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Problem
• Discrete fracture network (DFN) generation introduces substantial

aleatory (random) uncertainty.
• What are the effects of DFN realization variability on repository

performance?
How can these effects be minimized?

Method
• Generate DFN realizations based on fracture set properties at

Forsmark (Joyce et al. 2014) using dfnWorks (Hyman et al. 2015)
• Map to equivalent porous medium grid of generic crystalline

repository reference case (Stein et al. 2017; Mariner et al. 2016)
• Run 50 realizations of epistemic uncertainties (Table 1) for each

DFN realization using PFLOTRAN (Hammond et al. 2011; Lichtner
and Hammond 2012) and GDSA Framework (pa.sandia.gov)

• Analyze results

Table 1. Epistemic uncertainties assumed and propagated.
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dissolution rate (rateUNF) (yr-1)
Glacial permeability (kGlacial) (m2)
Buffer porosity (pBuffer)
Damaged rock zone (DRZ) permeability
(permDRZ) (m2)
Buffer permeability (permBuffer) (m2)
log of mean waste package fractional
degradation rate at 60°C (rateWP
* Uncertainty among waste packages about the sampled log mean rate is assumed to be
normally distributed with a standard deviation of 1.
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Figure 1. Cut-away of DFN 1 realization mapped to porous medium grid,
showing the far half of the repository and model domain. Fractures of the
DFN realization are shown in orange. Unconnected fractures are removed.
Five deterministic fracture zones, three sub-vertical (gray) and two with a
dip of approximately 30 degrees (red), are common to each DFN realization.
Observation points 4 and 6 are located above the midline of the repository
where the deterministic fracture zones intersect the top boundary.
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Figure 2.1-129 concentration contours for DFN 1 at 300 years.
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Figure 3. 1-129 concentrations over time at OBS 4 and OBS 6 for DFN 1.
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Figure 4. Cumulative occurrence of breakthrough (>1040 M) for each
DFN at observation points (DFN 1 in red).

Conclusions
• Breakthrough time variation at OBS points owe primarily to:

• Uncertainty in waste package degradation rate
• Uncertainty in spatial locations of connected fractures

• Results support (1) avoiding waste emplacement near connected
fractures intersecting the repository and (2) sealing the drift and
damaged rock zone in the vicinities of those fractures.
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