As

AUSTENITE FINISH = <real> A f

STRESS INFLUENCE COEFF MARTENSITE = <real> CM

STRESS INFLUENCE COEFF AUSTENITE = <real> CA

#

# Transformation strain magnitude parameters

#

H_MIN = <real> Hmin

H_SAT = <real> Hsat

KT = <real> k

SIGMA_CRITICAL = <real> σcrit

#

# Calibration parameters

#

N1 = <real> n1

N2 = <real> n2

N3 = <real> n3

N4 = <real> n4

SIGMA STAR = <real> σ∗

T0 = <real> θ0

#
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# Initial phase conditions

#

XI0 = <real> ξ (t = 0) (0.0)

PRESTRAIN_DIRECTION = <int> nps (0)

PRESTRAIN_MAGNITUDE = <real> ||εtri j (t = 0) ||(0.0)
#

END [PARAMETERS FOR MODEL SHAPE_MEMORY_ALLOY]

Output variables available for this model are listed in Table 4-38.

Table 4-38. State Variables for SHAPE MEMORY ALLOY Model

Name Description

MVF martensitic volume fraction, ξ
TransStrain transformation strain tensor, εtr

i j
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4.26. LOW DENSITY FOAM MODEL

4.26.1. Theory

The low density foam material model is a phenomenological model for rigid, low density
polyurethane foams. Development of this model followed extensive characterization efforts at
Sandia National Laboratory with special emphasis placed on hydrostatic and triaxial compression
tests [1]. A key observation of this investigation was the impact of trapped air inside the foam on
the load bearing capabilities of the material.

In constructing a model describing the response of the low-density foams, Neilsen et al. [1]
decomposed the response into that of the polymeric skeleton and the air such that,

σi j = σ
sk
i j +σ

airδi j, (4.26.1)

where the super script “sk” is used to refer to variables relating to the skeleton and “air” to the air.
The contribution of the air component is only present, however, in constrained cases when the
internal gases are trapped and not allowed to escape. If the foam material in not encased or
encapsulated in someway, the air may escape and σair = 0. A model parameter, Nair, is included to
distinguish between these cases. If Nair is set to 0, the air pressure term is set to zero. For any
other value, it is included.

Using the ideal gas law, it can be found that for an isothermal case,

σair =
p0εV

εV+1−φ, (4.26.2)

where p0, εV, and φ are the initial air pressure, volumetric strain, and the volume fraction of the
solid (skeleton) material. Knowing the total stress of the material volume and air contribution, the
skeleton stress may be found via (4.26.1). Furthermore, it should be noted that the foam (total)
and skeleton strains are the same.

Based on their experimental observations, Neilsen et al. [1] noted a decoupling between the
skeleton principal stresses. Therefore, the Poisson’s ratio of the skeleton is zero and that the
yielding behavior in each principal direction is independent. A yield function of the form,

fi = σ
sk
i − σ̄, (4.26.3)

where fi and σsk
i are the ith yield function and skeleton principal stress, respectively, and

σ̄ = A
〈

I′2
〉

+B (1.0+CεV ) (4.26.4)

with A, B, and C are material parameters, and 〈·〉 denoting the Heaviside step function where
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〈x〉 =
{

0 if x ≤ 0

1 if x > 0
, (4.26.5)

was proposed. Additionally, I′2 is the second invariant of the deviatoric strain. If a skeleton
principal stress indicates yielding, it is set to the effective yield stress value, σ̄.

4.26.2. Implementation

The low density foam material model is implemented in a hypoelastic fashion. Therefore, a trial
material state of,

T sk−tr
i j = T sk−n

i j +E∆tdi j, (4.26.6)

εn+1
i j = ε

n
i j+∆tdi j, (4.26.7)

with di j, T sk
i j , and εi j are the unrotated rate of deformation, unrotated skeleton stress, and foam

strain, respectively, is calculated. The superscript “tr” denotes a trial stress while E is the Young’s
Modulus and (4.26.6) leverages the fact that the Poisson’s ratio of the skeleton is zero. The
principal stresses of the trial skeleton stress state, T sk−tr

i , are then computed via the algorithm of
Scherzinger and Dohrmann [2].

To check the yielding behavior, the (logarithmic) volumetric strain, εn+1
V , and second invariant of

the deviatoric strain, I′2, are needed. These values are simply calculated as,

εn+1
V = exp

(

εn+1
kk

)

−1, (4.26.8)

I′n+1
2 = ε̂n+1

11 ε̂n+1
22 + ε̂

n+1
11 ε̂n+1

33 + ε̂
n+1
22 ε̂n+1

33 −
[

(

ε̂n+1
12

)2
+
(

ε̂n+1
23

)2
+
(

ε̂n+1
31

)2
]

, (4.26.9)

with ε̂n+1
i j being the deviatoric strain tensor. The effective yield stress, σ̄n+1, may be written as,

σ̄n+1 = A
〈

I′n+1
2

〉

+B
(

1+Cεn+1
V

)

. (4.26.10)

It should also be noted that a steep sinusoidal approximation of the Heaviside step function to
alleviate numerical issues associated with the sharp discontinuity inherit to the use of the
Heaviside function. The updated principal stresses may then be determined as,

T sk−n+1
i =

{

T sk−tr
i , |T sk−tr

i | ≤ |σ̄|
sgn
(

T sk−tr
i

)

σ̄, |T sk−tr
i | > |σ̄| , (4.26.11)

where sgn(x) denotes the sign of x. An updated air pressure is then computed from (4.26.2) and
the current stress is found to be,
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T n+1
i j =

3
∑

k=1

T sk−n+1
k êk

i êk
j +σ

air−n+1 (εn+1
V

)

δi j, (4.26.12)

where êk
i is the eigenvector associated with the kth principal skeleton stress.

4.26.3. Verification

The low density foam model is implemented through two compression tests – uniaxial and
hydrostatic. Cases both including (Nair = 1.0) and excluding (Nair = 0.0) the contribution of the air
are investigated. The rest of the properties and parameters used for these tests are given in
Table 4-39 and are originally from [3].

4.26.3.1. Uniaxial Compression

First, a uniaxial compression test under displacement control is considered with and without the
contribution of air. In this case, a displacement of the form u1 = λ is applied while the other two
directions are left traction free. When air pressure does not play a role, the model response
reduces to that of the skeleton and the problem becomes one-dimensional. The deformation rate
can be easily integrated to find that ε11 = ln (1+λ) and εV = λ. Additionally, the uniaxial
compression loading considered here is obviously deviatoric in nature leading to

〈

I′2
〉

evaluating
to 1. Therefore,

σ̄ = A+B (1+Cλ) , (4.26.13)

σ11 =

{

Eε11 |σ11| ≤ |σ̄|
sgn(ε11) σ̄ |σ11| > |σ̄|

. (4.26.14)

The corresponding stress and strain results are presented in Figures 4-108a and 4-108b.

The case of internal air pressure is also considered by setting Nair = 1. This, however, complicates
the response and turns it into a three-dimensional case given the pressure components in the
off-loading directions. Specifically, it can be found trivially that, ε22 = ε33 = −σair/E. The
complication arises as the volumetric strain is now,

E 3010 psi ν 0.0
A 49.2 psi B 60.8 psi
C -0.517 p0 14.7 psi
φ 0.09

Table 4-39. Material properties and model parameters for the low
density foam model used during verification testing.
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Figure 4-108. Skeleton (a) stress and (b) strain determined analyti-
cally and numerically (with Nair = 0) with the low density foam model
during a displacement controlled uniaxial compression test.

εV = (1+λ)exp
(

−2σair/E
)

−1, (4.26.15)

leading to an implicit expression for σair. By evaluating σair in a forward Euler fashion, noting
σ̄ = A+B (1+CεV), and treating (4.26.14) as an expression for σsk

11 the stress and strain responses
may be found as given in Figures 4-109a and 4-109b. The impact of the air on the model response
is clear by comparing the two sets of figures.

4.26.3.2. Hydrostatic Compression

The volumetric deformation capabilities of the model are also investigated through displacement
controlled hydrostatic compression. Specifically, an imposed displacement of the form ui = λ is
considered. The resultant strain field is ε11 = ε22 = ε33 = ln (1+λ) leading to a volumetric strain
of the form εV = (1+λ)3−1. As there is no deviatoric deformation it is apparent that

〈

I′2
〉

= 0.
Therefore, the effective yield stress is σ̄ = B (1+CεV). Also noting that σ = σ11 = σ22 = σ33, the
foam response through such a loading may easily be determined. The foam stress for both the
with and without air case is presented in Figure 4-110 along with σair for the appropriate case.
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Figure 4-109. Foam (a) stress and (b) strain determined analytically
and numerically (with Nair = 1) with the load density foam model
during a displacement controlled uniaxial compression test.
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Figure 4-110. Foam stress determined analytically and numerically
for both Nair = 0.0 and Nair = 1.0 cases for the low density foam
model during displacement controlled hydrostatic compression
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4.26.4. User Guide

BEGIN PARAMETERS FOR MODEL LOW_DENSITY_FOAM

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

A = <real> A

B = <real> B

C = <real> C

NAIR = <real> Nair

P0 = <real> p0

PHI = <real> φ

END [PARAMETERS FOR MODEL LOW_DENSITY_FOAM]

State variables for this model are listed in Table 4-40.

For more information on the low density foam material model, see [1].

Table 4-40. State Variables for LOW DENSITY FOAM Model

Name Description

PAIR Air pressure
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4.27. FOAM PLASTICITY MODEL

4.27.1. Theory

The foam plasticity model was developed to describe the response of porous materials (like
closed-cell polyurethane foams) exhibiting irreversible, elastic-plastic like responses through
large deformations. Such foams can exhibit significant plastic deviatoric and volumetric strains
leading to permanent shape and volume changes, respectively. The former behavior is quite
typical of metals and corresponding theories are well established. The latter response, however, is
not typical of metals and a theory combining these two behaviors is needed. Given these
responses of interest, the foam plasticity model is well suited to use with metal foams and many
closed-cell polymeric foams (e.g. polyurethane, polystyrene bead, etc.) subjected to large
deformations. As permanent strains are of interest, this model is not appropriate for use with
flexible foams that return to their undeformed shape after loads are removed.

Specifically, the model developed by Neilsen et al. [1] seeks to capture the response associated
with three distinct deformation regimes. First, when foams are initially compressed, they
typically exhibit an elastic response. After sufficient load is applied, a plateau of nearly constant
stress over a large deformation region is noted as pores start to compress and cell walls undergo
substantial deformation. Eventually, the various collapsed cells and walls begin to interact and a
densification response with substantial hardening is observed. Details of these deformation
processes may be found in the text of Gibson and Ashby [2].

Like other plasticity-based models, the incremental constitutive law for the foam plasticity model
is written as,

◦
σi j= Ci jklD

e
kl, (4.27.1)

where an additive decomposition of the strain rates such that Di j = De
i j+D

p
i j is assumed. To

describe the inelastic response of the foams of interest, Neilsen and coworkers [1] proposed a
yield function of the form

f =
σ̄2

a2 +
p2

b2 −1, (4.27.2)

where σ̄ is the von Mises effective stress (σ̄ =
√

(3/2) si jsi j with si j being the deviatoric stress)
and p being the hydrostatic pressure that is positive in compression (p = − (1/3)σkk). In such a
form, the initial yield surface forms an ellipsoid about the hydrostat. The two denominators, a and
b, are state variables capturing hardening effects and have the functional form of,

a = A0+A1φ
A2 , (4.27.3)

b =

{

B0+B1φ
B2 p ≥ 0

B0 p < 0
, (4.27.4)

319



with A0, A1, A2, B0, B1, and B2 being model parameters and φ being the maximum volume
fraction of solid material obtained through the loading history and is defined as,

φ = φ0
V0

V
, (4.27.5)

in which φ0 is the initial volume fraction of solid material and V0 and V are the initial volume and
current volume, respectively, of the foam. Put in terms of the deformation,

φ = φ0
1

1+εV
, (4.27.6)

where εV is the engineering volume strain.

To describe the inelastic plastic deformation, a non-associated flow rule is used. Specifically,

D
p
i j = γ̇gi j, (4.27.7)

where γ̇ is the consistency multiplier found by enforcing the corresponding condition and

gi j = (1−β)ga
i j+βgr

i j, (4.27.8)

with the superscripts “a” and “r” being used to denote associated and radial flow directions,
respectively. The model parameter β is introduced in (4.27.8) to enable associated (β = 0), radial
(β = 1), or a linear combination of the two flow rules (0 < β < 1) to be used. The two direction
vectors may written as,

ga
i j =

∂ f
∂σi j

| ∂ f
∂σkl
|
=

3
a2 si j− 2

3b2 pδi j

| 3
a2 si j− 2

3b2 pδi j|
, (4.27.9)

gr
i j =

σi j

|σkl|
=

σi j√
σklσkl

. (4.27.10)

4.27.2. Implementation

Like other more classical rate-independent plasticity models (e.g. 4.7.2), the foam plasticity
model is implemented in a hypoelastic fashion using an elastic predictor-inelastic corrector
scheme. As such, a trial material state is calculated by assuming purely elastic deformations. The
trial stress is given by,

T tr
i j = T n

i j+∆t
(

λδi jdkk +2µdi j

)

, (4.27.11)

and an updated logarithmic volume strain is given by,

320



εn+1
kk = ε

n
kk +∆tdkk. (4.27.12)

The engineering volume strain may then be readily computed via εn+1
V = exp

(

εn+1
kk

)

−1. A trial
solid volume fraction is then calculated, φtr = φ0

1
1+εn+1

V
, and compared to the previous maximum

to obtain the maximum solid volume fraction over the loading history,

φn+1 =max
(

φn,φtr
)

. (4.27.13)

Equations (4.27.3) and (4.27.4) are evaluated using the volume fraction found in (4.27.13). Using
invariants of the trial stress state, the yield function (4.27.2) is calculated. If f ≤ 0, the loading is
elastic and the trial solution is correct. On the other hand, if f > 0 a correction scheme is
necessary to iterate and determine the inelastic solution. To that end, by noting
∆Ti j = −Ci jkl∆dP

kl = −∆γCi jklgkl (with “∆” being a correction increment), the consistency
condition may be used to find,

∆γ =
f

∂ f
∂σi j
Ci jklgkl

, (4.27.14)

where the fact that the strain (and therefore a and b do not change over an increment. The
correction is repeated until f < tol.

4.27.3. Verification

The foam plasticity model is verified through a hydrostatic compression tests. Material properties
used for this test are presented in Table 4-41 and correspond to room temperature properties of the
PMDI20 rigid polyurethane foam characterized in [1].

E 22,600 psi ν 0.343
A0 513.3 psi A1 4,629 psi
A2 2.90 φ0 0.238
B0 971 psi B1 7,377.5 psi
B2 4.89 β 0.95

Table 4-41. Material properties and model parameters for the foam
plasticity model used during verification testing.

4.27.3.1. Hydrostatic Compression

The response of the foam plasticity model to hydrostatic compression is investigated here.
Specifically, a displacement of the form ui = λ is imposed resulting in a total strain field of
ε11 = ε22 = ε33 = ln (1+λ) and the engineering volume strain is simply εV = (1+λ)3−1.
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Furthermore, the maximum solid volume fraction monotonically increases and may be found to
be φ = φ0

1
(1+λ)3 . The stress state undergoes a similar reduction and is given to σi j = −pδi j and

si j = 0. This simplification leads to a reduced yield function of the form,

f =
p2

b2 −1, (4.27.15)

where b is evaluated via (4.27.4) and is a function of the strain. The model may then be simply
solved as,

p =

{

−3K ln (1+λ) f ≤ 0
b f > 0

. (4.27.16)

The elastic strains then reduce to εe
i j = −

p
3K
δi j and the plastic strains computed as

ε
p
i j =

(

ln (1+λ)+ p
3K

)

δi j. The resulting engineering strain vs. pressure results determined
numerically and analytically are presented in Figure 4-111.
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Figure 4-111. Pressure vs. engineering volume strain (εV) response
of the foam plasticity model through a hydrostatic compression cy-
cle
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4.27.4. User Guide

BEGIN PARAMETERS FOR MODEL FOAM_PLASTICITY

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

#

#

PHI = <real> φ0

SHEAR STRENGTH = <real> A0

SHEAR HARDENING = <real> A1

SHEAR EXPONENT = <real> A2

HYDRO STRENGTH = <real> B0

HYDRO HARDENING = <real> B1

HYDRO EXPONENT = <real> B2

BETA = <real> β

END [PARAMETERS FOR MODEL FOAM_PLASTICITY]

Output variables available for this model are listed in Table 4-42.

Table 4-42. State Variables for FOAM PLASTICITY Model

Name Description

ITER iterations
EVOL volumetric strain
PHI phi, φ
EQPS equivalent plastic strain, ε̄p

PA A

PB B

323



REFERENCES

[1] M. K. Neilsen, W. Y. Lu, B. Olsson, and T. Hinnerichs. A viscoplastic constitutive model for
polyurethane foams. In Proceedings ASME 2006 International Mechanical Engineering

Congress and Exposition, Chicago, IL, 2006. ASME.

[2] L.J. Gibson and M.F. Ashby. Cellular Solids: Structure and Properties. Cambridge Solid
State Science Series. Cambridge University Press, Cambridge, UK, second edition, 1997.

324



4.28. VISCOPLASTIC FOAM MODEL

4.28.1. Theory

The viscoplastic foam model is used to model the rate (and temperature) dependent crushing of
foams [1]. It is based on an additive split of the rate of deformation into an elastic and plastic
portion

Di j = De
i j+D

p
i j. (4.28.1)

The stress in the material is due strictly to the elastic portion of the rate of deformation so that

◦
σi j= Ci jklD

e
kl, (4.28.2)

where Ci jkl are the components of the fourth-order, isotropic elasticity tensor. The stress rate is
arbitrary, as long as it is objective. Two objective stress rates are commonly used: the Jaumann
rate and the Green-McInnis rate. For problems with fixed principal axes of deformation, these two
rates give the same answers. For problems where the principal axes of deformation rotate during
deformation, the two rates can give different answers. Generally speaking, there is no reason to
pick one objective rate over another.

To describe the rate-dependent response, an over-stress-type yield function is used. Specifically,
the rate-independent foam plasticity yield function (4.27.2) is rearranged such that,

f = σ∗−a, (4.28.3)

where σ∗ is the effective stress given by

σ∗ =

√

σ̄2+
a2

b2 p2. (4.28.4)

In (4.28.4), σ̄ is the von Mises effective stress (σ̄ =
√

3
2 si jsi j) and p is the pressure resulting from

a stress decomposition of the form,

σi j = si j− pδi j. (4.28.5)

Furthermore, a and b are state variables that are functions of the absolute temperature, θ, and
maximum solid volume fraction, φ, and are defined as7

7In addition to the given analytical expressions, a and b may be optionally specified as user defined functions of the
maximum solid volume fraction. In these cases, however, the temperature dependence is neglected.

325



a (θ,φ) = A0 (θ)+A1 (θ)φA2 (4.28.6)

(4.28.7)

b (θ,φ) = B0 (θ)+B1 (θ)φB2 . (4.28.8)

The temperature dependent material properties in the preceding relations are all defined as,
A0 (θ) = A0hA0 (θ) where A0 is the reference material parameter and hA0 (θ) is the relative value as
a function of temperature. In addition to the a and b state variables, the Young’s modulus and
Poisson’s ratio are also functions of the absolute temperature. The latter may be written as
ν (θ) = νhν (θ) while the former is also dependent on the maximum volume fraction of solid
material and is given as E (θ,φ) = EhE (θ) fE (φ).

The maximum volume fraction of solid material, φ, is given by

φ =max
t>0

φ̃ (t) (4.28.9)

where φ̃ (t) is the current volume fraction of solid material and is defined as,

φ̃ (t) =
φ0

exp
(

ε
p
v

) (4.28.10)

with φ0 being the initial solid volume fraction and εp
v is

εp
v =

∫ t

0
D

p
kkdt. (4.28.11)

During inelastic deformation ( f > 0), the corresponding rate of plastic deformation is given in a
Perzyna-type form as,

D
p
i j =















exp(h (θ))

(

σ∗

a
−1

)n(θ)

gi j if f > 0

0 if f < 0

(4.28.12)

where h (θ) and n (θ) are the flow rate and power exponent respectively. The inelastic flow
direction, gi j, is given as a linear combination of the associated (with respect to (4.27.2)), ga

i j, and
radial, gr

i j,

gi j = (1−β)ga
i j+βgr

i j. (4.28.13)

The directions ga
i j and gr

i j are given in Equations (4.27.9) and (4.27.10), respectively. In this
model, the flow rule weight, β, may be specified as either a constant value or as a function of the
maximum solid volume fraction (β = β (φ)).
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4.28.2. Implementation

As the viscoplastic foam model is a time-dependent, hypoelastic model it is integrated using an
explicit, forward Euler scheme. Given this approach, a critical time step for stability is computed
based on the shear strength, current modulus, and deviatoric deformation rate. If the input time
step is acceptable, the new material state at time t = tn+1 is computed. On the other hand, if the
time step is too large a series of sub-increments are used. In this case, the total time step ∆t is
subdivided into N sub-increments. Each such sub-interval (denoted by k) has a time increment δtk

such that ∆t =
∑N

k=1 δt
k and the forward Euler time stepping scheme is performed over each

sub-interval until the desired material state at time tn+1 is determined. For the case of temperature
dependent variables (e.g. the Poisson’s ratio ν), the value at the start of the sub-increment is
determined by linearly interpolating over the total time step,

νk = νn+
∆tk

∆t
(νn+1− νn) , (4.28.14)

where ∆tk is the current sub-increment time, ∆tk =
∑k

r=1 δt
r. For simplicity, in the remainder of

this section it is assumed that the input time step is acceptable and only a single increment is
needed. If additional sub-increments are needed, the below steps would be repeated N times with
time intervals of δtk.

Noting the forward Euler approach adopted in this formulation, the first step is to determine the
temperature (and solid volume fraction) dependent model parameters (E, ν, A0, A1, B0, B1, h

and n). With the parameters established, state variables a and b are easily determined through
(4.28.6) and (4.28.8), respectively, enabling the calculation of the effective stress via (4.28.4). The
effective inelastic (plastic) strain rate, ˙̄εp, is then given as,

˙̄εp = exp(h (θn))

〈

σ∗n
an
−1

〉n(θn)

, (4.28.15)

with 〈〉 being the Macaulay brackets such that,

〈x〉 =
{

x x ≥ 0
0 x < 0

. (4.28.16)

Knowing the magnitude of the rate of inelastic deformation, the change in deviatoric and
hydrostatic stresses is simply,

ṡi j = 2µ (θn,φn)
(

d̂i j− d̂
p
i j

)

, (4.28.17)

ṗ = K (θn,φn)
(

dkk −d
p
kk

)

, (4.28.18)

where di j is the total unrotated rate of deformation, x̂i j denotes the deviatoric portion of tensor xi j,
and d

p
i j is the plastic rate of deformation given by,
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d
p
i j =

˙̄εpgn
i j. (4.28.19)

In (4.28.19), gi j is the inelastic flow direction and can be calculated via (4.28.13).

An additional comment is needed with respect to accounting for temperature and solid volume
fraction dependence in the shear and bulk moduli. This careful consideration is necessary due to
the fact that the temperature dependence is only given with respect to the elastic moduli and
Poisson’s ratio. As such, the shear and bulk moduli inherit the associated dependencies and are
calculated for isotropic elastic relations. For the bulk moduli, this leads to an expression of the
form,

K (θ,φ) =
EhE (θ) fE (φ)
3(1−2νhν (θ))

. (4.28.20)

The updated stress state is then easily computed by explicitly integrating the established
expressions. Specifically,

sn+1
i j =

µn+1

µn

sn
i j+ ṡi j∆t, (4.28.21)

pn+1 =
Kn+1

Kn

pn+ ṗ∆t, (4.28.22)

T n+1
i j = sn+1

i j + pn+1δi j, (4.28.23)

with µn and Kn representing µ (θn,φn) and K (θn,φn), respectively, and Ti j being the unrotated
stress.

4.28.3. Verification

The viscoplastic foam model was verified in both uniaxial and hydrostatic compression. The
material properties and model parameters for both of these investigations are given in Table 4-43.
As both loadings are isothermal, temperature dependence is neglected in the relevant model
parameters. Furthermore, analytical solutions could not be found directly, so semi-analytical
solutions were found.

4.28.3.1. Uniaxial Compression

To obtain a semi-analytical solution for the uniaxial compression test, the model was reduced to a
one-dimensional form and then numerically integrated. The results obtained from the
implemented model and the semi-analytical solution are shown below in Figure 4-112.
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E 4,807 psi A0 63.03 psi
ν 0.33 A1 7000 psi
h -8.12 A2 3.7878
n 2 B0 93 psi
β 0.9 B1 1483.4 psi
φ0 0.1148 B2 3.7878

Table 4-43. The material properties for the viscoplastic foam model
tested in uniaxial stress.
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Figure 4-112. Verification of the viscoplastic foam model in uniaxial
compression showing the axial stress as a function of the logarith-
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4.28.3.2. Hydrostatic Compression

The response of the model through hydrostatic compression. To this end, a displacement of the
form ui = λ (t) is considered. The applied displacement scales linearly from λ = 0 at t = 0.0 to
λ = −0.7 at t = tmax. Rate-dependent effects are considered through the use of two cases each with
a different tmax. Creatively denoted “Fast” and “Slow”, the two cases correspond to tmax = 1 s and
tmax = 100 s, respectively. With such a displacement field, the engineering volume strain, εV, is
simply εV = (1+λ)3−1. Additionally, the stress state reduces trivially to σi j = −pδi j.

Given the rate-dependent overstress form of the constitutive model, an analytical solution is not
readily available. Therefore, a semi-analytical analysis using a model reduction specialized for
hydrostatic loadings is considered. Specifically, noting si j = 0, the overstress reduces to,
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σ∗ =
a

b
|p|. (4.28.24)

Furthermore, the associated and radial flow direction vectors simplify to the same form and are
given as,

ga
i j = gr

i j = −
1√
3

sgn(p)δi j, (4.28.25)

where sgn(p) is the sign of p. The semi-analytical (integrated in a forward Euler fashion) and
numerical results are presented in Figure 4-113.
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fast and slow rates determined semi-analytically and numerically.

330



4.28.4. User Guide

BEGIN PARAMETERS FOR MODEL VISCOPLASTIC_FOAM

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ

FLOW RATE = <real> h

POWER EXPONENT = <real> n

BETA = <real> β

PHI = <real> φ0

SHEAR STRENGTH = <real> A0

SHEAR HARDENING = <real> A1

SHEAR EXPONENT = <real> A2

HYDRO STRENGTH = <real> B0

HYDRO HARDENING = <real> B1

HYDRO EXPONENT = <real> B2

YOUNGS FUNCTION = <string> hE (θ)
POISSONS FUNCTION = <string> hν (θ)
SS FUNCTION = <string> hA0 (θ)
SH FUNCTION = <string> hA1 (θ)
HS FUNCTION = <string> hB0 (θ)
HH FUNCTION = <string> hB1 (θ)
RATE FUNCTION = <string> hh (θ)
EXPONENT FUNCTION = <string> hn (θ)
STIFFNESS FUNCTION = <string> fE (φ)

#Optional user-specified functions

SHEAR HARDENING FUNCTION = <string> a (φ) #Do not specify A0, A1, A2

HYDRO HARDENING FUNCTION = <string> b (φ) #Do not specify B0, B1, B2

BETA FUNCTION = <string> β (φ) #Do not specify β

END [PARAMETERS FOR MODEL VISCOPLASTIC_FOAM]

Output variables available for this model are listed in Table 4-44.
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Table 4-44. State Variables for VISCOPLASTIC FOAM Model

Name Description

ITER number of sub-increments
EPVOL inelastic volumetric strain, εp

v

EDOT effective inelastic strain rate, ˙̄εp

PHI volume fraction of solid material, φ
FA shear strength, a

FB hydrostatic strength, b

STIF elastic stiffness as a function of φ
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4.29. FOAM DAMAGE

4.29.1. Theory

The foam damage model was developed at Sandia National Laboratories to model the behavior of
rigid polyurethane foams under a variety of loading conditions [1]. For instance, temperature,
rate, and tension-compression dependencies are all built into this model. This model, leverages
previous efforts and experience with other foam models(e.g. low density foam 4.26, foam
plasticity 4.27, and viscoplastic foam 4.28). Like those past efforts, this model utilizes an additive
decomposition of the strain rates into elastic and inelastic parts,

Di j = De
i j+Din

i j . (4.29.1)

It is also assumed that the elastic response is linear and isotropic such that the stress rate for
isothermal conditions is given by the following equation

◦
σi j= Ci jklD

e
kl = Ci jkl

(

Dkl−Din
kl

)

, (4.29.2)

with Ci jkl being the fourth-order, isotropic elasticity tensor. The specific stress rate considered is
arbitrary as long as it is object. Two common rates satisfying that constraint are the Jaumann and
Green-McInnis rates.

The initial yield surface is assumed to be an ellipsoid about the hydrostat and is described by the
function

f =
σ̄2

a2 +
p2

b2 −1 = 0, (4.29.3)

where a and b are state variables that define the current deviatoric and volumetric strengths,
respectively, of the foam. The von Mises effective stress, σ̄ is a scalar measure of the deviatoric
stress given by

σ̄ =

√

3
2

si jsi j, (4.29.4)

while p is the pressure, or mean stress, and is defined as

p =
1
3
σkk, (4.29.5)

with σi j and si j being the components of the Cauchy and deviatoric stress. This latter tensor may
be written as,
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si j = σi j− pδi j, (4.29.6)

where δi j are the components of the identity tensor - δi j = 1 if i = j, δi j = 0 if i , j.

For this model, the yield function (4.29.3) is re-written as

f = σ∗−a = 0 (4.29.7)

with the effective stress, σ∗, being a function of the von Mises effective stress, σ̄, and the
pressure, p, as follows

σ∗ =

√

σ̄2+
a2

b2 p2. (4.29.8)

Next, using a Perzyna-type formulation, the following expression for the inelastic strain rate, Din
i j ,

is developed

Din
i j =











˙̄εp gi j = eh

(

σ∗

a
−1

)n

gi j if
σ∗

a
−1 > 0

0 if
σ∗

a
−1 ≤ 0,

(4.29.9)

where gi j are the components of a symmetric, second-order tensor that defines the orientation of
the inelastic flow. This type of model is sometimes referred to as an over-stress model because the
inelastic rate is a function of the over-stress - the distance outside the yield surface. For associated
flow, gi j is simply normal to the yield surface and is given by

ga
i j =

∂ f

∂σi j
∣

∣

∣

∣

∂ f

∂σkl

∣

∣

∣

∣

=

3
a2 si j+

2
3b2 pδi j

∣

∣

∣

∣

3
a2 skl+

2
3b2 pδkl

∣

∣

∣

∣

. (4.29.10)

When lower density foams are subjected to a simple load path like uniaxial compression, the
inelastic flow direction at moderate strains appears nearly uniaxial. In other words, the flow
direction is given by the normalized stress tensor as follows

gr
i j =

σi j

|σkl|
. (4.29.11)

This type of flow is called radial flow. The foam damage model has another parameter, β, which
allows for the flow direction to be prescribed as a linear combination of associated and radial flow
such that,
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gi j =
(1−β)ga

i j+βgr
i j

∣

∣(1−β)ga
kl+βgr

kl

∣

∣

. (4.29.12)

Rigid polyurethane foams have little ductility when they are subjected to tensile stress. For this
loading case, the materials behave more like brittle materials and even for uniaxial compression
the foams often show cracking at large strains.

The damage surfaces for the foam damage model are simply three orthogonal planes with the
normals given by the positive principal stress axes. The damage surfaces are given by the
following equation

f i
dam = σ̂

i− c (1−w) , ; i = 1,2,3 (4.29.13)

where σ̂i is a principal stress, c is the initial tensile strength which is a material parameter, and w

is a scalar measure of the damage. As damage occurs, the damage surface will collapse toward
the origin and the foam will lose tensile strength. The foam will, however, still have compressive
strength.

Damage is taken to be a positive, monotonically increasing function of the damage strain, εdam,
and the damage strain is a function of the maximum principal strain, εmax, and the plastic volume
strain, εp

v , such that

w = w (εdam) ; εdam = adamεmax+bdamε
p
v , (4.29.14)

with the material parameters adam and bdam controlling the rate at which damage is generated in
tension and compression, respectively. The model does not allow healing, so the damage never
decreases even if the damage strain decreases.

To fully capture temperature, strain rate, and lock-up effects, several material parameters are
defined as functions of temperature, θ, and/or some measure of the amount of compaction, e.g.
the maximum volume fraction of the solid material obtained during any prior loading, φ. For
instance,

E (θ,φ) = E hE (θ) fE (φ) ,

(4.29.15)

ν (θ,φ) = νhν (θ) fν (φ) ,

and the natural logarithm of the reference flow rate, h, and the power law exponent, n are also
functions of temperature
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h (θ) = hhh (θ)

(4.29.16)

n (θ) = nhn (θ) .

The current deviatoric and volumetric strengths are hardening functions of the maximum volume
fraction of the solid material obtained during any prior loading, φ, as is the parameter that defines
the fraction of associated and radial flow, β. Therefore,

a = a (φ) ; b = b (φ)

(4.29.17)

β = β (φ) .

Through the loading cycle, the maximum volume fraction of solid material is written as,

φ =max
t>0

φ̃ (t) (4.29.18)

where φ̃ (t) is the current volume faction of solid material defined as

φ̃ (t) =
φ0

exp
(

ε
p
v

) , (4.29.19)

with φ0 and εp
v being the initial solid volume fraction and plastic volumetric strain, respectively.

The foam damage model, as presented, provides a phenomenological model with enough
flexibility to model the observed deformation and failure of rigid polyurethane foams.

4.29.2. Implementation

Like the other foam models, the foam damage model is integrated using an explicit forward Euler
scheme. Essentially, this specific form is a combination of a rate-dependent viscoplastic
mechanism and a distinct damage element. At the highest level, these two responses are
considered independently and sequentially with the viscoplastic behavior being evaluated first.
Initially, the damage parameter is set to 0 and is limited to a maximum value of 0.99 to prevent
the tensile strength from going to zero or negative due to numerical round-off. Foam material
elements that are completely damaged can be removed using element death based approaches in
the case of the damage variable reaching a value close to 1, say 0.99. This topic, however, will not
be discussed here as the focus is on the constitutive behavior of the foam model.

To ensure integration stability, an allowable strain increment is first calculated so that a critical
time step may be found. Essentially, such a maximum is given by the ratio of shear strength to
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elastic modulus. If the input time step is sufficiently small to meet this requirement, the material
state at time t = tn+1 is calculated directly. For unsuitably large time steps, a series of
sub-increments are used such that the integration may proceed in a stable fashion. Specifically, a
total time step of ∆t is subdivided into N sub-increments with the kth such sub-increment having a
time interval of δtk so that ∆t =

∑N
k=1 δt

k. In this case, the same forward Euler scheme is used to
integrate successively over the sub-increments. For temperature dependent properties (e.g. the
power law exponent n), the value at the start of the sub-increment is determined by linearly
interpolating over the total time step,

nk = nn+
∆tk

∆t
(nn+1−nn) , (4.29.20)

with ∆tk begin the current sub-increment time step, ∆tk =
∑k

r=1 δt
r. For simplicity, in the

remainder of this section it is assumed that the input time step is acceptable and only a single
increment is needed. If additional sub-increments are needed, the below steps would be repeated
N times with time intervals of δtk.

The rate-dependent plastic response is then calculated in a fashion very similar to that of the
viscoplastic foam model (Section 4.28.2). The key differences are primarily the additional, and
more complex, dependencies of ν, β, a, and b on the solid volume fraction. As such, first the
various material properties and model parameters that are dependent on temperature, θ, or solid
volume fraction, φ, are determined based on the respective values at t = tn. The effective plastic
strain rate, ˙̄εp, is readily found as,

˙̄εp = eh(θn)
〈

σ∗n
a (φn)

−1

〉n(θn)

, (4.29.21)

where σ∗n is given by,

σ∗n =

√

σ̄2
n+

a2 (φn)
b2 (φn)

p2
n, (4.29.22)

and 〈x〉 are the Macaulay brackets evaluated as,

〈x〉 =
{

x, x ≥ 0
0, x < 0

. (4.29.23)

Knowing the effective plastic strain increment, corresponding stress increments may be
determined. Specifically, the rates of change of the deviatoric stress, ṡi j, and pressure, ṗ, are given
for isothermal conditions by

ṡi j = 2µn

(

d̂i j− d̂
p
i j

)

, (4.29.24)

ṗ = Kn

(

dkk −d
p
kk

)

, (4.29.25)
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with di j and d
p
i j being the the total and plastic, respectively, rates of deformation, and the symbol

“x̂i j” denoting the deviatoric part of the tensor xi j. The plastic strain rate is given by,

d
p
i j =

˙̄εpgn
i j, (4.29.26)

where gn
i j is evaluated via relation (4.29.10)-(4.29.12) using state variable at time t = tn and it is

noted that β = β (φn). Elastic constants Kn and µn are found through isotropic relations using the
values En and νn so the temperature and solid volume fraction dependencies may be
incorporated.

Therefore, after accounting for plastic deformation and any associated temperature changes,

s̃i j =
µn+1

µn
sn

i j+ ṡi j∆t, (4.29.27)

p̃i j =
Kn+1

Kn
pn+ ṗ∆t, (4.29.28)

T̃i j = s̃i j+ p̃δi j, (4.29.29)

where the tilde, “x̃”, is used to distinguish the fact that the damage response has not yet been
evaluated and these are temporary variables. Updated expressions for the state variables are also
given as,

εp−n+1
v = εp−n

v +d
p
kk∆t, (4.29.30)

φn+1 = max





φ0

exp
(

ε
p−n+1
v

) ,φn



 . (4.29.31)

With the plastic deformations determined, the damage state of the material is evaluated. As a first
step, the eigenvalues, σ̂i, and vectors, êk

i (where k denotes the corresponding eigenvalue) of the
stress state, T̃i j, and eigenvalues, εi of the total strain state are determined. Of particular interest is
the maximum eigenvalue of the strain tensor, εmax. The damage strain, εn+1

dam, is

εn+1
dam =

〈

adamεmax+bdamε
p−n+1
v

〉

, (4.29.32)

with 〈〉 being Macaulay brackets. This value of the damage strain is then used to evaluate the
current value of the damage, wn+1, and a check is also imposed to insure that the damage does not
decrease. An effective tensile strength, σdam, may then be calculated as

σdam = c
(

1−wn+1) , (4.29.33)

leading to a damage surface of the form,
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f i
dam = σ̂

i−σdam. (4.29.34)

The eigenvalues of the updated stress tensor may be written as,

σ̂i
n+1 =

{

σ̂i, f i
dam ≤ 0

σdam, f i
dam > 0

, (4.29.35)

producing a final updated stress state of the form,

T n+1
i j =

3
∑

k=1

σ̂k
n+1êk

i êk
j. (4.29.36)

4.29.3. Verification

Given the complexity and variety of response and features of the foam damage model, a series of
verification analyses are performed. Common material properties and model parameters used for
these investigations are given in Table 4-45. For these initial studies, isothermal loadings are
considered and the solid volume fraction dependence of the elastic properties is neglected
( fE (φ) = 1, fν (φ) = 1). Properties used correspond to those of a FR3712 foam from [1]. In the
case of the elastic modulus, flow rate, and exponent, the values correspond those at a temperature
of 18.30◦C.

E 9,240 psi c 280 psi
ν 0.25 adam 1.0
h 2.60 bdam 0.55
n 14.0 φ0 0.160

Table 4-45. Common material properties and model parameters for
the foam damage model used during verification testing.

The shear strength, hydrostatic strength, and damage function all require user defined functional
forms. For purposes of these tests, simple linear forms are considered for use in the analytical
evaluations. Using the data same FR3712 data as before, simplified expressions of the form,

a (φ) = 160+2400φ, (4.29.37)

b (φ) = 160+3266.67φ, (4.29.38)

w (εdam) =
10
3
εdam, (4.29.39)

are considered.
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4.29.3.1. Uniaxial Compression

First, the behavior of the model subject to a uniaxial compression load is considered. As the
loading is purely compressive, no tensile stress is generated and the damage surface is not
violated. Therefore, only the rate-dependent plasticity is considered in this section. Given the
rate-dependent nature, no analytical solution is readily available and and a semi-analytical
approach is developed by specializing the equations to uniaxial compression. Additionally, it is
noted that the flow parameter, β, is not specified above and is enabled in this model to be an
user-defined function of the solid volume fraction φ. Here, to isolate the impact of this parameter,
the two extreme cases are considered – fully associated or radial flow with β = 0, 1,
respectively.

To induce the uniaxial stress state of interest, a displacement of the form u1 = λ1 is applied while
the remaining degrees of freedom (2 and 3) are left traction free. The applied displacement scales
linearly from λ1 = 0 at t = 0.0 to λ1 = −0.7 at t = 1.0. In this case, the stress state is simply

σi j = σ11δi1δ j1 leading to an overstress of the form σ∗ = |σ11|
√

1+ a2

9b2 . For both associated and
radial flow, the inelastic flow rate simplifies to,

Din
i j = eh

〈

|σ11|
3ab

√

a2+9b2−1

〉n

gi j, (4.29.40)

with 〈·〉 being Macaulay brackets. The total strains may then be written as,

ε11 = ln (1+λ1) , (4.29.41)

ε22 = ε33 = −ν
(

ln (1+λ1)−εin
11

)

+εin
22, (4.29.42)

where εin
i j =

∫ t

0 Din
i jdτ. The associated and radial flow cases are distinguished by the form of gi j. In

the latter case, gi j reduces simply to gr
i j = δi1δ j1. The former case, on the other hand, produces a

flow direction of the form,

ĝ =
1

3
√

2
3

(

2a4+81b4
)

, (4.29.43)

gr
11 = ĝ2

(

a2+9b2) , (4.29.44)

gr
22 = gr

33 = ĝ
(

2a2−9b2) . (4.29.45)

The stress evolution for both of these flow cases determined numerically (adagio) and
semi-analytically is presented in Figure 4-114a.

From these results, the impact of the flow direction choice can be observed to have a large impact
on the model response. Specifically, in the radial case more substantial hardening is seen
throughout the entire plastic domain. As the hardening results from the solid volume fraction
(which is a function of volumetric plastic deformation), such a difference may be anticipated.
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Figure 4-114. (a) Axial stress and (b) maximum solid volume frac-
tion, φ, evolution obtained as a function of applied compressive
displacement and determined via the foam damage model consid-
ering both associated (β = 0) and radial (β = 1) flow assumptions
semi-analytically and numerically.

Specifically, given the uniaxial plastic flow in the radial case more pronounced volumetric strains
are to be expected. The associated case, on the other hand, has a more deviatoric character leading
to lower plastic volume strains. This difference may also be more readily observed in the total
strain evolutions of the associated and radial cases in Figures 4-115a and 4-115b, respectively.

Specifically, in the radial case, only small off-axis strains are observed while in the associated
results much more substantial strains are noted. This difference produces a large impact on the
plastic volumetric strain and therefore on the maximum solid volume fraction, φ, whose evolution
through loading in both cases is presented in Figure 4-114b. To emphasize this point, the radial
solid volume fraction is more than double the associated case at the end of loading.

4.29.3.2. Uniaxial Tension

As the compressive and tensile behaviors of the model are different (due to the activation of the
damage mechanism), the uniaxial tensile response is also investigated. To this end, a uniaxial
displacement is applied, u1 = λ1, while the other off-axis components are kept traction free. For
this test, the maximum displacement (λ1 = 0.2) is applied linearly from t = 0.0 to t = 1.0. Use of a
displacement condition is essential due to the expected stress degradation. In this case, given the
relative values of the strength (a (φ0) versus c) it is clear that no plastic deformations will take
place and a purely damage driven response is expected. With this simplification, it is also noted
that the rate-dependency of the problem is eliminated. As the stress state is uniaxial, it is clear
that the only non-zero eigenvalue of the stress tensor is σ11 and that
εdam = adamε11 = adam ln (1+λ1) where the fact that the plastic strain is zero is utilized. Bearing
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Figure 4-115. Diagon strain evolution through a uniaxial displace-
ment loading of the foam damage model considering (a) associ-
ated (β = 0) and (b) radial (β = 1) flow determined semi-analytically
and numerically.

these simplifications in mind, an analytical expression for the stress and strain may be developed.
The stress in the axial direction may be written as,

σ11 =

{

(C1111−2νC1122) ln (1+λ1) , λ1 < λcrit

c
(

1− 10
3 adam ln (1+λ1)

)

, λ1 ≥ λcrit
, (4.29.46)

where

λcrit = exp

(

c

C1111−2νC1122+
10
3 adamc

)

−1. (4.29.47)

The analytical results along with numerical simulations from adagio are given below in
Figure 4-116.

4.29.3.3. Hydrostatic Compression

To consider the pressure dependence, the response of this model subject to a hydrostatic
compression loading is determined. Specifically, a displacement of the form ui = λ (t) is
considered. The applied displacement scales linearly from λ = 0 at t = 0.0 to λ = −0.7 at t = tmax.
Two cases are considered to incorporate rate-dependent effects into the analysis. The two tests are
denoted “fast” and “slow” and are distinguished via tmax values of 1.0 and 100.0, respectively.
With this displacement field the engineering volume strain, εV, is simply εV = (1+λ)3−1. The
stress state reduces trivially to σi j = −pδi j and the corresponding (repeated) eigenvalue is
compressive. Therefore, damage does not play a role in this analysis.
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Figure 4-116. Response of the foam damage model through a uni-
axial stress, displacement controlled tension simulation. Stress in
the loading direction, σ11, and damage measure, w, against the ap-
plied displacement, λ1, are shown.

No direct analytical solution to this problem is readily obtainable. Therefore, a semi-analytical
analysis is used. Reducing the foam damage model for the loading described in this section leads
to an expression for the overstess of,

σ∗ =
a

b
|p|, (4.29.48)

where the fact that si j = 0 is leveraged. Additionally, given this stress state, β becomes an
unnecessary parameter as,

gi j = ga
i j = gr

i j = −
1√
3

sgn(p)δi j, (4.29.49)

with sgn(p) being the sign of p. Both the numerical (adagio) and semi-analytical (evaluated in a
forward Euler fashion) results are presented in Figure 4-117.

4.29.3.4. Hydrostatic Tension

A tensile hydrostatic loading provides an interesting possibility for investigating the damage
response. Specifically, with the model parameters defined above the damage tensile strength is
always less than the hydrostatic strength - c < b (φ0). Additionally, given the tensile loading
φ (t) = φ0 and no plastic deformation occurs. This also removes the rate-dependency form the
model enabling an analytical solution to be obtained.
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Figure 4-117. Pressure-engineering volume strain results of the
foam damage model subjected to a hydrostatic loading at both fast
and slow rates determined semi-analytically and numerically.

Through a hydrostatic loading, the only stress eigenvalue is −p (noting the convention of p

positive in compression) and the corresponding strain eigenvalue is εmax = ln (1+λ). As no plastic
deformation is occurring, the damage is simply a function of the deformation and is given by,

w (εdam) = w (λ) =
10
3

adam ln (1+λ) . (4.29.50)

The pressure is then simply given as,

p =

{

3K ln (1+λ) λ < λcrit

c
(

1− 10
3 a ln (1+λ)

)

λ ≥ λcrit
, (4.29.51)

where,

λcrit = exp

(

3c

9K +10c

)

−1. (4.29.52)

In the preceding relations, the fact that εdam = aεmax is used. The analytical and numerical results
are given below for a loading of λ = 0 to λ = 0.2 through the time period t = [0,1] in
Figure 4-118.
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Figure 4-118. Pressure and damage evolutions as function of en-
gineering volume strain results of the foam damage model subject
to a tensile hydrostatic loading determined analytically and numeri-
cally. Note, conventionally with this model pressure is defined pos-
itive in compression.
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4.29.4. User Guide

BEGIN PARAMETERS FOR MODEL FOAM_DAMAGE

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ

#

# Yield behavior

#

PHI = <real> φ0

FLOW RATE = <real> h

POWER EXPONENT = <real> n

TENSILE STRENGTH = <real> c

ADAM = <real> adam

BDAM = <real> bdam

#

# Functions

#

YOUNGS FUNCTION = <string> hE(θ)
POISSONS FUNCTION = <string> hν(θ)
RATE FUNCTION = <string> hh(θ)
EXPONENT FUNCTION = <string> hn(θ)
SHEAR HARDENING FUNCTION = <string> a(φ)
HYDRO HARDENING FUNCTION = <string> b(φ)
BETA FUNCTION = <string> β(φ)
YOUNGS PHI FUNCTION = <string> fE(φ)
POISSONS PHI FUNCTION = <string> fν(φ)
DAMAGE FUNCTION = <string> w(εdam)

END [PARAMETERS FOR FOAM_DAMAGE]

Output variables available for this model are listed in Table 4-46. For information about the foam
damage model, consult [1].
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Table 4-46. State Variables for FOAM DAMAGE Model

Name Variable Description

ITER number of sub-increments taken in subroutine
EPVOL plastic volume strain
PHI maximum volume fraction of solid material
EQPS equivalent plastic strain
FA shear strength - a

FB hydrostatic strength - b

DAMAGE damage
EMAX maximum tensile strain
PWORK plastic work rate
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4.30. ORTHOTROPIC CRUSH MODEL

4.30.1. Theory

The orthotropic crush model in LAMÉ is designed to model the energy absorbing capability of
crushable orthotropic materials, e.g. aluminum honeycomb, and is empirically based. The
formulation follows that used for metallic honeycomb materials in LS-DYNA [1]. Three response
regimes are assumed for this material: (i) orthotropic elastic, (ii) crush, and (iii) complete
compaction (fully crushed). During the elastic regime, the model exhibits the response of an
elastic, orthotropic material with all Poisson’s ratio equal to zero. After full compaction, the
response is taken to be that of an isotropic, perfectly plastic material and the response between
these two stages is tailored to smoothly transition between the two extremes. Crushing,
incorporating both nonlinear elastic and plastic-like behaviors, is taken to begin as soon as
volumetric contraction is noted (J = det

(

Fi j

)

< 1). As such, the purely elastic response is
primarily seen during cyclic loadings in which the material is unloaded. An internal state
variable, Jc, is introduced to track the crushed state of the material and is defined as the minimum
J over the entire deformation history such that,

Jc =min
t>0

[J (t)] . (4.30.1)

The crushing process manifests through two distinct behaviors: (i) the elastic properties scale
linearly with the crush state from the initial orthotropic state to the of the final isotropic
completely compacted material; and (ii) a plastic-like response is observed associated with
corresponding crush curves (analogous to hardening curves).

Before complete compaction, the incremental constitutive relation may be written in terms of the
rate of deformation tensor, Di j, as,
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(4.30.2)

where Ê11, Ê22, and Ê33 are the normal stiffness and Ĝ12, Ĝ23, and Ĝ31 are the shear stiffness. A
clear decoupling between the different directional components is evident in (4.30.2). All six
stiffness components are assumed to be functions of the current compaction level which may be
defined as 1− Jc and the evolution of these terms is responsible for crushing behavior (i) alluded
to previously.

The functional forms of the stiffness are given by,
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Êβ = Eβ+α
(

E−Eβ
)

β = 11, 22, 33

Ĝγ = Gγ+α
(

G−Gγ

)

γ = 12, 23, 31, (4.30.3)

where E and G are the Young’s and shear moduli, respectively, of the fully compacted material
while Eβ and Gγ are the input orthotropic elastic stiffness components of the virgin, uncompacted
material. It is assumed that these stiffness vary linearly between the pre- and post-compacted
material such that,

α =
(1− Jc)

Vmin
, (4.30.4)

with Vmin being the minimum relative volume (or maximum compaction).

With respect to the second behavior observed during crushing, a plastic-like response governed by
crush curves is observed. Given the decoupling between the different stresses and deformations, a
crush curve needs to be defined for each of the six normal and shear stresses. An example of such
a curve is presented in Figure 4-119, and three distinct regions are evident. Initially, at low
compaction levels, a plateau is observed. This plateau is essentially an initial crush strength and
prior to this stress level all nonlinear deformations associated with material compaction manifest
through changes in the respective moduli. When the stress reaches the specified levels, however,
the curves play a role analogous to the hardening curve and the material stress follows the curve.
Physically, the plateau is associated with crushing the internal honeycomb or foam structure of the
material. As the material approaches full compaction and microstructural contact effects become
important, a sharp rise in the stress is noted (see ≈ 0.6 ≤ 1− Jc ≤ 0.7 = Vmin in Figure 4-119).
After complete compaction another plateau corresponding to perfect plasticity is evident.

Above some value of compaction (1− Jc = Vmin), the material will be fully compacted and behave
as an elastic, perfectly plastic material. The fully compacted response is given by the Young’s
modulus, E, Poisson’s ratio, ν, and the yield stress, σy. Details of this response may be found in
previous sections on the various elastic-plastic models (e.g. Section 4.7.1).

4.30.2. Implementation

Implementation of the orthotropic crush model involves addressing two cases: before and after
complete compaction. When the material is fully crushed, the model reduces to that of an
isotropic perfectly plastic response. As corresponding isotropic elastic-plastic models with
various hardenings have been extensively explored in prior sections, this response will not be
discussed here and the reader is referred to those sections (e.g. Section 4.7.2). The two cases are
distinguished by the previous compaction state variable, Jn

c , where Jn+1
c =min

[

Jn
c , J

n+1
]

with

Jn+1 = det
(

Fn+1
i j

)

= det
(

Vn+1
i j

)

. If Jn
c > 1−Vmin, the material has not yet fully crushed and the

response is evaluated as discussed in the following.
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Figure 4-119. An example of an input crush curve for an aluminum
honeycomb.

To determine the material state prior to complete compaction, the current values of orthogonal
stiffness must be determined via (4.30.3) noting

αn+1 =
1− Jn

c

Vmin
. (4.30.5)

By assuming completely elastic deformation, trial stresses may then be computed as,

σtr
11 = σn

11+∆tÊ11
(

αn+1)dn+1
11 ,

σtr
22 = σn

22+∆tÊ22
(

αn+1)dn+1
22 ,

σtr
33 = σn

33+∆tÊ33
(

αn+1)dn+1
33 , (4.30.6)

σtr
12 = σn

12+2∆tĜ12
(

αn+1)dn+1
12 ,

σtr
23 = σn

23+2∆tĜ23
(

αn+1)dn+1
23 ,

σtr
31 = σn

31+2∆tĜ31
(

αn+1)dn+1
31 ,

with dn+1
i j being the unrotated rate of deformation tensor. Given the decoupling between the

different stress components, the various trial stresses are considered individually. Specifically,
each trial stress must be compared to the crush stress for the current compaction level. Denoting
σcrush
β = σ̂β

(

1− Jn+1
c

)

(with β = 11, 22, 33, 12, 23, or 31) to be the current crush stress specified
by the crush curve, the current stress of interest is,
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σn+1
β =

{

σtr
β , |σtr

β | ≤ σcrush
β

sgn
(

σtr
β

)

σcrush
β , |σtr

β | > σcrush
β ,

(4.30.7)

where sgn(x) returns the sign of the argument and is used as σcrush
β is entered as a positive

number.

4.30.3. Verification

The orthotropic crush model was verified through a series of uniaxial compression tests. Given
the lack of coupling between the different directions, such a variety of tests were performed to test
each loading component. One set of material properties was used for all tests and they are given
in Table 4-47.

E11 50.0 ksi E 1000.0 ksi
E22 220.0 ksi ν 0.25
E33 10.0 ksi σy 2.0 ksi
G12 110.0 ksi
G23 5.0 ksi Vmin 0.7
G31 25.0 ksi

Table 4-47. The material properties for the orthotropic crush model
used for the uniaxial crush tests.

The crush curves used as input for these tests are given in Figure 4-120.
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Figure 4-120. Input crush curves used for uniaxial crush analysis.
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Figure 4-121. Analytical and numerical results for uniaxial crush
cases.

.

To test this model, both the anisotropic nature and different deformation regimes need to be tested.
Therefore, given the decoupled directional nature prior to complete compaction, each component
will be tested. For the diagonal stress components, a simple uniaxial displacement of the form,

ui = −λδiβ, (4.30.8)

where β = 1, 2, or 3 corresponding to the directional component being tested is applied. In such
cases (with a monotonically increasing λ), Jc = 1−λ. The model described in the prior to sections
can be easily evaluated analytically under such conditions, and the corresponding analytical and
numerical results are presented in Figure 4-121.
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4.30.4. User Guide

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH

#

# Elastic constants - Post lock-up

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Orthotropic Elastic properties - Pre-Crush

#

EX = <real> E11

EY = <real> E22

EZ = <real> E33

GXY = <real> G12

GYZ = <real> G23

GZX = <real> G31

#

# Crush properties

#

CRUSH XX = <string> σ̂11 (Jc)
CRUSH YY = <string> σ̂22 (Jc)
CRUSH ZZ = <string> σ̂33 (Jc)
CRUSH XY = <string> σ̂12 (Jc)
CRUSH YZ = <string> σ̂23 (Jc)
CRUSH ZX = <string> σ̂31 (Jc)
VMIN = <real> Vmin

#

# Post lock-up yield properties

#

YIELD STRESS = <real> σy

#

END [PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH]

Output variables available for this model are listed in Table 4-48. For information about the
orthotropic crush model, consult [1].

Table 4-48. State Variables for ORTHOTROPIC CRUSH Model

Name Description

CRUSH current (unrecoverable) compaction/relative volume
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4.31. ORTHOTROPIC RATE MODEL

4.31.1. Theory

The orthotropic rate model is an improved version of the orthotropic crush model [1] that
incorporates anisotropic elasticity, strain-rate dependence, and the ability to define the material
coordinate system. The specific form of this model is motivated by metallic honeycombs and the
material coordinate system is usually given in terms of T, L, and W directions. These directions
correspond to the strong (T ) and ribbon (L) axes depicted in Figure 4-122. The third component
of the coordinate system, W, is the weak direction and is simply the cross-product of the other
two directions.

T

L

W

Figure 4-122. Orientation of the T, L and W vectors for 38 pc alu-
minum honeycomb.

In terms of expected response, and similar to the orthotropic crush model, the deformation is split
into two regimes – uncompacted and compacted. Unlike the crush model, the state of compaction
is not determined by the determinant of the deformation gradient but is instead a function of the
engineering (not logarithmic) volume strain, εV. The degree of compaction, α, is therefore
defined as,

α =min
t>0

(

V0−V (t)
V0

)

= 1− mint>0 V (t)
V0

= −min
t>0

εV (t) , (4.31.1)

with V (t) and V0 being the current and original volume of the material. Complete compaction

occurs at a user specified value, αcomp.

Prior to complete compaction, the elastic stiffness, Ci jkl, is taken to exhibit orthotropic symmetry
and depends on the compaction state of the material, Ci jkl = Ci jkl (α). In the material frame and in
Voigt notation, this stiffness is represented as,
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(4.31.2)

Once the material is completely compacted, the elastic stiffness is taken to be isotropic and the
evolution of the initially orthotropic components (ETTTT (α = 0) = E0

TTTT ) to final isotropic,
compacted coefficients (ETTTT

(

α = αcomp
)

= λ+2µ with λ and 2µ being Lamé’s constant and the
shear modulus) is given via a common user-defined scaling function, fE (α). The mechanical
stiffness coefficients then scale as,

ETTTT (α) = E0
TTTT +

(

λ+2µ−E0
TTTT

)

fE (α) , (4.31.3)

for the volumetric diagonal terms (ETTTT , ELLLL, EWWWW),

ETT LL (α) = E0
TT LL+

(

λ−E0
TT LL

)

fE (α) , (4.31.4)

for the off-diagonal terms (ETT LL, ETTWW , ELLWW) and

GT LT L (α) =G0
T LT L+

(

2µ−G0
T LT L

)

fE (α) (4.31.5)

for the shear terms. From these relations, it is obvious that fE (α) should be bounded such that
0 ≤ fE (α) ≤ 1 with fE (0) = 0 and fE

(

αcomp
)

= 1.

As was mentioned earlier, the deformation and model response may be readily split between two
regimes – the uncompacted and compacted. The behavior during the latter regime is simpler and
is assumed to be that of an isotropic elastic-perfectly plastic material characterized by the elastic
coefficients (λ, 2µ) and yield stress (σy). During the uncompacted regime the deformation is
more complex and typical responses may include elastic bending of cell structures, buckling of
cell walls, or densification (see the text of Gibson and Ashby [2] for a complete discussion of
these and other mechanisms). In this formulation, however, none of these deformation modes are
explicitly modeled. Instead, the response is defined via six independent yield functions (one for
each stress component in the material coordinate system), φβγ, that are a function of the
corresponding stress, the compaction state, and the current strain rate, ˙̄ε =

√

di jdi j. Here, di j is
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the unrotated rate of deformation in the global (X,Y,Z) coordinate system and β and γ are being
used as subscripts to denote variables in the material coordinate system.

The six yield functions are,

φLL = σLL− fLL (α)h
(

˙̄ε
)

φTT = σTT − fTT (α)h
(

˙̄ε
)

φWW = σWW − fWW (α)h
(

˙̄ε
)

φLT = σLT − fLT (α)h
(

˙̄ε
)

φTW = σTW − fTW (α)h
(

˙̄ε
)

φWL = σWL− fWL (α)h
(

˙̄ε
)

, (4.31.6)

with σβγ being the current symmetric Cauchy stresses in the material coordinate system, fβγ are
user specified hardening functions defining the maximum stress in that direction for a given
compaction state and h

(

˙̄ε
)

is the strain rate sensitivity function that is common to all the yield
functions. With these forms, it is evident that the definition of the different hardening functions
dictates the model response through the uncompacted regime. All (or none) of the aforementioned
deformation mechanisms may be captured by the appropriate definition of those functions. As
such, the response is dictated by the desire of the analyst and appropriate selection of the elastic
scaling, hardening, and strain rate sensitivity function – fE (α) , fβγ (α) , and h

(

˙̄ε
)

.

4.31.2. Implementation

Unlike the orthotropic crush model, the rate variant considered here has couplings between the
different directional strains and cannot be evaluate numerically as easily. Therefore, the
orthotropic rate model is integrated using a hypoelastic formulation. As was discussed in the
preceding section, the model is formulated in the T, L, W coordinate system and not the
unrotated frame. Therefore, the first step before proceeding is to map strain and stress values from
the unrotated to the material frame. To this end, an orthogonal rotation tensor Q̃i j is constructed
from user input vectors t̂i and l̂i defining the strong and ribbon directions, respectively. In this
case, the “ ·̃ ” is used to differentiate this tensor from that mapping between the rotated and
unrotated configurations defined in (4.1.1). The stress and deformation rates in the material
coordinate system, σ̃i j and d̃i j, are determined via,

σ̃n
i j = Q̃kiT

n
klQ̃l j, (4.31.7)

d̃n+1
i j = Q̃kid

n+1
kl Q̃l j, (4.31.8)

where T n
i j and dn+1

i j are the unrotated stress and deformation rates, respectively. For convenience,
the remainder of this discuss will neglect the “ ·̃ ” notation and all operations will be assumed to
be in the material coordinate system unless specifically noted. Additionally, after a converged
stress is achieved, the inverse mapping of (4.31.7) is used to determine T n+1

i j .
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As the strain increment is fixed for a load step, kinematically defined variables such as αn+1 and
the strain rate, ˙̄εn+1, may first be determined. The latter term is defined as,

˙̄εn+1 =

√

dn+1
i j dn+1

i j , (4.31.9)

with dn+1
i j being the strain rate in the global coordinate system. For the former, it must first be

noted that the engineering, εV, and logarithmic, εkk, volumetric strains are related via
εV = exp(εkk)−1. The current state of compaction is then given as,

αn+1 = 1− ε̂n+1
V , (4.31.10)

where ε̂n+1
V =min

[

ε̂n
V ,exp

(

εn+1
kk

)]

.

The material response has two distinct regimes. As discussed in the corresponding theory section,
the compacted material behaves as an elastic-plastic material. Such a response and the
corresponding numerical analysis has been described in Section 4.7.2. As such, it will not be
further presented here and instead the focus is on the behavior during the uncompacted stages.

Earlier, it was mentioned that the response during the compaction process is dictated by three
functions – the elastic scaling, hardening, and strain rate sensitivity. These three expressions are
dependent on the state of compaction and strain rate. As those kinematic properties have already
been calculated, the values of f n+1

E = fE
(

αn+1
)

, f n+1
i j = fi j

(

αn+1
)

, and hn+1 = h
(

˙̄εn+1
)

may easily
be calculated. In the remainder of this section, the functional dependencies of these terms will not
be explicitly presented for ease and brevity. Similarly, the superscript n+1 will be dropped and it
should be assumed that unless specifically denoted the variable is evaluated at the n+1 step. With
fE (and f n

E) defined, the elastic stiffness, Ci jkl and Cn
i jk, and compliance, Si jkl and Sn

i jkl, tensors
may also be calculated.

To determine the updated material state, the change in elastic stiffness (associated with the change
in compaction) must be determined. To this end,

σ̂n
i j = Ci jklε

e−n
kl (4.31.11)

where

εe−n
i j = S

n
i jklσ

n
kl. (4.31.12)

In the previous two relations, it is noted that the respective mechanical tensors are determined at
different load steps thus leading to the altered stress state. The tensor σn

i j refers to the stress
determined and stored from the previous load step while σ̂n

i j incorporates the change in
mechanical stiffness. A trial stress state may be calculated as,

σtr
i j = σ̂

n
i j+Ci jkldε

e−tr
kl , (4.31.13)

360



with the trial elastic strain increment, dεe−tr
i j being that of the total strain increment, di j∆t. The

flow (yield) functions, f tr
i j , are then calculated. If all f tr

i j < 0, the solution is elastic and the trial
state is accepted. On the other hand, if any f tr

i j > 0 a correction scheme is needed. This poses a
more complex problem than in the orthotropic crush model given the multiple (six) yield
surfaces.

To perform the plastic correction, an approach similar in principle to the return-mapping schemes
heavily used in metal plasticity (e.g. Section 4.7.2). Here, however, there is no internal state
variable and associated evolution equations to evolve the state. Instead, in this case the elastic
strain is iterated over until all the yield conditions are satisfied. Specifically, for the k-th iteration,
the stress is calculated as

σk
i j = σ̂

n
i j+Ci jkldε

e−k
kl . (4.31.14)

Updated yield functions, f k
i j, are then calculated and the active flow directions (those with fi j > 0)

determined. A tangent modulus is then constructed (essentially by turning off components
corresponding to inactive directions) and a plastic flow tensor is determined using the tangent
compliance and the value of the yield functions. The updated elastic strain increment, dεe−k+1

i j , is
then found by removing the calculated strain. This process is repeated until satisfaction of all the
yield functions.

4.31.3. Verification

To verify the orthotropic crush model, a series of uniaxial compression tests are performed. Given
the multiple salient features in this model (e.g. strain rate dependence, user-defined coordinate
system), the test sequence is constructed to investigate and probe each of the different features to
gain confidence in all of the anticipated capabilities. Additionally, the analyzed loading paths
correspond to those in which the kinematics are fully prescribed. This is done so that analytical
expressions may be found due to the strong coupling between the kinematics and constitutive
response through the compaction state, α. The common model parameters used for these tests are
given in Table 4-49 and the functional forms of the input strength/hardening curves, fβγ, are
presented in Figure 4-123. It is noted, however, that these properties will take various values
during the verification tests to activate and deactivate different responses. Additionally, in
Figure 4-123, two sets of curves are given – the full, complex set of six distinct functions (4-123a)
and a simpler set (4-123b). In the latter, only one curve common to the three diagonal strengths
are shown. The other three strength functions are all set artificially high to enable the study of a
simpler case.

4.31.3.1. Uniaxial Strain - Isotropic

First, the response of the model with through a uniaxial strain loading is explored. In this case,
the prescribed displacement is ui = λ̂δi1. For this initial study, isotropic elastic constants are
assumed leading to E0

L = E0
LLLL = E0

TTTT = E0
WWWW = 5,384.6 ksi and
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E0
TTTT 2,322.0 ksi E 4000.0 ksi

E0
TT LL 485.8 ksi ν 0.3

E0
TTWW 68.8 ksi σy 15.0 ksi

E0
LLLL 1,348.0 ksi t̂x 1.0

E0
LLWW 121.8 ksi t̂y 0.0

E0
WWWW 85.0 ksi t̂z 0.0

G0
T LT L 1,345.0 ksi l̂x 0.0

G0
LWLW 67.0 ksi l̂y 1.0

G0
WTWT 260.0 ksi l̂z 0.0

h
(

˙̄ε
)

1.0 fE (α) α

Table 4-49. Material and model parameters for the orthotropic rate
model used during verification testing.
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Figure 4-123. Input strength/hardening curves, fβγ, for use in verifi-
cation tests of the orthotropic rate model.

E0
T = E0

TT LL = E0
TTWW = E0

LLWW = 2,307.7 ksi. These properties are chosen to match the
compacted state and fE (α) is set to zero. In this way, the elastic properties are constant
throughout loading. The shear moduli are scaled accordingly and the remaining properties are left
unchanged from Table 4-49. In this case, the model response simplifies to

α = −λ̂, (4.31.15)

and

σ11 =

{

σ̂ σ̂ ≤ fTT (α)
fTT σ̂ > fTT (α)

(4.31.16)
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σ22 = σ33 =

{

λ ln
(

1+ λ̂
)

σ̂ ≤ fTT (α)
λ

λ+2µσ11 σ̂ > fTT (α) , (4.31.17)

where

σ̂ = (λ+2µ) ln
(

1+ λ̂
)

. (4.31.18)

The single linear hardening crush curve given in Figure 4-123b is used for this analysis. The
resulting stresses as a function of applied displacement, λ̂, are given in Figure 4-124 and good
agreement is noted.
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Figure 4-124. Axial and off-axis stresses determined analytically
and numerically via the orthotropic rate model with constant,
isotropic elastic properties

4.31.3.2. Uniaxial Strain - Orthotropic

The uniaxial problem described in the previous section is again studied – although this time using
the orthotropic elastic properties listed in Table 4-49. To test the material coordinate system
capabilities two cases are considered – essentially with the x1 axis aligned with the T and L axes.
The first case corresponds to the definition of the t̂i and l̂i vectors in Table 4-49. Alternatively, the
second case is defined by setting the L direction aligned with the x1 axis
(l̂x = 1.0, l̂y = 0.0, l̂z = 0.0 and t̂x = 0.0, t̂y = 0.0, t̂z = 1.0). The stress state evolutions determined
via adagio and analytically for the two considered orientations are shown in Figures 4-125a and
4-125b, respectively. The analytical solutions are found in the same fashion as (4.31.16) with the
moduli changed for the orthotropic case. Good agreement is observed.
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(a) Loading aligned with the T direction
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(b) Loading aligned with the W direction

Figure 4-125. Axial and off-axis stresses determined analytically
and numerically via the orthotropic rate model with constant, or-
thotropic elastic constants. The material coordinate systems is ro-
tated in two different directions with the loading direction always
aligned with x1
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4.31.4. User Guide

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_RATE

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

YIELD STRESS = <real> σy

#

MODULUS TTTT = <real> E0
TTTT

MODULUS TTLL = <real> E0
TT LL

MODULUS TTWW = <real> E0
TTWW

MODULUS LLLL = <real E0
LLLL

MODULUS LLWW = <real> E0
LLWW

MODULUS WWWW = <real> E0
WWWW

MODULUS TLTL = <real> G0
T LT L

MODULUS LWLW = <real> G0
LWLW

MODULUS WTWT = <real> G0
WTWT

#

TX = <real> t̂x

TY = <real> t̂y
TZ = <real> t̂z
LX = <real> l̂x

LY = <real> l̂y
LZ = <real> l̂z
#

MODULUS FUNCTION = <string> fE (α)
RATE FUNCTION = <string> h

(

˙̄ε
)

#

T FUNCTION = <string> fTT (α)
L FUNCTION = <string> fLL (α)
W FUNCTION = <string> fWW (α)
TL FUNCTION = <string> fT L (α)
LW FUNCTION = <string> fLW (α)
WT FUNCTION = <string> fWT (α)

END [PARAMETERS FOR MODEL ORTHOTROPIC_RATE]

Output variables for this model are listed in Table 4-50.
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Table 4-50. State variables for ORTHOTROPIC RATE Model

Index Name Variable Description

1 CRUSH minimum volume ratio, crush is unrecoverable (ε̂V)
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4.32. UNIVERSAL POLYMER MODEL (UPM)

4.32.1. Theory

The Universal Polymer Model (UPM) is a phenomenological, non-linear viscoelastic (NLVE)
model that is, in the literature, named the Simplified Potential Energy Clock (SPEC) [1]. The
UPM model is considerably simpler than the parent model, the Potential Energy Clock (PEC)
model, labeled the NLVE polymer model in SIERRA, which itself is not phenomenological but
requires extensive data and experience to calibrate [2].

The UPM model is suitable for modeling the finite deformation, thermal-mechanical behavior of
glassy materials, both organic and inorganic. Successful usage of the model is widespread. Some
examples include the modeling of amorphous, thermosetting polymers across and through the
glass transition such as epoxies [3]. It is also suitable for modeling thermoplastics from within the
melt state and down into the glass transition from polystyrene to polycarbonate. Finally, it has
been used to represent inorganic glasses for glass-to-metal seals. The UPM model was developed
for production analyses of encapsulated components. It predicts a full range of behavior including
yielding, stress relaxation, volume relaxation, and physical aging.

The key physical principal behind the UPM model is that there exists a material time scale
(material clock) separate from the laboratory time scale. If the material time scale is fast, such as
in the rubbery state of a polymer, then the UPM model responds instantly to changes in
temperature and strain such that the user would observe rate-independent behavior. However, if
the material clock is slow relative to the laboratory time scale, viscoelastic memory builds with
any process, which causes acute history and thermodynamic path dependent behavior.

The model response is derived from a Helmholtz Free Energy density and takes as an input the
unrotated rate of deformation, di j, the temperature at the start and end of the time step (θn and
θn+1, and the time step, ∆ t. From these inputs, the hereditary integrals within the model are
updated, and the unrotated Cauchy stress tensor is returned.

For the UPM model, the strain measure is approximated from the integrated unrotated rate of
deformation tensor, which we label ǫi j,

ǫi j =

∫ ∞

0

(

RmiDmnRn j

)

ds, Di j =
1
2

(

Li j+L ji

)

, Fi j = RimUm j. (4.32.1)

Here, Fi j, Ri j, Ui j, Li j, and Di j are the deformation gradient, rotation, material stretch, velocity
gradient, and rate of deformation tensors standard in Lagrangian continuum mechanics.

The UPM model allows the user to initiate an analysis from a stress-free temperature, θsf , that is
different from the reference temperature, θref , at which all material properties are defined. Here
we briefly summarize the constitutive equations. The model is derived from a Helmholtz Free
Energy, but we begin directly with the (unrotated) Cauchy Stress and refer the reader to reference
[1] for more detail:
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σi j = (KG (θ)−K∞ (θ))
∫ t

0
fv
(

t′− s′
)dI1

ds
dsδi j (4.32.2)

− (KG (θ)δG (θ)−K∞ (θ)δ∞ (θ))
∫ t

0
fv
(

t′− s′
)dθ

ds
dsδi j

+2(GG (θ)−G∞ (θ))
∫ t

0
fs

(

t′− s′
)d
(

devǫi j

)

ds
ds

+ (K∞ (θ) I1−K∞ (θ)δ∞ (θ) (θ− θsf))δi j+2G∞ (θ)devǫi j.

The first three lines of terms in Equation 4.32.2 represent the time-dependent and dissipative
(non-equilibrium) response of the model to volumetric, thermal, and shear deformation histories.
Accordingly, K, δ, and G represent a bulk modulus, volumetric thermal expansion coefficient, and
shear modulus while subscripts G or ∞ denote a glassy or rubbery, respectively, properties. The
last collection of terms in 4.32.2 furnish the time-independent rubbery (equilibrium) response.
The variables in equation 4.32.2 are:

I1 = δi jǫi j = trǫi j, devǫi j = ǫi j−
I1

3
δi j, (4.32.3)

GG (θ) = Gref
G +

dGG

dθ
(θ− θref) , G∞ (θ) =Gref

∞ +
dG∞
dθ

(θ− θref) , (4.32.4)

KG (θ) = Kref
G +

dKG

dθ
(θ− θref) , K∞ (θ) = Kref

∞ +
dK∞
dθ

(θ− θref) , (4.32.5)

δG (θ) = δref
G +

dδG

dθ
(θ− θref) , δ∞ (θ) = δref

∞ +
dδ∞
dθ

(θ− θref) . (4.32.6)

The first three terms in Equation 4.32.2 represent the material’s viscoelastic response to changes
in volume strain, temperature, and shear deformation. Two relaxation functions are used to
characterize the thermal/volumetric ( fv) and shear ( fv) relaxation responses. The model assumes
the thermal and volumetric relaxation responses are identical. Otherwise, fv and fs are typically
quite different and are expressed as a Prony series 8:

fv (x) =
N
∑

k=1

w(k) exp
(

− x

τ(k)

)

, fs (x) =
M
∑

l=1

w(l) exp
(

− x

τ(l)

)

. (4.32.7)

These relaxation functions describe the material’s response to a suddenly applied
volumetric/thermal or shear perturbation at the reference temperature where, under certain
conditions, the material and laboratory time scales are equivalent. In Equation 4.32.2, the viscous
terms (non-rubbery) involve hereditary integrals over the difference in material time from s = 0 to
s = t, which is the current laboratory time. An increment in material time, dt′, and the laboratory

8Note: to distinguish between indices used with conventional summation convention and those related to Prony
series terms, all Prony series summations shall be explicitly written with the relevant index given parenthetically
in a superscript.
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time, dt, are related through the (highly) history dependent shift factor, a, such that the difference
in material time, t′− s′, is related to the corresponding difference in laboratory time, t− s

through:

adt′ = dt, t′− s′ =

∫ u=t

u=s

du

a (u)
. (4.32.8)

If the material time scale is very slow compared to the laboratory time, then a >> 1, which is
often the case inside and below the glass transition for typically glassy materials.

The shift factor is instantaneously defined through:

log10a =
−C1N

C2+N
, (4.32.9)

N(t) = θ− θref −
∫ t

0
fv
(

t′− s′
) dθ

ds
ds (4.32.10)

+C3

(

I1−
∫ t

0
fv
(

t′− s′
) dI1

ds
ds

)

+C4

∫ u=t

u=0

∫ s=t

s=0

(

fs

(

t′− s′, t′−u′
) d
(

devǫi j

)

ds

d
(

devǫi j

)

du
dsdu

)

.

The key physics in the model comes form Equation 4.32.9. Temperature rise (generally) causes N

to increase, and hence the material shift factor shrinks (the material time scale speeds up).
Shrinking the volume generally causes the shift factor to increase as if the temperature had been
decreased. Mechanistically, this feature is the manifestation of the trade-off between between
mobility and free volume available to polymer chains. Finally, shear deformation can greatly
speed up the material clock through the last term. This phenomenon is a direct manifestation of
“deformation induced mobility”, a key mechanism for glassy materials.

Since the shift factor involves hereditary integrals, even at a constant temperature and state of
deformation, the material clock will change over time. Under stress-free conditions, the material
will creep and densify if the model is out of equilibrium (when any viscous term is non-zero).
These phenomena are the model’s manifestations of physical aging, time-dependent material
change without a change in composition or microstructure. C1, C2, C3, and C4 are all material
constants. We note that the double relaxation function appearing in the last term takes on a
slightly different form from fs:

fs (x,y) =
N
∑

k=1

w(k) exp
(

− x

τ(k)

)

exp
(

− y

τ(k)

)

(4.32.11)

It is desirable to relate a special case of the model to the Williams-Landel-Ferry (WLF) form
because of how time-temperature superposition fitting is typically performed. Specifically, one
can show that the clock parameters, C1 and C2, relate to the WLF parameters, Ĉ1 and Ĉ2, through
the following relationships: Ĉ1 =C1 and Ĉ2 =C2/

(

1+C3δ
ref
∞
)

.

For more information about the universal polymer model, consult [1].
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4.32.2. Implementation

The hereditary integrals in Equation 4.32.2 and 4.32.9 are difficult to evaluate directly. Instead a
rate form is pursued than can be integrated straightforwardly over each time step. Consider a
typical hereditary integral after the Prony series for its specific relaxation function has been
substituted into it. Differentiate the integral with respect to the current time, t, and use the
Leibnitz rule to arrive at:

∫ s=t

s=0
fv
(

t′− s′
) dθ

ds
ds =

N
∑

k=0

w(k)
∫ s=t

s=0
exp

(

− t′− s′

τ(k)

)

dθ

ds
ds =

N
∑

k=0

w(k)J(k) (4.32.12)

dJ(k)

dt
=

∫ s=t

s=0

d

dt

(

exp

(

− t′− s′

τ(k)

)

dθ

ds

)

ds+

(

exp

(

− t′− s′

τ(k)

)

dθ

ds

)

s=t

d(t)
dt

(4.32.13)

=

∫ s=t

s=0
exp

(

− t′− s′

τ(k)

)

dθ

ds

(

−1
τ(k)

)

dt′

dt
ds+

dθ

dt

= − 1
aτ(k) J(k)+

dθ

dt
.

Notice this rate form involves a memory term which decays as well as input from new history, in
this case a change in temperature. To integrate this easily, we approximate this rate as constant
over the time step in a constitutive equation update and use the mid-step evaluation to determine
the rate. Consider a process in which the temperature changes from θn at time tn to θn+1 at tn+1 so
that ∆t = tn+1− tn. Then,

dJ(k)

dt
|tn+1/2 ≈

J(k) (tn+1)− J(k) (tn)
tn+1− tn

= − 1
atn+1/2τ

(k)

J(k)|n+1+ J(k)|n
2

+
θn+1− θn

tn+1− tn
, (4.32.14)

yielding,

J(k)|n+1 =

(

2an+1/2τ
(k)−∆t

2an+1/2τ
(k)+∆t

)

J(k)|n+
(

2an+1/2τ
(k)

2an+1/2τ
(k)+∆t

)

(θn+1− θn) . (4.32.15)

Stability of Equation 4.32.14 requires that the first term to remain positive. Hence, the change in
time for the purposes of updating these hereditary integrals is:

∆t =MIN
(

tn+1− tn,2an+1/2τ
(k)) . (4.32.16)

The collection of J(k) from k = 1,N are internal state variables associated with this particular
hereditary integral. Each Prony term for each distinct hereditary integral must be stored as an
internal state variable.

Fortunately, changing from a scalar field to a tensor field (θ to ǫi j) does not alter the above time
integration except that for each Prony term, each component of the tensor must be stored and
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updated as a state variable. For example, the hereditary integrals associated with deviatoric strain
history may be updated by letting,

Hi j =

∫ t

0
ds fs

(

t′− s′
)d
(

devǫi j

)

ds
ds =

N
∑

k=1

w(k)H
(k)
i j , (4.32.17)

and approximating the time rate of change at the midstep as,

dH
(k)
i j

dt
|tn+1/2 ≈

H
(k)
i j (tn+1)−H

(k)
i j (tn)

tn+1− tn
= − 1

atn+1/2τ
(k)

H
(k)
i j |n+1+H

(k)
i j |n

2
+

Hn+1
i j −Hn

i j

tn+1− tn
, (4.32.18)

resulting in,

H
(k)
i j |n+1 =

(

2an+1/2τ
(k)−∆t

2an+1/2τ
(k)+∆t

)

H
(k)
i j |n+

(

2an+1/2τ
(k)

2an+1/2τ
(k)+∆t

)

(

Hn+1
i j −Hn

i j

)

. (4.32.19)

Here, H
(k)
i j is a collection of six state variables that compose the kth Prony term deviatoric strain

history hereditary integral as in Equation 4.32.2. The superscripts refer to the Prony term number,
and each component of these tensors much be updated and stored.

Because of the double hereditary integral in Equation 4.32.9 associated with shear deformation
and shift factor acceleration, a rate form for this kind of term is also needed. Again, differentiate
the integral with respect to the current time, t, and use the Leibnitz rule to arrive at:

∫ u=t

u=0

∫ s=t

s=0

(

fs

(

t′− s′, t′−u′
) d
(

devǫi j

)

ds

d
(

devǫi j

)

du
dsdu

)

(4.32.20)

=

N
∑

k=1

w(k)
∫ u=t

u=0

∫ s=t

s=0

(

exp

(

− t′− s′

τ(k)

)

exp

(

− t′−u′

τ(k)

)

d
(

devǫi j

)

ds

d
(

devǫi j

)

du
dsdu

)

=

N
∑

k=0

w(k)Q(k).

dQ(k)

dt
=
−2Q(k)

aτ(k) +2
d
(

devǫi j

)

dt

∫ s=t

s=0

(

exp

(

− t′−u′

τ(k)

)

d
(

devǫi j

)

du
du

)

(4.32.21)

=
−2Q(k)

aτ(k) +2
d
(

devǫi j

)

dt
H

(k)
i j .

The variables J(k), Q(k), and all six components of H
(k)
i j are state variables that are stored and

updated through the midstep algorithm presented above.
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The actual update of the constitutive equations involves finding the shift factor at tn+1/2, which
requires Newton’s method on Equation 4.32.9. Using the techniques from Equations 4.32.12
through 4.32.20, it is straightforward to chain rule differentiate the term N in Equation 4.32.9, and
that analysis is not reproduced here for brevity.

4.32.3. Verification

Verification for the full non-linear viscoelastic features of the universal polymer model is difficult
because analytic solutions are not available. Here we verify that two key parts of the model are
working correctly, but at this time not all non-linearities in the material clock are verified. First,
we verify that the material clock (shift factor) follows the Williams-Landel-Ferry behavior near
and above the glass transition (reference temperature). Then, as the material is cooled below the
glass transition, we verify that the thermal hereditary integral in the material clock is working
properly. Finally, the specimen is reheated through the glass transition, and the shift factor is
again compared between the UPM model and a semi-analytic solution.

Second, with the non-linear portions of the clock turned off and the temperature held fixed, an
analytic solution to the uniaxial strain boundary value problem is pursued at three different strain
rates. This latter verification exercise demonstrates that the hereditary integrals are updated
correctly and that the stress response may be calculated using both the shear and bulk relaxation
responses simultaneously even when they have different relaxation functions.

4.32.3.1. Shift Factor During Traction-Free Cooling and Heating

The WLF equation (considering temperature only) provides a simple means of performing
time-temperature superposition. It relates the shift factor, a, to the current temperature through,

log10 a = − C1 (θ− θref)
C2+ (θ− θref)

. (4.32.22)

Near and above θref, the UPM model limits to the WLF model, and below the glass transition, the
hereditary integral in the clock “freezes out” further evolution of the shift factor with
temperature.

A single element boundary value problem is analyzed in Sierra/SM with the UPM model. A
simple temperature sweep is executed under traction free conditions through the glass transition
starting from above it at a constant rate of 1◦C per minute. The material is then immediately
reheated at 1◦C per minute to well above the glass transition. The material properties used for this
analysis as well as the uniaxial strain problem below are provided in Table 4-51 and reflect a
simplified version of the material properties used to represent 828DGEBA / DEA (often called
828DEA) [1].

For the verification of the time-temperature shift behavior, the model is expected to exactly match
the WLF behavior above θref, but as the material is cooled below this point, the temperature
hereditary integral in the material shift factor definition (Equation 4.32.9) slows further evolution
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θref 75◦C θsf 125◦C
Ĉ1 16.5 Ĉ2 54.5◦C
KG 4.9 GPa K∞ 3.2 GPa
GG 0.75 GPa G∞ 4.5 MPa
{ f1}

{

2.99149×10−3, 6.42966×10−2, 6.49783×10−1, 2.82929×10−1
}

{ f2}
{

1.00305×10−2, 2.11421×10−1, 7.01534×10−1, 7.70145×10−2
}

{τ}
{

1.0×10−11, 1.0×10−6, 1.0×10−1, 1.0×104
}

(s)

Table 4-51. The material and model parameters for the Universal
Polymer Model used for verification testing. Parameters are ap-
proximately based on a fit for 828DEA in [1], but they represent a
linear thermal-viscoelastic representation of the model. Both the
shear and volumetric Prony series weights come from fitting these
4 relaxation times to stretched exponential series as discussed in
that paper. The thermal relaxation and volumetric relaxation func-
tions are the same in the UPM model . All other material and model
parameters are unused and set to zero.

of the shift factor. WLF behavior is observed in the model, which confirms this elementary
behavior of the model in Figure 4-126. Then, as the model is further cooled below the glass
transition, the UPM model is compared against a custom Newton-Raphson scheme for this
boundary value problem (outside Sierra), and agreement is perfect. During reheat, one sees that
the shift factor does not retrace the path through temperature space, and a large hysteresis is
observed.

Changing the cooling rate changes the temperature at which the UPM model will depart from
WLF behavior with the behavior remaining WLF like at colder temperatures for slower cooling
rates and departing at warming temperatures for faster cooling rates.
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Figure 4-126. Time-temperature dependence of the shift factor, a,
during cooling through the glass transition and then reheating back
through it. The cooling/heating rate is 1◦C per minute. FEA (circles)
show the expected WLF (blue dashed line) behavior for θ− θref > 0.
The UPM model departs from WLF behavior below the reference
temperature as expected, and continues to agree with an external
to Sierra numerical scheme (solid line) to simulate this boundary
value problem.
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4.32.3.2. Uniaxial Strain

The second verification problem considered is uniaxial strain under isothermal conditions
wherein the non-linear clock terms are set to zero (C3 = 0 and C4 = 0). Here, the temperature is
set to the reference temperature, θ = θref, and a two stage boundary value problem is simulated. A
material point (single 8-node hexahedral element with selective deviatoric spatial integration) is
loaded at a constant logarithmic strain rate in uniaxial strain up to a prescribed logarithmic strain
(characterized by a loading time, tL). Then, the logarithmic strain rate is fixed to zero. The stress
responses in the axial and transverse directions are output over time during this load and hold
process. Three logarithmic strain rates are considered: 0.001, 1, and 1000 per second which
activate the rubbery, mixed, and glassy responses respectively. For all three cases, the specimen is
loaded to 10% axial logarithmic strain, and then the specimen is held for 10 seconds. Uniaxial
strain involves finite volume and shape change, and so this boundary value problem tests both
relaxation processes simultaneously.

Next we develop the analytic solution for linear thermal-viscoelasticity based on the UPM model.
Note that the temperature is fixed to the reference temperature such that the shift factor is 1.0
always. We prescribe the following logarithmic strain rate history on a material point (in a
Cartesian frame). Since both the spherical and deviatoric parts of the logarithmic strain history
are needed for the model, we derive them too:

for 0 ≤ t ≤ tL, Ḣi j = ǫ̇





1 0 0
0 0 0
0 0 0



 , Ḣdev
i j =

ǫ̇

3





2 0 0
0 −1 0
0 0 −1



 , (4.32.23)

otherwise Ḣi j = Ḣdev
i j =





0 0 0
0 0 0
0 0 0



 ,

and the associated strain invariants needed for the model are:

I1, I2 :























































































for 0 ≤ t ≤ tL,

I1 = δi jHi j = ǫ̇t

İ1 = ǫ̇

I2 = Hdev
i j Hdev

i j =
2
3 ǫ̇

2t2

İ2 =
4
3 ǫ̇

2t

for tL ≤ t,

I1 = ǫ̇tL

İ1 = 0

I2 =
2
3 ǫ̇

2t2L

İ2 = 0

(4.32.24)

Now, the motion involves a finite volume change, and the Jacobian of the deformation gradient
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will be needed. It is:

J =



















for 0 ≤ t ≤ tL,

exp(ǫ̇t)

for tL ≤ t,

exp(ǫ̇tL)

(4.32.25)

The derivation of the linear viscoelastic response proceeds directly with the stress integral from
Equation 4.32.2 with equivalent laboratory and material time scales since θ = θref. Using the
prescribed strain history from Equation 4.32.24 and the Jacobian of the deformation gradient
(Equation 4.32.25), the Cauchy stress response is given below. Again, there are only two non-zero
stress components: the axial stress (σ11) and the transverse stresses (σ22 = σ33), which we will
label with under score “σA" and “σT ” respectively. These are:

for 0 ≤ t ≤ tL :















































































JσA = exp(−ǫ̇t)
{

4(Gg−G∞)ǫ̇
3

∑N
k=1 w(k)τ(k)

(

1− exp
(

− t
τ(k)

))

+
(

Kg−K∞
)

ǫ̇
∑M

l=1 q(l)τ(l)
(

1− exp
(

− t
τ(l)

))}

+
(

K∞+
4
3G∞

)

ǫ̇t,

JσT = exp(−ǫ̇t)
{

−2(Gg−G∞)ǫ̇
3

∑N
k=1 w(k)τ(k)

(

1− exp
(

− t
τ(k)

))

+
(

Kg−K∞
)

ǫ̇
∑M

l=1 q(l)τ(l)
(

1− exp
(

− t
τ(l)

))}

+
(

K∞− 2
3G∞

)

ǫ̇t,

(4.32.26)

for tL ≤ t :












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



JσA = exp(−ǫ̇tL)
{

4(Gg−G∞)ǫ̇
3

∑N
k=1 w(k)τ(k)

(

exp
(

− t−tL
τ(k)

)

− exp
(

− t
τ(k)

))

+
(

Kg−K∞
)

ǫ̇
∑M

l=1 q(l)τ(l)
(

exp
(

− t−tL
τ(l)

)

− exp
(

− t
τ(l)

))}

+
(

K∞+
4
3G∞

)

ǫ̇tL,

JσT = exp(−ǫ̇tL)
{

−2(Gg−G∞)ǫ̇
3

∑N
k=1 w(k)τ(k)

(

exp
(

− t−tL
τ(k)

)

− exp
(

− t
τ(k)

))

+
(

Kg−K∞
)

ǫ̇
∑M

l=1 q(l)τ(l)
(

exp
(

− t−tL
τ(l)

)

− exp
(

− t
τ(l)

))}

+
(

K∞− 2
3G∞

)

ǫ̇tL,

(4.32.27)

Using the two Prony series in Table 4-51, and the three strain rates (0.1, 1, and 10 per second), the
analytic model and UPM are directly compared in Figure 4-127.
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Figure 4-127. Linear viscoelastic response to a two stage uniaxial
strain boundary value problem with material and loading proper-
ties specified in Table 4-51. Symbols represent FEA simulations
with the UPM model while solid lines are the analytic results. The
three logarithmic strain rates of 0.1, 1.0, and 10.0 per second are
shown, and all cease at 10% strain, and all cases are isothermal at
the reference temperature so that the shift factor is unity.
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4.32.4. User Guide

The UPM model is commonly used in one of two ways. The most general use case is portrayed in
full in the following syntax in which the user specifies both Prony series explicitly. That is, the
user specifies all Prony relaxation times (τ) and weights for both the thermal/volumetric ( fv) and
shear ( fs) relaxation functions. Note that in the UPM model, only a single set of Prony relaxation
times can be specified and acts as the basis for both relaxation spectra. In other words, a single set
of relaxation times is specified, and both functions use their own (distinct) weights.

Default parameters are not set. Any system of units can be used with the model. There are no
internal units assumptions.

BEGIN PARAMETERS FOR MODEL UNIVERSAL_POLYMER

#

# Elastic constants: These Should be Set to the Glassy Moduli

# for robustness considerations

#

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

#

## Reference Temperature and Material CLOCK Parameters

#

REFERENCE TEMPERATURE = <real> θREF # Temperature

STRESS FREE TEMPERATURE = <real> θSF # Temperature

#

WLF C1 = <real> Ĉ1

WLF C2 = <real> Ĉ2 # Temperature

CLOCK C3 = <real> C3 # Temperature

CLOCK C4 = <real> C4 # Temperature

#

## Glassy and Rubbery Moduli

# and CTE Definitions at the Reference Temperature

#

BULK GLASSY 0 = <real> KG # Units of Pressure

BULK RUBBERY 0 = <real> K∞ # Units of Pressure

SHEAR GLASSY 0 = <real> GG # Units of Pressure

SHEAR RUBBERY 0 = <real> G∞ # Units of Pressure

VOLCTE glassy 0 = <real> δG # Units of Inverse Temperature

VOLCTE rubbery 0 = <real> δ∞ # Units of Inverse Temperature

#

FILLER VOL FRACTION = <real>

#

## Relaxation Time Spectra Definitions

#

WWBETA 1 = <real> β1

WWTAU 1 = <real> τ1 # Units of time

WWBETA 2 = <real> β2

WWTAU 2 = <real> τ2 # Units of time
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#

SPECTRUM START TIME = <real> # Units of time

SPECTRUM END TIME = <real> # Units of time

LOG TIME INCREMENT = <real> # Units of time

#

## Direct Prony Spectra Inputs

#

RELAX TIME 1 = <real> # Unit of time

RELAX TIME 2 = <real>

.

RELAX TIME 30 = <real>

#

## Thermal/Volumetric Relaxation Spectrum Prony Weights

#

F1 1 = <real>

F1 2 = <real>

.

F1 30 = <real>

#

## Shear Relaxation Spectrum Prony Weights

#

F2 1 = <real>

F2 2 = <real>

.

F2 30 = <real>

END [PARAMETERS FOR MODEL UNIVERSAL_POLYMER]

Not all Prony spectra/weight parameter pairs (1-30) need to be specified. Only those specified
will be used, and the ones not specified will be set to zero. Prony weights for each relaxation
function should sum to 1.0, or the model will rescale the weights so that they do sum to one. This
rescaling will change the underlying relaxation response.

When the model is used with both relaxation functions being specified directly, then the
parameters: SPECTRUM START TIME, SPECTRUM END TIME, LOG TIME INCREMENT,
WW TAU (1,2), and WW BETA (1,2) must be specified as 0 to avoid errors during the model
property check. Note (1) is associated with the thermal/volumetric function, and (2) is associated
with the shear relaxation function.

Another common usage of the UPM model is to specify the Williams-Watts (KWW) stretched
exponential τ, β parameters for either or both relaxation functions (1 and/or 2) corresponding to
the function f = exp(−(t/τ)β). That is, a set of Prony weights, wi corresponding to a specific set of
Prony times, τi, will be found during the model property check routine. If the other relaxation
function is directly specified as above, then the Prony times from the directly specified relaxation
spectrum are used. In this case, the Prony weights for the relaxation function being fit to the
KWW function are found through a Least-Squared Error minimization routine built into the UPM
model over a discretely sampled set of times between the minimum and maximum Prony times.

When neither Prony spectrum is directly specified (both will be fit to KWW functions), then the
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Prony times (for both relaxation functions) are determined from an evenly logarithmically spaced
set of Prony times beginning with the SPECTRUM START TIME and ending with the
SPECTRUM END TIME and spaced with the (base 10) LOG TIME INCREMENT. For each
relaxation function that is fit with the UPM model to a KWW function, the WW TAU (1,2) and
WW BETA (1,2) parameters must be specified. However, if the user specifies both a KWW form
and the same Prony series directly, the model will error out during the property check.

There are many useful optional parameters for the UPM model that generally allow for:
temperature dependence of moduli, coefficients of thermal expansion, deformation dependence of
moduli, and/or alternative material clock parameter specifications. These parameters may
optionally be added to the material input block, but are defaulted to 0.0:

### OPTIONAL parameters for the universal_polymer model

CLOCK C1 = <real> C1 # CLOCK Coef. 1 instead of "WLF C1"

CLOCK C2 = <real> C2 # CLOCK Coef. 1 instead of "WLF C2"

BULK GLASSY 1 = <real> dKG/dT # Pressure per Temperature

BULK RUBBERY 1 = <real> dK∞/dT # Pressure per Temperature

SHEAR GLASSY 1 = <real> dGG/dT # Pressure per Temperature

SHEAR RUBBERY 1 = <real> dG∞/dT # Pressure per Temperature

VOLCTE GLASSY 1 = <real> dδG/dT # Inverse Temperature Squared

VOLCTE RUBBERY 1 = <real> dδ∞/dT # Inverse Temp. Squared

Finally, we note that the UPM model may be reduced to a finite deformation, linear
thermoviscoelastic model by choosing C3 = 0 and C4 = 0. Under these conditions the material
clock is only temperature (history) dependent but involves no deformation dependence.
Moreover, if one wants to fix the laboratory and material time scales to be the same, then one
should set WLF C1 = 0.

Output variables available for this model are listed in Table 4-52. The user should always output
the shift factor aend or log10a as this variable is critical for interpreting the material behavior.
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Table 4-52. State Variables for Universal Polymer Model

Name Description

aend The shift factor relating increments of material to laboratory time, adt∗ =
dtlab

loga log10 of the shift factor, log10a

epsxx xx component of the integrated unrotated rate of deformation, ǫxx

epsyy yy component of the integrated unrotated rate of deformation, ǫyy

epszz zz component of the integrated unrotated rate of deformation, ǫzz

epsxy xy component of the integrated unrotated rate of deformation, ǫxy

epsyz yz component of the integrated unrotated rate of deformation, ǫyz

epszx zx component of the integrated unrotated rate of deformation, ǫzx

effi2 second (non-Cayley Hamilton) invariant of ǫ providing shear deformation,
I2

if1p1-30 volumetric hereditary integrals 1-30
ikat1-30 thermal hereditary integrals 1-30
igxx1-30 xx component shear hereditary integrals 1-30
igyy1-30 yy component shear hereditary integrals 1-30
igzz1-30 zz component shear hereditary integrals 1-30
igxy1-30 xy component shear hereditary integrals 1-30
igyz1-30 yz component shear hereditary integrals 1-30
igzx1-30 zx component shear hereditary integrals 1-30
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4.33. WIRE MESH MODEL

4.33.1. Theory

The wire mesh model was developed at Sandia National Laboratories for use with layered
sequences of metallic wire meshes and cloth fabric. Model development was based on an
extensive series of experiments performed on these materials (see [1]) and used an existing model
for rigid polyurethane foams as a starting point [2].

To be able to analyze the response of this material, the Cauchy stress tensor is first decomposed
into its principal components, σi. Each principal stress is evaluated independently and two
behaviors are considered depending on whether or not the material is in tension or compression.
Under a tensile load, the material is taken to be perfectly plastic above a yield stress, τ. For
compressive loads, it is assumed that the materials hardens functionally with the volumetric
engineering strain, εV. In this formulation, an arbitrary form of this hardening function, σ̄ (εV) is
assumed although in the original work [1],

σ̄ (εV) = ae−bεV , (4.33.1)

with a and b as material constants, was used.

With these assumptions, the yield function of the ith principal stress, f i, may be written as,

f i =

{

σi−τ, σi ≥ 0
−σi− σ̄ (εV) σi < 0

. (4.33.2)

where τ is the isotropic tensile strength of the material.

Similar to the rigid polyurethane foam model [1], the flow rule is defined as:

d
p
i j = γ̇

1P1
i jklσkl+ γ̇

2P2
i jklσkl+ γ̇

3P3
i jklσkl (4.33.3)

with γ̇i being the magnitude of the ith plastic strain increment and Pr
i jkl is the fourth-order

principal projection operator defined as,

Pr
i jkl = nr

i n
r
jn

r
knr

l (4.33.4)

in which nr
i is the corresponding direction vector of principal stress, σr. With this definition,

σr = σi jP
r
i jklσkl. (4.33.5)
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4.33.2. Implementation

The wire mesh model is implemented in a hypoelastic fashion similar to the previous
elastic-plastic models. First, a trial (unrotated) stress is calculated assuming a purely elastic
deformation increment,

T tr
i j = T n

i j+∆t
(

λδi jdkk +2µdi j

)

. (4.33.6)

Corresponding principal stresses and their complementary directions are then found using the
robust, analytical algorithm put forth in [3]. The principal stresses are denoted σr and their
eigenvectors are symbolically represented by êr

i . Here, r = 1, 2, or 3 refer to the respective
eigenvalue/vector pair and are not summed unless explicitly indicated. Before evaluating the
respective yield functions, the current volumetric engineering strain, εn+1

V , must be determined.
To this end, the current strain tensor, εi j, is determined via,

εn+1
i j = ε

n
i j+∆tdi j, (4.33.7)

and the volumetric engineering strain is,

εn+1
V = exp

(

εn+1
kk

)

−1. (4.33.8)

The yield function for each principal stress, f γ, may then be computed as,

f γ =

{

σγ−τ, σγ ≥ 0
−σγ− σ̄

(

εn+1
V

)

, σγ < 0
. (4.33.9)

Principal stresses at the current load increment, σγn+1, are then determined via,

σ
γ
n+1 =

{

σγ f γ < 0
τ f γ ≥ 0

, (4.33.10)

for σγ > 0 and,

σ
γ
n+1 =

{

σγ f γ < 0
−σ̄
(

εn+1
V

)

f γ ≥ 0
, (4.33.11)

for compressive principal stresses. The final Cartesian stress tensor may be determined via,

T n+1
i j =

3
∑

γ=1

σ
γ
n+1ê

γ
i ê
γ
j . (4.33.12)
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4.33.3. Verification

To investigate the performance of the wire mesh model and verify its capabilities, a series
analyses are performed considering both the tensile and compressive behavior. The material
properties and model parameters come from [1] and are listed in Table 4-53 with one difference.
Specifically, ν , 0 to better test the various code interactions. For the numerical simulations the
functional hardening form given in (4.33.1) (with a and b given in Table 4-53) is discretized and
entered as a piecewise linear function.

E 100,000 psi ν 0.3
a 120 psi b 8.68
τ 12,000 psi

Table 4-53. The material properties and model parameters of the
wire mesh model used for verification testing

4.33.3.1. Uniaxial Compression

First, the case of uniaxial compression is treated to investigate the hardening behavior. As a
uniaxial compressive stress state is being explored, the principal stresses are simply σ1 = σ2 = 0
and σ3 = σ11 enabling the development of analytical solutions. To this end, u1 = λ1 and the
remaining surfaces are left traction free. The corresponding strain state is then,

ε11 = ln (1+λ1) , (4.33.13)

ε22 = ε33 = −ν ln (1+λ1) ,

producing a engineering volume strain of,

εV = (1+λ1)(1−2ν)−1. (4.33.14)

Noting the elastic uniaxial stress, σ̂11, is simply,

σ̂11 =
[

λ (1−2ν)+2µ
]

ln (1+λ1) , (4.33.15)

the final stress state is simply σ22 = σ33 = 0 and,

σ11 =

{

σ̂11 σ̂11 ≤ −ae−bεV

−ae−bεV σ̂11 > −ae−bεV
. (4.33.16)

The analytical and numerical solution (from adagio) of this problem are presented in Figure 4-128
with the stress and strains given in Figures 4-128a and 4-128b, respectively. Excellent agreement
is observed verifying the compressive hardening performance.
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Figure 4-128. Analytical and numerical results of the normal stress
and strain components through a compressive uniaxial stress load-
ing path as a function of the applied displacement, λ1.

4.33.3.2. Uniaxial Tension

To consider the tensile behavior, the response of the model under a uniaxial tensile strain loading
is interrogated. In this case the applied displacement is ui = λ1δi1 with the remaining
displacements fixed such that ε22 = ε33 = 0 and the axial strain is again ε11 = ln (1+λ1). Given
that the model behavior is perfectly plastic after yield, the axial and off-axis responses both
reduce to bilinear forms. As such, the applied deformation necessary to induce the perfectly
plastic response in the axial direction, λcrit

1 , is simply

λcrit
1 = eτ/(λ+2µ)−1, (4.33.17)

leading to an expression for the axial stress as,

σ11 =

{

(λ+2µ) ln (1+λ1) λ1 < λ
crit
1

τ λ1 ≥ λcrit
1

. (4.33.18)

For the off-axis behavior, the critical displacement, λoff-crit
1 , is

λoff-crit
1 = eτ/λ−1, (4.33.19)

producing stresses of the form,

σ22 = σ33 =

{

λ ln (1+λ1) λ1 < λ
off-crit
1

τ λ1 ≥ λoff-crit
1

. (4.33.20)
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The stress and strain responses (both numerical and analytical) are presented below in
Figures 4-129a and 4-129b, respectively, and excellent agreement is observed verifying this
behavior in this deformation mode.
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Figure 4-129. Analytical and numerical results of the normal stress
and strain components through a tension uniaxial strain loading
path as a function of the applied displacement, λ1.

4.33.3.3. Hydrostatic Compression

To further explore the compressive response, the models behavior under a hydrostatic
(compressive) loading is investigated. In this instance, the corresponding stress state produces a
single, repeated, principal stress associated with the pressure, p = − (1/3)σkk (here defined
positively in compression). Details of this loading may be found in Section A.4, although in this
instance it is important to point out that,

εV = (1+λ1)3−1, (4.33.21)

and the stress state reduces to,

p = −3K ln (1+λ1) (4.33.22)

in the elastic limit and

p = ae−bεV , (4.33.23)

during plastic loading. The numerical and analytical results are presented in Figure 4-130 and
excellent agreement in noted.
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Figure 4-130. Analytical and numerical pressure-volume strain re-
sponse of the wire mesh model through a hydrostatic compression
loading as a function of the applied displacement, λ1.
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4.33.4. User Guide

BEGIN PARAMETERS FOR MODEL WIRE_MESH

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

# Yield surface parameters

#

YIELD FUNCTION = <string> σ̄ (εV)
TENSION = <real> τ

END [PARAMETERS FOR MODEL WIRE_MESH]

Output variables available for this model are listed in Table 4-54.

More information on the model can be found in the report by Neilsen, et. al. [1].

Table 4-54. State Variables for WIRE MESH Model

Name Description

EVOL engineering volumetric strain
YIELD current yield strength in compression
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APPENDIX A. COMMON BOUNDARY
VALUE PROBLEMS

Throughout this effort, a wide variety of boundary value problems have been used to verify the
various model responses investigated. Although some of these are specially tailored to a model,
many of the loading paths and problems are common. As such, these repeated tests are presented
and discussed here in this appendix. Emphasis is placed on the boundary conditions and
kinematic descriptions that do not depend on the constitutive behavior and are therefore similar
for all models. Details on how to produce these paths in a finite element problem are also
discussed. For details on the various problems considered, the reader is referred to various texts
( [1, 2]) on the subject.

A.1. UNIAXIAL STRESS - DISPLACEMENT CONTROLLED

In all likelihood, the most common test (experimentally or numerically) is that of uniaxial stress.
Such a state may be produced via either stress or displacement control. Here, the latter case is
discussed as displacement control can be essential when considering model responses that soften
through damage or other mechanisms. To produce the uniaxial stress of interest, a displacement
of the form u1 = λ (t) is applied along the x1 edge. In three dimensional finite element cases, it is
also essential to leave the x2 and x3 surfaces with a traction free condition. With elastically
isotropic materials, this produces a strain field of the form,

εi j =
[

δi1δ j1− ν
(

δi2δ j2+δi3δi3
)]

ln (1+λ) , (A.1.1)

which produces σ11 as the only non-zero stress.
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A.2. SIMPLE SHEAR

An alternative, and often simpler to implement, shear problem is that of simple shear. With such a
deformation field, only one shear stress component is non-zero (like the pure shear case). The
difference arises in that given a simple shear loading the diagonal stresses are not necessarily
zero. This state may be produced by a motion, χ (Xi, t) of the form χ (Xi, t) = Xi+γ (t) X2δi1. The
resultant deformation gradient, Fi j, takes the form,

Fi j = δi j+γ (t)δi1δ j2 (A.2.1)

and it is noted that this deformation is volume preserving (J = det Fi j = 1). Numerically, such a
deformation field results from applying a displacement in the x direction along the y surface.
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A.3. PURE SHEAR

To consider shear-based responses and behaviors of a model, uniaxial loadings are often
insufficient. One problem, however, that does investigate shear deformations is that of a pure
shear problem. In such problems, only a single shear strain and stress component are non-zero.
Such a material state results from a deformation gradient of the form,

Fi j =
1
2

(

λ+λ−1)(δi1δ j1+δi2δ j2
)

+
1
2

(

λ−λ−1)(δi1δ j2+δi2δ j1
)

+δi3δ j3, (A.3.1)

where the shear loading is relative to the x1− x2 axis. The logarithmic strain tensor is then simply
εi j = lnλ

(

δi1δ j2+δi2δ j1
)

. With such a strain tensor, it is trivial to note that σ12 is the only
non-zero stress.
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A.4. HYDROSTATIC COMPRESSION

In many cases, it is preferable to interrogate the pressure-dependent response of various models
independently of any deviatoric deformations. To consider such purely volumetric loadings,
hydrostatic (almost always compression) problems are invoked. Such loadings are often also
referred to as uniform dilation as the volumetric change is the same in all three directions.
Specifically, in these cases a purely volumetric response is investigated by applying a deformation
of the form ui = λ (t). In a finite element problem, such a deformation field is reproduced by
applying the displacement components onto the corresponding edges. With such applied
displacement fields, the resulting logarithmic strain tensor is simply,

εi j = ln (1+λ (t))δi j, (A.4.1)

and the corresponding (elastic) stress field is simply σi j = −pδi j where,

p = −3K ln (1+λ) . (A.4.2)

Note, in the preceding relation p is defined as positive in compression.
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A.5. CONSTANT EQUIVALENT PLASTIC STRAIN RATE

Typically, for a given boundary value problem it is desirable to know either the stress or
deformation (strain) state and solve for the complementary response functions. In the case of
rate-dependent hardening, or often rate-independent, it is preferable to prescribe a constant
equivalent plastic strain rate, ˙̄εp. Knowing, and controlling, this variable is often essential to
finding and solving analytical solutions to verify hardening models.

As the equivalent plastic strain, ε̄p, is the internal (hidden) state variable corresponding to
isotropic hardening, it is counterintuitive to think of prescribing it’s value. Nonetheless, for many
plasticity models such a case is not only possible but relatively simple. Details of this approach
may be found in [3], but are repeated here for convenience and completeness. In the following,
two cases are treated – uniaxial stress and pure shear. For either problem, it is assumed that the
stress state is initially at yield (φ

(

σi j (t = 0, ε̄p = 0)
)

= σ0
y) and a constant equivalent plastic strain

rate is prescribed such that,

ε̄p (t) = ˙̄εpt. (A.5.1)

Furthermore, it is recalled that the yield surface, f , is written as,

f
(

σi j, ε̄
p, ˙̄εp

)

= φ
(

σi j

)

− σ̄
(

ε̄p, ˙̄εp
)

, (A.5.2)

where,

σ̄
(

ε̄p, ˙̄εp
)

= σ̃y

(

ε̄p
)

σ̂y

(

˙̄εp
)

. (A.5.3)

Note, throughout this section function forms for σ̃y and σ̂y are not given. For the purposes of the
developed problem, the specific forms are unnecessarily as long as σ̃y depends only on ε̄p and σ̂y

on the corresponding rate.

A.5.1. Uniaxial Stress

During uniaxial stress, the state of stress reduces to,

σi j = σδiηδ jη (no sum on η) (A.5.4)

where η is the direction of loading (taken to align with one of the material principal axes) and

σ = Γηησ̄ (t) , (A.5.5)

with Γηη being a constant associated with and dependent on the model parameters of the plasticity
model. Specific forms for the various yield surfaces are given later in this section. Given this
stress state, the axial elastic strain is simply,
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εel
ηη =
Γηησ̄ (t)

E
. (A.5.6)

To determine the plastic state of the material, the equivalency of plastic work (σi jε̇
p
i j = σ̄ ˙̄εp) is

invoked enabling the axial plastic strain to be given as,

ε̇p
ηη =

σ̄

σ
˙̄εp =

1
Γηη

˙̄εp. (A.5.7)

Integrating,

εp
ηη (t) =

1
Γηη

ε̄p. (A.5.8)

The total strain is found simply as the sum of elastic and plastic components,

εηη (t) = εel
ηη+ε

p
ηη =
Γηησ̄ (t)

E
+

1
Γηη

˙̄εt. (A.5.9)

For this boundary value problem, only the axial displacement need be prescribed as zero traction
conditions are required on the remaining surfaces to achieve the uniaxial stress state. As the
equivalent plastic strain rate is constant, the flow stress, σ̄ (t), is known and the total strain of
(A.5.9) is only a function of time. Therefore, the desired displacement boundary condition may
be prescribed as a function of time alone and is simply,

uη (t) = exp
(

εηη (t)
)

−1. (A.5.10)

J2 Plasticity

In the case of an isotropic J2 effective stress definition, for a uniaxial state of stress,

Γηη = 1 (no sum on η) . (A.5.11)

Hosford Plasticity

As the Hosford effective stress definition is isotropic, for a uniaxial state of stress the coefficients
Γηη are simply,

Γηη = 1 (no sum on η) . (A.5.12)
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Hill Plasticity

For a Hill effective stress definition, by inspection of (A.5.5) it is clear that,

Γηη = Rηη (no sum on η) . (A.5.13)

Barlat Plasticity

With a Barlat effective stress definition, the anisotropy coefficients are,

Γηη =
1
ωη

(no sum on η) , (A.5.14)

where

ω1 =
1
3

{

1
4

[

|c′12+ c′13− c′′12− c′′13|a+ |c′12+ c′13+2c′′21− c′′23|a+ |c′12+ c′13+2c′′31− c′′32|a

+ |c′23−2c′21− c′′12− c′′13|a+ |c′23−2c′21+2c′′21− c′′23|a+ |c′23−2c′21+2c′′31− c′′32|a (A.5.15)

+ |c′32−2c′31− c′′12− c′′13|a+ |c′32−2c′31+2c′′21− c′′23|a+ |c′32−2c′31+2c′′31− c′′32|a
]

}1/a

,

ω2 =
1
3

{

1
4

[

|c′13−2c′12− c′′13+2c′′12|a+ |c′13−2c′12− c′′21− c′′23|a+ |c′13−2c′12− c′′31+2c′′32|a

+ |c′21+ c′23− c′′13+2c′′12|a+ |c′21+ c′23− c′′21− c′′23|a+ |c′21+ c′23− c′′31+2c′′32|a (A.5.16)

+ |c′31−2c′32− c′′13+2c′′12|a+ |c′31−2c′32− c′′21− c′′23|a+ |c′31−2c′32− c′′31+2c′′32|a
]

}1/a

,

ω3 =
1
3

{

1
4

[

|c′12−2c′13− c′′12+2c′′13|a+ |c′12−2c′13− c′′21+2c′′23|a+ |c′12−2c′13− c′′31− c′′32|a

+ |c′21−2c′23− c′′12+2c′′13|a+ |c′21−2c′23− c′′21+2c′′23|a+ |c′21−2c′23− c′′31− c′′32|a (A.5.17)

+ |c′31+ c′32− c′′12+2c′′13|a+ |c′31+ c′32− c′′21+2c′′23|a+ |c′31+ c′32− c′′31− c′′32|a
]

}1/a

.

A.5.2. Pure Shear

To produce a pure shear stress state, the pure shear conditions discussed in Section A.3 are
utilized. In this case, for pure shear in the êη−−êzeta plane, a deformation gradient of the form,
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Fi j =
1
2

(

λ+λ−1)(δiηδ jη+δiζδ jζ

)

+
1
2

(

λ−λ−1)(δiηδ jζ +δiζδ jη

)

+δiθδ jθ, (no sum on η, ζ, θ) ,

(A.5.18)

with êθ being the cross-product of êη and êζ . With such a deformation,

εi j = lnλ
(

δiηδ jζ +δiζδ jη

)

, (A.5.19)

meaning the appropriate displacement boundary conditions may be applied if the total shear strain
is known.

For the pure shear strain case, the stress tensor is simply σi j = τ
(

δiηδ jζ +δiζδ jη

)

and may be
equated to the shear stress as,

τ = Γηζσ̄ (t) (η , ζ) . (A.5.20)

The elastic strain may then simply be written as

εel
ηζ =

τ

2µ
=
Γηζ

2µ
σ̄ (t) . (A.5.21)

To find the plastic strain rate, the plastic work equivalency is recalled such that,

σi jε̇
p
i j = 2σηζ ε̇

p
ηζ = σ̄ ˙̄εp, (η , ζ) (A.5.22)

which produces an expression for the plastic strain rate as,

ε̇
p
ηζ =

1
2Γηζ

˙̄εp, (η , ζ) . (A.5.23)

Integrating (A.5.23) yields,

ε
p
ηζ (t) =

1
2Γηζ

ε̄p, (η , ζ) (A.5.24)

leading to a total strain of the form,

εηζ (t) =
Γηζ

2µ
σ̄ (t)+

1
2Γηζ

˙̄εpt, (η , ζ) (A.5.25)

and

λ (t) = exp
(

εηζ (t)
)

, (η , ζ) . (A.5.26)
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J2 Plasticity

In the case of a isotropic J2 effective stress, the pure shear coefficients are,

Γηζ =
1√
3

(η , ζ) . (A.5.27)

Hosford Plasticity

Although isotropic, the Hosford effective stress definition is non-quadratic leading to a stress
multiplier of,

Γηζ =
1

[

1+2a−1
]1/a (η , ζ) . (A.5.28)

Hill Plasticity

Like the uniaxial case, for the pure shear response a direct connection may be made between the
R stress ratios and Γηζ such that,

Γηζ =
Rηζ√

3
(η , ζ) . (A.5.29)

Barlat Plasticity

The Barlat effective stress definition produces stress relationships of the form,

Γηζ =
1
ξηζ

(η , ζ) , (A.5.30)

where,

ξ12 =

{

1
2

[

|c′44− c′′44|a+ |c′44+ c′′44|a+ |c′44|a+ |c′′44|a
]

}1/a

, (A.5.31)

ξ23 =

{

1
2

[

|c′55− c′′55|a+ |c′55+ c′′55|a+ |c′55|a+ |c′′55|a
]

}1/a

, (A.5.32)

ξ31 =

{

1
2

[

|c′66− c′′66|a+ |c′66+ c′′66|a+ |c′66|a+ |c′′66|a
]

}1/a

. (A.5.33)
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