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@ Communication is Expensive
e in terms of time and energy

@ Avoiding Communication
@ some communication is necessary: we can prove lower bounds

o theoretical analysis identifies suboptimal algorithms and spurs
algorithmic innovation

@ minimizing communication leads to speedups in practice
@ We'll focus on QR decompositions in this talk

e main new kernel is “Tall-Skinny QR (TSQR)" algorithm

e we'll discuss some recent improvements based on TSQR
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Let’s start with dense matrix multiplication...

@ one of the most fundamental computations
@ highly tuned on most architectures
@ generally considered to be “compute-bound”

Can we improve performance with better algorithms?

Grey Ballard P



Can we improve dense matrix multiplication?

Here’s a strong-scaling plot, for fixed matrix dimension: n = 94,080
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Can we improve dense matrix multiplication?

Here’s a strong-scaling plot, for fixed matrix dimension: n = 94,080
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Can we improve dense matrix multiplication?

Here’s a strong-scaling plot, for fixed matrix dimension: n = 94,080
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Can we improve dense matrix multiplication?

Here’s a strong-scaling plot, for fixed matrix dimension: n = 94,080
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We must consider communication

By communication, | mean
@ moving data within memory hierarchy on a sequential computer
@ moving data between processors on a parallel computer

For high-level analysis, we’ll use these simple memory models:

Sequential Parallel
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Runtime Model

Measure computation in terms Measure communication in terms
of # flops performed of # words communicated
Time per flop: v Time per word:

Total running time of an algorithm (ignoring overlap):

v - (# flops) + 3 - (# words)

B > ~ as measured in time and energy, and the relative cost of
communication is increasing
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Why avoid communication

Annual Improvements in Time

Flop rate DRAM Bandwidth | Network Bandwidth

Y p B
59% per year 23% per year 26% per year

Energy cost comparisons

10000 +——— @
1000 1 i Off-chip

100

Picojoules

® now (45nm)

10 + 2018 (11nm in this case)

S \@\ ¢ Source: John Shalf
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Costs of matrix multiplication algorithms

n = matrix dimension
P = number of processors
M = size of the local memory

Computation | Communication
“2D” Algorithm lisd o~
(ScaLAPACK) G ( P ) (ﬁ)
3 3
Lower Bound Q (%) Q <P'\7/m>

@ 2D algorithm is suboptimal if M > % (extra memory available)
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Costs of matrix multiplication algorithms

n = matrix dimension
P = number of processors
M = size of the local memory

Computation | Communication
Tatkeeg | o) o(%)
25D Agorithm | O (%) 0 (3%)
Lower Bound Q (”—PS) Q <%)

@ 2D algorithm is suboptimal if M > % (extra memory available)
@ Takeaway: tradeoff extra memory for reduced communication
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Performance improvement in practice

Matrix Multiplication on 16,384 nodes of BG/P
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Lower bounds for classical matrix multiplication

@ Assume ©(n®) algorithm
@ Sequential case with fast memory of size M
@ lower bound on words moved between fast/slow mem:

n .
Q (\/—W> [Hong & Kung 81] ?

e attained by blocked algorithm
@ Parallel case with P processors (local memory of size M)
e lower bound on words communicated (along critical path):

Q <P§W> [Toledo et al. 04] @ﬁ
2 L. ]

e attained by 2.5D algorithm

Grey Ballard ]



Extensions to the rest of linear algebra

Theorem (Ballard, Demmel, Holtz, Schwartz 11)
If a computation “smells” like 3 nested loops, it must communicate

# words = Q ( diliogs )

\/memory size

This result applies to
@ dense or sparse problems
@ sequential or parallel computers

This work was recognized with the SIAM Linear Algebra Prize,
given to the best paper from the years 2009-2011
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Extensions to the rest of linear algebra

Theorem (Ballard, Demmel, Holtz, Schwartz 11)
If a computation “smells” like 3 nested loops, it must communicate

# words = Q ( diliogs )

\/memory size

What smells like 3 nested loops?
@ the rest of BLAS 3 (e.g. matrix multiplication, triangular solve)
@ Cholesky, LU, LDLT, LTLT decompositions
@ QR decomposition
@ eigenvalue and SVD reductions
@ sequences of algorithms (e.g. repeated matrix squaring)
@ graph algorithms (e.g. all pairs shortest paths)

This work was recognized with the SIAM Linear Algebra Prize,
given to the best paper from the years 2009-2011
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N

Optimal Algorithms - Sequential O(n®) Linear Algebra

; Optimal
Computation Algorithm
blocked algorithms
LSS [Gustavson 97]
LAPACK
Cholesky [Ahmed & Pingali 00]
[BDHS10]
Symmetric LAPACK (rarely)
Indefinite [BBD"133]
LAPACK (rarely)
LU [Toledo 977"
[Grigori et al. 11]
LAPACK (rarely)
QR [Frens & Wise 03]
[Elmroth & Gustavson 98]*
[Hoemmen et al. 12]*
Eig, SVD [BDK13], [BDD11]
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Algorithms - Parallel O(n®) Linear Algebra

Factor exceeding | Factor exceeding
Algorithm Reference lower bound for lower bound for
# words # messages
Matrix Multiply [Cannon 69] 1 1
Cholesky ScalAPACK log P log P
Symmetric [BBDT13b] ? ?
Indefinite ScalLAPACK log P (N/P'/2)log P
LU [Grigori et al. 11] log P log P
ScalLAPACK log P (N/P'?Ylog P
QR [Hoemmen et al. 12]* log P log® P
ScalL APACK log P (N/P'/2)log P
. [BDK13] ? ?
SymEig, SVD ScalAPACK log P N/P'/2
. [BDD11] log P log® P
NonsymEig ScaLAPACK P'/2log P Nlog P

*This table assumes that one copy of the data is distributed evenly across processors

Grey Ballard 12
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For more details...

For a more comprehensive (150+ pages) survey, see our

Communication lower bounds and optimal algorithms
for numerical linear algebra

in the most recent Acta Numerica volume
[BCD*14]
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Example Application: Video Background Subtraction

Idea: use Robust PCA algorithm [Candes et al. 09] to subtract
constant background from the action of a surveillance video

Given a matrix M whose columns represent frames, compute

M=L+S

where L is low-rank and S is sparse
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Example Application: Video Background Subtraction

I

Singular Value Threshold (L)

H-E-N
R J

*

Threshold these singular values

Shrink (S)

Grey Ballard

Compute:
M=L+S
where L is low-rank and S is sparse

The algorithm works iteratively, each
iteration requires a singular value
decomposition (SVD)

@ Mis 110,000x100

Communication-avoiding algorithm
provided 3x speedup over best GPU
implementation [ABDK11]



Householder QR (HhQR)

Blocked Householder QR works by repeating:
@ panel factorization (tall-skinny QR decomposition)
© trailing matrix update (application of orthogonal factor)

A

—

Householder vectors computed Householder vectors aggregated

and applied one at a time by computing triangular matrix T
I—7ryy" I—YTYT

(two parallel reductions per column) (application = matrix multiplications)
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Tall-Skinny QR (TSQR)

A R

3

Key benefit of TSQR:
one parallel reduction

Orthogonal factor stored implicitly
as tree of Householder vectors

Grey Ballard 17



Communication-Avoiding QR (CAQR)

CAQR uses TSQR for panel factorization and applies the update using
implicit tree structure

Trailing matrix

N
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Yamamoto’s Idea

@ Y. Yamamoto gave a talk at SIAM ALA 2012: he wanted to use TSQR
but offload the trailing matrix update to a GPU

@ To make CAQR’s trailing matrix update more like matrix multiplication,
his idea is to convert implicit tree into compact WY-like representation

W S
N\ N N []
—>

N N

N
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Yamamoto’s Idea

@ Y. Yamamoto gave a talk at SIAM ALA 2012: he wanted to use TSQR
but offload the trailing matrix update to a GPU

@ To make CAQR’s trailing matrix update more like matrix multiplication,
his idea is to convert implicit tree into compact WY-like representation

Compact WY representation: /| — YTY'

W v
| Y T

» \ N —

S N Basis-kernel representation: /| — WSWT™

| w s w

N
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Yamamoto’s Algorithm

@ Perform TSQR

© Form Q explicitly (tall-skinny orthonormal factor)
Q SetW=Q—1

Q SetS=(1-@)!

Q-1

I—WSWTzl—[ 0, ][/—01]"1 [(Qi—=NT QF]

I W S W
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How is Q formed?

Q1 Identity

\

Apply Q to the identity,
exploiting sparsity

Computation and communication
identical to TSQR, performed in
reverse order
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Yamamoto’s Algorithm

@ Perform TSQR

© Form Q explicitly (tall-skinny orthonormal factor)
Q SetW=Q—1

Q SetS=(1-@)!

Q-1

I—WSWTzl—[ 0, ][/—01]"1 [(Qi—=NT QF]

I W S W
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Reconstructing Householder Vectors (TSQR-HR)

With a little more effort, we can obtain the compact WY representation:

@ Perform TSQR

© Form Q explicitly (tall-skinny orthonormal factor)
© Perform LU decomposition: Q — I = LU

Q SetY=1L

Q SetT=-Uy, T

Grey Ballard 23



Key ldea

Compute a QR decomposition
using Householder vectors™*:

A=QR=(I-YTY)R

T

I Iw D Dwﬁw

*I— YTY, known as compact WY representation
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Key ldea

Compute a QR decomposition Re-arrange the equation and we
using Householder vectors*: have an LU decomposition:
A=QR=(I-YTY{)R A-R= Y-(—TY1TR)

Iro e

*I— YTY, known as compact WY representation

Grey Ballard 24



Why form Q?

Cheaper approach basedon A— R=Y - (—TY]R):
@ Perform TSQR
@ Perform LU decomposition: A— R = LU
Q SetY=L
Q Set T =—UR'Y, T (or compute T from Y)

Grey Ballard 25



Why form Q?

Cheaper approach basedon A— R=Y - (—TY]R):
@ Perform TSQR
@ Perform LU decomposition: A— R = LU
Q SetY=L
Q Set T =—UR'Y, T (or compute T from Y)

This approach is similar to computing R using TSQR
and Q using Householder QR

@ if Ais well-conditioned, works fine
@ if Ais low-rank, QR decomposition is not unique
@ if Ais ill-conditioned, R matrix is sensitive to roundoff

Grey Ballard 25



What about pivoting in LU?

Third step in reconstructing Householder vectors:
@ Perform LU decomposition: Q — I = LU
e what if Q — /is singular?

Grey Ballard 26



What about pivoting in LU?

Third step in reconstructing Householder vectors:
@ Perform LU decomposition: Q — I = LU
e what if Q — /is singular?

Actually, we need to make a sign choice:
@ Perform LU decomposition: Q — Sgn = LU

@ Sgn matrix corresponds to sign choice in Householder QR
e guarantees Q — Sgn is nonsingular
e guarantees maximum element on the diagonal (no pivoting)

Grey Ballard 26



What about pivoting in LU?

Third step in reconstructing Householder vectors:
@ Perform LU decomposition: Q — I = LU
e what if Q — /is singular?

Actually, we need to make a sign choice:
@ Perform LU decomposition: Q — Sgn = LU

@ Sgn matrix corresponds to sign choice in Householder QR
e guarantees Q — Sgn is nonsingular
e guarantees maximum element on the diagonal (no pivoting)

No pivoting makes LU of tall-skinny matrix very easy
@ LU of top block followed by triangular solve for all other rows

Grey Ballard



Numerical Stability

Theorem

Let R be the computed upper triangular factor of m x b matrix A
obtained via the TSQR algorithm with p processors using a binary tree
(assuming m/p > b), andlet Q=1 — YTY] and R= SR where Y, T,
and S are the computed factors obtained from Householder
reconstruction. Then

IA— QR|lF < Fi(m, b, p,e)||Allr

and o
H/_ QTQHF S FQ(m7 bv p7€)

where Fy, F, = O ((b%2(m/p) + b%2log p + b3) €) for b(m/p)e < 1.
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Numerical Experiments for Tall-Skinny Matrices

p K IA—QRl>_[II-Q"Qll2
1e-01 | 5.1e+02 | 2.2e-15 9.3e-15
1e-03 | 5.0e+04 | 2.2e-15 8.4e-15
1e-05 | 5.16+06 | 2.3e-15 8.7e-15

1e-07 | 5.0e+08 2.4e-15 1.1e-14
1e-09 | 5.0e+10 2.3e-15 9.9e-15
1e-11 | 4.9e+12 2.5e-15 1.0e-14

1e-13 | 5.0e+14 | 2.2e-15 8.8e-15
1e-15 | 5.0e+15 2.4e-15 9.7e-15

Error of TSQR-HR on tall and skinny matrices (m = 1000, b = 200)
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Numerical Experiments for Square Matrices

Matrix type K IIA— QR|2 11— Q"Q||2
A=2xrand(m) —1 2.1e+03 | 4.3e-15 (256) 2.8e-14 (2)
Golub-Klema-Stewart 2.2e+20 | 0.0e+00 (2) 0.0e+00 (2)
Break 1 distribution 1.0e+09 | 1.0e-14 (256) 2.8e-14 (2)
Break 9 distribution 1.0e4+09 | 9.9e-15 (256) 2.9e-14 (2)
Uz VT with exponential distribution 4.2e+19 | 2.0e-15 (256) 2.8e-14 (2)
The devil’s stairs matrix 2.3e+19 | 2.4e-15 (256) 2.8e-14 (2)
KAHAN matrix, a trapezoidal matrix 5.6e+56 | 0.0e+00 (2) 0.0e+00 (2)
Matrix ARC130 from Matrix Market 6.0e+10 | 8.8e-19 (16) 2.1e-15(2)
Matrix FS_541_1 from Matrix Market 4.5e+03 | 5.8e-16 (64) 1.8e-15 (256)
DERIV2: second derivative 1.2e4+06 | 2.8e-15 (256) 4.6e-14 (2)
FOXGOOD: severely ill-posed problem  5.7e+20 | 2.4e-15 (256) 2.8e-14 (2)

Errors of CAQR-HR on square matrices (m = 1000)

The numbers in parentheses give the panel width yielding largest error
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Reconstructing Householder Vectors (TSQR-HR)

With a little more effort, we can obtain the compact WY representation:

@ Perform TSQR

© Form Q explicitly (tall-skinny orthonormal factor)
© Perform LU decomposition: Q — I = LU

Q SetY=1L

Q SetT=-Uy, T
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Costs of Householder Reconstruction

Householder Reconstruction Let Abenx b
© Perform TSQR 2nb? flops, one QR reduction of size b?/2
@ Form Q 2nb? flops, one QR reduction of size b?/2
© LU(Q - Sgn) nb? flops, one broadcast of size b?/2
Q SetY=1L

Q SetT=-U-Sgn- Y, T O(b®) flops
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Costs of Householder Reconstruction

Householder Reconstruction Let Abe nx b
© Perform TSQR 2nb? flops, one QR reduction of size b?/2
@ Form Q 2nb? flops, one QR reduction of size b?/2
© LU(Q - Sgn) nb? flops, one broadcast of size b?/2
Q SetY=L
Q SetT=-U-Sgn- Y, T O(b?) flops

Alternative Algorithms

@ TSQR 2nb? flops, one QR reduction of size b?/2
@ HhQR (and form T) 3nb? flops, 2b reductions of size O(b)

@ Yamamoto’s 4nb? flops, two QR reductions of size b?/2
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Costs of Householder Reconstruction

Householder Reconstruction Let Abe nx b
© Perform TSQR 2nb? flops, one QR reduction of size b?/2
@ Form Q 2nb? flops, one QR reduction of size b?/2
© LU(Q - Sgn) nb? flops, one broadcast of size b?/2
Q SetY=L
Q SetT=-U-Sgn- Y, T O(b?) flops

Alternative Algorithms

@ TSQR 2nb? flops, one QR reduction of size b?/2
@ HhQR (and form T) 3nb? flops, 2b reductions of size O(b)
@ Yamamoto’s 4nb? flops, two QR reductions of size b?/2

For square matrices, flop costs of panel factorization are lower order: O(n?b)
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Recent Improvement*

Improved Householder Reconstruction

@ Perform TSQR 2nb? flops, one QR reduction

@ Form O(b®) flops

© Compute LU = Q; — Sgn O(b®) flops
-

Q@ Y =Apply Qto {Uo } 2nb? flops, one QR reduction

Q@ T7=-U-Sgn YT O(b®) flops

*Thanks to Nick Knight
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Recent Improvement*

Improved Householder Reconstruction

@ Perform TSQR 2nb? flops, one QR reduction

@ Form O(b®) flops

© Compute LU = Q; — Sgn O(b®) flops
-

Q@ Y =Apply Qto {UO } 2nb? flops, one QR reduction

Q@ T7=-U-Sgn YT O(b®) flops

@ Intuitively: fold the tall-skinny TRSM into the “Form Q” step
@ Achieves same comp/comm costs as Yamamoto’s algorithm
@ Requires careful choice of TSQR reduction tree

@ Implementation underway

*Thanks to Nick Knight
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Performance for Tall-Skinny Matrices

Time (ms)

Grey Ballard
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Performance for Tall-Skinny Matrices

Time (ms)

Grey Ballard

QR strong scaling on Hopper (122,880-by-32 matrix)
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Performance for Tall-Skinny Matrices

QR strong scaling on Hopper (122,880-by-32 matrix)
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Performance for Square Matrices

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

T T T T T
20 Elemental QR —+— . . |
ScalLAPACK QR I i
Binary-Tree CAQR —&— pem e '

Teraflops

144 288 576 1152 2304 4608 9216
#cores
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Binary-Apply CAQR

Trailing matrix ﬁ

N

Grey Ballard 35



Scatter-Apply CAQR

Trailing matrix

Similar to performing an all-reduce by reduce-scatter followed by all-gather
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Performance for Square Matrices

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)
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Performance for Square Matrices

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

T T T T
20 Elemental QR —+— . ]
ScalLAPACK QR i
Binary-Tree CAQR —8— pe '
15 | CAQR'HR *—_ 3 77777777777 .
Scatter-Apply CAQR —=— : f
h : ] | i I

Teraflops

144 288 576 1152 2304 4608 9216
#cores
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Two-Level Aggregation

Block size trades off time spent in panel factorizations with efficiency of
matrix multiplications

Solution:

@ Use another level of
compact WY blocking Ahhh

@ Allow for larger local matrix
multiplications

@ (Can’t use with CAQR)
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Performance for Square Matrices

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)
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Performance for Square Matrices

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)
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Performance for Square Matrices

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

T T T

o0 Elemental QR —+—
ScaLAPACK QR :
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15 L CAQR-HR ——
Scatter-Apply CAQR —=—
Two-Level CAQR-HR —— /. 7]
Two Level HhQR

10

Teraflops

144 288 576 1152 2304 4608 9216
#cores
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Conclusions

@ Communication is costly, even for historically “compute-bound”
problems like dense linear algebra

@ TSQR reduces communication and runs faster in practice for
tall-skinny matrices

@ Householder reconstruction provides best of both worlds

e latency-avoiding panel factorization
e matrix multiplication for trailing matrix updates
e backwards compatibility for performance portability
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Algorithmic Improvements for QR Decomposition

For more details:

Reconstructing Householder Vectors from Tall-Skinny QR
G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen and E. Solomonik
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-175.html

Thank Youl!

www.sandia.gov/~gmballa
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Leading Order Costs for General Matrices

Flops Words  Messages
Householder QR 2’"”2;2”3/3 2’"’%’2/2 nlog p
Binary-Apply CAQR | 277 27/3 2mntlod 7. /plog® p
. 2mn?—2n°/3  2mn+n?/2 2
CAQR-HR ) nng e \/ﬁnz ) 6,/plog-p
mn<—zn m
Scatter-Apply CAQR 5 / "\J/“ﬁ /2 7./plog?p

Costs of QR factorization of m x n matrix
distributed over p processors in 2D fashion.
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Scatter-Apply CAQR

Trailing matrix

Similar to performing an all-reduce by reduce-scatter followed by all-gather
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Scatter-Apply CAQR

Similar to performing an all-reduce by reduce-scatter followed by all-gather
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More Numerical Stability Experiments

Q — I (T from TSQR-HR) Yamamoto's approach A—R(T TfromYTY)

P K norm-wise col-wise ortho. | norm-wise col-wise ortho. | norm-wise col-wise ortho.
1e-01 | 5.1e+02 | 2.2e-15 2.7e-15 9.3e-15 | 2.5e-15 3.1e-15 9.2e-15 | 3.8e-14 1.7e-14 5.5e-15
1e-02 | 5.0e+03 | 2.3e-15 2.9e-15 1.0e-14 | 2.4e-15 3.1e-15 1.1e-14 | 3.2e-13 1.1e-13 6.2e-15
1e-03 | 5.0e+04 | 2.2e-15 2.6e-15 8.4e-15 2.6e-15 3.4e-15 1.1e-14 | 4.2e-12 1.7e-12 5.6e-15
1e-04 | 4.9e+05 | 2.2e-15 2.6e-15 7.7e-15 2.3e-15 2.8e-15 8.7e-15 | 3.8e-11 1.7e-11  5.4e-15
1e-05 | 5.1e+06 | 2.3e-15 29e-15 8.7e-15 | 3.2e-15 4.2e-15 1.0e-14 | 3.9e-10 1.4e-10 5.3e-15
1e-06 | 5.0e+07 | 2.3e-15 3.0e-15 9.1e-15 3.0e-15 3.9e-15 1.0e-14 | 3.6e-09 1.5e-09 6.1e-15
1e-07 | 5.0e+08 | 2.4e-15 3.4e-15 1.1e-14 | 2.7e-15 3.7e-15 9.9e-15 | 4.2e-08 2.1e-08 5.0e-15
1e-08 | 5.1e+09 | 2.2e-15 2.8e-15 8.6e-15 | 25e-15 3.1e-15 8.9e-15| 3.8e-07 1.5e-07 5.8e-15
1e-09 | 5.0e+10 | 2.3e-15  3.1e-15 9.9e-15 | 3.9e-15 5.1e-15 1.3e-14 | 3.6e-06 2.0e-06 5.4e-15
1e-10 | 5.0e+11 2.1e-15 2.6e-15 7.1e-15 | 2.6e-15 3.4e-15 9.9e-15 | 3.3e-05 1.2e-05 6.3e-15
le-11 | 4.9e+12 | 2.5e-15 3.4e-15 1.0e-14 | 2.4e-15 3.1e-15 1.0e-14 | 3.1e-04 1.2e-04 5.9e-15
1e-12 | 5.1e+13 | 2.2e-15 29e-15 8.5e-15 | 2.6e-15 3.3e-15 1.2e-14 | 3.7e-03 1.6e-03 5.8e-15
1e-13 | 5.0e+14 | 2.2e-15 2.7e-15 8.8e-15 | 3.0e-15 3.9e-15 1.0e-14 | 4.0e-02 1.4e-02 4.7e-15
1e-14 | 3.5e+15 | 2.3e-15 3.1e-15 1.0e-14 | 2.3e-15 2.9e-15 9.4e-15| 2.7e-01 9.7e-02 4.9e-15
1e-15 | 5.0e+15 | 2.4e-15 3.1e-15 9.7e-15 | 2.8e-15 3.7e-15 9.4e-15 | 3.5e-01 1.3e-01 6.3e-15

Error on tall and skinny matrices (m = 1000, b = 200) for three
approaches. The label “norm-wise” corresponds to |A — QR)||2,
“col-wise” corresponds to max; [|A; — (QR);||2, and “ortho.”
corresponds to ||/ — QT Q||».
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Let’s go back to matrix multiplication

Can we do better than the “2.5D” algorithm?

Given the computation involved, it minimized communication. . .
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Let’s go back to matrix multiplication

Can we do better than the “2.5D” algorithm?

Given the computation involved, it minimized communication. . .

...but what if we change the computation?

It’'s possible to reduce both computation and communication
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Strassen’s Algorithm

Strassen showed how to use 7 multiplies instead of 8 for 2 x 2 multiplication

Classical Algorithm

Grey Ballard

My
Mo
Ms
My
Ms
Me
M7

Il

Il

I:CH
Coy

C12} _ [AH
Coo Ao

A12] [
Az

B+
Bo4

By 2}
Boo

Strassen’s Algorithm

My
Mo
M,
My
Ms
Me
Mz

Il

Il

(A11 + Az2) - (B11 + B2)
(A21 + Az2) - By
A1+ (Bi2 — Bzz)
Agz - (B2t — Bi1)
(A11 + Ag2) - Bz
(A2t — A11) - (Bi1 + Bi2)
(A12 — Az2) - (Ba1 + Bo2)

My + My — Ms + My
Ms + Ms
Mz + My
My — Ma + M3 + Mg



Strassen’s Algorithm

Strassen showed how to use 7 multiplies instead of 8 for 2 x 2 multiplication

n/2 Cy | Cops

Ay

A,

BII

By,

n/2 Cy | Co

Ay

A,

B,

B;,

Flop count recurrence:

F(n)=7-F(n/2) + ©(n?)
F(n) = © (n°%7")

log, 7 ~ 2.81

Il

Il

(A11 + Az2) - (Bi1 + Bzo)
(A21 + Az2) - By
A1 - (Bi2 — Bzz)
Aga - (B21 — Biy)
(A1 + A2) - Baz
(A2t — A1) - (B11 + Bi2)
(A12 — Az2) - (B2t + Bz2)

My + My — Ms + M7
M3 + Ms
Mz + My
My — Mz + M3 + Mg
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Sequential Communication Costs

S

If you implement Strassen’s algorithm recursively
on a sequential computer:

Computation | Communication
Classical 8 g \8
(blocked) Ot O((W) M)
I 7
Strassen o(n°%") | O ((\/—’;\7) . M)
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Sequential Communication Costs

If you implement Strassen’s algorithm recursively
on a sequential computer:

Computation | Communication
Classical 8 g \8
(blocked) Ot O((W) M)
I 7
Strassen o(n°%") | O ((\/—’;\7) . M)

Can we reduce Strassen’s communication cost further?
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Lower Bounds for Strassen’s Algorithm

Theorem (Ballard, Demmel, Holtz, Schwartz 12)

On a sequential machine, Strassen’s algorithm must communicate

# words = Q <(\/Lm>logﬂ M)

and on a parallel machine, it must communicate

log, 7
n 2 M
# words = Q — =
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Lower Bounds for Strassen’s Algorithm

Theorem (Ballard, Demmel, Holtz, Schwartz 12)
On a sequential machine, Strassen’s algorithm must communicate

# words = Q <(\/Lm>logﬂ M)

and on a parallel machine, it must communicate

log, 7

n 2 M
# words = Q — —
<<\/M> P)

This work received the SPAA Best Paper Award [BDHS11] and appeared as
a Research Highlight in the Communications of the ACM

Grey Ballard
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Optimal Parallel Algorithm?

This lower bound proves that the sequential recursive algorithm is
communication-optimal

What about the parallel case?

Grey Ballard



Optimal Parallel Algorithm?

This lower bound proves that the sequential recursive algorithm is
communication-optimal

What about the parallel case?

@ Earlier attempts to parallelize Strassen had communication costs
that exceeded the lower bound

@ We developed a new algorithm that is communication-optimal,

called Communication-Avoiding Parallel Strassen (CAPS)
[BDHT12]
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Main idea of CAPS algorithm

At each level of recursion tree, choose either breadth-first or depth-first
traversal of the recursion tree

Breadth-First-Search (BFS) Depth-First-Search (DFS)
AB AB
TS; TyS, T3S; W3S, TiS, TiS; TeS; T3S, T35, T3S, T35, T25, TeS.T: S,
@ Runs all 7 multiplies in parallel @ Runs all 7 multiplies sequentially
@ each uses P/7 processors @ each uses all P processors
@ Requires 7/4 as much extra memory @ Requires 1/4 as much extra memory
@ Requires communication, but @ Increases communication by factor of
minimizes communication in subtrees 7/4 in subtrees
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Performance of CAPS on a large problem

Strong-scaling on a Cray XT4, n = 94,080

CAPS

dok ‘\(Old) Strassen

machine peak (for classical algorithms)

30

20

- W
ScaLAPACK (classmal) il B S PN

3,

Effective GFLOPS per node

P=49 P=343 P=2401
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Can we beat Strassen?

Strassen’s algorithm allows for less computation and communication
than the classical O(n®) algorithm

We have algorithms that attain its communication lower bounds and
perform well on highly parallel machines

Can we do any better?
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Can we beat Strassen?

Exponent of matrix multiplication Fum(n) = O(n")
over time

classical

2.8

Bini et al.

2.6
Strassen

24 Coppersmith-Winogra

2.2

2
1960 1970 1980 1990 2000 2010
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Can we beat Strassen?

Exponent of matrix multiplication Fum(n) = O(n")
over time

e - - classial __

Unfortunately, most of these
improvements are only theoretical
(i.e., not practical) because they

2.8

Bini et al.

26 @ involve approximations
T @ are existence proofs
24 Coppersmith-Winogra
@ have large constants
2.2t

2
1960 1970 1980 1990 2000 2010
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Yes, it's possible!

@ Other practical fast algorithms exist (with slightly better exponents)
@ Smaller arithmetic exponent means less communication
@ Rectangular matrix multiplication prefers rectangular base case
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Yes, it's possible!

@ Other practical fast algorithms exist (with slightly better exponents)
@ Smaller arithmetic exponent means less communication
@ Rectangular matrix multiplication prefers rectangular base case

Sequential outer product performance: n x 1600 x n
28 T T

26+

n
S

Effective GFLOPS
nN
N

424-1
20 4242 |
323-1
15t 3232 |
~o-STRASS-1
~—STRASS-2
"% 2000 4000 6000 8000

dimension

@ Parallel implementations underway...
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