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Abstract

A wide variety of applications in science and engineering depend on effectively and efficiently
exploring high- dimensional parameter spaces. Common examples are uncertainty quantifi-
cation, inverse problems, or various optimization approaches. In such applications, the first
step is to create an initial uniform, random sampling of the space to create a baseline of
knowledge. The simulations evaluated at these samples are then used for subsequent pro-
cessing. In its most generic form, the goal of sampling is to produce the maximal amount
of information with the minimal number of samples. However, despite being the first step
and thus influencing the performance of the entire workflow, the quality of the initial sample
designs is rarely analyzed or optimized. This project develops a new spectral sampling the-
ory for analyzing and creating experiment designs in high-dimensional spaces. Further, new
algorithms for estimating sample properties and sample synthesis are designed. Finally, ap-
plications of the proposed spectral sampling tools in surrogate modeling, scientific machine
learning and image analysis are presented.

1 Background and Research Objectives

Exploratory analysis and inference in high dimensional parameter spaces is a ubiquitous
problem in science and engineering. As a result, a wide-variety of machine learning tools
and optimization techniques have been proposed to address this challenge. In its most
generic formulation, one is interested in analyzing a high-dimensional function f : D → R
defined on the d-dimensional domain D. A typical approach for such an analysis is to
first create an initial sampling X = {xi ∈ D}Ni=1 of D, evaluate f at all xi, and perform
subsequent analysis and learning using only the resulting tuples {(xi, f(xi))}Ni=1. Despite
the widespread use of this approach, a critical question that still persists is: how should one
obtain a high quality initial sampling X for which the data f(X ) is collected? This challenge
is typically refered to as Design of Experiments (DoE) and solutions have been proposed as
early as (Fisher 1935) to optimize agricultural experiments. Subsequently, DoE has received
significant attention from researchers in different fields (Garud, Karimi, and Kraft 2017) as it
is an important building block for a wide variety of applications, such as surrogate modeling,
image reconstruction, reinforcement learning, or data analysis. Currently, a plethora of
sampling solutions exist in the literature with a wide-range of assumptions and statistical
guarantees; see (Garud, Karimi, and Kraft 2017; Art B Owen 2009) for a detailed review.
Conceptually, most approaches aim to cover the sampling domain as uniformly as possible, in
order to generate the so called space-filling designs. However, it is well know that uniformity
alone does not necessarily lead to high performance. For example, optimal sphere packings
lead to highly uniform designs, yet are well known to cause strong aliasing artifacts most
easily perceived in many computer graphics applications. Instead, a common assumption
is that a good design should balance uniformity and randomness. Unfortunately, an exact
definition for what should be considered a good space-filling design has remained elusive.

Most common approaches use various scalar metrics to encapsulate different notions of
ideal sampling properties. One popular metric is the discrepancy of an experimental de-
sign, defined as an appropriate `p norm of the ratio of points within all (hyper-rectangular)



sub-volumes of D and the corresponding volume ratio. In other words, discrepancy quan-
tifies the non-uniformity of a sample design. The most prominent examples of so called
discrepancy sequences are Quasi-Monte Carlo (QMC) methods and their variants (Caflisch
1998). In their classical form, discrepancy sequences are deterministic though extensions
to incorporate randomess have been proposed, for example, using digital scrambling (Art
B. Owen 1995). Nevertheless, by optimizing for discrepancy these techniques focus almost
exclusively on uniformity, and consequently even optimized QMC patterns can be quite
structured and create aliasing artifacts. Furthermore, even the fastest known strategies for
evaluating popular discrepancy measures require O(N2d) operations making evaluation, let
alone optimization, for discrepancy difficult even for moderate dimensions. Finally, for most
discrepancy measures, the optimal achievable values are not known. This makes it difficult
to determine whether a poorly performing sample design is due to the insufficiency of the
chosen discrepancy measure or due to ineffective optimization.

Another class of metrics to describe sample designs are based on geometric distances. These
can be used directly by, for example, optimizing the maximin or minimax distance of a
sample design (Schlömer, Heck, and Deussen 2011) or indirectly by enforcing empty disk
conditions. The latter is the basis for the so-called Poisson disk samples (Lagae and DutrÃ c©
2008), which aim to generate random points such that no two samples can be closer than a
given minimal distance rmin, i.e. enforcing an empty disc of radius rmin around each sample.
Typically, Poisson-type samples are characterized by the relative radius, ρ, defined as the
ratio of the minimum disk radius rmin and the maximum possible disk radius rmax for N
samples to cover the sampling domain. Similar to the discrepancy sequences, maximin and
minimax designs exclusively consider uniformity, are difficult to optimize for especially in
higher dimensions, and often lead to very regular patterns.

1.1 Objectives

In general, scalar metrics used to evaluate the quality of a sample design tend not to be
very descriptive. Especially in moderately high dimensions different designs converge to
random samples (Morokoff and Caflisch 1994; Wang and Sloan 2008). Furthermore, one
rarely knows the best achievable value of the metric, e.g., lowest possible discrepancy, for
a given problem which makes evaluating and comparing sampling designs difficult. Finally,
most metrics are expensive to compute and not easily optimized. This makes it challenging
in practice to create good designs in high dimensions and with large sample sizes. Hence,
the overall research objectives of this project can be summarized as follows:

• Develop a new technique to quantify the space-filling property, which enables us to
systematically trade-off uniformity and randomness, consequently producing better
quality sampling designs.

• Design a theoretical framework for sample designs in high-dimensions that connects
the qualitative performance of a sampling pattern to its spatial characteristics.

• Obtain theoretical bounds on achievable performance for a given sample size and
provide guidelines for experiment design.

• Develop computationally efficient, yet accurate, estimators for characterizing proper-
ties of samples.

• Design families of sampling patterns for different applications and devise a principle
optimization framework for sample synthesis.

• Demonstrate the effectiveness of the new space-filling designs in surrogate modeling,
hyperparameter search in deep neural networks, image reconstruction, sampling non-
linear manifolds and studying generalization of ML algorithms.
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2 Scientific Approach and Accomplishments

2.1 Methods

2.1.1 A New Spectral Sampling Framework

Without any prior knowledge on the task being solved, for example recovering an unknown
regression function f or selecting hyper-parameters for training a neural network, a rea-
sonable objective for exploratory sampling is to ensure that the samples are random, thus
providing an equal chance of finding meaningful configurations anywhere in the domain of
interest. However, to avoid sampling only parts of the parameter space, a second objective
is often considered, which is to cover the space uniformly. Formally,

Definition A space-filling design is a set of samples that are distributed according to a
uniform probability distribution (Randomness) but no two samples are closer than a given
minimum distance rmin (Coverage).

In order to use this abstract definition to construct experimental designs, it is imperative to
quantify the randomness and coverage properties of a given sampling pattern. To this end,
we propose a novel metric based on the spatial statistic, pair correlation function(PCF) (B.
Kailkhura et al. 2016) denoted as G(r), which characterizes the distribution of sample dis-
tances r, thus providing a comprehensive description of sample designs. Further, we also
propose to analyze the spectral properties of sample designs, using tools from Fourier anal-
ysis, namely the power spectral density. For isotropic samples, a metric of interest is the
radially-averaged power spectral density, which describes how the signal power is distributed
over frequencies. The spectral property determines which frequencies that the sample design
can recover, in term of function approximation.

Definition For a finite set of N points, {xj}Nj=1, in a region with unit volume, the power

spectral density of the sampling function
∑N
j=1 δ(x− xj) is formally defined as

P (k) =
1

N
|S(k)|2 =

1

N

∑
j,`

e−2πik.(x`−xj), (1)

where |.| is the `2-norm and S(k) denotes the Fourier transform of the sampling function.

The connection between spectral properties of a d-dimensional isotropic sample design and
its corresponding pair correlation function can be obtained via the d-dimensional Fourier
transform or more efficiently using the 1-d Hankel transform.

Proposition 1 For an isotropic sample design with N points, {xj}Nj=1, in a d-dimensional
region, the radially averaged power spectral density P (k) and the pair correlation function
G(r) are related as follows:

P (k) = 1 +
N

V
(2π)

d
2 k1−

d
2H d

2−1

[
r

d
2−1G(r)− 1

]
(2)

where V is the volume of the sampling region and Hd[.] denotes the Hankel transform

Hd(f(r))(k) =

∫ ∞
0

rJd(kr)f(r)dr,

with Jd(.) denoting the Bessel function of order d.
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Figure 1: Illustration of the core idea of the proposed spectral sampling framework. By
establishing a mathematical link between pair correlation function (spatial) and the 1−D
power spectral density (spectral), we enable improved analysis of sampling distributions

This connection is central to using space-filling properties directly for optimization, and
obtaining effective experimental designs (Figure 1). It is important to note that, not every
PCF (or PSD) is physically realizable by a sample design. In fact, there are two necessary
conditions 1 that a sample design must satisfy to be realizable: the PCF and PSD should
be non-negative. These two conditions limit the space of realizable space-filling designs.

2.1.2 Space-Filling Spectral Designs

Definition A set of N point samples X in a sampling domain D can be characterized as a
space-filling design, if X = {xi ∈ D; i = 1, · · ·N} satisfy the following two objectives:

• ∀xi ∈ X , ∀4D ⊆ D : P (xi ∈ 4D) =
∫
4D dx

• ∀xi,xj ∈ X : ||xi − xj|| ≥ rmin

where rmin is referred to as the coverage radius.

In the above definition, the first objective states that the probability of a uniformly dis-
tributed random sample xi ∈ X falling inside a subset 4D of D is equal to the hyper-volume
of 4D. The second condition enforces the minimum distance constraint between point sam-
ple pairs for improving coverage. A space-filling design can be defined conveniently in both
spatial and spectral domains, and we refer to this as the space-filling spectral design.

Proposition 2 Given the desired coverage radius rmin, a space-filling spectral design is
defined in the spatial domain as

G(r − rmin) =

{
0 if r < rmin

1 if r ≥ rmin.

Proposition 3 Given the desired coverage radius rmin, a d-dimensional space-filling spectral
design X , with N sample points in a sampling domain D of volume V , can be defined in the
PSD domain as

P (k) = 1− N

V

(
2πrmin

k

) d
2

J d
2
(krmin)

where J d
2
(.) is the Bessel function of order d/2.

This general framework allows tractable analysis of the properties for samples, for example
we can derive upper bounds on achievable sample sizes while adhering to a given rmin,

1. Whether or not these two conditions are not only necessary but also sufficient is still an open question
(however, no counterexamples are known).
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Figure 2: Visualization of 2-d point distributions obtained using different sample design
techniques. In all cases, the number of samples N was fixed at 1000.

Proposition 4 For a fixed disk radius rmin, the maximum number of point samples possible
for a realizable space-filling spectral design in the sampling region with volume V is

N =
V Γ

(
d
2 + 1

)
π

d
2 rdmin

.

More importantly, this framework can be utilized to design specialized sampling families
targeted towards different applications.

2.1.3 A Synthesis Algorithm

We propose to iteratively transform an initial random input sample design such that its
PCF matches the desired PCF characteristics. More specifically, we propose a non-linear
least squares formulation. Let us denote the target PCF by G∗(r). We discretize the radius
r into m points {rj}mj=1 and minimize the sum of the weighted squares of errors between the
target PCF G∗(rj) and the curve-fit function G(rj) over m points. Sample synthesis can be
posed as a non-linear least squares problem as follows:

min

M∑
j=1

(G(rj)−G∗(rj))2 .

To estimate the PCF of point samples G(r), we employ a kernel density estimator similar
to (Öztireli and Gross 2012). Given the PCF estimator, the PCF matching problem can be
efficiently solved using gradient descent algorithm. However, the PCF matching problem is
a highly non-convex and we find that vanilla gradient decent with constant learning rate
(GD-CLR) (Bhavya Kailkhura et al. 2018) performs very poorly on the PCF matching
task. To overcome this limitation, we developed a variant of gradient decent with adaptive
learning rate, GD-ALR. Specifically, we use the following learning rate rule: λ = 0.1e−0.1

√
t,

for iteration t, which demonstrates good convergence behavior for all N and d (Figure 2).

2.2 Accomplishments

Optimal Sample Designs for Surrogate Modeling: Surrogate modeling is a widely-
adopted first step towards analyzing uncertainties and parameter sensitivities of a complex
simulation. We designed a specialized family of sampling distributions referred as Stair PCF
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(a) Stair PCF for Surrogate Modeling (b) Stair PCF for Hyperparameter Search

Figure 3: A novel stair PCF based design, which we show to be effective for surrogate
modeling and hyperparameter search in deep neural networks. We find that the proposed
design requires 50% lesser samples than existing designs to achieve the same fidelity.

based space-filling design, which we prove to be effective in surrogate modeling tasks. The
Stair PCF construction is defined as:

G(r; r0, r1, P0) = f(r − r1) + P0 (f(r − r0)− f(r − r1)) , (3)

with f(r − r0) =

{
0 if r ≤ r0
1 if r > r0

}
, r0 ≤ r1 and P0 ≥ 1.

As illustrated in Figure 3(a), the proposed stair PCF family outperforms existing designs
(in terms of mean squared error) on a synthetic test function (in 5 dimensions). We find
that our design requires 50% lesser samples in order to achieve the same model fidelity.
Consequently, our spectral designs have been adopted in a number of ongoing project at
LLNL.

Studying Generalization in ML via Sample Design: Analyzing the generalization
error of a learning algorithm is essential for estimating how well the generated hypothesis
will apply to unknown test data. Traditionally, generalization error is analyzed based on the
complexity of the function class, such as, the Vapnik-Chervonenkis (VC) dimension and the
Rademacher complexity, or properties of the learning algorithm, such as uniform stability,
and upper bounds on the error are derived. However, studying generalization from the
standpoint of sample design can provide key insights into the practice of scientific machine
learning and enable us to obtain performance bounds of ML algorithms. To this end, we
developed an analysis framework for studying generalization error behavior of a learning
algorithm through the lens of spectral properties of the sample design. We obtained key
theoretical results that reveal the regimes in which one can do better than uniform random
sampling in high dimensions.

Hyperparameter Optimization in DNN: With the increased adoption of modern ma-
chine learning approaches such as deep neural networks, the problem of choosing the ap-
propriate hyper-parameters (number of layers, batch size, learning rate etc.) has become
hugely critical, since they are known to impact the overall validation performance in non-
trivial ways. Hence, we propose to repose the problem of choosing an optimal configuration
as a high-dimensional sampling problem and utilize the proposed spectral designs for hyper-
parameter search. As illustrated in Figure 3(b), the proposed stair sfsd consistently identifies
optimal settings for different dimensions and sample sizes. We also successfully applied the
proposed techniques for auto-tuning of system configurations in HPC systems.

Sample Design for Image Reconstruction: A common solution to reducing visible
aliasing artifacts in image reconstruction is to employ sampling patterns with a blue noise
power spectrum. These sampling patterns can prevent discernible artifacts by replacing
them with incoherent noise. We extended the proposed spectral sampling framework to
design a new family of blue noise distributions (Stair blue noise), which is mathematically
tractable and enables parameter optimization to obtain the optimal sampling distribution.
Furthermore, for a given sample budget, our design achieves a significantly larger alias-free
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(a) Stair Blue Noise for Image Reconstruction (b) Sampling a sphere in R3

Figure 4: Extensions to the proposed sampling framework - (a) We develop a novel stair blue
noise sampling pattern that demonstrates superior characteristics (indicated by 2D PSD)
for image reconstruction tasks.; (b) We extend the proposed framework to generate Poisson
disk samples on non-linear manifolds.

low-frequency region compared to existing approaches, without introducing visible artifacts
in the mid- frequencies (Figure 4(a).

Sampling Non-Linear Manifolds: All techniques developed in this project focused on
Euclidean domains and extending them to non-linear domains is non-trivial. Though de-
veloping a rigorous analysis framework for arbitrary manifolds is beyond the scope of this
project, we designed sampling strategies for simple analytical manifolds and the Grassman-
nian (space of linear subspaces), a commonly used geometric space in machine learning
problems. As illustrated in Figure 4(b), spectral sampling can produce uniform sampling
distribution even on Riemannian manifolds (sphere in this example), when the metric is
known.

3 Impact on Mission

This project falls directly in the Data Science Core Competency by developing new theories
and algorithms useful for a broad range of predictive sciences. Due to its fundamental nature
the results from this project have the potential to impact almost all five mission focus areas
of the laboratory to a greater or smaller degree. Whether it is uncertainty quantification
for stockpile stewardship or weapon design, better weather or climate ensembles, optimizing
the energy grid, or supporting sensitivity analysis and inverse modeling in material science
and high energy physics, better sampling strategies will lead to high quality results using
significantly fewer resources. Our sampling tools have already been adopted by ongoing
efforts at Livermore including LDRD SI project on cognitive simulations, CRADA project
with ExxonMobil, HPC performance optimization, LDRD on collaborative autonomy and
LDRD SI project in material science. We expect the software library that has been developed
as part of this project will enable a wider adoption of these tools in other mission-critical
applications. Furthermore, several of the research objectives of this project are well aligned
with DOE’s vision for scientific machine learning.

4 Conclusions

In this project, we developed a fundamental theoretical framework to study the interplay be-
tween the properties of sampling distributions and their fidelity (bounds of function approx-
imation, generalization error etc.) in high dimensions. Based on the proposed framework we
designed new families of sampling distributions that are specifically targeted to applications,
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such as surrogate modeling, image reconstruction and Monte Carlo integration, and devel-
oped computational algorithms for synthesizing optimal samples. In this process, we have
identified design guidelines for constructing optimal sampling patterns for a given problem.
The results from this project are very promising as demonstrated by significant reduction
in sample requirements in several applications, and its broad applicability. We believe that
there are still interesting questions that remain to be explored in the future work such as an
analysis of the generalization error for cases where data comes from non-linear manifolds.
Note that the analytical methodologies developed in this project can be leveraged for study-
ing the effect of sample design on generalization error in such cases. Other questions such
as PSD/PCF parameterizations for other variants of space-filling designs, namely adaptive
and importance sampling, and optimization approaches to synthesize them are also crucial
directions of research in the context of DOE’s missions.
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