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Abstract.

We report the first observation of chirping instabilities driven by runaway electrons

(REs) in a tokamak. The instabilities are accessed during the post-disruption RE beam

stage in a low density background plasma (ne < 1019 m−3) on DIII-D. The chirping

instabilities are observed when a decelerating loop voltage is applied to the RE beam.

The frequency chirping is detected in two distinct frequency bands: 0.1–10 MHz and

30–80 MHz. The mode frequency increases linearly when the toroidal magnetic field

sensed by the RE beam increases. The frequency chirps by 0.3–2.4 MHz on a timescale

of 1 ms. Modification of the RE distribution function is directly measured during the

chirping in the low-frequency band consistent with the hole-clump model for frequency

chirping. The low-frequency instabilities also correlate with an increase of intermittent

RE loss from the plasma. These observations provide a novel experimental platform for

fundamental studies of nonlinear chirping. They also support continued investigation

of opportunities to utilize kinetic instabilities for RE mitigation in a tokamak reactor.
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1. Introduction

Energetic particles often drive instabilities through wave-particle resonances. The

frequency of an instability can sweep gradually as background plasma parameters

evolve or it can change rapidly due to nonlinear evolution of the energetic-particle

distribution function. In the fusion community, the latter phenomenon is termed

frequency “chirping”. Chirping of instabilities driven by energetic particles is common

in natural, laboratory, and fusion plasmas. Energetic electrons drive chirping “chorus”

waves in the magnetosphere [1, 2]. Rising tones, falling tones, and relatively steady

“hiss” are all observed under different circumstances [3]. In the laboratory, energetic

electrons drive rising tones in Terrella experiment [4] and both rising and falling tones in

magnetic mirror [5–7] and linear [8,9] devices. In fusion devices, fast-ion driven chirping

instabilities are extremely common in a wide variety of frequency bands [10,11]. Upward,

downward, and bifurcating chirps are all observed [12].

Although there is general agreement in both the space and fusion communities

that nonlinear trapping plays an essential role, the precise physical mechanism is

more contentious. Most likely, the mechanism differs for different cases. An early

paper [13] suggested that the chirping magnetospheric chorus instability actually was

jumping between different eigenmodes with closely spaced frequencies but this is an

unlikely explanation for most observations. Theoretical papers in both the space [14]

and fusion [15] communities have emphasized the important role of spatial variations

in mode properties. But, even in a spatially uniform plasma, chirping can occur.

The Berk-Breizman model [11, 16], famous in the fusion community, shows that the

formation of “clumps” and “holes” in the phase space of the resonant particles can

cause frequency chirping. Chen and Zonca [17] stress that the Berk-Breizman model

occurs in an adiabatic limit where the resonant particles barely alter the mode structure

and dispersion but that, in a non-adiabatic limit, the energetic particles directly alter

the dispersion relation of the mode, as in the well-known fishbone instability [18]. A

recent paper [19] argues that magnetospheric chorus is in the non-adiabatic regime.

It is widely recognized that, by altering the constants-of-motion, the wave-particle

interaction alters the orbits of the energetic particles. Chorus modes scatter energetic

electrons into the loss cone [20, 21]. Similarly, chirping fast-ion instabilities often expel

energetic ions from a fusion device [10,22].

This letter reports the first observation of chirping instabilities driven by runaway

electrons (REs) in a tokamak. Chirping in two distinct frequency bands is observed. For

one of the instabilities, modification of the distribution function is directly measured

with hard X-ray spectroscopy. In addition to their intrinsic interest, these observations

could be of practical importance, as kinetic instabilities that modify the RE distribution

function may mitigate damage by runaways in a tokamak reactor.
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Figure 1: Time traces of (a) plasma current Ip and loop voltage Uloop, (b) RE loss signal

by the distant HXR detector, (c) HXR signal from confined REs by the GRI, (d) ECE

signal at 87.5 GHz.

2. Experiment and diagnostics

The frequency chirping driven by REs is observed during disruption mitigation

experiments on the DIII-D tokamak. DIII-D is a tokamak with a D-shaped cross-section,

major radius R0 = 1.67 m, minor radius a = 0.67 m [23]. The toroidal magnetic field

Bφ = 2.2 T is kept constant during the experiments, providing characteristic electron

and deuteron cyclotron frequencies of fce = 60 GHz and fci = 15 MHz respectively. In

these experiments disruptions that generate a strong RE beam (with a current up to

hundreds kA and RE energy up to 20 MeV) are deliberately triggered by an injection of

a small argon pellet [24]. The resultant post-disruption runaway plasma is cold (≈1 eV),

dense, has a large fraction of the high-Z impurity. Argon is purged from the plasma

by a secondary injection of deuterium gas [25], originally deployed with the intention

of extending the runaway stage and reducing the transformer flux required to run the

current. Besides the argon removal from the plasma this also significantly reduces the

thermal electron density (from 1·1020 m−3 to <1·1019 m−3, close to the noise level of

a CO2-interferometer equal to about 3·1018 m−3). This provides access to a RE beam

at low collisionality that lasts more than a second and allows large variability of the

applied voltage. The chirping instabilities are observed when a negative (decelerating)

loop voltage is applied (up to −7.5 V, comparable in magnitude to the voltage required

for a plasma breakdown).

The RE energy distribution function is diagnosed via collimated tangential

measurements of the hard X-ray (HXR) bremsstrahlung radiation from the central

plasma using the Gamma Ray Imager (GRI) [26–28] and inversion from HXR to

RE spectra [29, 30]. RE loss to the tokamak wall is measured using a distant HXR

scintillating plastic detector [31]. This detector is placed in a few meters from the
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Figure 2: (a) Spectrogram of magnetic fluctuations and RE loss signal by the distant

HXR detector, (b) power of magnetic fluctuations B̃φ in the frequency range 1–10 MHz

and RE loss signal, (c,d) magnified region of the spectrogram shown in (a).

tokamak and observes volumetric bremsstrahlung emission; interaction between lost

REs and the wall material causes fast increase of its signal. Fast fluctuations of the

toroidal magnetic field are detected by a magnetic loop mounted at the low-field side

on the mid-plane and digitized at 200 MHz [32].

3. Observations of frequency chirping

When a decelerating loop voltage is applied to the RE beam, the RE loss rate increases

by up to 100% as shown by the strong fluctuations of the distant HXR detector signal

in Figure 1. Considering these fluctuations as quasi-periodic, the frequency of this

burst cycle changes from 1.5–2 kHz to 0.6 kHz over the observation time of 60 ms.

The GRI signal showing the bremsstrahlung radiation from confined REs has a shifted

phase compared to the RE loss signal. When the frequency of the HXR fluctuations

decreases, sub-millisecond spikes of the electron cyclotron emission (ECE) can be seen

with an increasing amplitude.

The observed picture suggests that confinement of REs is affected by instabilities.

Fluctuations of the toroidal magnetic field B̃φ are indeed measured by the fast magnetic

loop. The spectrogram in Figure 2(a) shows that the RE loss signal transiently increases

when the magnetic fluctuations are present. These magnetic instabilities have a sub-

millisecond chirping timescale and lie in the frequency range 0.1–7 MHz. The power

of magnetic fluctuations presented in Figure 2(b) shows a clear small-scale temporal

correlation with the RE loss signal. However, the RE loss magnitude and the power

of magnetic fluctuations are not directly correlated throughout the entire pulse. The

chirping nature of the instabilities as well as two separate frequency bands between 2–3

MHz and 5–6 MHz can be seen in the magnified spectrogram shown in Figure 2(d). The

HXR signal by the distant detector is seen delayed with respect to the GRI measurements
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Figure 3: Upward and downward frequency chirping in the high-frequency range and

RE loss by the distant HXR detector.

in Figure 2(c). The delay increases from 100 µs to 150 µs throughout this period and

can be considered as a characteristic time of RE radial transport.

Chirping instabilities are also observed at much higher frequencies of tens of MHz.

An example of clear upward and downward chirping at 50 MHz is shown in Figure 3.

Unlike the low-frequency instabilities, the high-frequency instabilities do not drive any

significant RE loss.

While the toroidal magnetic field Bφ is kept constant during the experiment, a shift

in plasma position from side-effect of a large voltage applied to the RE beam allows the

dependence of the instability frequency f on local Bφ to be studied. The loop voltage

changes on the timescale of tens of ms, which is too fast for the control system to

supply enough power to the plasma position coils and to keep the position of the RE

beam constant. As a result, when the loop voltage is negative and the RE current ramps

down, the RE beam shrinks (minor radius a changes from 0.55 m to 0.40 m) and moves

to the high-field side (from major radius R = 1.70 m to 1.55 m) since it is limited on

the inner wall. As the toroidal magnetic field in a tokamak varies like Bφ ∝ 1/R, the

RE beam moving radially senses the change of Bφ.

The frequency of instabilities in the low-frequency range and the toroidal magnetic

field with respect to the radial location of the RE current centroid are both shown

increasing in Figure 4(a). The dependence f(Bφ) for a selected mode is close to linear

and plotted in Figure 4(b). A case when the line-averaged thermal electron density

ne is decreasing during the argon purge while the RE beam does not move (local

Bφ ≈ constant) is presented in Figure 4(c,d). The dependence f(ne) observed in the

experiment best matches n−1e . A linear dependence f(Bφ) is also obtained for a mode

tracked in the high-frequency range as shown in Figure 4(e,f).

4. Modification of RE distribution function

Measurements of the HXR bremsstrahlung radiation produced when REs interact

with background impurities allow reconstruction of the HXR spectrum, which can be

inverted to yield the RE distribution function. The HXR spectrum measured from
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Figure 4: Dependence of frequency chirping in the low-frequency range on (a,b) the

toroidal magnetic field Bφ and (c,d) the line-averaged thermal electron density ne while

local Bφ ≈ constant. (e,f) Dependence of frequency chirping in the high-frequency range

on Bφ. Tracked modes are highlighted.
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different frequency ranges. (c) Relative change of RE loss signal by the HXR distant

detector during frequency chirping in different frequency ranges.

the central plasma during the runaway stage before Uloop ramps down is shown in

Figure 5(a). The inverted RE energy distribution function, shown in Figure 5(b), has a

non-monotonic feature (bump) at 5 MeV suggesting a presence of free energy to drive

kinetic instabilities; formation of the bump is discussed in detail in Ref. [33]. When

Uloop ramps down and the frequency chirping occurs, the HXR and RE spectra show a

modification of the RE distribution function during a single chirping event as presented

in Figure 5(c,d). During each chirp the HXR and RE spectra shift to lower energies and

relax back on a timescale of 1 ms.

5. Operational space and generality of observations

A survey of 15 discharges with frequency chirping is summarized in Figure 6(a) using

the operational space parametrized by the mid-plane line integrated electron density

〈nel〉 and Uloop. The chirping modes can be divided in two groups. The first group is

detected in the low-frequency range 0.1–10 MHz, the second group in the high-frequency

range 30–80 MHz. The low-frequency instabilities are observed when Uloop is negative

and 〈nel〉 is extremely low (close to the noise baseline level). There are a few cases

when 〈nel〉 is above the baseline, but rapidly decreases after a deuterium injection, thus
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likely being close to the baseline in outer regions of the RE beam. The high-frequency

instabilities are observed only when 〈nel〉 is near the baseline. They are initially detected

when Uloop is negative, but can still persist to positive Uloop as Uloop ramps up.

The relative amplitude of magnetic fluctuations B̃φ measured during the periods

with chirping modes is shown in Figure 6(b). It is calculated for both low- and

high-frequency ranges sub-divided into smaller frequency bands. The B̃φ amplitude

is maximized for the modes in the band 1–3 MHz and then quickly decreases over 3–6

MHz and 6–9 MHz. The B̃φ amplitude in the range 50–70 MHz is the second largest

but is much smaller in other high-frequency bands.

The relative change of the RE loss signal measured by the distant HXR detector

is presented for chirping in both low- and high-frequency ranges in Figure 6(c). Larger

effect on the HXR amplitude can be seen for chirping in the lower frequency range.

No clear dependence for the frequency change ∆f during chirping is observed. ∆f

typically changes by 0.3–2.4 MHz on time scales of 0.1–0.2 ms (local width) and 0.3–1.8

ms (full width from the beginning to the end).

6. Discussion

6.1. Possible mechanism of frequency chirping

Frequency chirping and direct measurements of modification of the RE energy

distribution function are consistent with the Berk-Breizman model explaining such

phenomena by formation of holes and clumps in the phase space of the distribution

function of energetic particles.

A possible mechanism of the instabilities is proposed as follows. A decelerating loop

voltage creates a strong non-monotonic feature at the RE distribution function providing

a source of free energy to drive the instabilities. These instabilities can interact with

REs having matching transit frequencies (ftr = ve‖/2πqR, where ve‖ is the RE speed

along the field line and q is the safety factor) increasing their radial transport and RE

loss. Safety factor is estimated to be increasing from 3 on-axis to 15 at the edge based

on the equilibrium reconstruction with HXR constraints of the RE current profile. Fast

pitch-angle scattering of REs by these instabilities can cause the ECE bursts observed on

0.1 ms timescale in Figure 1(d). Fast relaxation of the RE energy distribution function

(∼ 1 ms) can explain the frequency chirping. Detailed study of the resonance condition

requires more comprehensive mode structure data and is planned for future work.

The lack of a clear modification in either the RE distribution function or the RE

loss during high-frequency chirps is may be due to the chirping occurring in a different

portion of the phase space than the GRI observes or that their impact on the RE

distribution function is very limited.
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6.2. Candidate instabilities

The observed RE-driven kinetic instabilities show frequency chirping and linear

dependence f(Bφ) as is typical for Alfvénic instabilities, although the expected Alfvénic

density dependence has not been observed. The specific mode of detected Alfvénic

instability is difficult to identify without knowledge of the toroidal and poloidal

structure, but a simple estimate can be made based on their frequency. For plasma

parameters observed in the experiment, the measured frequencies lie between the ion

cyclotron frequency (fci = eBφ/2πmi ≈ 15 MHz, where mi is the mass of a deuteron)

and the Alfvén frequency (fA = vA/2πR0 ≈ 1.5 MHz on-axis, where vA is the Alfvén

velocity and R0 is the DIII-D major radius). This is a typical frequency range of

compressional Alfvén eigenmodes [34]. However, we cannot exclude that some lower-

frequency Alfvénic modes are observed upshifted in the experiment due to a very low

plasma density. The frequency dependence f ∝ n−1e found in the experiment is stronger

than a typical Alfvénic dependence f ∝ n−1/2e . This is possibly explained by plasma

non-uniformity when the density changes during the argon purge. Observation of the

different frequency sub-bands as presented in Figure 2(d) is supposedly caused by the

boundary conditions in the tokamak and the periodic variations in the magnetic field

strength seen by the passing runaways [35].

6.3. RE control in a tokamak

The observed frequency chirping adds a new phenomenon to the list of kinetic

instabilities driven by REs in tokamaks; these have noticeably expanded over the last

years as a result of search for RE mitigation techniques [36]. Among them are strong

hundreds kHz magnetic perturbations discovered during tokamak disruptions leading to

the failure of RE current formation [37–39] and claimed to be caused by the excitation

of toroidal Alfvén eigenmodes (TAEs) increasing the radial transport of REs [40, 41].

TAEs driven by energetic electrons supposedly accelerated after magnetic reconnection

have been recently reported in Ohmic plasmas [42]. RE-driven 100 MHz whistler waves

have been recently observed in DIII-D [35,43]. Though a direct effect of whistlers at this

frequency range on RE loss has not been experimentally verified, an increased pitch-

angle scattering of REs has been shown in experiment and modelling [44, 45]. Another

example of recent findings is RE-driven kinetic instabilities observed at a few MHz during

the current quench on DIII-D [46]. Few MHz instabilities correlate with intermittent

RE loss and have been proposed as a possible cause for a non-sustained RE current.

It is under investigation whether the same Alfvénic instabilities are responsible both

for the present frequency chirping and for the MHz modes observed during the current

quench. These findings support continued research on RE-driven kinetic instabilities in

order to understand their applicability for RE control in a tokamak reactor.
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7. Conclusion

Frequency chirping driven by REs has been observed for the first time on the DIII-

D tokamak. They are detected in a low density post-disruption runaway plasma

when a decelerating voltage is applied. The frequency chirps by 0.3–2.4 MHz on a

timescale of 1 ms in two distant frequency ranges 0.1–10 MHz and 30–80 MHz. The

frequency of the instabilities increases linearly as the toroidal magnetic field increases in

agreement with Alfvénic scaling. The RE energy distribution function measured before

the onset of instabilities has a non-monotonic feature suggesting the presence of free

energy to drive kinetic instabilities. Fast modification of the RE distribution function

is directly measured during the chirping in the low-frequency band. The low-frequency

instabilities also correlate with an increase of an intermittent RE loss from the plasma.

The observations of RE-driven frequency chirping provide novel plasma conditions to

study these instabilities and support further research to investigate opportunities for

RE control in a tokamak.
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