
Choose an item. 

 

 

PNNL- 29124  

 
 

Physics-Informed Machine 
Learning with Application to 
Solid Oxide Fuel Cell System 
Modeling and Optimization 
September 2019 

Jie Bao 
Chao Wang 
Zhijie Xu 
Brian J. Koeppel 
 
 

 
 

 

Prepared f or the U.S. Department of  Energy   
under Contract DE-AC05-76RL01830 

  



Choose an item. 

 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility 
for the accuracy, completeness, or usefulness of any information, apparat us , 
product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by 
the United States Government or any agency thereof, or Battelle Memorial 
Institute. The views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency thereof. 

 

PACIFIC NORTHWEST NATIONAL LABORATORY 
operated by 
BATTELLE 

for the 
UNITED STATES DEPARTMENT OF ENERGY 

under Contract DE-AC05-76RL01830 

 

Printed in the United States of America 

Available to DOE and DOE contractors from the 
O ffice of Scientific and Technical Information, 

P.O . Box 62, Oak Ridge, TN 37831-0062; 
ph: (865) 576-8401 
fax: (865) 576-5728 

email: reports@adonis.osti.gov   

Available to the public from the National Technical Information Service 
5301 Shawnee Rd., Alexandria, VA 22312 

ph: (800) 553-NTIS (6847) 
email: orders@ntis.gov <https://www.ntis.gov/about> 

O nline ordering: http://www.ntis.gov 

 

 

 
 

mailto:reports@adonis.osti.gov
https://www.ntis.gov/about
http://www.ntis.gov/


PNNL- 29124 
 

 

 
 
 
 
 
 
 
 
 
 

Physics-Informed Machine Learning with 
Application to Solid Oxide Fuel Cell System 
Modeling and Optimization 
 
 
 
 
 
September 2019 
 
 
 
Jie Bao 
Chao Wang 
Zhijie Xu 
Brian J. Koeppel 
 
 
 
 
Prepared for 
the U.S. Department of Energy 
under Contract DE-AC05-76RL01830 
 
 
 
 
 
 
 
Pacific Northwest National Laboratory 
Richland, Washington 99354 
 



PNNL- 29124 
 

Contents ii 
 

Summary 
Traditional data-driven machine learning (ML) techniques were combined with the physics-
based SOFC-MP model toward improving SOFC system-level performance prediction. Four 
different physics-informed ML methods were proposed to demonstrate better prediction 
accuracy compared with traditional ML methods. First, it was preferred that the existing Kriging-
based surrogate model not be entirely abandoned, so errors between Kriging regression 
prediction and true solution are learned using ML. The goal was to find the pattern of the error 
distribution as a function of model input so discrepancies between the Kriging prediction and 
true solution could be reduced by adding the additional ML-trained error term to the existing 
prediction. Second, deep neural networks (DNN) coupled with the mass balance model (MBM) 
have been developed to significantly decrease the reduced order model (ROM) prediction error 
with fewer training data compared to the traditional Kriging-based ROM and traditional DNN 
regression approaches. Third, DNN regression coupled with a neural networks (NN) classifier 
and MBM was developed. It provides superior performance on classifying the physically 
operational conditions for natural gas fuel cell (NGFC) than traditional classification approaches. 
Finally, two kinds of pre-trained DNN transfers were studied and tested. One was transferring a 
pre-trained DNN for low-fidelity model data to a high-fidelity model. The second one was 
transferring a pre-trained DNN from state-of-the-art NGFC to advanced NGFC. These physic-
informed ML frameworks can serve as a solid foundation for estimating U.S. Department of 
Energy-targeted fuel cell performance and exhibit great potential to be employed to other 
engineering applications. 
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CCS carbon capture and storage 
CH4 methane 
CO2 carbon dioxide 
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1.0 Introduction 
Machine learning (ML) is rapidly developing and very popular, but successful examples for 
solving practical science, engineering, or industrial problems are rare. Therefore, we proposed 
to develop an approach of applying ML to address such problems and used SOFC system 
modeling and optimization as a demonstration. PNNL developed the SOFC-MP (SOFC Multi-
Physics) software (Koeppel et al. 2011; Lai et al. 2011) for the U.S. Department of Energy 
(DOE) fuel cell program to provide high-fidelity estimates for fuel cell stack performance, but it is 
not computationally efficient enough when integrated into power system-scale models. There 
are over 50 input parameters in the stack model that potentially impact the fuel cell operation 
and reliability, and there are over 40 performance outputs to be considered for power system 
model interactions. Identification of the influence of key parameters and parameter 
combinations has been unsuccessful using manual or traditional design–of-experiments 
techniques and regression models. In addition, the current Kriging-based surrogate model for 
SOFC performance prediction encountered some shortcomings (Pan et al. 2013). The 
discrepancy between the surrogate model prediction and true solution from SOFC-MP usually 
decreases with increased training set size. However, for some outputs, this discrepancy in the 
current SOFC surrogate cannot decrease below ~5%–10%, even with a further increase in the 
training set size. Currently, there is no well-developed method to further decrease this 
discrepancy. 

The targeted DOE sponsors, such as Office of Fossil Energy (FE) and Office of Energy 
Efficiency & Renewable energy (EERE), have shown strong interests in having highly accurate 
models for fuel cell system design and optimization. ML could achieve this vision, but currently 
there are no existing ML approaches for such applications. DOE targets (e.g., ~10% reduced 
cost for energy generation or ~5% increased fuel utilization) are hard to achieve using the 
current surrogate model with a maximum error of ~5%–10%. Because the stack model is the 
core piece for the industrial system-scale model, the error in the stack model is usually amplified 
significantly while propagating through the system model. Therefore, the estimated fuel cell 
system error must be decreased to <1% to provide reliable stack model prediction. 

To resolve all the aforementioned issues, we proposed to integrate data-driven ML techniques 
with the physics-based SOFC-MP model for more efficient and accurate surrogate model 
prediction. The outcome of this high-fidelity surrogate model will be employed for DOE high-
visibility ‘pathway studies’ demonstrating how programmatic cost-of-energy targets can be 
achieved and how research thrusts should be prioritized to realize the needed technology 
advancements. Four main ML approaches have been developed for demonstration of the 
applicability of SOFC. (1) It was preferred that the existing Kriging-based surrogate model was 
not entirely abandoned, so errors between Kriging regression prediction and true solution can 
be learned using ML. The goal was to find the pattern of the error distribution as a function of 
model input so the discrepancy between Kriging prediction and true solution can be reduced by 
adding the additional ML-trained error term to the existing prediction. (2) Deep neural networks 
(DNN) coupled with the mass balance model (MBM) was developed to significantly decrease 
the reduced order model (ROM) prediction error with fewer training data compared to the 
traditional Kriging-based ROM and traditional DNN regression approach. (3) DNN regression 
coupled with a neural network (NN) classifier and MBM is developed. It provides superior 
performance on classifying the physically operational conditions for the natural gas fuel cell 
(NGFC) than traditional classification approaches. (4) Two kinds of pre-trained DNN transferring 
were studied and tested. One is transferring DNN for low-fidelity model data to a high-fidelity 
model. The second one is the transferring DNN from state-of-the-art NGFC to advanced NGFC. 
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The advanced NGFC refer to the fuel cell with next generation electrodes materials, whose 
activation loss and Ohmic loss is 50% of the SOA NGFC’s electrodes. The proposed physics-
informed ML framework will not only be used in SOFC modeling, but also will serve similar 
functions in other science and engineering applications. 

2.0 Fuel Cell Model for Physics-Informed ML Integration 
A system model of a 550 MWe NGFC system with carbon capture and storage (CCS) 
developed using the Aspen Plus® platform is considered in the present study to test the ROM 
integration. Noteworthy system features include an atmospheric SOFC stack, an oxygen driven 
auto-thermal natural gas reformer, an oxy-combustor to recover unutilized anode-exhaust 
chemical energy, a steam bottoming cycle to recover stack exhaust heat energy, and a 
purification unit to provide a carbon dioxide (CO2) stream suitable for sequestration. The auto-
thermal reformer provides a prescribed degree of external reformation of the pipeline natural 
gas, whose composition is primarily methane (CH4) (~93% molar fraction in the present case), 
to modulate the amount of endothermic on-cell reforming. An anode gas recirculation loop is 
included to maintain a suitable oxygen (O2) to carbon ratio (O/C) to prevent carbon formation in 
addition to providing the steam required for internal reformation. Cathode exhaust recirculation 
is provided to not only limit the fresh air flow to increase overall system efficiency but also to 
lower the cathode side recuperator (Cathode HTX in Figure 1) size and costs. Further details 
about the system and modeling approach can be found in Iyengar et al. (2014). 

 
Figure 1. NGFC system schematic chart (Source DOE/NETL). 

The model input parameters and ranges used for this work are listed in Table 1. Based on the 
selected current density, pressure, internal reforming, recirculation fractions, and utilizations, a 
material flow balance calculation is performed for the system configuration in Figure 1 to 
determine the fuel and oxidant compositions at the stack inlet. These compositions, combined 
with the sampled inlet temperature values, thereby define the individual case to be solved for 
the fuel cell stack. It is assumed that the cell geometry is fixed, and only operational conditions 
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are changed, but the approach is flexible enough that other geometric parameters (e.g., the 
number of cells in the stack) could be input variables for a design study if desired. Various 
model output parameters were selected for the study including the voltage, fuel/oxidant exhaust 
temperatures, cell maximum temperatures, cell temperature difference, and fuel/oxidant 
species. Voltage is one of the important outputs because it determines the stack electrical 
power in the system model based on the current density input variable. The maximum cell 
temperature is another output of interest because it defines the allowable thermal operating 
range to avoid cell material degradation. Table 2 lists all the modeling output parameters that 
can be used for the system designs. 

Table 1. Model input parameters, ranges, and descriptions. 

Variables Ranges Description 
Average Current Density 2000–6000 A/m2 Cell operating current 
Fuel Temperature 15–60°C Fuel temperature at stack inlet 
Internal Reforming 0–1 Prescribes the degree of external reformation 
Oxidant Temperature 550–800°C Oxidant temperature at stack inlet 
Oxidant Recirculation 0.0–-0.8 Fraction of cathode exhaust recirculated 
Oxygen-to-Carbon Ratio 1.5–3.0 Defines fuel exhaust recirculation needed to 

achieve the desired O/C ratio at stack inlet 
Stack Fuel Utilization 0.4–0.95 Overall fuel utilization 
Stack Oxidant Utilization 0.125–0.833 Overall oxidant utilization 
Pressure 1-5 atm Cell operating pressure 

Table 2. Model output parameters that can be used for system designs. 

Output variables 
Stack Voltage Outlet Fuel CH4 
Avg Cell Voltage Outlet Fuel N2 
Max Current Density Outlet Air Flowrate 
Min Current Density Total Power 
Avg Cell Temperature Air Enthalpy Change 
Max Cell Temperature Fuel Enthalpy Change 
Min Cell Temperature Electrical Efficiency 
Delta Cell Temperature Stack Efficiency 
Outlet Fuel Temperature Fuel Stack Inlet Temperature 
Delta Fuel Temperature Fuel Stack Inlet Flowrate 
Outlet Air Temperature Fuel Stack Inlet H2 Molar Fraction 
Delta Air Temperature Fuel Stack Inlet H2O Molar Fraction 
Air Heat Exchanger Effectiveness Fuel Stack Inlet CO Molar Fraction 
Fuel Utilization Fuel Stack Inlet CO2 Molar Fraction 
Outlet Fuel Flowrate Fuel Stack Inlet CH4 Molar Fraction 
Outlet Fuel H2 Fuel Stack Inlet N2 Molar Fraction 
Outlet Fuel H2O Fuel Temperature after Mix 
Outlet Fuel CO Fuel Temperature before Gibbs Reactor 
Outlet Fuel CO2 Fuel Heat Exchanger Effectiveness 
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3.0 Modeling Results and Discussion 

3.1 Physics-Informed ML Based on Existing Surrogate Model 
Pacific Northwest National Laboratory (PNNL) has spent tremendous efforts to develop a 
Kriging-based surrogate model for SOFC stack performance prediction and integration into 
higher level system models. Therefore, ML should be used to correct/improve existing models, 
not to entirely replace them. Here, we propose to learn the surrogate model prediction and true 
solution discrepancy, not the surrogate model output directly. The step-by-step illustration of the 
physics-informed ML framework is listed below. 
1. Attain prediction from Kriging-based surrogate model 
2. Get the error between the true solution and the prediction from Kriging 
3. Train the error from Step 2 using ML and find the pattern 
4. Physics-informed ML prediction = Kriging prediction + ML trained error 

By doing this, we expect the new prediction to be closer to the true solution. After this physics-
informed ML is developed, comparisons can be made among three different surrogates, i.e., 
Kriging, traditional ML, and physics-informed ML. The flow chart of the comparison is shown in 
Figure 2. 
 

 
Figure 2. Flow chart to compare three different surrogate models. 
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For Kriging regression, details can be found in Koeppel et al. (2017). For traditional ML, a DNN 
is built to predict SOFC performance. The DNN contains a total of four layers and the number of 
units in each layer are 32, 200, 200, and 256, respectively. There are 9 total input parameters 
(same as listed in Table 1) and 48 output parameters, which are identical to the input/output 
parameters in the Kriging-based surrogate model. For physics-informed ML prediction, another 
DNN is built containing four layers and the number of units in each layer are 32, 200, 200, and 
256, respectively. There are nine total input parameters (same as listed in Table 1) and only one 
output; which is the difference between the Kriging prediction and true solution. Figure 3 shows 
the comparison results for three different methods. The prediction parameter is maximum cell 
temperature. The x-axis shows the number of different training data, while the y-axis is the L1 
Norm, which is the absolute error between predictions and true solutions. It is obvious that 
Kriging predictions always exhibit the largest errors, which reflects a worst-prediction accuracy. 
In addition, our physics-informed ML shows better prediction accuracy compared with traditional 
ML, and the improvement on accuracy increases with the number of training datasets. 

 
Figure 3. Comparison between three different model predictions using a different number of 

training datasets. 

The same methodology is also implemented to predict cell voltage, and the results are shown in 
Figure 4. In this case, a fixed 2000 case training dataset is employed, and voltage prediction is 
plotted in a form of a probability density function. In Figure 4, blue represents true solution, red 
represents traditional ML prediction, yellow represents Kriging prediction, and purple represents 
physics-informed ML prediction. It is observable that physics-informed ML predictions are very 
close to, and almost overlap, the true solution demonstrating its best prediction accuracy 
compared with other two prediction methods. Again, Kriging prediction shows the worst 
prediction accuracy. 

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000

L1
 N

or
m

Number of training data

Maximum Cell Temperature

Kriging

Traditional ML

Physics-informed ML



PNNL- 29124 
 

Modeling Results and Discussion 6 
 

 
Figure 4. Probability density function for three model predictions and true solution. 

3.2 DNN Coupled with Mass Balance Model 
A physics-informed ML tool to construct an enhanced fidelity ROM for the NGFC has been 
developed. It couples the DNN and a simple MBM to significantly decrease the ROM prediction 
error with fewer training data compared to the traditional Kriging-based ROM construction. The 
MBM calculates the actual fuel and oxidant consumption in the fuel cell based on the requested 
current. Because of methane reforming within the NGFC stack, the MBM cannot accurately 
estimate the species fraction. With the assumption that methane is always consumed first in the 
cell, MBM can provide a good approximation almost instantly, which can then be used to 
improve the DNN regression model accuracy. Figure 5(a) and (b) show the comparison 
between the SOFC-MP simulation and the MBM approximation for the H2 and H2O fraction at 
the fuel cell anode outlet. The MBM can capture the main trend of the simulation results but has 
considerable deviations. Figure 5(c) and (d) show the comparison between different ROMs. 
‘MBM+DNN’ refers to the ROM using DNN to learn the deviations between MBM and SOFC-MP 
results for different input parameters. ‘DNN’ refers to the ROM directly using DNN to learn the 
relationship between input and output parameters. It shows that both DNN and MBM+DNN can 
provide much lower prediction error than the traditional Kriging method. MBM+DNN can further 
decrease the prediction error more than DNN with much fewer training data. 
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(a) (b) 

  
(c) (d) 

Figure 5. Results for physics-informed ML tool to construct enhanced fidelity ROM for NGFC. 

3.3 DNN Regression Coupled with NN Classifier and Mass Balance 
Model 

It was noticed that not all input parameter combinations can make the fuel cell physically 
operational. Therefore, before using the ROM to predict the outputs, it is necessary to use a 
classifier to assess the feasibility of successful fuel cell operation. Figure 6(a) shows the 
comparisons between different classifiers. They are decision tree (DT), random forest (RF), 
support vector machine (SVM), DNN, DNN regression + DNN, and DNN regression + MBM + 
DNN. Clearly, DNN provides better accuracy than DT, RF, and SVM. The DNN regression 
provides more inputs for the classifier, and it is noticed that DNN regression for a non-physically 
operational case deviates more from the physical constraints, like mass conservation, than 
when a physically operational case is explored. Thus DNN regression + DNN classifier can 
stably provide better accuracy than the traditional DNN classifier. The MBM model provides an 
additional mass balance check for the classifier further improving the accuracy. Figure 6(b) 
shows a flow chart of the DNN regression + MBM + DNN classifier, which has been shown to 
most accurately predict whether or not a fuel cell can be physically operational given a set of 
input parameters. 
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(a) (b) 

Figure 6. Comparison between different classifiers for determining if the fuel cell can be 
physically operational given a set of input parameters. 

3.4 Transferred DNN 
The creation of a ROM surrogate provides detailed performance predictions for the system 
under a given set of assumptions (e.g., given electrochemical performance, given system 
flowsheet). It was also investigated if a ROM developed under those conditions could still 
provide beneficial knowledge for cases with different assumptions for the system flowsheet or 
performance. In other words, could the existing pre-trained neural networks developed for one 
condition be transferred to another condition and beneficially help enhance the rate of learning? 
To answer this question, two kinds of DNN transferring were studied and tested. One was 
transferring a pre-trained DNN for low-fidelity model data to a high-fidelity model. The second 
one was transferring a pre-trained DNN for SOA NGFC to advanced NGFC. 

3.4.1 Transferring DNN for Different Fidelity Model Data 

As mentioned in Sections 3.2 and 3.3, a simple MBM model can provide the approximations of 
molar fractions for the species in NGFC systems almost instantly. This means that almost 
infinite training data can be generated with nearly no cost. Therefore, 40,000 MBM prediction 
data were used to pre-train a DNN regression model. The pre-trained DNN was then fine-tuned 
by small amounts of the true simulation data from SOFC-MP. Figure 7 shows the model 
prediction error for different numbers of samples from SOFC-MP simulations. The transferred 
DNN can provide better prediction than the traditional DNN regression with a small amount of 
SOFC-MP simulation data. However, the advantages of the transferred DNN decrease with an 
increased number of training samples. With more than about 3500 true simulation data from 
SOFC-MP, the transferred DNN provides a higher error rate than the traditional DNN regression 
approach. This transferred DNN approach is still valuable for when the true simulation data is 
limited and difficult to acquire. 
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(a) (b) 

Figure 7. Prediction error for MBM pre-trained DNN and comparison to other approaches. 

3.4.2 Transferring DNN from State-of-the-Art NGFC to Advanced NGFC 

Another implementation of the transferred DNN method is to transfer an established DNN 
framework from state-of-the-art (SOA) NGFC to advanced NGFC. The advanced NGFC in this 
work assumes a 50% reduction for both activation and ohmic over potential compared with SOA 
NGFC. First, the SOA NGFC DNN framework is established using the maximum available 
number of SOA NGFC SOFC-MP data. The goal is to make the SOA NGFC DNN framework as 
accurate as possible. Then, the entire DNN framework including all the weights and bias values 
is transferred and ready to be implemented by using the advanced NGFC SOFC-MP data. In 
the meantime, another DNN framework (fresh DNN) with the same number of layers and 
neurons is generated without any pre-existing knowledge of either SOA or advanced NGFC 
information. In order to make an apples-to-apples comparison, both DNN frameworks are 
trained using the same number of training datasets from the advanced NGFC SOFC-MP 
simulations. The cell voltage root-mean-square-error (RMSE) for the same testing dataset is 
plotted in Figure 8. It can be seen that RMSE decreases with an increasing number of training 
dataset for both DNN frameworks. However, it is obvious that the transferred model DNN (in 
orange) exhibits less RMSE compared with the fresh DNN (in blue), especially when the training 
datasets are small. The results are expected because with an initial knowledge of SOA NGFC, 
the transferred model DNN may bring some underlying physics and assist the prediction of 
advanced NGFC performance, thereby yielding less RMSE compared with fresh DNN when the 
training dataset is not sufficient. However, once more training datasets are fed into the fresh 
DNN framework, the advantages of transfer model DNN are not that significant and the RMSE 
between those two DNNs becomes comparable. 
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Figure 8. Cell voltage RMSE comparison between fresh and transferred model DNN for 

advanced NGFC system using different numbers of training data 

4.0 Conclusions 
In this LDRD project, several applications of ML were explored for SOFC modeling. (1) The 
errors between traditional Kriging regression prediction and true solution can be learned using 
ML. The ML-trained pattern of the error distribution can reduce the error of the Kriging based 
ROM predictions. (2) DNN coupled with the MBM was developed to significantly decrease the 
ROM prediction error with fewer training data compared to the traditional Kriging-based ROM 
and traditional DNN regression approach. (3) DNN regression coupled with a neural network 
(NN) classifier and MBM was developed. It provides superior performance on classifying the 
physically operational conditions for the natural gas fuel cell (NGFC) than traditional 
classification approaches. (4) Two kinds of pre-trained DNN transferring were studied and 
tested. One is transferring DNN for low-fidelity model data to a high-fidelity model. The second 
one is the transferring DNN from state-of-the-art NGFC to advanced NGFC. The capabilities 
and tools developed in this project will enhance the future studies of SOFC, and increase the 
probability of participating into DOE’s new ML and/or SOFC related funding opportunities.  
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