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ABSTRACT: Interval Assignment (IA) means selecting the number of mesh edges for each
CAD curve. IIA is a discrete algorithm over integers. A priority queue iteratively selects
compatible sets of intervals to increase in lock-step by integers. In contrast, the current capability

in Cubit is floating-point Linear Programming with Branch-and-Bound for integerization
(BBIA).

We determined that IIA is a viable alternative to BBIA. Before the project started, we knew ITA
scaled better than BBIA, but did not know if IIA could solve the general IA problem. We
demonstrated it can! We successfully answered the open research questions. The major
discovery (new insight) is that the compatible sets of intervals are equivalent to vectors in the
null-space of a matrix A. We found combinatorial algorithms for determining an initial feasible
integer solution to Ax=b. We developed algorithms to calculate linear combinations of null-
space spanning vectors that strictly improve the current solution. Improvements first satisfy the
interval bounds, then optimize intervals towards user-requested goals.

We discovered IA is similar to integer optimization over totally unimodular matrices. Our matrix
A is not totally unimodular, but much of it is, and all entries are integer. Thus, the guarantees
that the known optimization algorithms run in polynomial-time and always find an optimal
solution do not hold. However, we developed similar algorithms that in practice usually come
close.

To move the capability to production use in Cubit, we need to implement one significant
capability, and perform additional testing and improve the code robustness.

INTRODUCTION:

This is the final report for the small FY 19 Exploratory Express LDRD project on Incremental
Interval Assignment (ITA). Interval Assignment (IA) is the process of assigning the numbers of
mesh edges for each CAD feature, especially CAD curves. Once IA is done, it enables quad/hex
meshing of each part, and meshing can be done independently because the parts have agreed on
the mesh of their shared interface, e.g. two surface that share a curve have already agreed on how
many edges that curve will have. The goal of IA is to optimize the number of intervals for each
CAD curve, subject to the constraints imposed by the various semi-structured quad and hex
meshing algorithms that were previously chosen for each CAD surface and volume.
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Interval Assignment (IA) is a necessary step for quad/hex meshes. Even for a completely
unstructured quad meshing algorithm meshing a single surface, the boundary curves must have
an even number of edges. CAD assemblies of hundreds of surfaces are ubiquitous in stockpile
stewardship and industrial simulations. Conforming meshes of assemblies must agree on how
many edges to place on each shared curve. This is non-trivial because quad/hex topology places
fundamental constraints on the number of boundary edges independent of which meshing
algorithm is used, and most meshing algorithms impose additional constraints. These form a
globally-coupled system of linear constraints over integer variables; half an edge is nonsense.
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1A, new
* Priority queue

BBIA, old

* Simplex method, then Branch&Bound

« Start integer, stay integer
* Scales with #intervals .

* Non-integer solution, LP floating point
Exponential in #variables, B&B search

The current IA capability is fragile, and too slow to scale to next-generation models. When [A
fails, a human must tediously solve the problem, essentially by trial and error. The project was to
research and implement an TA algorithm that scales well, is more reliable, produces better quality
output, and is based on fundamentally different algorithms. The new approach is called
Incremental Interval Assignment (ITA), because it is discrete algorithm over integers, where a
priority queue selects the next set of intervals to increase in lock-step. Prior to this project, the PI
had successfully developed a version of IIA for "mesh-scaling," the restricted setting of refining
an existing mesh for verification studies. IIA is a radical departure from the then-current
approach BBIA: floating-point numerical optimization followed by Branch & Bound to obtain an
integer solution. BBIA's runtime is roughly cubic in the input assembly size, whereas IIA in the
restricted mesh-scaling setting was linear in the output mesh size in practice. For mesh-scaling,
BBIA fails after running overnight on some large problems. In contrast, ITA achieves success in
less than one second on all test problems.

ITA is a discrete-math, integer-arithmetic algorithm, based on fast priority queues and
monotonically-changing priorities. IIA for mesh-scaling uses constraints to identify a “basis” for
the “kernel”, where a basis element is a set of curves whose edges may be incremented by some
integers in lock-step, while still satisfying all constraints (the kernel). A priority queue selects the
next basis element to increment (or decrement), with priority updates as needed.

5 Multiplier 0.667 Multiplier 3.0
Mesh Scalmg 1230 hexes 5841 hexes
Initial Mesh
1869 hexes
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3321 hexes
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Decomposition captures both
mesh irregularities and
geometry boundaries.
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The LDRD project was to extend IIA to the general setting of creating an initial mesh of an
assembly with a plethora of shapes and meshing algorithms. Going beyond mesh-scaling
presented several significant research challenges. There is no initial feasible solution. The basis
and kernel for mesh blocks must be generalized to shapes and meshing algorithms with more
degrees of freedom. On the other hand, curves may appear in several basis elements, potentially
reducing the degrees of freedom. Arbitrary constraints arise from analysis requirements, e.g., 10
elements through weld thicknesses. Pre-meshed adjoining parts are fixed and cannot be changed,
and reduce the degrees of freedom because certain weighted sums of sets of intervals must add
up to a constant. Finally, the desired intervals are based on different criteria, and priorities
change differently, so defining and updating priorities and maintaining the queue needed
research.

DETAILED DESCRIPTION OF EXPERIMENT/METHOD:

The main idea of IIA is that a priority queue iteratively selects a set of curve intervals to
increase. (These sets are the “basis” in the Introduction.) We start with an integer solution, and
stay integer with integer increments, so the traditional IA problem (e.g. BBIA) of converting a
floating point solution to an integer one is totally finessed. Further, once we have a feasible
solution, meaning one that satisfies the constraints, we stay feasible. (These two criteria are
called the “kernel” in the Introduction.) Finally, during the optimization steps, we require strict
improvement. Our objective is to minimize the maximum deviation of the assigned intervals to
the goal intervals (or the bounds on the intervals in the early phases.) Since the search space is a
discrete set of (bounded) integers, at the very least this provides finite termination, and at best a
runtime complexity that is linear in the output number of intervals.

The key research questions centered on these sets of intervals we wish to increment.
e How can we calculate these sets?
e Can we find enough sets so that the optimization does not get?
e Do we need too many sets, so that the runtime is not competitive?

The main research breakthrough was the realization that the feasible sets of interval increments
are equivalent to vectors in the nullspace of Ax=b. This allowed us to use known techniques to
find vectors that span the nullspace. Moreover, this showed that the number of sets is tractable,
since the nullspace span has linear size: the number of variables minus the number of non-zero
rows once Gaussian elimination has been performed and the matrix is in Reduced Row Echelon
Form (RREF). However, it is still not clear if there are too many sets to consider for efficient
optimization in all cases. Even though a linear-sized set of vectors span the nullspace, there are
exponential numbers of linear combinations of the vectors (optimization descent directions) that,
in principle, one might have to explore. Using RREF motivated and necessitated the conversion
of the system Ax<=b to Ax=b through dummy variables: cx <b is equivalent to cx +d =Db,
where d>=0. Note that equality constraints is the natural form of the problem with this tool in
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mind, but that for the linear programming approach, inequality constraints defining half-spaces is
more natural.

The secondary breakthrough was in the recognition of the addition-ring mathematics for finding
the initial feasible solution. Much of the literature starts with “For totally unimodular matrices...”
and does not discuss what happens in the interesting and relevant space we find ourselves in,
where the matrix is not unimodular, but many of the coefficients are 1 and are at least small
integers.

Pseudocodes

ITA algorithm for mesh scaling:
* Increase one interval on one block-curve
* Until target #elements reached
Where, at each step,
* Select block-curve by a priority function of
 Initial and current intervals
* Increase in the number of elements incrementing causes
* Spread out the change
*  Group nearby blocks
It performs multiple passes with different priority functions

ITA algorithm for the general IA problem:
* Transform Ax <=b to Ax=b (introduce dummy slack variables)
* A to RREF (Reduced Row Echelon Form, Gaussian elimination)
* RREF, x =[x4q | xi] = {dependent | independent} partition variables
 Initial integer solution to Ax=b
* Easy if all RREF coefficients cq=1 (totally unimodular matrices, studied problem)
Xd = -sum_rowd(cixi)/1
* Else combinatorial search over integer-ring values of x;
X4 = -sum_rowd(cixi)/ca. (Need each sum divisible by each cq)
* Compute M = row vectors spanning nullspace of A (easy from RREF)
¢ Satisfy x bounds
* For the xq farthest from its bounds
pick an M row : x += m is a strict improvement
* Ifno such row, i.e., some x, get worse, then find linear combo of M rows
s.t. mp=0. (Gaussian elimination with different {xq | xi})
*  Optimize x
* For the xi farthest from its user-defined goal
pick an M row... proceed as with satisfying the bounds, but with different priority
functions and acceptance criteria.
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Example RREF and nullspace M:

XcI XI XcI Xi

o4 30 2(-1

_ 001 -1
RREFS || 4 | g1 1 M= 412 -1
112121 711 -1

Example RREF without leading 1 coefficients, which potentially necessitates an expensive
combinatorial search for an initial feasible solution. In this case, we might have to consider all
permutations of values for the four X; from 0 to 14, or 154=50,625 combinations!

Xd Xi
1 3 0 4 7
s |8 B 1 1L
g2 4 2 L

Because of this expense, we implemented several heuristic steps in our RREF in order to reduce
the occurrence of such cases. First, we search for any column variable that is already a 1 and is in
only one row. This occurs for all dummy slack variables that were introduced to convert an
equality constraint to an equality one. The other type of variable that always occurs in only one
row are the dummy variables to enforce even numbers of intervals, for example x; + x> + X3 =
even = 2x.. Here, since the coefficient is 2, we do net want to pivot and use this as a leading
coefficient. Second, we use any variable that has a 1 coefficient. Among those, we prefer the
variables with fewer non-zero rows coefficients. We perform normal Gaussian elimination on
them, but in some cases, with fill in, the variable no longer has any 1 coefficients and must be
skipped. Third, we can make a linear combination of rows that has a 1 coefficient. We simply
need two row coefficients for that variable that are relatively prime, i.e., whose gcd (greatest
common divisor) is 1. Fourth, we use variables in order of increasing gcd. Fifth, we use any
variable in order to reduce any remaining rows, if there are any. (The third and fourth stages
have not yet been implemented at the time of this report.) Recall that in each step, we can only
use coefficients that are not in an already-reduced row. The problem with non-1 leading
coefficients is two fold: the row we reduce will have a leading non-1, and when we remove the
variable from some already-reduced row, we will cause that already-reduced row’s leading
coefficient to no longer be 1. Thus it is worth significant computational effort to avoid these
cases. In the above red example, we can simply swap the second and sixth columns, and the third
and fifth, and get an RREF with leading coefficients all 1.
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RESULTS:

The software is realized in C++ with no library dependencies. There is one 500-line header file,
and one 3000 line cpp implementation file. Because of the historical use of BBIA, and how Cubit
is architected, the main IIA class is derived from a common interface class, and there is common
functionality defined there that IIA depends on. For example, it contains the functionality for
dividing the matrix into independent submatrices, gathering the user-defined mesh-size goals and
interval requirements from the mesh and geometry database. The base class also contains some
common routines for subdividing the problem into smaller pieces that are solved individually
before the global system is tackled.

We believe it is helpful to solve the global interval problem in three passes, the same as is done
with BBIA. In the first pass, we solve each “mapping” problem in isolation, where we do not
consider variables to be coupled if their only coupling is through a row that is a “sum of
variables is an even number” constraint. The thinking is that the sum-even constraints should
only change the solution by one, or a small number, so getting the mapping-constrained variables
close to their final values using a small and fast subproblem is a win both for quality and
runtime, especially as the runtime depends nonlinearly on the problem size.. In the second pass,
we add the sum-of-variables-is-even constraints, which typically couples all rows of the matrix.
The third pass arises solely because of the inherently non-convex nature of the submapping
constraints; see the submapping figure in the introduction. If two arms of the submap overlap in
i—j parameter space, then we have the choice of either separating them in “i" or in “j” by adding
one more constraint and solving again. (This is perhaps analogous to dynamically adding cutting
planes for integer optimization in the linear and non-linear optimization contexts.) It would be
both expensive and overly-restrictive to add all such possible constraints up front; thus we only
add one of these two constraints as we discover that they are violated.

Success metrics
The main success metrics were
» IIA succeeds and produces acceptable output for heat sink and all models in Cubit test
suite. (Hard.)
» IIA runs in microseconds on heat-sink and Cubit test suite. (Easy once hard problem is
solved.)

We have made good progress towards both success metrics. Currently, 32 of the 49 Cubit
COMMIT tests pass. Of the ones that fail, most are because the expensive combinatorial search
for an initial feasible solution has not yet been implemented. Others occur because the assigned
intervals are not the same as what BBIA assigns, but whether the new solution is inferior or
superior is unclear. In general, it is recognized among the Cubit team that the test suite is fragile.
It contains tests that work with the current version of Cubit, but, for many tests, there are nearby
problems appear no more difficult to users or developers, but do not work. Why is the one test in
the suite but not the nearby one? We have not yet studied the failure cases in detail.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

U.S. DEPARTMENT OF

'ENERGY

Sandia National Laboratories



.
£ORD

Success metric: heat-sink mockup
/ BBIA runs in half an hour.
‘/L lIAruns in a few seconds.

We have not put a significant effort towards understanding or improving the runtime of 1A,
since we are still dealing with the more critical issues of generality and robustness and output
quality. Nonetheless, preliminary observations are that IIA is very fast, but not as instantaneous
as expected. The heat sink challenge problem runs at least 1000x faster with IA than with ITA.
We suspect that the reason the improvement is not orders of magnitude even greater is the non-
linear O(n*) complexity of the explicit Gaussian elimination steps in creating the RREF, its
variants, and combining nullspace vectors. While we implemented a sparse matrix
representation, the cost of data movement for row swaps may be slowing down the
implementation and could be an area for further study. We have also not put significant effort
into researching alternative objective functions (min-max deviation) or priority queue functions.

One potential speedup is to increment a chosen vector m by more than one interval before
putting the limiting variable back on the queue and proceeding to the next element of the priority
queue. We suspect some sort of binary search for the largest acceptable increment will be
helpful.

DISCUSSION:

We conjecture that the full expression of the generic A problem is inherently NP, since we
conjecture that it could be used to solve the classical NP-complete problem of Boolean
Satisfiability (SAT): is there an assignment of Boolean variables that makes a given Boolean
formula true?
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The potentially-expensive steps arise in two places. The first is in the “Else combinatorial search
over integer-ring values of x;”. If the RREF matrix leading row-coefficients (for the dependent
variables) are all 1 (or -1), then we may assign any integer value to the dependent variables, and
their weighted sums plus the right-hand-side (vector b) is an integer we can assign to each of the
independent variables. That is, this step always succeeds and runs in linear time. (The literature
studies the case of totally unimodular matrices, where all coefficients are 1 or -1.) The difficulty
arises if the leading coefficients are not 1. We implement a series of heuristics, namely column
swaps and selecting rows and columns to reduce based on their coefficient values, so that we get
Is as often as possible. However, in the worst case, all leading coefficients cannot be made to be
1. For example, in the “radish” figure, the structure of the mapping surfaces leads to the RREF
constraint x3=2x1, even though all original constraints had 1 coefficients! If there is a second
“radish” structure, say with three such loops, we may be stuck with a RREF with the constraint
3x4=2x1, and a RREF row with either a leading 3 or 2. Suppose we have a large coupled system,
so that the RREF has a set of leading coefficients cq that are not 1. In order to have independent
variable assignments x; that result in integer assignments of the dependent variables x4 we need
that row sum d is divisible by c4. The weighted sum of an x; integer modulo cqis a mathematical
ring (as in the context of “rings, fields, and groups™) with period cq. We are searching for a
combination of the x; such that each sum is 0 modulo the respective cq. To cycle over all
combinations, each x; must cycle through all values from 0 to lcm(cq), where lcm is the least-
common-multiple of the leading dependent coefficients. (Recall the relationship between the lcm
and the ged, greatest common divisor.) Thus, there are |xi/'*™Y combinations of values we must
try, an exponential number, and dependent on the numeric values of the coefficients, not just the
number of coefficients.

The second place where high complexity can arise is within the

X~ N optimization step. Note that this arises from our choice of optimization
%3 [ algorithm and objective function, doing min-max optimization and

& requiring that each step is downhill, whereas the first case of
exponential complexity is related to SAT, where we know that any
assignment algorithm has worst-case exponential complexity (unless
P=NP). Here we are performing Gaussian elimination, keeping a non-
zero for coefficient cq for the worst-valued variable, and eliminating
coefficients for variables that we cannot increment due to our min-max objective function. Over
the course of optimization, we may have many such q, and each such Gaussian elimination may
be O(n?). It may be possible to prove sub-exponential complexity if the pattern or frequency of
each q being the limiting variable, and the combination of other variables needing to be
eliminated, can be analyzed. Intuitively, it would seem that more variables should become
limiting as the optimization proceeds towards a minimum, and that we can continue prior
Gaussian elimination steps to simply reduce more variables, rather than some variables suddenly
becoming non-limiting and having to consider all combinations of variables to be eliminated.
Thus, it is not clear if this step is fundamentally exponential or some polynomial time algorithm
exists.

Global structure:
Incrementing x, or x,

Increments x, twice!
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Analyzing the complexity further is a topic for further work, and understanding it may lead to
practical improvements to the heuristics that reduce running time. Recall that BBIA is worst-case
exponential, so we consider the current IIA to still be an improvement, despite these issues.

Globally infeasible
a=a+b b=0,x%

In any event, the second issue is a matter of reaching an optimal solution, whereas the first issue
is one of obtaining any feasible solution at all. We can simply terminate the optimization (of a
particular variable) if finding a downhill row vector takes too much time. For the first issue, we
can heuristically explore a subset of the combinations, and if that fails, report the difficulty
problem to the user, who may be able to provide manual guidance. A similar issue already arises
when the structure of the mapping faces leads to there being no positive-interval solution, such as
in the slanted box figure “Globally infeasible.”

ANTICIPATED OUTCOMES AND IMPACTS:

Cubit

Incremental Interval Assignment (ITA) will replace Cubit’s current BBIA capability. Cubit's
ongoing programs will productionize and support the capability long term. To move to full
production use in Cubit, we need to implement one remaining significant step and mature the
software. The one remaining significant step is the combinatorial search for finding the initial
feasible solution over the integer-addition rings, as well as the additional heuristics to reduce the
frequency with which this expensive search is required.

By maturing the software, we mean making it more robust, improving the output quality,
removing existing bugs, and ensuring it works for the full breadth of Cubit algorithms and
models. For example, the hex-mesh algorithm “sweeping” currently sets up additional
constraints on linking surfaces. These constraints are currently assembled using the data
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structures inherent to BBIA, then passed to IIA. Another example, we need to perform additional
experiments on test models to determine if the quality is optimal. One choice

Once done, we expect the capability to have a significant impact both within Sandia and the NW
complex, and also in the broader commercial and academic research communities. For the NW
complex, quad/hex meshing is required for structural mechanics simulations in support of
stockpile stewardship, V&V, reactor safety, etc. It enables verification of current components
and LEP design, etc.; usually Cubit provides these meshes, but its current approach (BBIA) fails
on next-generation-sized problems. Nonetheless, IA underpins every quad/hex mesh, every day,
generated by Cubit for the past 25 years. Users consider Cubit’s IA capabilities to be a helpful
feature that distinguishes Cubit from the alternative tools.

Cubit user base

250 Sandia

500 Government Use Notice (e.g. Kansas City) & CRADA

Many more commercial users of Cubit through its variant called Trelis, sold by CSimSoft.

As a testament to the value of Sandia’s LDRD program, note that Cubit started as the “Paving”
LDRD in 1989.

Open source library

We plan to develop and release an open-source version of IIA for use by the broader community,
including commercial companies. We know that at least two commercial companies (Ansys and
CD-Adapco) and one Argonne-led public code (MeshKit) use BBIA or something very similar to
it. Every few years the PI has been asked to give advice on IA to these entities, and, in the case
of MeshKit, has even been funded by Argonne to help them develop it. So we know there is
significant demand. The funding program is ASCR, and one of their success metrics is the
release and adoption of such open source software. The PI solo-developed the IIA replacement
for mesh-scaling. He also solo-developed the BBIA approach, which has been in continuous
production use in Cubit for 25+ years. We hope the general 1A capability has a similar impact
for the next generation.

Developing IIA as a library will require refactoring IIA. We must remove dependencies on Cubit
and its geometric modeling engine per se. We must define a clear separation between the
constraints, goals, and variables and the meshing context that created them. The API
(Application Program Interface) must be designed to be generically useful, without regard to
how different codes represent their data or what constraints they may wish to impose. The
interface will use simple arrays (C++ vectors) for passing data. We must also move some of
base-class capabilities that are common to Cubit’s BBIA and Cubit’s IIA into the IIA library. If
Cubit wishes to avoid code duplication but use the new library, then it will have to be refactored
so that BBIA re-uses the common routines from the IIA library, instead of both of them being
derived from a common class.
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Another design consideration for the open source library is whether to separate the interval-
specific features from the generic integer optimization features. It is possible that the RREF and
other integer constraint-satisfaction and optimization routines will be of interest to the
optimization community, outside of its application to quad/hex mesh optimization. Evidence for
potential interest is the existence of specialized implementations of RREF for integer matrices.
The implementations the author discovered in the literature and open source community do not
have the kinds of column-swapping and row-selection heuristics we found useful in order to get
leading-1 coefficients. We suspect keeping the coefficients as small as possible could be useful
in other contexts, e.g., much literature is devoted to keeping coefficients from exploding in bit-
size. Additional experiments are necessary to verify that coefficient value blow-up is not an issue
in our context. In addition, our systems of constraints are inherently sparse, so we use a sparse
matrix representation, and this may be useful to others in other contexts. On the other hand,
evidence that IIA’s approach to optimization is not merely an interesting subset of the integer
optimization communities extant tools is that the PI has discussed the IA problem for years with
the Sandia staff who developed the PICO Parallel Integer Combinatorial Optimization code and
derivatives. While they noted some connections, they never thought PICO as a black box would
be the right approach to solve IA. There may be other problems besides IA in that niche.

CONCLUSION:

The PI considers the project to be a great success. To deploy the capability there are additional
tasks needed, but the remaining tasks were anticipated by the original proposal, and were
described as outside the scope of the LDRD. The three main open research questions were all
answered positively. The main epiphany that enabled this resolution was the recognition that the
allowable sets of intervals to increment lie in the nullspace of a matrix. Further, although this
matrix is not always totally unimodular, in practice it is close enough that the algorithms and
math developed for that context can be adapted and used. The discovery of this mathematical
foundation helps the robustness of the algorithm and understanding of its fundamental
limitations; the PI anticipated that the issues of the “basis” and “kernel” would have to be
addressed only by heuristics. Thus, the research aspects of the project were resolved even better
than hoped.

The only potential disappointment is that the implementation and algorithm will not have worst-
case linear complexity in the number of output intervals, as was done for IA for mesh scaling.
There are two features of mesh scaling that are different that introduced the added complexity.
First, for mesh-scaling there is an initial feasible solution, so initial no combinatorial search is
needed. Second, because of the totally-block structure of the mesh, the nullspace vectors are
orthogonal (i.e., the sets of curves whose intervals we increase in lock-step have empty
intersections). The additional degrees of freedom in a semi-structured hex mesh are a two-edges
sword: we have greater freedom to choose where to add intervals, resulting in a potentially
higher quality solution, but exploring those degrees of freedom fully can take significant
runtime.
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