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ABSTRACT
In this report we describe an enhanced methodology for performing stochastic Bayesian
inversions of atmospheric trace gas inversions that allows the time variation of model parameters
to be inferred. We use measurements of methane atmospheric mixing ratio made in Livermore,
California along with atmospheric transport modeling and published prior estmates of emissions
to estimate the regional emissions of methane and the temporal variations in inferred bias
parameters. We compute Bayesian model evidence and continuous rank probability score to
optimize the model with respect to temporal resolution. Using two different emissions
inventories, we perform inversions for a series of models with increasing temporal resolution in
the model bias representation. We show that temporal variation in the model bias can improve the
model fit and can also increase the likelihood that the parameterization is appropriate, as
measured by the Baysian model evidence. .
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1. INTRODUCTION

The concentration of methane at the Earth's surface is believed to have increased by 150% since
the pre-industrial years, and the contribution of methane to global radiative forcing is second only
to carbon dioxide [18] among the greenhouse gases. A number of studies have found significantly
greater emissions estimates in North America inferred from atmospheric measurements by
comparison to those reported in inventories of methane emissions [17, 9, 11]. Although the
aforementioned studies have provided valuable information on the deficiencies of methane
emission estimates, greater detail on the spatial and sectoral distribution of emissions is needed to
inform new policies and assess their effectiveness. In order to reduce the uncertainty in the
emissions estimates from top-down studies it will be important to understand the relative
contributions of different sources of uncertainty. The application of hierarchical Bayesian
methods to atmospheric trace gas inversions has allowed the uncertainty in parameters used in
inversions to be inferred [4, 11]. In previous studies the model discrepancies have been
considered constant over months or seasons. The study presented here provides further
development in the methodology for stochastic Bayesian inversion for trace gases to allow for
much higher temporal fluctuations in the model discrepancies through the use of a random-field
expansion in the multiplicative model bias. We performed our analysis over four months in 2015
for the San Francisco Bay region of California using methane measurements from a single
measurement site and demonstrate a reduction in the uncertainty in monthly emissions estimates
for the region for some months.
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3. PROBLEM SETUP

The time dependent CH4 concentration y(t , xr) at time t and receptor location xs (usually the
location of the instrument) is modeled as

y(Xr, t) b-kf
—At 
f F(X, 2;x1.,t)E(x, 2)C12dx (3.1)

Here b is the background contribution to the measurements at the receptor location, F (X, 2; Xs, t) is
the footprint associated with the current time t and location xr going back to time 2 < t and
location x and E(x, 2) is the CH4 emission flux at (x,t). The contributions from emission fluxes
are agrregated through a spatio-temporal convolution with the footprints, in Eq. (3.1). The time
interval At and surface area A are chosen to reflect all relevant contributions to the y(xr, t), i.e.
emissions outside A or before t — At have negligible impact to the CH4 concentration at (x,,t).
We found that At = 3 ... 4 days is sufficient to ensure converged results. We expanded this range
to At = 7days to further guarantee that the time range for the aggregate emissions has negligible
impact of the results presented here. The settings for the spatial domain A are detailed later in this
section.

In the remainder of this section we present the modeling assumptions taken to approximate the
terms in the right-hand side of Eq. (3.1). We first outline the emission model, followed by a
description of the atmospheric transport model lending the footprints, and the algorithm for
estimating the background contribution. The probabilistic setting adopted to estimate the
parameters of this model is introduced in the next section.

For the current analysis we employ Lagrangian footprints for a duration of At = 7 days prior to
each measurement point. The emission field E(x, 2) can be, in general both space and time
dependent. In practice, most emission databases have no time dependency, or at best vary from
month to month, e.g. the EDGAR database [10].

3.1. EXPERIMENTAL METHODS

The measurements used in this work were taken in Livermore, CA, approximately 45 miles west
of the San Francisco peninsula. Air samples were drawn from 27m above ground level from a
tower located adjacent to the mobile laboratory housing the analyzer. Prior to being measured
using a Picarro CO2/CH4/H20 analyzer, the sample air was passed through a gas dryer to reduce
the sensitivity of the dry methane mixing ratio to water vapor corrections. Calibrations of the gas
analyzer were performed at regular, 23-hour, intervals using three reference cylinders of synthetic
air that was cross-referenced to WMO/NOAA certified whole-air standards.
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3.2. ATMOSPHERIC TRANSPORT MODEL

The inversion methodology employed here uses an adjoint model for the atmospheric transport
that is derived from a forward atmospheric simulation. The forward model used here was the
Weather Research and Forecasting (WRF) model [21], and the adjoint model was the Stochastic
Time Inverted Inverse Lagrangian Transport (STILT) model [14]. We ran version 3.7 of the WRF
model with modifications to the output fields needed for STILT [19] using initial and boundary
conditions derived from the North American Regional Reanalysis. The simulation domain over
portions of the western United States and Pacific Ocean included an outer domain covering
(domain 1. -156°<lon.<-86°, 18° < lat. < 59°), and three inner nested domains (domain 2: -140°
< lon < -111°, 31.5° < lat. < 47°; domain 3. -129.5°<lon. <-117°, 34.5°<lat<43°; domain 4.
-125.5°<lon.<-121°, 37.25° < lat.<40.0°). The grid cell dimensions of the outer domain were 36
km with inner domains nested at a ratio of 3:1 resulting in resolutions of 12, 4, and 1.333 km,
respectively. The vertical structure of the WRF grid had 50 levels for all domains, with the model
top at 100 mbar. The radiation physics options used were RRTM for longwave radiation and
Goddard scheme for shortwave. We used the MYNN 2.5 level TKE scheme for the boundary
layer physics, and for surface physics we used the NOAH Land Surface Model. The WRF runs
were initiated at 00 hrs UTC for each day and run for a 30 hour simulation time with the first six
hours used only for model spin-up and not in subsequent analyses. The outer domain WRF fields
were nudged to the NARR analysis fields. For the purpose of evaluation we also executed a subset
of the runs both with and without outer-domain boundary layer nudging.

Measurement footprints were calculated using STILT for every hour of the day with a simulated
release of 500 particles that were traced over a 7-day period preceding the measurement analysis
time. The footprint grid was output at a spatial resolution of 0.1° in longitude and latitude.

3.3. PRE-PROCESSING FOOTPRINTS AND SURFACE
EMISSIONS

In this study we focus on identifying biases corresponding to land sources while employing
background measurements that are well characterized. Specifically, let 5° be the set of hourly
time stamps corresponding to the aggregated experimental observations. Then, from the ensemble
of footprints simulated to match the measurements' time stamps 5° we select the ones that
originate in a large part over the ocean surface, using the test below

fti —At fAocean

F T;xr, ti)dtdx/
fti fAtotal

F (x,T;xr,ti)d-cdx > 1 — a (3.2)

Here we set a = 0.2 and if the test above is satisfied, we then add the experimental observations
corresponding to ti to the set of measurements employed to derive biased in methane emissions.

The following steps are taken to create the emission field E for our study. For the land region
outside the state of California, we use the EDGAR v4.3.2 anthropogenic emissions corresponding
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to year 2012 (the last year available in this database). No interpolation is needed since the
computational grid used for our study, 0.1° x 0.1°, is aligned with EDGAR grid. For the grid cells
for which the centers fall inside the California boundaries we augment the EDGAR
anthropogenic emissions with the contributions from natural wetland emissions extracted from
the CALGEM Project [2]. Since all relevant footprints exhibit sensitivities dominantly from
regions inside California, as it will be demostrated below, it is therefore sufficient to account for
natural emissions for this region only. Figure 3-1 shows these emissions in a logarithmic scale, to
allow lower intensity emissions but distributed over larger regions to be displayed. As expected,
higher anthropogenic emissions are observed in urban areas or in regions where agriculture is
dominant, e.g. the Central Valley.
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Figure 3-1. EDGAR v4.3.2 anthropogenic emissions (left frame)
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0.01% to the total model prediction at the Livermore site.
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4. MODELING BIASES IN EMISSION
DATABASES

For the purpose of this work we presume the discrepancy between emission databases and "truth"
as far as the spatial distribution is concerned are small. We concentrate our efforts on examining
the discrepancy between emission levels and database values given the spatial distribution
presented above and assuming it is proportional to the database levels, i.e. a time-dependent
multiplicative factor 2 (2)

E (x, 2) = (2)Edb (x) (4.1)

where Edb (x) is the database emission (the combination of anthropogenic and biogenic
components in Fig. 3-1) at coordinate x, and A, (2) is the multiplicative bias (or discrepancy) as
outlined above. In this expression, we removed the dependency on time for Edb since emissions
are available on a much coarser time scale, yearly or monthly averages, compared to the
measurements' time scale. With this model we expand the integrals in the rhs of Eq. (3.1).

i 
ft 

F(x,T;xr,t)E(x,z)drdx = 
0 ft
E fx(T)F(x,T;xr,t)Edb(x)ctrdx (4.2)t„ fA i=—(Art_l) 4_1 ,c

Here to = t is the current time, ti = t — iSt where St = 1 day is the time resolution of the footprint
data, and Nt = 7: At = Nt St. The footprint is usually averaged over each time interval
Ft (x, T;xr,t) = F(')(x,t) for 2 e (4-1,4). The dependency on xr will be henceforth dropped from
the notation since we consider one receptor in this study. With these assumptions the spatial and
temporal integrals above can be computed separately

ti

iti-lfx 

ti
2.(r)Ft(x,2)Edb(x)d2dx = f X (r)dr f F(i)(x,t)E(i) (x)dx

ti_1 .x db (4.3)

We now focus our discussion on the modeling of A, (t). Current studies employ estimate these
biases as constants over select time ranges, e.g. over calendar months or seasons [4, 11]. Here, we
expand this model to include a stochastic component for X (t).

4.1. MODELING BIAS AS STOCHASTIC RANDOM
FIELD

Generally, a random field/stochastic process is a function that depends on both random and
deterministic inputs. Thus, in the present context, the emission bias is modeled as random
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function of time. More formally, in a one-dimensional setting consider a bounded domain D C R
and the sample space 52, then a stochastic process 2„, defined as the mapping X : D x R, is
essentially an infinite collection of random variables 2, (t), with t E D . Further, we assume that
2, (t) have finite variance.

The stochastic process X is centered if the expectation E [A, (t)] = 0 for all t E D . If 2, is not
centered, then one can always subtract the expectation 4(0 = (t) — E [A, (t)] and follow the
derivations below for the resulting centered stochastic process. The autocorrelation function C of
the stochastic process 2, is defined as

C(t , s) = E[X(t)X(s)], Vt,s E D.

It can be shown [13] that C admits the spectral decomposition

00

C (t , s) = E Pkgk(t)gk(s) (4.4)
k=1

with eigenvalues Pk and eigenfunctions gk.

The Karhunen-Loeve expansion [5, 16] (KLE) for the stochastic process 2, (t , co) is given by

x(t,(0) = Ao(t) + e ck(w)Agk(t) (4.5)
k=1

where the random variables ck(co) have zero mean, unit variance, and are mutually uncorrelated,
E[ckc j] = ökj . Further, if A. is a Gaussian process, then ck are normal random variables and hence
independent. In general, when ck are non-standard, and their distributions can be inferred from
data when available. The KLE representation is optimal, corresponding to minimal least-squares
error among all possible choices for stochastic fields representation.

In this paper we consider KLE models for temporal Gaussian processes, constructed using a
square exponential correlation functions given by C (t , s) = exp(—(t — s)2 1 c2) , where lc is the
temporal correlation length. One-dimensional stochastic process realizations for D = [0,37] days
are presented in Fig. 4-1 for correlation lengths of half a day and one day, respectively.
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0 100 200 300 400 500 600 700 8 0 0
time [h]

100 200 300 400 500 600 700 800
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Figure 4-1. Sample scaled KLE modes corresponding to /c = 12h
(left frame) and I. = 24h (right frame).

To simplify notation, we absorb the eigenvalue Pk in into the temporal mode,
Pkgk(t) gk(t).
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Given the KLE for the bias A, (t), the time integral is computed as

ft, 1 
X 

f
(r)ctr A.0= (+Eck— gk(r)dr) St = (A0 +EckGk(ti, St)) St (4.6)

k 4-1

where Gk(ti, St) = (Ltii 1 gk(r)dr)/ St is the average of mode gk over (4_1,4). The spatial integral
above is discretized as

IFt,i(x)Edb(x)dx = EFt,i(xj)Edgxj)öxf (4.7)

where the spatial sum is over all surface cells xj in the computational domain around the point of
interest, and 3x1 is the area of cell j. Combining Eqs. (4.6) and (4.7) into Eq. 4.2 we get

f fxFt(x,2)E(x,2)drclx = +EckGk(ti, St) EFt,i(xj)Edb(xj) (4.8)_At i=-(Nt -1) k j

Using the expression in Eq. (3.1), the time dependent concentration generated by the emission
model is written as

o ( NKLE

y(t) = b(t) + E + ckGk(th3t) ,i(xj)Edb(xj)
i=-(Nt-1) k=1

(4.9)

Here, we limited the theoreticaly infinite sum over the KLE modes to, in practice, a finite sum.
The number of terms in the sum, NKLE, will be varied to assess the its impact on the quality of the
KLE approximation.

4.2. HIERARCHICAL BAYESIAN INFERENCE OF BIAS
PARAMETERS

We model the discrepancy between the experimental observations and the model presented above
as

g = y + £ (4. 1 0)

Here g is the vector of hourly concentrations measured over a time span, g = {di , d2, • • •, d,,, },
with m the number of measurements. The error term is the sum of contributions due to
experimental errors and any discrepancy arising from model inadequacy.

We adopt a hierarchical Bayesian approach to infer the temporal variations in the multiplicative
bias in the emission database

P(41C1, • • • ,CL, Gal am, lc l b 7 1), /12,1C:72,1g) P(gle) P(eIO) P(0)

e 0

where 0 and 0 are vectors of parameters and hyperparameters, defined as following. The
components of the parameter vector 0 are

15
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• {2,01c1,• • • , CL} - the mean and coefficients of the Karhunen-Loéve expansion model of the
bias A (t) in Eq. (??).

• aa and - additive and multiplicative components defining the covariance model for the
model inadequacy, defined below

• lc - correlation length for the covariance of the Karhunen-Loéve expansion in Eq. (??) and
the covariance model for the discrepancy between the model and the data.

• b - background for CH4 concentrations, assumed constant over the time range of the
inference

while the components of the hyperparameter vector are given by

• v - the variance of the marginal Gaussian priors for the KLE coefficients

• {µA, , } - mean and standard deviation for the Gaussian prior for the bias mean Ao

We model the discrepancy E between the experimental observations and the model as a
multivariate Gaussian with a covariance matrix that accounts for both experimental errors and
emission model inadequacies

P(910) r- ,A((Y,E) (4.12)

The model inadequacy component of the covariance matrix elements is modeled using an
exponential decay [11]

E. • = E(m) Si .G2 ., E(m) = (PG • expt,j J e,1 1,j J (4.13)

with standard deviation at time ti modeled as 6i = a„, x yi. The correlation length for the
decay is lc, is the Kronecker delta and cre,i is the experimental error at time ti.

We consider the conditional independence between model components and a hierarchical
approach to write the prior p(0 ,

19(1 9 = ca, cm, ,v) = p(A0, x p(cl,...,c1,v)p(14(b)

8 (1)
(4.14)

For the mean term Ao and hyperparameters pa and ax, the joint prior p(A0 , pa , Cfa ) is expanded
as

P(Ao,i1A,, GA.) = /9(41/1A.,(TA)/3(4,)/3(cA)

with 2.0 fix , crx </V(p,x, crA,), — <A7(1,0.5), ax Cauchy(0, 1), and Ao, , CTA, > 0:

(4.15)

1 
P(A0111A ) 

V27r0A2 
exp (42-c77 )2 (4.16)

-V2xxo.52 exp (211X(71.51)22)

13(ax) 7c(i-H6A2)

During the inference process, normalization constants are computed for the above densities to
account for truncation at O.
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The KLE model parameters are a-priori zero-mean uncorrelated. We further assume a Gaussian
random field leading to independent conditional priors.

1
P(C1, v) = P(c1, ,c0))13(v) = (v)1113(c , p(cilv) =  , exp 

2v
(—

i=1 V 27cv 

We employ a conjugate Gamma hyperprior for the variance v

Ra

p(v) = 
F(a) 

v exp (-0/v)

(4.17)

(4.18)

with shape and scale parameters a = 1. The adopt an exponential distribution [11] for the
correlation length lc prior

P(lc) = 
1
exp(— lc,$) (4.19)

with scale set to 7 days - a typical synoptic time scale for transport [4]. Finally, inspection for
the background b indicates we can assumed a Gaussian prior with mean fib and standard deviation
sgb based on recorded data for the time range of the inference

P(b) = exp ( (b milb)2)
2,5227ral,

1

4.2.1. Efficient sampling of p(19,0M

(4.20)

A Markov Chain Monte Carlo (MCMC) algorithm is used to construct samples drawn from the
posterior distribution P(0 , Olg") given in Eq. (4.11). MCMC is a class of techniques that allows
sampling from a probability density by constructing a Markov Chain that has the target density as
its stationary distribution [3, 6]. In particular, we employ an adaptive Metropolis algorithm ([8]),
which uses the covariance of the previously visited chain states to find better proposal
distributions, allowing it to explore the posterior distribution in an efficient manner. Nevertheless
the adaptive procedure is challenged by the dimensionality of the parameter space, typically
resulting in a larger number of samples as the dimensionality of the sampled space increases.

We employ the Raftery-Lewis diagnostic [20] to determine when the Markov Chain converges to
stationary posterior distributions. As the chain progresses we asses whether the number of
samples drawn so far are sufficient to predict the 5%, 50%, and 95% quantiles of all parameters to
within ±1% accuracy with 95% probability. In parallel we also compute the Effective Sample
Size [12] (ESS) and aim for values around 10,000 samples for each parameter. For the set of
simulations presented in this paper these convergence test lead to chains with 0(106...107)
samples depending on the chain dimensionality. The computation of each sample is described
below.

First, the evaluation of the emission model in Eq. (4.9) requires the solution for the eigenvalue
problem in Eq. (4.4) for a specific value of the correlation length 1,. The eigenvalue
decomposition results in a set of modes g k(t) which are then integrated over a time span, typically
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7 days, ending at the time stamp of each measurement. This renders the direct solution approach
all but intractable given that typically sampling approaches require between o(105 _107)
samples and each samples require the integral of each Karhunen-Loeve mode for all
measurements' time stamps - between 100-200 for each month.

To circumvent this computational bottleneck we precompute look-up tables for Gk terms that
appear in Eq. (4.9) using the steps below

• Solve a set of eigenvalue problems for a range of correlation lengths that is sufficient to
cover its posterior distribution. Based on prior experience we constructed a sets of
eigenmodes for 1, E {6, 8, ..., 20} U {24,30,...,60} U {72,96,120,168}

• For each set of eigenmodes, construct Gk(ti, 31-) for each measurement time stamp. Here St
represents the averaging window for each footprint. For the cases presented here St ti lday.

• During the sampling step once a specific value for lc becomes available, the model for the
predicted concentrations y(t) is interpolated linearly given the precomputed lookup tables.

18



5. RESULTS

We conducted two series of numerical experiments. In the first series we constructed a database
of methane emissions relying primarily on the EDGAR database [10] for both inside California,
as well as outside - over ocean and land areas. Since EDGAR does not include biogenic
emissions, we augmented the EDGAR emissions for California with the wetland component from
CALGEM [2]. In the second seies of experiments we employed the CALGEM emission fluxes
for California. Similar to the previous set of experiments EDGAR information was used for ocean
and land areas outside California.

For both series of experiments we conducted a parametric study over the number of modes NKLE
in the Karhunen-Loeve expansion for the emission bias. The following sequence was employed,
in addition to a baseline case with emission bias constant in time.

NKLE = {12,18, . . . ,48} U {64}

Figure 5-1 shows a typical MCMC output for components of the parameter vector 0 and
hyperparamter vector 0. The results in this figure correspond a simulation using EDGAR with
NKLE = 30. As mentioned above tests using ESS and the Raftery-Lewis diagnostic [20] lead to
chain lengths with 106... 2 x 107 samples.

The MCMC samples were then used to for a statistical analysis of the bias model. First, we
constructed marginal densities for the model paramters to gauge their distributions and
correlations induced by the experimental data. Figure 5-2 shows 1D and 2D joint posterior
distributions for an EDGAR-based simulation with NKLE = 30. The results in this figure
correspond to a subset of model paramters, specifically the first 12 Karhunen-Loeve modes
cl, c2, , c12. Strong correlations can be observed between select parameter pairs, suggesting that
UQ analyses need to account for these correlations when selecting samples to compute statistics
on output quantities of interest.

Next we employed Bayes evidence to select the appropriate parsimony for the bias model
represented as a stochastic random field. The Bayes evidence is given by

P(9) = PW10,0)P(0 JP) de d4) (5.1)

which represents the normalizing factor for the right-hand side of Eq. (4.11) transforming the
proportional sign into an equality. We implemented the algorithm proposed by Chib and
Jeliazkov [1] to estimate the above integral numerically.

Figure 5-3 shows p(9) in logarithmic scale on the vertical axis as a function of the number of
modes in the stochastic random field representation for the bias model. These results,
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Figure 5-1. Sample chain samples for select variables.

corresponding to numerical experiments employing the EDGAR emissions, indicate that for all
sets of tests reported here, the bias model with NKLE = 48 exhibits the largest Bayes evidence.
Given the discrete set of choices, i.e. simulations with NKLE = 42, 48, and 64, the exact optimum
could occur for a number of modes slightly off 48. Nevertheless, this refinement level is sufficient
to answer the questions addressed in this report.

Using NKLE = 48 we investigate statistics on the agreegated bias A, (t). The results in Fig. 5-4
show the pushed forward distribution for the bias model A, (t)Ip(O >011l). The shaded green bands
correspond to constant quantile leves along the time axis, with dark green indicating values
around the mode of the distribution. These results indicate significant temporal variations for the
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Figure 5-2. 10 and 2D marginals distributions for the first 12
Karhunen-Loeve coefficients ck corresponding to Run AAA.

set of simulations that displayed the highest Bayes evidence. Results corresponding to constant
bias models are shown with yellow to red color bands.

Next we explore whether the predictive skill of the emission model given the approach presented
in Section 4.1. First, we employ the Bayesian posterior predictive distribution ([15]) and examine
how well it overlaps with the experimental data. The posterior distribution for the predicted data,

li(g(P)Ig), is computed by marginalization of the likelihood over the posterior distribution of
model parameters and hyperparameters.

P(g(13)1g) = fe,013(g(P)10,0)13(0,01g)clO chfr (5.2)

The results presented in Fig. 5-5 indicate a posterior that generally shrinks for the time-dependent
model bias compared to the classical approach using constant bias.
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To quantify the predictive capability of the emission bias model with increasing number of KLE
modes, we employ the posterior predictive results above to compute the Continuous Rank
Predictive Score (CRPS) [7]. CRPS is an average of the difference between the CDF of the CH4
observations and the CDF of the predicted data.

Nd CR,,,,,9),kiktifl 2(gi(yk19) - ‘Yegk(A)) dyk
Here, g-k (Yk 19) is the 1D marginal posterior predictive CDF for day k computed using the
distributions presented in Fig. 5-5.
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The CDF of the provided data is approximated as a Heaviside function centered at the observation
value 1Jk citeHersbach:2000, ,Y6k (yk) = lyk>gk.

The CRPS results, shown in Fig. 5-6 corresponding to experiments using CALGEM methane
fluxes are lower for all months except March. This indicates a smaller discrepancy between
model predictions and experimental observations. Some noise is observed between adjacent
points in the horizontal direction. This is likely due to limited number of Markov Chain samples.
Nevertheless there is an overall downward trend idicating improved agreement between models
and data as more stochastic random field modes are added to the model.
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6. CONCLUSIONS

We present the development and application of a method for trace gas inversion using Bayesian
methodology that explicitly accounts for time variation in the model bias. We demonstrate this
methodology using methane measurements made in Livermore, California and emissions priors
taken from two inventories. We show that the inclusion of the time varying bias can improve the
continuous rank probability score and the Bayesian model evidence for the model. We also show
that the inferred bias for different emissions sectors can have different temporal structures. For
instance we demonstrate that landfills in the the San Francisco Bay area are a minor contributor to
the time variation in the estimated bias in the methane emissions by comparison to the
non-landfill component.
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