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Summary

✓ Communication is Expensive

O in terms of time and energy

✓ Avoiding Communication

O some communication is necessary: we can prove lower bounds

O theoretical analysis identifies suboptimal algorithms and spurs
algorithmic innovation

O minimizing communication leads to speedups in practice

✓ We'll focus on QR decompositions in this talk

O main new kernel is "Tall-Skinny QR (TSQR)" algorithm

O we'll discuss some recent improvements based on TSQR
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Let's start with dense matrix multiplication...

o one of the most fundamental computations

o highly tuned on most architectures

o generally considered to be "compute-bound"

Can we improve performance with better algorithms?

Grey Ballard 2



Can we improve dense matrix multiplication?

Here's a strong-scaling plot, for fixed matrix dimension: n = 94,080
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Can we improve dense matrix multiplication?

Here's a strong-scaling plot, for fixed matrix dimension: n = 94.080
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We must consider communication

By communication, l mean

o moving data within memory hierarchy on a sequential computer

o moving data between processors on a parallel computer

For high-level analysis, we'll use these simple memory models:

Local Local Local

SLOW

Local Local Local

FAST
Local Local Local

Sequential Parallel
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Runtime Model

Measure computation in terms Measure communication in terms
of # flops performed

Time per flop: 7

of # words communicated

Time per word: 0

Total running time of an algorithm (ignoring overlap):

7 • (# flops) + 0 • (# words)

/3 » 7 as measured in time and energy, and the relative cost of
communication is increasing
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Why avoid communication

Annual Improvements in Time

Flop rate
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Costs of matrix multiplication algorithms

n = matrix dimension
P = number of processors
M = size of the local memory

Computation Communication

"2D" Algorithm n2

(ScaLAPACK)
0 (74) 0 (\rp)

Lower Bound
Q (74)

173
Q( PN/Flil)

fa 2D algorithm is suboptimal if M » 1, (extra memory available)
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Costs of matrix multiplication algorithms

n = matrix dimension
P = number of processors
M = size of the local memory

Computation Communication

"2D" Algorithm
(ScaLAPACK)

0 (74) 0 (5)

"2.5D" Algorithm 0 ( P) 0( 4)

Lower Bound
Q (3')

Q(pn3m)

fa 2D algorithm is suboptimal if M » 1, (extra memory available)

• Takeaway: tradeoff extra memory for reduced communication

Grey Ballard 7



Performance improvement in practice
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Lower bounds for classical matrix multiplication

o Assume e(n3) algorithm

o Sequential case with fast memory of size M
o lower bound on words moved between fast/slow mem:

3/  n

M

)
[Hong & Kung 81]

\/ 

o attained by blocked algorithm

o Parallel case with P processors (local memory of size M)
o lower bound on words communicated (along critical path):

/ n3 \

03,/r14/

o attained by 2.5D algorithm

[Toledo et al. 04]
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Extensions to the rest of linear algebra

Theorem (Ballard, Demmel, Holtz, Schwartz 11)

lf a computation "smells" like 3 nested loops, it must communicate

# words = Q
(  # flops

\,Onemory size

This result applies to

o dense or sparse problems

o sequential or parallel computers

This work was recognized with the SIAM Linear Algebra Prize,
given to the best paper from the years 2009-2011
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Extensions to the rest of linear algebra

Theorem (Ballard, Demmel, Holtz, Schwartz 11)

lf a computation "smells" like 3 nested loops, it must communicate

# words =
(  # flops

\,Onemory size

What smells like 3 nested loops?

co the rest of BLAS 3 (e.g. matrix multiplication, triangular solve)

• Cholesky, LU, LDLT , LTLT decompositions

o QR decomposition

• eigenvalue and SVD reductions

co sequences of algorithms (e.g. repeated matrix squaring)

• graph algorithms (e.g. all pairs shortest paths)

This work was recognized with the SIAM Linear Algebra Prize,
given to the best paper from the years 2009-2011
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Optimal Algorithms - Sequential O(n3) Linear Algebra

Computation
Optimal
Algorithm

BLAS 3
blocked algorithms
[Gustayson 97]

Cholesky
LAPACK

[Ahmed & Pingali 00]
[BDHS10]

Symmetric
Indefinite

LAPACK (rarely)
[BBD+13a]

LU
LAPACK (rarely)
[Toledo 97]*

[Grigori et al. 11]

QR

LAPACK (rarely)
[Frens & Wise 03]

[Elmroth & Gustayson 98]
[Hoemmen et al. 12]*

Eig, SVD [BDK13], [BDD11]
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Algorithms - Parallel O(n3) Linear Algebra

Algorithm Reference
Factor exceeding
lower bound for

# words

Factor exceeding
lower bound for
# messages

Matrix Multiply [Cannon 69] 1 1
Cholesky ScaLAPACK log P log P
Symmetric
Indefinite

[BBD+13b]
ScaLAPACK

?
log P

?
(N/P1/2) log P

LU
[Grigori et al. 11]
ScaLAPACK

log P
log P

log P
(N/P1/2) log P

QR
[Hoemmen et al. 12]'

ScaLAPACK
log P
log P

log3 P
(N/P1/2) log P

SymEig, SVD
[BDK13]

ScaLAPACK
?

log P
?

N/P1/2

NonsymEig
[BDD11]

ScaLAPACK
log P

Pl/2 log P
log3 P
N log P

"This table assumes that one copy of the data is distributed evenly across processors

Red = not optimal
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For more details...

For a more comprehensive (150+ pages) survey, see our

Communication lower bounds and optimal algorithms
for numerical linear algebra

in the most recent Acta Numerica volume
[BCD+14]
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Example Application: Video Background Subtraction

Idea: use Robust PCA algorithm [Candes et al. 09] to subtract
constant background from the action of a surveillance video

Given a matrix M whose columns represent frames, compute

M = L S

where L is low-rank and S is sparse

11"77--- OW'
1 W.'

;-
.114:00
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Example Application: Video Background Subtraction

1 

(—Singular Value Threshold ( L )---

• * II * Ill

 R

Threshold these singular values

 /I

1 
( Shrink ( S ) )

Compute:

M = L + S

where L is low-rank and S is sparse

The algorithm works iteratively, each
iteration requires a singular value
decomposition (SVD)

e M is 110,000x100

Communication-avoiding algorithm
provided 3x speedup over best GPU
implementation [ABDK11]
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Householder QR (HhQR)

Blocked Householder QR works by repeating:

O panel factorization (tall-skinny QR decomposition)

O trailing matrix update (application of orthogonal factor)

1
\ ✓'

11111111,•._

Householder vectors computed Householder vectors aggregated
and applied one at a time by computing triangular matrix T

I T yy T / — YTYT

(two parallel reductions per column) (application = matrix multiplications)

Grey Ballard 16



Tall-Skinny QR (TSQR)

R

Key benefit of TSQR:
one parallel reduction

Orthogonal factor stored implicitly
as tree of Householder vectors

Grey Ballard 17



Communication-Avoiding QR (CAQR)

CAQR uses TSQR for panel factorization and applies the update using
implicit tree structure

Trailing matrix

Grey Ballard



Yamamoto's Idea

e Y. Yamamoto gave a talk at SIAM ALA 2012: he wanted to use TSQR
but offload the trailing matrix update to a GPU

o To make CAQR's trailing matrix update more like matrix multiplication,
his idea is to convert implicit tree into compact WY-like representation

...

Grey Ballard 19



Yamamoto's Idea

e Y. Yamamoto gave a talk at SIAM ALA 2012: he wanted to use TSQR
but offload the trailing matrix update to a GPU

o To make CAQR's trailing matrix update more like matrix multiplication,
his idea is to convert implicit tree into compact WY-like representation

Compact WY representation: / — YTYT

...

\
Y T YT

N \

Basis-kernel representation: / — WSWT

\
Grey Ballard



Yamamoto's Algorithm

O Perform TSQR

O Form Q explicitly (tall-skinny orthonormal factor)

O Set W = Q - I

O Set S = (/ - Qi)-1

/- WSWT = I_ [01 - /1

[ Q2 [l- Q1]1 
[(Q1 - OT 

C;T]

\
W S WT

171



How is Q formed?

Q1 Identity

7ex Apply Q to the identity,ploiting sparsity

Computation and communication
identical to TSQR, performed in
reverse order

Grey Ballard 21



Yamamoto's Algorithm

O Perform TSQR

O Form Q explicitly (tall-skinny orthonormal factor)

O Set W = Q - I

O Set S = (/ - Qi)-1

/- WSWT = I_ [01 - /1

[ Q2 [l- Q1]1 
[(Q1 - OT 

C;T]

\
W S WT
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Reconstructing Householder Vectors (TSQR-HR)

With a little more effort, we can obtain the compact WY representation:

O Perform TSQR
O Form Q explicitly (tall-skinny orthonormal factor)
O Perform LU decomposition: Q - I = LU
O Set Y = L
O Set T = -UY1- 7-

/ - YTYT = / - Pill [T] [Y1T 1127-1
y2

Y T YT

\ \



Key Idea

Compute a QR decomposition
using Householder vectors*:

A = QR = (I — YTY1T)R

A Q R

1

\
I Y T YiT R

1\11

*/ — YTY1T known as compact WY representation
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Key Idea

Compute a QR decomposition Re-arrange the equation and we
using Householder vectors*: have an LU decomposition:

A = QR = (I — YTY1T)R

A Q R

1 N

A — R = Y • (—TY1T R)

I Y T YIT R A R Y T YiT R

\ „, 7 rj,„,,

*/ — YTY1T known as compact WY representation
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Why form Q?

Cheaper approach based on A— R = Y • (—TY1T R):

o Perform TSQR

O Perform LU decomposition: A— R = LU

O Set Y = L

O Set T = —UR-1 111- 7- (or compute T from Y)

Grey Ballard 25



Why form Q?

Cheaper approach based on A- R = Y • (-TY1T R):

o Perform TSQR

O Perform LU decomposition: A- R = LU

O Set Y = L

O Set T = -UR-1 111- 7- (or compute T from Y)

This approach is similar to computing R using TSQR
and Q using Householder QR

e if A is well-conditioned, works fine

O if A is low-rank, QR decomposition is not unique

. if A is ill-conditioned, R matrix is sensitive to roundoff

Grey Ballard 25



What about pivoting in LU?

Third step in reconstructing Householder vectors:
o Perform LU decomposition: — / = LU

o what if Q — I is singular?

Grey Ballard 26



What about pivoting in LU?

Third step in reconstructing Householder vectors:
• Perform LU decomposition: Q — I = LU

o what if Q — I is singular?

Actually, we need to make a sign choice:

✓ Perform LU decomposition: Q — Sgn = LU
o Sgn matrix corresponds to sign choice in Householder QR
o guarantees Q — Sgn is nonsingular
o guarantees maximum element on the diagonal (no pivoting)

Grey Ballard 26



What about pivoting in LU?

Third step in reconstructing Householder vectors:
o Perform LU decomposition: Q — I = LU

o what if Q — I is singular?

Actually, we need to make a sign choice:
o Perform LU decomposition: Q — Sgn = LU

o Sgn matrix corresponds to sign choice in Householder QR
o guarantees Q — Sgn is nonsingular
o guarantees maximum element on the diagonal (no pivoting)

No pivoting makes LU of tall-skinny matrix very easy

o LU of top block followed by triangular solve for all other rows

Grey Ballard 26



Numerical Stability

Theorem

Let 13 be the computed upper triangular factor of m x b matrix A
obtained via the TSQR algorithm with p processors using a binary tree
(assuming m/ p > b), and let Q = I — YTY1T and R = SR where Y, T,
and S are the computed factors obtained from Householder
reconstruction. Then

IA — eiPlIF Fl(m, b, ID, 011,411F

and

III — ÕT 611F < F2(m, b, p, E.)

where F1, F2 = 0 03/2(m/ p)+ b5/2 log p + b3) 6) for b(m/p)€ < 1.

Grey Ballard 27



Numerical Experiments for Tall-Skinny Matrices

p h. 1 A — QR112 III — QT 0 2
1 e-01 5.1e+02 2.2e-15 9.3e-15

1 e-03 5.0e+04 2.2e-15 8.4e-15

1 e-05 5.1e+06 2.3e-15 8.7e-15

1 e-07 5.0e+08 2.4e-15 1.1e-14

1 e-09 5.0e+10 2.3e-15 9.9e-15
1 e-11 4.9e+12 2.5e-15 1.0e-14

1 e-13 5.0e+14 2.2e-15 8.8e-15

1 e-15 5.0e+15 2.4e-15 9.7e-15

Error of TSQR-HR on tall and skinny matrices (m = 1000, b = 200)
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Numerical Experiments for Square Matrices

Matrix type ti MA- QRM2 dl - OTQM2
A= 2 * rand(m)- 1 2.1e+03 4.3e-15 (256) 2.8e-14 (2)
Golub-Klema-Stewart 2.2e+20 0.0e+00 (2) 0.0e+00 (2)
Break 1 distribution 1.0e+09 1.0e-14 (256) 2.8e-14 (2)
Break 9 distribution 1.0e+09 9.9e-15 (256) 2.9e-14 (2)
UE VT with exponential distribution 4.2e+19 2.0e-15 (256) 2.8e-14 (2)
The devil's stairs matrix 2.3e+19 2.4e-15 (256) 2.8e-14 (2)
KAHAN matrix, a trapezoidal matrix 5.6e+56 0.0e+00 (2) 0.0e+00 (2)
Matrix ARC130 from Matrix Market 6.0e+10 8.8e-19 (16) 2.1e-15 (2)
Matrix FS 541 1 from Matrix Market 4.5e+03 5.8e-16 (64) 1.8e-15 (256)
DERIV2: second derivative 1.2e+06 2.8e-15 (256) 4.6e-14 (2)
FOXGOOD: severely ill-posed problem 5.7e+20 2.4e-15 (256) 2.8e-14 (2)

Errors of CAQR-HR on square matrices (m = 1000)

The numbers in parentheses give the panel width yielding largest error
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Reconstructing Householder Vectors (TSQR-HR)

With a little more effort, we can obtain the compact WY representation:

O Perform TSQR
O Form Q explicitly (tall-skinny orthonormal factor)
O Perform LU decomposition: Q - I = LU
O Set Y = L
O Set T = -UY1- 7-

/ - YTYT = / - Pill [T] [Y1T 1127-1
y2

Y T YT

\ \



Costs of Householder Reconstruction

Householder Reconstruction Let A be n x b

2nb2 flops, one QR reduction of size b2/2

2nb2 flops, one QR reduction of size b2/2

nb2 flops, one broadcast of size b2/2

O Perform TSQR

• Form Q

• LU(Q — Sgn)

O Set Y = L

O Set T = —U Sgn O(b3) flops

Grey Ballard 31



Costs of Householder Reconstruction

Householder Reconstruction Let A be n x b

2nb2 flops, one QR reduction of size b2/2

2nb2 flops, one QR reduction of size b2/2

nb2 flops, one broadcast of size b2/2

O Perform TSQR

• Form Q

• LU(Q — Sgn)

O Set Y = L

O Set T = —U Sgn

Alternative Algorithms

o TSQR

o HhQR (and form T)

co Yamamoto's

O(b3) flops

2nb2 flops, one QR reduction of size b2/2

3nb2 flops, 2b reductions of size O(b)

4nb2 flops, two QR reductions of size b2/2
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Costs of Householder Reconstruction

Householder Reconstruction Let A be n x b

2nb2 flops, one QR reduction of size b2/2

2nb2 flops, one QR reduction of size b2/2

nb2 flops, one broadcast of size b2/2

O Perform TSQR

• Form Q

• LU(Q — Sgn)

O Set Y = L

O Set T = —U Sgn

Alternative Algorithms

o TSQR

o HhQR (and form T)

co Yamamoto's

O(b3) flops

2nb2 flops, one QR reduction of size b2/2

3nb2 flops, 2b reductions of size O(b)

4nb2 flops, two QR reductions of size b2/2

For square matrices, flop costs of panel factorization are lower order: O(n2b)
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Recent Improvement*

Improved Householder Reconstruction

la Perform TSQR

O Form Q1

O Compute LU = Q1 — Sgn

la Y = Apply Q to [U0-11

O T = — U - Sgn - Y1- 7-

2nb2 flops, one QR reduction

O(b3) flops

O(b3) flops

2nb2 flops, one QR reduction

O(b3) flops

*Thanks to Nick Knight
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Recent Improvement*

Improved Householder Reconstruction

la Perform TSQR

O Form Q1

O Compute LU = Q1 - Sgn

la Y = Apply Q to [U 0-11 2nb2 flops, one QR reduction

O T = - U - Sgn - Y1- 7-

2nb2 flops, one QR reduction

O(b3) flops

O(b3) flops

O(b3) flops

• Intuitively: fold the tall-skinny TRSM into the "Form Q" step

O Achieves same comp/comm costs as Yamamoto's algorithm

O Requires careful choice of TSQR reduction tree

O Implementation underway

*Thanks to Nick Knight
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Performance for Tall-Skinny Matrices

50

40
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0

QR strong scaling on Hopper (122,880-by-32 matrix)

Elemental 1D QR
!ScaLAPACK 1D QR

24 48 96 192 384 768

#cores
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Performance for Tall-Skinny Matrices

50

40
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QR strong scaling on Hopper (122,880-by-32 matrix)

Elemental 1D QR
!ScaLAPACK 1D QR
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Performance for Tall-Skinny Matrices

50

40

10

0

QR strong scaling on Hopper (122,880-by-32 matrix)

Elemental 1D QR
!ScaLAPACK 1D QR

TSQR
TSQR-HR

24 48 96 192

#cores

384 768
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Performance for Square Matrices

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

20 - Elemental QR
1 i

ScaLAPACK QR
Binary-Tree CAQR —a— ------------  

15 
CAQR-HR —x—

5

0
144 288 576 1152 2304 4608 9216

#cores
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Binary-Apply CAQR

Trailing matrix

Grey Ballard



Scatter-Apply CAQR

Trailing matrix

8

Similar to performing an all-reduce by reduce-scatter followed by all-gather
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Performance for Square Matrices

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

20 - Elemental QR
1 i

ScaLAPACK QR
Binary-Tree CAQR —a— ------------  

15 
CAQR-HR —x—

5

0
144 288 576 1152 2304 4608 9216

#cores
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Performance for Square Matrices

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

20

15
o_
o

E2 1 0
a)

5

0
144 288 576 1152 2304 4608 9216

Elemental QR
ScaLAPACK QR

Binary-Tree CAQR -------- ----
CAQR-HR --

Scatter-Appiy CAQR

#cores
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Two-Level Aggregation

Block size trades off time spent in panel factorizations with efficiency of
matrix multiplications

Solution:

o Use another level of
compact WY blocking

o Allow for larger local matrix
multiplications

o (Can't use with CAQR)

Grey Ballard
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Performance for Square Matrices

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

20

15
o_
o

E2 1 0
a)

5

0
144 288 576 1152 2304 4608 9216

Elemental QR
ScaLAPACK QR

Binary-Tree CAQR -------- ----
CAQR-HR --

Scatter-Appiy CAQR

#cores
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Performance for Square Matrices

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

20

15
o_
o

E2 1 0
a)

5

0
144 288 576 1152 2304 4608 9216

Elemental QR
ScaLAPACK QR

Binary-Tree CAQR —s— -------- ----
CAQR-HR

Scatter-Apply CAQR
Two-Level CAQR-HR —e— _

#cores
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Performance for Square Matrices

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

20

15
o_
o

E2 1 0
a)

5

0
144 288 576 1152 2304 4608 9216

Elemental QR
ScaLAPACK QR

Binary-Tree CAQR —e—
CAQR-HR --

Scatter-Apply CAQR
Two-Level CAQR-HR —e—

Two-Level HhQR

#cores
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Conclusions

o Communication is costly, even for historically "compute-bound"
problems like dense linear algebra

o TSQR reduces communication and runs faster in practice for
tall-skinny matrices

o Householder reconstruction provides best of both worlds
O latency-avoiding panel factorization
o matrix multiplication for trailing matrix updates
o backwards compatibility for performance portability
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Algorithmic Improvements for QR Decomposition

For more details:

Reconstructing Householder Vectors from Tall-Skinny QR
G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen and E. Solomonik

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-175.html

Thank You!

www.sandia.gov/-gmballa
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Leading Order Costs for General Matrices

Flops Words Messages

Householder QR

Binary-Apply CAQR

CAQR-HR

Scatter-Apply CAQR

2mn2— 2n3/3 2mnd-n2 /2 n log p

724 log3 p

641og2 p
74log2 p

P
2mn2— 2n3/3

4
2mn+n2log p

P
2mn2-2n3/3

,/13
2mn-Fn2/2

p
2mn2— 2n3/3

,/ID
2mn-Fn2/2

P 4

Costs of QR factorization of m x n matrix
distributed over p processors in 2D fashion.
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Scatter-Apply CAQR

Trailing matrix

8

Similar to performing an all-reduce by reduce-scatter followed by all-gather
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Scatter-Apply CAQR

Similar to performing an all-reduce by reduce-scatter followed by all-gather
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More Numerical Stability Experiments

Q - I (T from TSQR-HR)
norm-wise col-wise ortho.

Yamamoto's approach
norm-wise col-wise ortho.

A - R (T-1 from V' Y)
norm-wise col-wise ortho.p c

1 e-01 5.1e+02 2.2e-15 2.7e-15 9.3e-15 2.5e-15 3.1e-15 9.2e-15 3.8e-14 1.7e-14 5.5e-15
1e-02 5.0e+03 2.3e-15 2.9e-15 1.0e-14 2.4e-15 3.1e-15 1.1e-14 3.2e-13 1.1e-13 6.2e-15
1 e-03 5.0e+04 2.2e-15 2.6e-15 8.4e-15 2.6e-15 3.4e-15 1.1e-14 4.2e-12 1.7e-12 5.6e-15
1 e-04 4.9e+05 2.2e-15 2.6e-15 7.7e-15 2.3e-15 2.8e-15 8.7e-15 3.8e-11 1.7e-11 5.4e-15
1 e-05 5.1e+06 2.3e-15 2.9e-15 8.7e-15 3.2e-15 4.2e-15 1.0e-14 3.9e-10 1.4e-10 5.3e-15
1 e-06 5.0e+07 2.3e-15 3.0e-15 9.1e-15 3.Oe-15 3.9e-15 1.0e-14 3.6e-09 1.5e-09 6.1e-15
1 e-07 5.0e+08 2.4e-15 3.4e-15 1.1e-14 2.7e-15 3.7e-15 9.9e-15 4.2e-08 2.1e-08 5.0e-15
1 e-08 5.1e+09 2.2e-15 2.8e-15 8.6e-15 2.5e-15 3.1e-15 8.9e-15 3.8e-07 1.5e-07 5.8e-15
1 e-09 5.0e+10 2.3e-15 3.1e-15 9.9e-15 3.9e-15 5.1e-15 1.3e-14 3.6e-06 2.0e-06 5.4e-15
1 e-10 5.0e+11 2.1e-15 2.6e-15 7.1e-15 2.6e-15 3.4e-15 9.9e-15 3.3e-05 1.2e-05 6.3e-15
1 e-11 4.9e+12 2.5e-15 3.4e-15 1.0e-14 2.4e-15 3.1e-15 1.0e-14 3.1e-04 1.2e-04 5.9e-15
1 e-12 5.1e+13 2.2e-15 2.9e-15 8.5e-15 2.6e-15 3.3e-15 1.2e-14 3.7e-03 1.6e-03 5.8e-15
1 e-13 5.0e+14 2.2e-15 2.7e-15 8.8e-15 3.Oe-15 3.9e-15 1.0e-14 4.0e-02 1.4e-02 4.7e-15
1 e-14 3.5e+15 2.3e-15 3.1e-15 1.0e-14 2.3e-15 2.9e-15 9.4e-15 2.7e-01 9.7e-02 4.9e-15
1 e-15 5.0e+15 2.4e-15 3.1e-15 9.7e-15 2.8e-15 3.7e-15 9.4e-15 3.5e-01 1.3e-01 6.3e-15

Error on tall and skinny matrices (m = 1000, b = 200) for three
approaches. The label "norm-wise" corresponds to ll A - QR 12,

"col-wise" corresponds to maxillAi - (QR);112, and "ortho."
corresponds to 111- Q70112-
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Let's go back to matrix multiplication

Can we do better than the "2.5D" algorithm?

Given the computation involved, it minimized communication...
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Let's go back to matrix multiplication

Can we do better than the "2.5D" algorithm?

Given the computation involved, it minimized communication...

... but what if we change the computation?

It's possible to reduce both computation and communication
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Strassen's Algorithm

Strassen showed how to use 7 multiplies instead of 8 for 2 x 2 multiplication

Classical Algorithm

[C11 c12

c21 c22

A11 Al2 B11 812

A21 A22 B21 B22

Strassen's Algorithm

A11 B11 (A11 + A22) + B22)

M2 Al2 ' B21 M2 (A21 + A22) ' B11

M3 A11 • B12 M3 A11 • (B12 — B22)

M4 Al2 • B22 M4 A22 • ( B21 — B11 )

M5 A21 • B11 M5 (A11 + Al2) ' B22

M6 A22 • B21 M6 (A21 — A11) • (B11 + B12)

M7 A21 ' B12 M7 (Al2 — A22) ' (B21 + B22)

M8 A22 ' B22

C11 M1 + M2 C11 M1 + M4 — M5 + M7

C12 M3 + M4 C12 M3 + M5

C21 M5 + M6 C21 M2 + M4

C22 M7 + M8 C22 M1 M2 + M3 + M6
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Strassen's Algorithm

Strassen showed how to use 7 multiplies instead of 8 for 2 x 2 multiplication

n/2"

n/2"

e„ C.12

•
B„ B1,

C.21 C.22 An A 22 B21 B22

M1 (A11 + A22) * (B11 + B22)

M2 (A21 + A22) ' 811

M3 A11 * (B12 B22)

Flop count recurrence: M4 A22 * (B21 — B11)

M5 (A1 1 + Al2) 822

F(n) =7 F(nI2)+ e(n2)
M6 = (A21 A11) (B11 + B12)

F(n) = 8 (nlO92 7) M7 = (Al2 — A22) ' (B21 + 822)

log2 7 2.81 C11 + M4 + M5 + M7

C12 M3 + M5

C21 M2 + M4

C22 M1 — M2 + M3 + M6
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Sequential Communication Costs

If you implement Strassen's algorithm recursively
on a sequential computer: i

Computation Communication
Classical
(blocked)

O(n3)
3 
M)O(Q=1A4)

Strassen 0(nl0g2 7)
0 / ( n \log2 7 AnN

N/Ft/i )\ I
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Sequential Communication Costs

If you implement Strassen's algorithm recursively
on a sequential computer:

Computation Communication
Classical
(blocked)

O(n3)
3 
M)O(Q=1A4)

Strassen 0(nl0g2 7)
0 / ( n \log2 7 AnN

N/Ft/i )\ I

Can we reduce Strassen's communication cost further?
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Lower Bounds for Strassen's Algorithm

I Theorem (Ballard, Demmel, Holtz, Schwartz 12) 

On a sequential machine, Strassen's algorithm must communicate

# words = S2
( ( ;An ) 

log, 7 
A4)

and on a parallel machine, it must communicate

# words = S2
((  nmr2 7 It;
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Lower Bounds for Strassen's Algorithm

Theorem (Ballard, Demmel, Holtz, Schwartz 12)

On a sequential machine, Strassen's algorithm must communicate

# words = S2
( ( ;An) 

log, 7 
A4)

and on a parallel machine, it must communicate

# words = S2
((  nmr2 7 It;

This work received the SPAA Best Paper Award [BDHS11] and appeared as
a Research Highlight in the Communications of the ACM
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Optimal Parallel Algorithm?

This lower bound proves that the sequential recursive algorithm is
communication-optimal

What about the parallel case?
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Optimal Parallel Algorithm?

This lower bound proves that the sequential recursive algorithm is
communication-optimal

What about the parallel case?

o Earlier attempts to parallelize Strassen had communication costs
that exceeded the lower bound

o We developed a new algorithm that is communication-optimal,
called Communication-Avoiding Parallel Strassen (CAPS)
[BDH+12]
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Main idea of CAPS algorithm

At each level of recursion tree, choose either breadth-first or depth-first
traversal of the recursion tree

Breadth-First-Search (BFS) Depth-First-Search (DFS)

T;50 T.75, T;; T ; -14; T;; T;;

O Runs all 7 multiplies in parallel

o each uses P/7 processors

O Requires 7/4 as much extra memory

O Requires communication, but
minimizes communication in subtrees

AB

Tj So T; S, T; S, T S, T; Sa TS SS T6 56

O Runs all 7 multiplies sequentially

• each uses all P processors

O Requires 1 /4 as much extra memory

O Increases communication by factor of
7/4 in subtrees
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Performance of CAPS on a large problem

50

40

co' 30
a_
O
LL

t 20

10

0
P=49

Strong-scaling on a Cray XT4, n = 94,080

CAPS
(Old) Strassen

machine peak (for classical algorithms)

2.5D Classical

0--  0- 0- -0-0-9. .......

ScaLAPACK (classical)

p=343 P=2401

0. More details
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Can we beat Strassen?

Strassen's algorithm allows for less computation and communication
than the classical O(n3) algorithm

We have algorithms that attain its communication lower bounds and
perform well on highly parallel machines

Can we do any better?
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Can we beat Strassen?

Exponent of matrix multiplication
over time

2.8

2.6

2.4

2.2

2
1960 1970 1980 1990 2000 2010

Schonhag

Bini et al.

Strassen

Coppersmith-Winogra

-0

FMM(n) = O(n)
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Can we beat Strassen?

Exponent of matrix multiplication
over time

2.8

2.6

2.4

2.2

2
1960 1970 1980 1990 2000 2010

Schonhag

Bini et al.

Strassen

Coppersmith-Winogra

-0

FMM(n) = O(n)

Unfortunately, most of these
improvements are only theoretical
(i.e., not practical) because they

o involve approximations

a are existence proofs

o have large constants
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Yes, it's possible!

o Other practical fast algorithms exist (with slightly better exponents)
cil Smaller arithmetic exponent means less communication
o Rectangular matrix multiplication prefers rectangular base case
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Yes, it's possible!

• Other practical fast algorithms exist (with slightly better exponents)
• Smaller arithmetic exponent means less communication
fa Rectangular matrix multiplication prefers rectangular base case

Sequential outer product performance: n x 1600 x n

28

26

na- 24

u_
C5a) 22-

?1".)
2 20-

18

16-
0 2000 4000

dimension

—MKL

424-1

424-2

323-1

323-2

STRASS-1

o Parallel implementations underway...

6000 8000

Grey Ballard 61


