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Piezoelectric Sc,,A11_„N
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Piezoelectricity

• Material can couple electrical and
mechanical energy

• Direct effect

• Converse effect

• Magnitude characterized by piezoelectric
constant (dim)

• Efficiency characterized by
electromechanical coupling coefficient (kt2)

Aluminum Nitride (AIN)

• Reactively sputtered at low deposition

temperatures N350° C

• CMOS compatible

• Piezoelectric coefficients

• d33= 5 pC/N

• d31= -2 pC/N
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AIN Commercial Success
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• Film Bulk Acoustic Resonator (FBAR) Filters

• Half-wavelength, thickness mode resonators

• Filter frequency is set by film thickness

• Commercial success for AIN MEMS

>1 billion units produced per year from
Avago Technologies

• More than 40 discrete filter die in the
modern smartphone
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• Piezoelectric Micromachined Ultrasonic
Transducer (PMUT) Applications

• Proximity sensing

• Short range communication

• Extreme high sound pressure level
microphones

• Imaging

• Chirp bought by TDK to create devices for
gesture recognition

BROADCOM.

Suspended

FBAR plate
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Radiation Pressure
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Schematics courtesy of Ben Griffin



Influence of Sc Alloying in AIN
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• ScAll,N has the potential to replace current AIN
technologies

• Sc doping into AIN increases piezoelectric
response

Device Performance Based on Properties

Resonators

Energy harvesting

Sensors
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Influence of Texture on
Performance of AIN Films
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• Target orientation for AIN is c-axis

oriented

• Texture quality determined via X-ray

diffraction (XRD) rocking curve

measurements

• Full-width half maximum (FWHM)

describes how parallel the 002 plane

of AIN is oriented with respect to film's

surface

• Electromechanical coupling (kt)

increases as texture in AIN films

improves

• Growing thicker AIN films results in

low FWHM

• Increasing thickness limits resonant

frequency tuning in FBARS
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Challenges with Increasing % Sc and
Recent Advances
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■ Secondary grain growth (inclusions) in ScAIN

• Increase with Sc concentrations

• Density controlled by processing parameters

■ Inclusions have a diffuse {100} orientation

• Fichtner et. al., 2017

■ Compressive stress suppresses inclusions

• Henry et. al., 2018

• Compressive stress not optimal for released MEMS

■ Platinum as a bottom electrode on 8" wafers

• Mertin et al., 2018

• Full suppression of inclusions up to Sc 31%

• High texture up to 42%

• Pt is not CMOS compatible and presents integration

challenge
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AIN and ScAIN on AlCu0.05
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• High-quality ScAIN has been deposited on various CMOS compatible
metal stacks

• Depositing ScAIN on CMOS metal is valuable to industrial sector

• Attractive to industry leaders and has sparked collaboration

• Optimal ScAIN film quality found in Ti, Ti/AlCu0.05, and Ti/TiN/AlCu0.05
metal stack

• Present results are state-of-the-art for their given thickness and Sc
composition
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Device Integration Challenges
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■ Good film properties

■ Film Sti c:ss
• Shifts device performance

• Stress uniformity across wafer can
limit yield

• Accurate local device stress
knowledge is needed to imprrn

modeling accuracy

■ Etching 2.0

• Pressure varied to control an6 1 8
wall
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Device Integration Challenges
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■ Gnod filrr. oropei

■ Film Stress

• Shifts device performance

• Stress uniformity across wafer can
limit yield

• Accurate local device stress
knowledge is needed to improve
modeling accuracy

• Ft Hi 16

• Pressure varied to control angle side
wall

• Sc12.5A187.5N etches 3-4 times slower

and continues to reduce at higher Sc

1014111111iiiiesz=nezmit ,:ozszsms
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Device Integration Challenges
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• 1/43 ood film propel Lie

■ Film Stress
• Shifts device performance

• Stress uniformity across
wafer can limit yield

• Accurate local device
knowledge is needed to
; W. I" 10,1, /I Ars Met 0"1. A i YIL el• O. 0, . le ••••• ••••

■ Etching

• Pressure varied to control

angle side wall

• Sc12.5A187.5N etches 3 4 times

slower and continues to

reduce at higher Sc %
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Aluminum Nitride Microresonators
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N Lateral mode devices
• Wave propagation occurs in-plane

• Frequencies are set by lithography

• Single chip: 32 kHz to 10 GHz

N Applications
• Miniature High-Selectivity Filters

• Filter Banks for Spectrum Analysis and
Spectrally Aware Radios

• Miniature Low Power Oscillators

Acoustic
resonance
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Resonator Figure-of-Merit
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• Insertion Loss

• Proportional to FOM

FOM= kt2Q

• Bandwidth

• Minimum practical filter BW

Determined by Q

• Maximum practical filter BW

Determined by 14 (BW = 2 14)
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Current State-of-the-Art
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• Film Bulk Acoustic Resonator

(FBAR) Filters

• Commercial success for AIN MEMS

• Filter frequency is set by film

thickness

d33 2
k12̀,33 - E

E335133

Acoustic X/2
resonance

• Lateral mode devices

• Wave propagation occurs in-plane

• Frequencies are set by lithography

• Frequencies from 32 kHz to 10 GHz

realized on a single chip

• Current niche in intermediate

frequency (IF) filters
2d31 k t2,31 - E

E33S11

Electrodes
I t".....
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in
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3 Filters 1 Chips 1 Fab

3 Filters
3 Chips
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FBAR plate
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-2% (AIN)
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Improving Piezoelectric Performance
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• Widespread adoption limited by

coupling coefficient (2%)

• FBARs have coupling coefficient of 6%

• Alloying Sc into AIN increases
piezoelectric performance

• Investigate the material through

device performance
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Sandia ScAIN Lateral Mode Device
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• Investigating film growth affects on
resonator figure of merit
• Coupling coefficient

• Quality factor
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Sc12.5A187.5N Contour-Mode Resonators
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M. D. Henry et al., J. Vac. Sci. Technol. B 36 (2018) 10
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Objective and Program Relevance

• Develop material set to enable development of
extreme temperature capable transducers

• Applications for transducers that can withstand
extreme temperatures

• Gas turbines (1250°C)

• Hypersonic flight research (755°C)

• Automotive engines (300-1000°C)

• Nuclear power plant (300°C)

• Coal power plants (700°C)

Sandia
National
Laboratories
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Proposed Technology
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• Developing a MEMS material set that combines

• Aluminum nitride (AIN) piezoelectric thin film

• Silicon carbide (SiC) structural film and wafer

• High temperature capable electrodes

Titanium/Titanium nitride (Ti/TiN)

SiC Structural Layer

SiC Wafer

Release Hole
 I \

Electrodes

Release Volume

AIN

/
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Annealed AIN Alignment
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• Anneal of AIN on titanium / titanium nitride bottom

metal electrode at 950°C for 3 hr

• XRD measurements to determine if AIN is still

columnar

• In general, the goal is <2°
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In Air Temperature Testing
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• Heated chuck from to 500°C in steps of 50°C

• Temperature hysteresis loop results in

permanent frequency shift of 2,400 ppm
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Quality Factor
Santla
!Mond
labolatories

• Quality factor degradation observed
over temperature ramps

• Potential sources

• TiN oxidation

• Probe contact issues

• Via degradation

• Carbon contamination

1 TiN Surface
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L
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Conclusion
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Materials Science Research

• Ti/Ti/AlCu0.05 allows for growth of Sc12.5A187.5N films
with a high-quality microstructure and texture

• Suppressed secondary grains ScAIN

• CMOS compatible metal and allows for
commercialization of ScAIN technologies

Devices: pMUTS and Microresonator

• Can fabricate AIN and ScAIN CMR with competitive
metrics

• pMUTS are currently being used for sensing
applications

XMEMS

• Successfully tested microresonator in situ up to
500°C

• pMUTs and microresonators can withstand 950°C
anneals

• AIN temperature limit >1000°C
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Piezoelectric Micromachined Ultrasonic

Transducers (pMUTs) Operation
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• Microphone

• Device that converts input acoustic
energy to output electrical energy

• Diaphragm, cavity, vent Diaphragm

PMUT Pixel

Acoustic
Wave

Vent

i
Cavity

P—> Transduction n_N Electrical
Mechanism ' V Output

Radiation Pressure

Cavity
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Imaging Application
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• Sensing

• Pulse signal in outer annulus

• Inner circle senses the reflection
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High Temperature Capable pMUT
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• Rapid Thermal Anneals

• Argon purged

• Vacuum of 1 Torr

• Temperature held for 2-7 minutes
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