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What's so difficult about modeling extreme conditions?

• HED plasmas are (usually) not well described by classical plasma models
• Partial ionization / complex screening
• Degeneracy effects
• Density effects on electronic structure
• Strongly coupled ions
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• Quantum Molecular Dynamics (QMD)
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Central question: What happens to material when you
squish it very hard and/or heat it quite a lot?

Experiments/Observables

Measurements from small, short-lived
lab plasmas and large, distant
astrophysical objects are inherently
challenging

Observables (yields, images, spectra)
can be difficult to interpret; may require
both models and simulations

Simulations
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Simulations help to design experiments
and interpret data from laboratory and

astrophysical plasmas

Rad-hydro simulations themselves require
extensive input from adequate material

models (EOS, transport, opacity)

Additional questions:
How can we tell if our models are right?
How important is model consistency?



Our central goal: Develop a unified, tractable, and consistent
model for matter in extreme conditions
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Fully self-consistent core model:
Quantum average-atom + ion correlations
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Self-consistent
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The model yields highly constrained Equations of State
and ionic transport coefficients
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The electronic response from self-consistent wavefunctions
yields electrical & thermal conductivities...
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quantum
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... and stopping powers
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... and x-ray scattering signals
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... and detailed opacities
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... with self-consistent line broadening

1 Line broadening,
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We are working to build a self-consistent model of material at extreme conditions with:

• Constitutive properties adequate for use in simulations
4 Enforced consistency can improve sensitivity studies & increase constraints

• Observable predictions adequate for comparison with experiment
4 Enforced consistency means that if part of this model is wrong,

the whole thing is wrong — and its wrongness should be detectable
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We are working to build a self-consistent model of material at extreme conditions with:

• Constitutive properties adequate for use in simulations
4 Enforced consistency can improve sensitivity studies & increase constraints

• Observable predictions adequate for comparison with experiment
4 Enforced consistency means that if part of this model is wrong,

the whole thing is wrong — and its wrongness should be detectable

For complex systems, internally consistent models
that can be falsified by comparison to detailed data
have more epistemic value than tunable models

made to fit integrated data
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The core model is sensitive to the choice of exchange potential
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The core model is sensitive to whether the screening density
includes the pressure-ionized "scars" of bound states
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Examining the full dielectric function indicates a missing piece
in the standard Chihara decomposition
Chihara decomposition:

= 1 Mk) + q(k)I2 Sia,e0
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Both the core model and TD-DFT capture

bound-bound scattering features in S(co, k)
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Core model:
quantum While S(co,0) lm{1/E(e),0)}

average atom + roughly describes edges and

ion correlations line, a more general S(co,k)
can be obtained directly
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