
UNCLASSIFIED

Investigating Factors Impacting
Exascale Performance of ASC
Codes:A Co-design

PRESENTED BY

Principal Investigator/Lab: Stephen Olivier / SNL

Platform/Campaign ID: Trinity/atcc5-249[k], Sequoia/atcc5-122
Code Name: Tri-lab mini-apps and related ASC codes
Program: ASC
Usage (with Lin/Wilke): 0.76 (Trinity KNL), 0.86 (Trinity HSW), 0.11 (Sequoia)

SAND

UNLIMITED RELEASE

UNCLASSIFIED

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell international

Inc. for the U.S. Department of Energy's
National Nuclear Security Administration

under contract DE-NA0003525.

SAND2018-10636PE



2

UNCLASSIFIED UNLIMITED RELEASE

lnvestigating Factors Impacting Exascale Performance ofASC
Codes compared the MPI message characteristics of miniapps
to their corresponding applications

Background Description:
O Miniapps are designed to model actual
applications for codesign, but we need to
understand how representative they are.

Potential Consequences/Issues:
o Codesign using miniapps may be less impactful
if focused on characteristics in which miniapps
are not representative of the actual applications.

Resolution/Impact:
o We compared MPI message statistics of
applications and corresponding miniapps, and
found some more representative than others.

Paper extending this work submitted to an ACM/IEEE Supercomputing workshop

N
u
m
b
e
r
 p
er

 c
or
e 
pe

r 
mi

nu
te

 

1000

100

10

i

0.1

Message sizes for apps and miniapps on 128 Haswell cores

• HACC - app

SWFFT - miniapp for HACC

• SW4 - app

sw4lite - miniapp for SW4

I

to 4K 4K - 16K 16K - 64K 64K - 256K 256K - 1M

Message Size

1M - 4M 4M - 16M 16M - 64M 64M - 256M

Comparison of MPI message rate in two miniapps and the applications
from which they were derived. The x-axis shows bins for different
message sizes and the y-axis shows the rate at which messages of that
size occur. The bars for the SW4 app and the SW4lite miniapp match

closely, indicating similar message passing behavior in both. The bars
for the HACC app and the SWFFT miniapp do not match very closely,
indicating dissimilar message passing behavior in the app and miniapp.

Take Home Message: Some mini-apps model MI31 messaging of their corresponding apps better than others

UNCLASSIFIED UNLIMITED RELEASE



3

UNCLASSIFIED UNLIMITED RELEASE

lnvestigating Factors Impacting Exascale Performance of ASC
Codes demonstrated increased performance on sorting
workloads using a new algorithm for KNL "near" memory

Background Description:
o Customizing entire ASC applications to use
the "flat" (explicit data transfer) mode of
KNL processors is impractical.

Potential Consequences/Issues:
- High bandwidth "near" memory of KNL is
not put to optimal use in our applications,
since the "cache" mode is a naIve mechanism.

Resolution/Impact:
We designed a KNL-optimized sort algorithm
to demonstrate that key kernels can better
leverage "near" memory even in cache mode.

S
p
e
e
d
u
p
 o
ve

r 
G
N
U
-
p
a
r
,
 D
D
R
 

3

2.5

2

1.5

1

0.5

0

GNU-Par, DDR
GNU-Par, Cache

MLM-Implicit, DDR
MLM-Implicit, Cache

1 1 1
Z\

2B 4B 6B

Number of int64 Elements Sorted, Random Input

Speedup of our sort algorithm (MLM-implicit) versus the current state-
of-the-art GNU parallel sort (GNU-Par) on the Knights Landing (KNL)

processor for 2-6 billion integer arrays. Results are shown both for DDR

memory use only and in cache mode. Even using only DDR memory, our
algorithm outperforms GNU. It improves even more in cache mode.

Neil Butcher, Stephen L. Olivier, Jonathan Berry, Simon D. Hammond, and Peter M. Kogge. "Optimizing for KNL Usage Modes When Data Doesn't Fit in
MCDRAM." In Proceedings of International Conference on Parallel Processing (ICPP 2018). ACM, New York, NY, USA.

Take Home Message: Algorithms for "near" memory can increase performance even in cache mode

UNCLASSIFIED UNLIMITED RELEASE


