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Abstract. The purpose of this paper is to study a Helmholtz problem with a spectral fractional
Laplacian, instead of the standard Laplacian. Recently, it has been established that such a fractional
Helmholtz problem better captures the underlying behavior in Geophysical Electromagnetics. We
establish the well-posedness and regularity of this problem. We introduce a hybrid finite element-
spectral approach to discretize it and show well-posedness of the discrete system. In addition, we
derive a priori discretization error estimates. Finally, we introduce an efficient solver that scales as
well as the best possible solver for the classical integer-order Helmholtz equation. We conclude with
several illustrative examples that confirm our theoretical findings.
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1. Introduction. Recently, starting from the Maxwell’s equations, the article
[25] has derived the scalar fractional Helmholtz equation. It has also established
existence of fractional (anomalous) behavior for the Magnetotelluric Problem in geo-
physical electromagnetics by showing a direct qualitative match between numerical
tests and actual datum. Motivated by these results, the goal of this paper is to take a
step towards rigorous mathematical foundation of the fractional Helmholtz equation.
In particular, we show its well-posedness, introduce a new hybrid (spectral-finite ele-
ment) approach for its discretization, establish a priori error estimates, and introduce
an efficient solver that scales as well as the best solver in the classical (integer-order)
case.

Let © be a bounded open domain in R¢. We consider the fractional-order Helmholtz
problem

(H) { (CAY u (@)~ ku(@

:f(f)’ Teq,
( 0

=0, z € 0N
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with a given wave number k € C and right-hand side data f. We restrict ourselves to
the case of homogeneous Dirichlet boundary conditions. Non-homogeneous conditions
can be incorporated by solving an auxiliary local problem with homogeneous right-
hand side, see for instance [3, 4]. For s € (0,1), (—A)*® denotes the fractional powers
of the realization in L?(Q) of the classical Laplacian (—A) supplemented with zero
Dirichlet boundary conditions. For a rigorous definition of (—A)®, see Section 2.
For completeness, we mention that the spectral Laplacian in (fH) is not the only
choice for fractional Laplacian, other popular choice is the so-called integral fractional
Laplacian. The two definitions, coincide when = R? but are different when Q is
bounded [21]. Towards this end, we emphasize that our choice to use the spectral
fractional Laplacian is directly motivated by the fact that the article [25] has derived
the fractional Helmholtz equation with spectral fractional Laplacian using the “first
principles”.
In order for problem (fH) to be well-posed, we require that

(1.1) Am k2, meN

where A, > 0 are the eigenvalues of standard Laplacian with zero Dirichlet boundary
conditions, see (Eig).

The article [25] solved the nonlocal operator (—A)® using the so-called Kato
or Balakrishnan formula [13]; the use of this formula in the context of fractional
Poisson equation was first proposed in [7]. However, in this work, we use the so-called
extension approach that stems from probability literature [17], but was pioneered by
L. Caffarelli and collaborators [9, 23]. The extension approach says that (—A)® is
the Dirichlet-to-Neumann map for a harmonic extension of the solution. The key
advantage of this is the fact that the extension problem is local, albeit it is posed
on a semi-infinite domain, 2 x (0,00) C R, with one additional space dimension.
This fact introduces computational challenges. In order to create finite element based
numerical approximation, the article [18], in case of Poisson equation, introduced a
truncation approach so that the resulting domain is bounded. On the other hand,
[1] introduced a different approach where no such truncation is needed. Our hybrid
spectral-finite element discretization of (fH) is motivated by the latter. We establish
well-posedness of both continuous and discrete problems and derive a priori error
estimates. We also introduce an efficient solver, which is as good as the best solver
for the classical (integer-order) Helmholtz equation. We present numerical results in
three dimensions.

The remainder of the work is structured as follows: Section 2 introduces the nec-
essary notation and spaces. In Section 3, we show well-posedness of (fH). In Section 4
we introduce the extension problem and derive properties of its eigenfunctions. Sec-
tion 5 deals with the hybrid finite element - spectral discretization of the problem
and a priori error estimates. In Section 6 we discuss the solver of the resulting linear
system. We conclude by showing numerical examples in Section 7.

S

Remark 1.1. The choice of the coefficient —k2* in (fH) might appear non-intuitive
at first. In [25], the fractional Helmholtz problem is stated as

{(—A)SU(f)—RQU(f) =f(@), e,
w@) =0, 7 €00

with wave number £ € C. Clearly, this is just a matter of notation, and k = x!/5.
We prefer the coefficient —k2°, because this choice leads to weaker restrictions on
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the mesh size h when solving fractional Helmholtz problem for fixed wave number &
and different values of the fractional order s. We also notice that, with the proposed
formulation, we need to solve the classical, integer-order, Helmholtz problem with
wave number k. Nevertheless, everything that follows also holds if we use x!/* instead
of k.

2. Notation. The purpose of this section is to introduce relevant notation and
preliminary results. The content of this section is well-known. Unless otherwise
stated,  will be a bounded Lipschitz domain in R¢. To this end, we define the
fractional-order Sobolev (Hilbert) space as

(2.1) H* (@) i= {u € L (@) | |ul o) < 0}

equipped with the norm

1
gl UE) —u@)” u(@* ) *
||U||Hs(sz) = <||“|L2(Q) ‘|‘/ da:/ 17— ﬁ|d+29 ’

Next, we define the spectral fractional Laplacian (—A)®. Let 0 < A\g < A\; < ... and

@0, P1, - - . be the eigenvalues and eigenfunctions of the standard Laplacian, i.e.
. —Adp (B) = Anom (T), z e,
(Eig) { bm (Z) =0, Z € 09,

normalized so that [¢n];2q) = 1. Then (—A)* is defined as

(—A) (@) = Y umAydm (&), with wm = (u,4)12
m=0

Notice that the eigenfunctions {¢., }._, form a complete orthonormal basis of L? (£2).
Using the spectrum of the Laplac1an {(Am, &m) tmen, we define yet another fractional-
order Sobolev space [24], [8, Appendix B

(2.2) He (@) = {ue (@) | lulguq) < =},

where the norm is given by

1
o0 2
2 \s
|u|f[s(Q) = <§ || Am) )

m=0

and um= (u, $m)r2(q)- The two spaces in (2.1) and (2.2) are related to each other.

Indeed, for s > 1/2, H* (Q) coincides with the space H§ () defined to be the closure
of C§° (2) with respect to the H® (Q)-norm, whilst for s < 1/2, H* () is identical
to HS (). In the critical case s = 1/2, H* (Q) C H§ (92), and the inclusion is strict,
H: () is known as the Lions-Magenes space. (See for example [14, Chapter 3].) We
denote the dual space of H* (Q) by H~* (Q) and use (-, '>1?5(Q)J7*S(Q) to denote the
duality pairings. For simplicity we drop the subscripts from the duality pairings when
it is clear from the context.

The spaces H?® (€2) are useful to describe the properties of the spectral fractional

Laplacian. For instance, suppose f € H" (Q),r>—s,and f =3 o frmém (Z) with
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fm = {f, dm); then, the solution u to the fractional Poisson problem of order s with
right-hand side f

(-A)u(@) =f(@), Teq
(fP) { @) =0, 7 € 80
is given by
(23) u = Z U'mgbm(f)a Um = fm/\;nsv
m=0

and hence u € H"25 (). Notice that no additional smoothness on the domain € is
needed to get this higher regularity. Nevertheless to establish an equivalence between
H"™2% when r + 2s > 1, with higher order Sobolev spaces additional smoothness
on the domain €2 is needed. A more detailed regularity theory for spectral Poisson
problems can be found in [11].

In principle one could use the expression (2.3) to compute u. However, the cost
of pre-computing the unknown eigenvalues and eigenfunctions makes this an expen-
sive task. To overcome this hurdle, as mentioned in the Introduction, we follow the
approach of Stinga and Torrea [23].

We first introduce some notation. We define the weighted norms on a generic
domain D for a non-negative weight function w by

2

1
2
ful 3 0 = ( [ w@u@r df) C Julgyoy = ( [ @ vu@r df) |
%
il sy o) = (Ieliz o) + 0l o))
along with the associated weighted spaces
L2 (D) = {u measurable | [uf,. < oo}, H! (D) = {u € L2 (D) | Jul < oo}.

In what follows, we use C to denote a generic constant that could change from line
to line but is independent of the mesh size h and the wave number k. We will also
drop the differential in the integrand when the integration variable is clear from the
context.

3. Well-posedness of Fractional Helmholtz Equation. The main goal of
this section is to establish existence and uniqueness of the solution to the fractional
Helmholtz equation (fH).

We first state the notion of weak solutions.

DEFINITION 3.1. Given f € H~*(Q) we say that u € H* (Q) is a weak solution to
(1) if

(3.1) a(u,v) = (f,v), for all v € H*(Q),

where

p) = 3 L Uy, | VP
(3.2) a(u,v) = Y (A, — k*) /Q ¢ /Q T
4
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Next we shall establish the uniqueness of solution to (3.1). We operate under the
condition that k£ € C is a constant.

LEMMA 3.2. Let f € H5(Q) be given and k € C be a given constant. Assume
that (1.1) holds. Then every u € H*(Q) solving (fH), according to the Definition 3.1,
18 unique.

Proof. Tt is sufficient to show that when the data f = 0 then wu solving (3.1) is
identically zero. By setting v = us¢y (where ¢ € N is arbitrary) in (3.1), using the
orthonormality of {¢., }5°_, and the assumption that k is a constant, we obtain that

ol ued) = 3 (A — k%) /Q i /Q Tededm = (N — k27 Jugl? = 0.

m=0
Since according to (1.1) Aj # k2, we obtain that u, = 0, i.e., fﬂ ugy = 0. Since £ was
arbitrary, we obtain that v = 0 a.e. in 2. The proof is complete. O

LEMMA 3.3 (Garding’s (in)equality). Let u € H*(Q) solve (fH) according to the
Definition 3.1 and k € C be a given constant, then

2

a(ut, ) + K2 [ull3a gy = [ulF. 0

Proof. From the definition of a(-,-) in (3.2) we obtain that

o

a(uyu) = > (A = k) [uml® = Jull%. ) = K llulFe(q).
m=0
By rearranging terms in the above equality, we obtain the desired result. 0

THEOREM 3.4. Let f € ﬁ_S(Q) be given and k € C be a given constant. Assume
that (1.1) holds. Then there exists a unique u € H*(Q?) solving (fH) according to
Definition 3.1.

Proof. Lemma 3.2 and Lemma 3.3 in conjunction with Fredholm alternative give

the asserted result. We refer to [6, Theorem 3.3] for similar arguments in case of
standard Laplacian. O

The next result establishes regularity of solutions of the fractional Helmholtz
equation.

PROPOSITION 3.5 (Regularity). If f € H" (Q), r > —s, then the solution (ac-
cording to Definition 3.1) to the fractional Helmholtz problem u € H"+2% (Q).

Proof. Assume that v € H® (Q) for some o > 5. Then (—A)°u = f + k*u €
H mi‘:{’”*‘f‘}. By the regularity result for the fractional Poisson problem, we obtain that
u € H™iniral+2s GQince u € H* (), we obtain the desired result by iteration. O

4. The Extension Problem. By using [9, 23] we can equivalently cast the
fractional Helmholtz problem (fP) as a problem over the extruded domain C = § x
[0, 00):

— W C«J(y)VU (f7y) =0, (fv y) € Ca
(Ext) U(Z,y) =0, (Z,y) € 9C := 99 x [0, 00),

8U = 2s vl _ = g
8?(33)—16 U@ 0) =f(@)), TE W,



where w(y) = y*/ds, a =1 — 25, ds = 21_25%, and

ou . ou

4.1 — (X
ey ovv y—0+ oy

The solution to (fH) is then recovered by taking the trace of U on , i.e. u=trqU.
We define the solution space H}, on the semi-infinite cylinder C as

H,={VeH.(C)|V=00nd.}.
and we denote its dual by (H.)*. Notice that
trq ML = H*(Q),

where trg denotes the (2-trace operator. Moreover, due to the Poincaré inequality in
the weighted Sobolev spaces, we have that the seminorm |- |g1 is a norm on HL, and
we write |-|,1 = ||z . We refer to [10] for details.

The weak formulation of the extension problem (Ext) consists of seeking U € H}
such that:

(wExt) AUV)=(f,V)q VYV eH.,

where we have

A(U,V):/

wVU-VV—kQS/UV and (f,V)q = (f,tra V).
¢ Q

We will also frequently use the shorthand

V2 = Itra Vi (q) -

We seek a solution of the extension problem using classical separation of variables:
U(Z,y) =@ (Z) VU (y). Then

—-Az® 0y (w(y)0,¥)
w(yv

:147

where A is a constant that is independent of Z and y. Thanks to (Eig), the boundary
condition on the lateral face of the cylinder C, shows that ® = ¢,, and A = )\, for
m € N. The associated solution ¥ = 1), in the extension direction must therefore
satisfy

(4.2) Oy (W()Bythm) = Amw(y)m.

Notice that 1,,(0) = 1, moreover using (4.1) we obtain that
OMm s

(4.3) e = A

By applying integration by parts to (4.2) and using (4.3) we obtain that

oo

(4.4) Ao | et / ol = A2,
0 0
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which is uniquely solvable when we impose ¥,,(+00) = 0. Subtracting the same
identity with indices m and n interchanged results in

A=A
oo e ifm#n,
(45) / wwmwn =
0

s—1 : —
SAYY if m =mn,

and
A AS AR NS
oo tmeonntm if mo# n,
(4.6) | o=
0 (I1=9)As, ifm=n,

where the identities for m = n are obtained by taking the limit as A\, — A,,. The
solution to the extension problem (Ext) is then given by

(47) U (f y) = Z um¢m(£>¢m (y) Where Um = (Afn - k2s)_1 fma
m=0

whilst u (Z) = Y07 o Um®m () as in (2.3). The separable solution (4.7) forms the
basis for our choice of discretization of the extension problem to be described in the
next section. The main advantage of this approach is that the extension problem
involves only integer-order derivatives but comes at the price of having to deal with
a degenerate weight w(y).

We conclude this section with the following well-posedness result for (wExt).

PROPOSITION 4.1. Let Q be a bounded Lipschitz domain and f € H=5(Q). Then
there exists U € HL solving (wExt), and such solution depends continuously on the
data:

Ul < Ca(k) £ -s (0 -

Proof. The proof follows along the lines of Theorem 3.4, i.e., we need to show
uniqueness of U and prove Garding’s inequality. Then, the result will follow from
Fredholm alternative. Construction of a unique solution using separation of variables
is given above. Garding’s inequality can be shown as follows. We have

U3, = AU, U) + & (tro U, tr U) 12(q
(4.8) =AU, U) + k** (T trq U, trq U) f-s(0). 85 ()
= A(U,U) + k** ((trg, T tra) U, U) g1 )+ 341

where in the second equality we have used the existence of a compact operator
T : H5(Q2) — H°(2). Moreover, in the last equality we have used that the trace oper-
ator tro : HL — H*(Q) is bounded linear and thus its adjoint trf, : H~5(Q) — (HL)*
is well-defined. Notice that the operator tr, T tro : HL — (H})* is compact (compo-
sition of bounded and compact operators), thus we have shown Garding’s (in)equality
[19, Remark 2.1.58] and the proof is complete. O

5. Discretization of the Extension Problem and A Priori Error Bounds.
For the remainder of the paper, we assume that  is sufficiently smooth so that
H?(Q) can be associated with the classical fractional-order Sobolev space H®(Q2) (this

7



is needed when s > 1). We propose to approximate the variational problem (wExt)
using a Galerkin scheme with the subspace consisting of standard low order nodal finite
elements of order p > 1 in the Z-variable and a spectral method in the y-direction.
To this end, we let T, be a shape regular, globally quasi-uniform triangulation of €2,
and let

Sh={vn € C°(Q) | va|, €Pp(K) VK € Tp}.

In the y-direction, ideally, we would like to use y-basis functions {t,,} given in the
previous section. Unfortunately, this requires knowledge of the true eigenvalues A,
of (—A) over Q. Therefore, we use approximations \,, & A, in place of the true
eigenvalues in (4.5) and (4.6).

The Galerkin subspace for the extension problem is then taken to be

M-1
Vi = {Vh = > Onm () Ym (¥) | Vhm € S and P, solves (4.4) with Xm} cHL.

m=0

Notice that, we do not need an analytic expression for the basis functions {@Zm},
and it is sufficient to know mass and stiffness matrices (4.5) and (4.6). The spectral
expansion order M will depend on s, h and the regularity of the solution. The
efficient approach to find approximations A, is discussed in [1]. We further emphasize
that O (|log h|) eigenvalue approximations are sufficient to get “good approximation”
properties.

The Galerkin approximation of (wExt) seeks Up, € V}, such that

(wExty,) AUn, Vi) = (f,Va)q Y Vh € Vn,
with the approximation of the fractional Helmholtz problem given by
up, = trq Uy,.

Having introduced the discrete problem, our next goal is to obtain an estimate
for the error u—wuyp,. The trace inequality in [10, Proposition 2.1], see also [18], implies
that

lu—unl gy < CIU = Unlyy 5

where the constant is independent of p, M and h. We also refer to [5, Theorem 2.3]

for a more general trace inequality. Hence, in order to bound u — uy, it suffices to

bound |U — Uj, ”HL , the discretization error of the extension problem (wExty,).
Define the norm

IVIP = VI3 + K> IVIZeqy, V€ HL

Using the trace inequality in [10, Proposition 2.1], see also [18], we find that A is
continuous

2s
AU WUl Vg, + 1B U 2 V2@ < CIURIVIE YU,V € A,
and immediately satisfies the Garding type (in)equality

AUU) + K U720y = Ul VU € H,,.
8



Define the solution operator Sy, : H=* (Q) — H., via
A(Skf, V) = (V) YV € H,
and the adjoint solution operator S; : H—* () — H}, via
AW, SEP) = (£, W)g VIV € M.
The two operators are can be expressed in terms of each other as
Sp =Sy
Moreover, let

R 7 1|
7= sup in '
rerz@\ 0} eV [ flr2(q)
The following two results, Theorems 5.1 and 5.2, closely mimick the ideas developed

in [16, 15] for the integer-order case. We refer to Appendix A for their respective
proofs.

THEOREM 5.1. Assume that
nlk|® <~

for small enough constant ~y that is independent of h and k. Then A satisfies the
discrete inf-sup condition

inf  sup A (U, V)] > 1-Cy )
Un€Vh viev, ORI VRN — 1+2(Ca(k) +n) |k

THEOREM 5.2. Let U € H} be the solution of (wExt) and Uy, € Vy, the solution
of (wExty). Assume that

(5.1) nlk]® <~
for small enough constant ~y that is independent of h and k. Then
_ < nf _
U -Gl <C nf JU - Vil
U = Unlp2) < CnllU = Unll,

where the constants are independent of h and k.

Before we turn our attention to the approximation results, we state the required
assumptions on the approximation space V}, and the eigenvalue approximations {\,, },
parameterized by a parameter ¢ that will be linked to the solution regularity.

ASSUMPTION 5.3. Given t > s, assume that the following hold:

e M is large enough such that )\%Z_t)ﬂ ~ pin{p;t—s},
e For0<m < M —1 it holds that

A\ A\
52 _ — <
(5.2 (Am> (32) =
with a positive constant c, that is independent of h.
9
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o For 0 <m < M —1 it holds that
(53) g (sv}v\m/)‘m> < )\frjsh2 min{p,t—s},

where
1
(1—s)p* +sp*=t

g(s,p)ZI—

We refer the reader to [1] for a discussion on how these requirements can be achieved
in practice using the asymptotic behavior of the eigenvalues and by finite element
discretization. The assumptions (5.4) and (5.5) in the following theorem are also
discussed in [1] in more detail.

THEOREM 5.4. Let s <t < p+ 1 and assume that Assumption 5.3 holds for t.
Moreover, assume that there exist positive constants Cy, Cp independent of h such
that the following two inequalities hold for any 7 € RM :

(5.4)

M-1
3 / — Tnbm) (S — Th6n) < Colog(ar) 3 72 [6m — ThomlZa(e »

m,n=0 m=0

(5.5)
M—-1 M-1

Z ’7m7n/ v - 7Th¢m) -V (¢ - 7Th¢n) < C(1 IOg /\M Z 'Ym “v 7Th¢m)“iZ(Q) )

m,n=0 m=0

where , s the Scott-Zhang interpolant [20].

Let U satisfy the variational equality (WExt) and assume thatu = trq U € HY (),
for s < q<t. Then

Vilg;h |||U _ th <C |u|ﬁq(ﬂ) |10gh| {hmin{p,t—s} == + ‘k|€ hmin{p,tfs} min{q,2t72s}/(t75)} ,

where C' is independent of h and k.

Proof. Since U is a solution to (wExt), we can expand it as

U= Z Um¢m (f) wm (y) »

m=0

We choose Vi € HL and V, € V), to be

M-1 _ i} -
Vi = Z Uy P (f) Ym (y) ) Vi = Z A Um (Wh(bm) (f) Vm (y) s
m=0 m=0

where a,, € R will be determined below and 7, is the Scott-Zhang interpolant [20].
The triangle inequality gives

U = Vil <1U = Varlg +1Var = Vil -

Direct computation gives

M-1M-1

U - VM”?{}U - Z Z U Un <¢m (d)m - ami[;m) s &n (U)n - arﬂZn) >Hi

m=0 n=0

10



M—-1 oo

230 D wntiy (b (Y — @t ) Suthn),

m=0 n=M “’

+ Z Z U Un <¢m'¢)m7¢n¢n>ﬂi.
m=M

n=M

To deal with the first term, we observe that for arbitrary smooth functions h; and ho
there holds

(O @11 (0). 00 (@) 2 )y = [ )V 6 @)l W)V [0 (@) Pz ()]

— [ nn | Wi+ [ Viom-Vaon [ wlw)iua

Q 0 Q 0

= §nm (hh h2)m

where the inner product in the final equality is defined to be
(b= [ wlo)B 4 A [ )b,

0 0

with the induced norm denoted by ||, = +/(:,-),,- In particular, from (4.5) and

(4.6) we obtain |¢p, H?n = A2 . Therefore

M-1 2 (o)
2 2 2 2
U= Vil = 3 luml? [9m = amtm| + > ml® [l
m=0 m m=M

The coefficients {c,,} are chosen to minimize the right-hand side. A simple compu-

tation reveals that the optimal choice is a,, = ”Qﬁm [ cos 0,,,, where
[,
(wmm wm) e
cosb,, = ——— - = \/1 —g (57)\m/>\m)7
Yl |9

so that
o B 2 . 2 s .2 s 3
”wm - am’(/}mH = "wm HmSIH O = )‘m sin® 0, = >\mg (S, )\m/>\m> .

The first term is then easily estimated thanks to (5.3):

M-1 e
10— Varlsy = D luml® Nug (5:Xm/Am ) + 3 fumf> A3,
m=M

m=0
M-1

o)
<ot 3 ot 2 3
m=0 m=M

M-1 0o
< h2min{p7t—s}>\§\2q Z |um|2 )\gn + )\?V;q Z |um|2 )\gn
m=0 m=M
min —s}i= 2
(5.6) < p2min{pt—s}i=; ‘ulﬁlq(g)»

11



where we recall M is chosen large enough such that /\S\f[_t)/ 2 ~ pmin{pit—s}
In the second term, elementary manipulation gives

[Var — Vil
M—-1M-1

Z >~ s [ 9 [0~ muu) Bu] -9 [(60 = ) ]

=0

HO
3

?§
?

-1

Z Oy, Ol Uy Uy {/Q \Y (¢m - 7rh¢m,) -V (qbn - 71'h(bn) /OOO wim{/;'n

/Q (¢m — Thém) (bn — Thon) /O N w%%@}

M—-1M-—

Smi_;o gamanum%{évwm — Th¢m) - V (fn — Thon) \//OOOWQZ%\//()OOLUJZ
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M-

<logOu) 3 ol {1 1960~ Vbl [ i
m: 0
oo e 2
+Colom — ol [ ()]
: b | @ (%)
M—1 .
<max{Co, C1}logO) Y- un* {190 — Voo [ i,
0

m=0
+ ||¢m — 7Th¢m”iz(ﬂ) /Ooow (@%)2} ’

where we used (5.4), (5.5), and that o2, < 1. Standard properties of the Scott-Zhang
interpolant give

_|_

IV ém — Vﬂhﬂsm”m(m < ChP |bm | gp+1 < Chp)\gzo-ﬁ-l)/?,

|om — 7rh¢>m||Lz(Q) < Cprtl - Chp+1/\£5+1)/2,

while, from (4.5) and (4.6),

oo ~ o0 . 2 _
/ W/’m = SAfn 1’ and / w <¢':n) =(1- 5))\8m
0 0

Hence,
M-1
IVar = Vil < Clog(anh™ Z [t AR+ C log(M)h2P+? Z fum|® AFIXS,
=0

Am 1—s
< C'“‘Hq(g |10gh! [ Hlax )\gl—(‘l—s) <’>V\_>

X S
2p+2 p+1—(q—s) [ 22m
+h m:(f.l.a.,)l(wfl )‘m </\m ) ‘| ’
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where we used the fact that log(Apys) ~ [log h|. Thanks to assumption (5.2), we obtain
Xorty (WX + B2 PR} if0<q-s<p,
IVar — Vh”?ﬁ <C |u‘%q(9) |llog h| § K2P (1 + h2/\§7\4+_117(q78)) fp<g—s<p+1,

h2p ifg—s>p+1.

Recalling that M is chosen such that )\E\Z_t)/g ~ hin{Pt=s} e obtain

q—s

(5.7) ”VM — Vh“?{}) <C |u|f1q(m \/ |10g h|hmin{p’tgs} t=s

Finally, by combining (5.6) and (5.7), we deduce that

“U =T H?—LL <C |U‘[T]q(g) hmin{l’i—s}% A/ |10g h|
In a similar fashion, we estimate
U = Valre) S IU = Vil o) + 1V = Valp2gqy -

Since

DR [

cosb,, =g (s,xm/)\m)
The first term is given by

M—1 <
5 2 2 2
U~ Varliaay = 3 11— ol funl* + 37
m=0 m=M

M-1 ~ 2 o)
<> g (s )\m//\m) ] + A0 D Jum* AL,
m=0 m=M
M-1 9]
< Ch4min{p,t—s} Z )\%—23 |um|2 + )\;; Z |um|2 )\gn
m=0 m=M

2 min —s 25— —
S C |u1ﬁq(9) {h4 {p,t—s} m:(;r.l?}](\/lil )\7275 2s5—q + AM(I} .

Hence, the first term can be estimated by

pamin{pi=s} 27257 4 N4 if g < 2t — 2s,

2 2
10 = Vil < Clulfae { pmin{pi=s} | \—0 if ¢ > 2t — 2s

Since )\S\fl_t)/Q ~ hin{pt=s} e find

IU = Vi |2y < Clu

q

pamin{pt=s} 4 p2minipi=skyZ  f g > 2t — 25

) h2 min{p,t~s}& + h2 min{p,t~s}737 if q < 2% — 28,
Ha(Q)

— p2min{pt—s}zls  f q < 2t — 2s,
= ’u|H<1(Q) h4min{p7t—$} if q>2t—2s
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Hence
”U = Wy ||L2(Q) <C |u|ﬁq(9) hmin{p,t—s} rnin{q,?t—Qs}/(t—s).

The second term can be estimated by

M—-1M-1

HVM - Vh”iz(g) = Z Z CVmumamm/g (¢m - 7Th¢m) (¢n - th)n)

m=0 n=0

—_

M
< Colog(Anr) D [ttml* [6m — Thdml 720 -
m=0

Again, by properties of the Scott-Zhang interpolant,

M—-1
[Vir = Vi3 < Clloghl h2P42 > juy, |* A5
m=0

2 2p+2 pt+1—gq
< Clulfag) |log | h m R 1 A
Hence, since )\ﬁ\f’[ﬁt)ﬂ ~ hmindpt=st and ¢ <t < p+1,
1—q)/2
[Var — Vh”m(g) <C ’U|1§q(g) Y% ‘IOgh‘thrl)‘S\]/)ﬁ a0

< Oy Tog R =) 5
< Cluljo(q) V/llog h[hA.
This means that by combining, we find
U = Vil 2y < C lul ooy /log Rjpmintp s} min{a2-2s} /(1)
where we have used that min{p,t — s} min{q, 2t — 2s}/(t — s) < ¢. Finally, we find
IV = Vill S 1U = Vil + 51U = Vil 2

2 [ |u|ﬁq(Q) |logh| {hmin{p,t—s} = + |k|8 hmin{p,t—s} min{q,2t—2s}/(t—s)}D

Remark 5.5. Given a right-hand side function f € H" (Q), the regularity result
in Proposition 3.5 gives that the solution to the fractional Helmholtz problem has
regularity of order r + 2s. Using elements of order p, we want to select M and eigen-
value approximations A, to satisfy Assumption 5.3 for ¢ = max{0, min{r,p—s}}+2s.
Satisfying the conditions for larger values of ¢ will not lead to any improvements in
the approximation result. This also shows that the method cannot take advantage of
right-hand side regularity r > p — s.

THEOREM 5.6. Let f € H" (Q), r > —s. Assume that Assumption 5.3 is satisfied
for t = max{0, min{r,p — s}} + 2s and that the conditions of Theorem 5.4 hold, and
that
(5-8) Vlloghl [(h]K])® + (h|k)*] <~
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for small enough constant ~y that is independent of h and k. Let U € H} be the
solution of (wExt) and U € Vy the solution of (wExty) and u and uy, be their
respective traces on ). Then

lu = wnl 7. () < CIU = Unlyys < CIIU = Unll < CR™™P7+3 \/llog bl | £ gy »
|u — up ||L2(Q) < (e s Vv [log Al |f|ﬁr(g) )

where the constants are independent of h and k.

Proof. Without loss of generality, assume that r+s < p. Let g € L? (Q). Then the
solution S; g has regularity ¢ = 2s < max{0,r}+2s = t. Since t —s = max{0,7}+s <
p, we find min{p,t — s} {=2 = ¢ — s = s, and

min{p, t — s} min{q, 2t — 2s}/(t — s) = min{q, 2t — 2s} = min{2s, 2max{0, r} + 2s} = 2s.
Hence, by applying Theorem 5.4, we have

n < C+/|logh|h® [1 + (h|K|)®].

Combining the latter with Theorem 5.1 and (5.8), we obtain that the discrete inf-sup
condition holds.

Now, let f € H" (). Then the solution of the fractional Helmholtz problem is in
Hr+2s (©) and hence, applying Theorem 5.4 with ¢ = r 4+ 2s < ¢, we obtain that

S0 U = Vil < Clulsan oy v/ ToBAIN [1+ (7 [4])°]
= C|fl vy VOB IR [1 + (h|K])?].

Combining with Theorem 5.2 and (5.8), we obtain the estimates

IU = Ul < CR™™ P4} /llog Al |1 7 @ »
U —Un ||L2(Q) £ G v V|log A |f‘ﬁr(9) :

We conclude by noting that due to the trace inequality

lu = unl (o) < CIU = Unlyy, < CIIU = Unll- O

6. Solution of the Linear System. Let {®;}"" ; denote the nodal basis func-
tions of the finite element solution space Sy, then the solution of the discretized
fractional Helmholtz problem can be written as up, (Z) = Y i un,;®; (Z) = ), - 3 (7).

Here, for the ease of notation, we have assumed that the eigenvalue approxima-
tions Ay, m = 0,..., M — 1, are all distinct. We refer to [1] for the procedure that
selects M distinct eigenvalue approximations, M <M.

By expanding the finite element functions as linear combinations with respect to
the basis functions ®;, the solution Uy, (Z,y) of the extension problem (wExty) can
be written in the form

M—1 n

Un (@)= Y Y cim®i (&) Pm (y) € Vi

m=0 =1
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with the coefficients (¢; ) = U, obtained by solving the linear system

(6.1) [Mpg® (So — k**B,) + Srp @ M| Uy = Fy,

< ) , Srp = (/ V(I)ivq)j> ,
Q

< W"/}md}n) s So </0 w{/;i,ﬂ%) )

f

® 1L,
h® f~, fn=({£,2:)).

where

M,
B,
F,

||
k‘w

Here, IM is the vector of ones of length M. The approximation to the solution of the
fractional Helmholtz problem is then obtained by taking the trace of Uy on

n

M-1
(6.2) up = trq Uy, = Z Z Ci;m P, (f) ;

i=1 m=0
where we recall the normalization Jm (0) = 1. In matrix form, the trace operator is
given by I ® T% e R™N | so that @), = {I@ TJ%] Uh.

PROPOSITION 6.1. There exist weights w,, and shift coefficients ., such that

M-
(6.3) Z (M pepm + Sre) ™" fr

m=0

When k2 is real, all p1,, are real and at most one coefficient i, is negative.

Proof. We consider the following generalized eigenvalue problem:
(64) (Sa - ksza) Q = MUQ[L,

with the normalization QM ,Q = I and p a diagonal matrix with entries Jam - If
k2% is real, then all i, are real. Then

(I®QH) [Mpp® (Se —k*B,) + Sre @My (I®Q)=Mpp@p+ Srp® 1.

Hence, we have

—1

[MFE® (Sg—kszg) +SFE®MG'] = (I®Q) [MFE®H+SFE®I]71 (I@QH) .

Since ﬁh = f;; ® TM and u = {I ® T%} ﬁh, we obtain

(QHTIWY (M pgpm + Sre)”" fa

00— 7

=il

M-1
m
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Both the spectral mass matrix M, and the spectral stiffness matrix S, are real-
valued, symmetric and non-negative, and so we know that the eigenvalues us,?) of the
related problem

S5,Q = MaQoHOa QgMaQo =1,
are all real and non-negative. Here, the entries of the diagonal matrix u° are MSS).
Without loss of generality, we assume that 0 < ,uéo) < ,ugo) <. < ,ug\%) e The

eigenvalues fi,,, in turn, satisfy the characteristic equation

0 =det (S, — k**B, — uM,)
= det (Q,)° det (w° — k2@ 7" —ul),

where 7 = ngﬁ Here, we have exploited the tensor product structure of B,.
This means that we are interested in the impact on the spectrum of a rank one
perturbation of a diagonal matrix. The eigenvalues of the rank one perturbation are
N ||z“2 with multiplicity one and 0 with multiplicity M — 1. If k2* is real, then
pu’ — k%2® 2T is Hermitian and all y,, are real. We assume without loss of generality
that po < gy <--- < pgr_,- Applying Weyl’s theorem [12, Theorem 4.3.7], one can
show then that

0 2 0
uy" = K2 2l < o < wg”,
iy < o < D), for m. > 1.
Since all MSP are non-negative, we can conclude that at most one eigenvalue i, is
negative. O

The above proposition shows that we need to solve a sequence of systems with
matrix of the form

Mpgpu+ Sre, peC.

Depending on pu, we use different solver strategies:
e 4 is real and non-negative (this corresponds to a classical, integer-order reaction-
diffusion problem):
We employ a conjugate gradient solver with standard geometric multigrid
preconditioner.
e 4 is real and negative (this corresponds to an integer-order Helmholtz prob-
lem):
We use GMRES preconditioned by geometric multigrid which has been con-
structed from the shifted system Spp + (1 +i8)uM pp with 8 = 0.5.
e 4 is complex, Re i is non-negative:
We use GMRES preconditioned by standard geometric multigrid.
e i is complex, Re p is negative:
Let p =: —v(1+ia) with v € R and o € R. We use GMRES preconditioned
by geometric multigrid which has been constructed from the shifted system
SrE — V(l —i—ZB)MFE with 8 = 0.5.
We note that this solution approach exposes a significant amount of parallelism.
The solution of the M decoupled problems is embarrassingly parallel, and each of
the integer-order problems can be performed in parallel. We also note that these
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F1G. 6.1. Convergence of the shift coefficient u closest to —k?.

solvers merely reuse existing solver technologies. In particular, this implies that any
improvements that can be made for the (potentially costly) solution of the integer-
order Helmholtz equation will benefit the solution of its fractional equivalent.

In practice, we observe that one of the shift coefficients {j,,} approaches —k? as
h — 0. In Figure 6.1, we plot the distance between this shift coefficient and —k? for
Q=10,1]3, s € {0.6,0.9} and different wave numbers k.

6.1. Comparison with the integer-order case. When k?° is real, only a
single u,, is negative according to Proposition 6.1. The above observation entails
that the single integer-order Helmholtz problem that needs to be solved has wave
number (very close to) k. This permits to compare the solution complexity of the
classical integer-order Helmholtz problem to the fractional case. The fractional-order
case differs in that we need to

e compute eigenvalue approximations Xm, m=0,..., M 5
e solve a generalized eigenvalue problem to obtain shifts p,, and weights w,,,
m=0,...,M,

e solve M — 1 reaction-diffusion type systems.
The generalized eigenvalue problem (6.4) can be solved in O (]\4 3) operations, and

the weights w,,, can be computed in O M 2) operations. Since finding the eigenvalue

approximations is also an inexpensive operation (cf. [1]), the computations are entirely
dominated by the the linear solves. Solving an integer-order Helmholtz problem can
be significantly more costly than solving reaction-diffusion problems, especially when
the wave number k is large. Therefore, we expect that the overall cost of solving the
fractional Helmholtz problem is comparable to the classical integer-order case.

6.2. Solving sequences of problems with variable fractional order. If
the eigenvalue approximations are chosen such that they satisfy Assumption 5.3 for
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a range of fractional orders [Smin, Smax] C (0,1), the resulting solver can be used to
solve fractional Helmholtz problems of order sy < s < Smax Without rediscretization.
This is quite beneficial since the exact value of the fractional exponent s is generally
unknown and needs to be determined through repeated linear solves with varying s
in the framework of an inverse problem. See for instance, [22, 2], and [5], where the
exponent s is spatially dependent. We do not explore the property further in the
context of the present work.

7. Numerical examples. Let 2 = [0, 1]¢. We solve the fractional-order Helmholtz
equation

(=AY u (Z) — k*u = f(T), Z e,
uw(@) =0, Z € 0N

In order to evaluate the error convergence rates, we prescribe the analytic solution
uw = CTIL, [z:(1 — 2;)]"™*7"/2, with a given right-hand side regularity of index r
and C' chosen to normalize u. We obtain an approximation of the corresponding
right-hand side function f via the discrete sine transform. We observe that
fedr (@), ue{g”(ﬁ) for r 4+ 2s e N+3/2,
H™25(Q)  else.

We have to resort to this approach, since we are not aware of any non-trivial analytic
pairs of right-hand side and solution for the fractional Helmholtz problem that reflect
the regularity properties of the equation. We also note that prescribing the solution,
and finding an approximation to the right-hand side function f, instead of the other
way around, permits us to compute the L2-error as follows:

u = unlZag) = lulzag) = 2 (uun) aqq) + lunlzegq) -

Here, the first term can be evaluated analytically and the second and third term can
be evaluated using quadrature of sufficiently high order. The H}-error is given by

U - Uh”i; = (/W) g2y — (Frun) pagy + F°° lu— unlZa(q) -

Here, we have used the variational formulation given in (wExt). Since the expansion
coefficients u,, and the exact eigenvalues A,, are know, we can use the expansion

o0

(fru) ey = . (A% — k%) ul?,

m=0

to approximate the true value by truncating the sum to a sufficient number of terms,
as long as we make sure that the truncation error is dominated by the discretization
error. As stated in Theorem 5.6 the H*-error is bounded by the H}-error.

It is important to note that the fact that the domains €2 are hypercubes is exploited
only to obtain good approximations for pairs of solutions and right-hand sides in order
to compute error norms. The discretization of the problem as well as the solver are
entirely oblivious to this fact and do not take advantage of it.

In what follows, we solve the above problem for the d-hypercube, d = 3, fractional
order s € {0.6,...,0.9} and

I a low regularity case (r = 1/2), using piecewise linear (p = 1) elements and
real-valued wave number k € {5, 20},
19



IT a low regularity case (r = 1/2), using piecewise quadratic (p = 2) elements
and real-valued wave number k € {5,20},
IIT a high regularity case (r = 2), using piecewise quadratic (p = 2) elements
and real-valued wave number k € {5,20},
IV a low regularity case (r = 1/2), using piecewise linear (p = 1) elements and
complex-valued wave number k = 20 + 5i.
In all settings, we use quasi-uniform meshes.

In Figure 7.1, we display the solution errors measured in H}- and in L? (Q)-
norm for the first two test cases, I and II. In Figure 7.2, the convergence results
of the latter two test cases, III and IV, are shown. As predicted by Theorem 5.6,
order h™ir{Pr+st convergence is observed in H)-norm. For the L2-error, convergence
of order R™in{P+1r+2s} jg observed. This is better than the rate of pmin{p+sr+2s}
predicted by Theorem 5.6. We notice an apparent slowdown of convergence in the
first two plots of Figure 7.2. This is an artifact of the inefficient way of obtaining
the right-hand side function f using the discrete sine transform. Given the limited
regularity of the function, we need to use many Fourier terms to obtain an accurate
representation of f. The slowdown is due to the fact that we cannot increase the
number of terms any further without exceeding the available memory of our machine.
We point out however that this is merely a drawback of how we obtain pairs of known
solutions and right-hand sides, but not of the presented method.

All computations are performed on a dual socket Intel Xeon E5-2650V3, 2.30GHz,
20 core workstation. In Figure 7.3 we display timings for the solution of the linear
problems. We display both the total solve time as well as the cumulative time for
all reaction-diffusion type solves. We observe that as expected, the integer-order
Helmholtz solve dominates the overall solution time for larger wave number k. This
shows that for high wave number k solution of the fractional problem and its integer-
order equivalent have very comparable cost. We also observe that for fixed k, the
solution time scales roughly linearly with the number of degrees of freedom n = dim Sj,
of the finite element space.

8. Anticipated outcomes and impact. An immediate application of the frac-
tional Helmholtz equation is the acoustic/electromagnetic interrogation of fractured
media - weapon system components; rocks abused by hydrofracking, earthquakes or
weapons testing.

In this context, a natural next step would be to learn the a priori unknown
fractional order s from available experimental data. The presented solver was designed
with this application in mind and supports solving sequences of fractional Helmholtz
problems without rediscretization. Therefore, our work enables the use of high-fidelity
fractional-order models in optimal control and uncertainty quantification which rely
on repeated and efficient solution of the forward problem. A key demonstration for the
presented algorithm development would be to compare results (efficiency, accuracy,
etc) against existing algorithms HiIFEM and FrachNet.

The presented solver and its theoretical underpinning also lend themselves nat-
urally to be generalized to other types of fractional-order equations. In the context
of geophysics, a natural extension would be to consider not a fractional Helmholtz
equation, but the full set of time-dependent Maxwell’s equations, without making
any of the simplifying assumptions. Other Sandia application areas that could bene-
fit from improved linear solve times are nuclear waste disposal and subsurface damage
caused by carbon sequestration, where fractional-order equations provide improved
predictive capability.
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FiG. 7.1. L2%-errors (x) and H}, -errors () for the solution of the fractional Helmholtz problem
on the unit cube for test cases I and II: wave nfdmber k = 5 (left) and k = 20 (right), fractional
orders s € {0.6,0.7,0.8,0.9} and piecewise linear (p = 1, top) and piecewise quadratic finite elements
(p = 2, bottom) for a right-hand side f € H" (), r = 1/2.
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F1G. 7.2. L2%-errors (x) and HL,-errors (e) for the solution of the fractional Helmholtz problem
on the unit cube for test cases III and IV: Top: wave number k =5 (left) and k = 20 (right), frac-
tional orders s € {0.6,0.7,0.8,0.9} and piecewise quadratic finite elements (p = 2) for a right-hand
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and piecewise linear finite elements (p =1) for agight-hand side f € H™(Q), r=1/2.
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Fic. 7.3. Solution times for the fractional Helmholtz problem on the unit cube. Total time (X)
and time for all reaction-diffusion type sub-problems (o).

An important follow-up question that needs to be addressed to make fractional
order models more widely available to Sandia applications is how to extend to spatially
dependent fractional orders instead of assuming a constant exponent s throughout
the domain. Neither theoretical nor computational aspects of this question have been
exhaustively explored. However, allowing for spatially dependent fractional orders is
of uttermost importance for the accurate modeling of the transition between different
regimes, e.g. of different material layers in the subsurface.

Another topic, with potentially very wide reaching consequences, is whether there
exists a mapping between a class of kernel functions (such as k (Z,7) = 1/ |# — 7|*">*
in the case of the fractional Laplacian) that can be mapped in a similar fashion to
an extension problem. The existence of such a mapping would allow to solve a much
larger class of nonlocal problems in much the same fashion (and with similar efficiency)
as the fractional Helmholtz problem.

Having a fast solver for a class of fractional-order equations at our disposal, we
are confident that we could address these next steps in a follow-up Laboratory Di-
rected Research & Development (LDRD) project. Given the breadth of applications
of fractional-order models, and the multitude of theoretical and computational issues
that we would like to address, we believe that an application in the Computer &
Information Sciences (CIS) Investment Area would be appropriate.

9. Conclusion. In this work, we have presented a fractional-order Helmholtz
problem. We have discussed well-posedness and convergence of a hybrid finite ele-
ment - spectral discretization. An efficient solver has been proposed that scales as
well as the best possible solver for the integer-order Helmholtz equation, making the,
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more appropriate, fractional equation a preferable alternative for geophysical electro-
magnetics modeling. Numerical examples have been used to illustrate the obtained
theoretical results.

Appendix A. Proof of Theorems 5.1 and 5.2.

Proof of Theorem 5.1. Let Uy € Vy \ {0} be arbitrary and take Z € H} to be
Z = (k* + |k|25)S,’; trq Up. Take Zj, € V), to be the best approximation to Z with
respect to the ||-[-norm and set Vi, := Uy, + Z, € Vy,. Then, by using the Garding’s
(in)equality

AU, Vi) = AU, Up) + AU, Z) + AUy, Zy, — Z)
= |Unl3a, = #*° 1Unl72(0) + % 10l 7200y + K™ [Unl 72 () + A (Un, Z1 — 2)
= Ul + A(Un, Zn - 2).
Hence due to the continuity of A
(A.1) A (Un, V)| 2 Ul = C U Z — Zn]l -
Since
1Z = Zull < 20|k [Unll 12y < 20 (k[ [T
and
121 < 2Ca(k) |k[** U] 120y < 2Ca(k) [k[* U]
we also obtain

IVall < IURI+ 120 + 12 = 2l
< WO+ 2Ca(k) [EF U + 20 [ U
(A.2) = (14 2(Ca(k) + ) [[*) 1UA] -

Combining (A.2), (A.1)

AWUR V)l o MUl = ClIZ = 2]
NURNIVED = (1 +2(Ca(k) + n) [k]*) U]
1—Cnlk)? o 1-Cxy
T 142(Ca(k) +n) [E]” = 14+2(Ca(k) +n) k>

Hence

- |A(Un, Vi) 1-Cy
inf  sup > - g
UneVi viev, NURIIVRI — 1+ 2(Ca(k) +n) [kl

Proof of Theorem 5.2. Take Y € HL to be Y := 8* (U —Up). Then, due to
Galerkin orthogonality and for arbitrary Y, € Vj,

2
U~ UnlZaqy = A(U — Un,Y) = AU U, ¥ = ¥i) < CIU — Ual ¥ - Yall.
Taking Y3 to be the best approximation to Y, we have

IY = Yull < 0U = Unll 20
24



Hence, we find

U - Uh"L?(Q) <Cn|U Ul .

Due to the Garding’s inequality, Galerkin orthogonality and continuity of A, we have
for arbitrary Vj, € V,

IU = Unll 1A U = Un,U = Up)| + 2 k> |U = Unl32q
=AU = Un, U = Vi) + 2|k |U = Unl3 g
< CU = Up|||U = Vil + 202 |&]*° |U — UnJ|? .

Therefore, since we assume (5.1),

C

U-U| £ ————=;
IV -0l < 1= o

IU = Vall < CIU = Vil -

Since this holds for arbitrary V}, € V},, we have that

(1]

2]

(3]

U-Uy|| <C inf ||[U-Vy|. O
IV~ Ul < C nt, U - Vil
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