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Central question: What happens to material when you () g,

Laboratories
squish it very hard and/or heat it quite a lot?
Experiments/Observables Simulations

Measurements from small, short-lived Simulations help to design experiments
lab plasmas and large, distant and interpret data from laboratory and
astrophysical objects are inherently astrophysical plasmas
challenging

Observables (yields, images, spectra) Rad-hydro simulations themselves require
can be difficult to interpret; may require extensive input from adequate material
both models and simulations models (EOS, transport, opacity)

Additional questions:
How can we tell if our models are right?
How important is model consistency?




Our central goal: Develop a unified, tractable, and consistent )

model for matter in extreme conditions
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Fully self-consistent core model:
Quantum average-atom + ion correlations
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The model yields highly constrained Equations of State

and ionic transport coefficients
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The electronic response from self-consistent wavefunctions

rh) e,
yields electrical & thermal conductivities...
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... and stopping powers ) e,
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... and x-ray scattering signals i
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... and detailed opacities
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... With self-consistent line broadening

"' Laboratories
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Conclusions ) i,

Laboratories

We are working to build a self-consistent model of material at extreme conditions with:

» Constitutive properties adequate for use in simulations
- Enforced consistency can improve sensitivity studies & increase constraints

* Observable predictions adequate for comparison with experiment
- Enforced consistency means that if part of this model is wrong,
the whole thing is wrong — and its wrongness should be detectable
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* Observable predictions adequate for comparison with experiment
- Enforced consistency means that if part of this model is wrong,
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For complex systems, internally consistent models
that can be falsified by comparison to detailed data
have more epistemic value than tunable models
made to fit integrated data
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The core model is sensitive to the choice of exchange potentialf®
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The core model is sensitive to whether the screening density . v
includes the pressure-ionized “scars” of bound states
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Examining the full dielectric function indicates a missing piece

i) i,
in the standard Chihara decomposition
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Both the core model and TD-DFT capture
bound-bound scattering features in S(®, k)

h
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