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1 Introduction

Accurate modeling of viscoelasticity remains an important consideration for a variety of
materials (e.g. polymers [1] and inorganic glasses [2, 3]). As such, over the previous decades
a substantial body of work has been dedicated to developing appropriate constitutive models
for viscoelasticity ranging from initial considerations of linear thermoviscoelasticity [4, 5] to
more complex non-linear formulations incorporating fictive temperatures [2] or potential
energy clocks [1, 6] including the use of both internal state variable (ISV) [7] and hereditary
integral [1] representations.

Nonetheless, relatively limited (in comparison to plasticity) attention has been paid to the
numerical integration of such schemes. In terms of integral based formulations, Taylor et
al. [8] first considered the problem of the integration of a linear viscoelasticity model. That
work focused on the integration of the hereditary integrals and demonstrated improved
performance of the new scheme with a custom finite element code over an existing finite
difference reference. Chambers and Becker [9], using a free volume based shift factor, also
considered the integration of the hereditary integrals and the impact on the problem of
a pressurized thick-walled cylinder and developed an adaptive scheme to bound the error.
Chambers [10] later developed three-point Gauss and composite integration schemes for
the hereditary integrals and noted improved accuracy. With respect to ISV-based schemes,
formulations for the non-linear Schapery model [11, 12] have been proposed. However, in
those efforts greater attention was paid to convergence of the non-linear solution scheme
than impact of numerical integration. Various authors (e.g. Holzapfel [13] and Simo and
Hughes [14]) have also studied the use of convolution integrals with differential forms of ISVs
for temperature-independent formulations.
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Regardless, while the "potential energy clock" (PEC) [1] and "simplified potential energy
clock" (SPEC) [6] models have been used to study a variety of non-linear responses (e.g. [15,
16, 3]), limited attention has been paid to the numerical performance. As will be discussed
later, the "clocle at the center of the formulations includes temperature and complex history
dependence making the numerical integration of such a model even more challenging. Thus,
in the current work an initial effort towards characterizing the numerical integration of the
constitutive model through simplified problems is performed. To that end, in Section 2
the theory of the model is briefly presented while the numerical integration is discussed in
Section 3. Results of various studies characterizing the numerical behavior and performance
are then given in Section 4. Finally, some concluding remarks and thoughts for follow on
works are provided in Section 5.

2 Theory

The SPEC model [6] of interest here is, as the name implies, a simplified version of the the
PEC model of Caruthers et al. [1]. While details of the formulations are left to those works,
the model is briefly reviewed here to enable subsequent discussions. To this end the Cauchy
stressl, cria, may be written,
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in which p, Po, ,3 and T are the current density, reference density, volumetric coefficient of
thermal expansion, and temperature while K, G, and L and the bulk, shear, and thermal
(L = _10) moduli with the subscript "d" denoting the difference between glassy (subscript
"g") and equilibrium ("oo") phase such that xd = x.9 — xeo. Furthermore, du and Ei3 are the
unrotated rate of deformation and strain2 and the "P denotes the deviatoric component of
a tensor such that x23 = x23 — (1/3)xkk(523 while /1 is the first invariant of the strain tensor

(h. = Ekk).

'The current written form is an approximation to the Cauchy stress given by Adolf et al. [6] assuming small
rotations. In both the original PEC model and subsequent SPEC formulation substantial attention is paid
the choice of finite deformation strain and stress measure and the impact on the formulation. For clarity of
the current presentation, such details are being bypassed by assuming small rotations (such that Ria = 6,3)
and referring the reader to the work of Caruthers et al. [1] and Adolf et al. [6] for detailed discussion to
that end. Further, while for presentation purposes small rotations are assumed, the model implementation
was not changed and as such makes no such assumption/limitation.

2Specifically, in this case the strain measure is the integrated unrotated rate of deformation.



Distribution —3— September 17, 2019

The integrals in Eqn. 1 are hereditary integrals capturing the history of the thermomechanical
state. Specifically, fv and L are the bulk and shear relaxation spectra, respectively, in this
case represented by different Prony series. The "*" denotes "materiar time which represents
the time frame in which the viscoelastic processes are occurring. It may be related to the
current "physicar or "laboratory" time, t, via a single shift factor, a, such that,

t* —
f t  dx

js a (x) •
(2)

In the PEC and SPEC models, the shift factor is determined via the current value of a
material clock, N . For the SPEC formalism, these terms may be related via,
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where C1 and C2 are the WLF [17] constants and the remaining constants (denoted by C)
may be approximated as,
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and a superscript "ref' denotes a temperature dependent quantity evaluated at T = Tref
and C, is the specific heat at constant volume.

3 Numerical Integration

For a displacement-based finite element program, in which the temperature history is known
and a strain increment is prescribed, it may be observed from Eqn. 1 that updating the
stress revolves around being able to appropriately evaluate the hereditary integrals. How-
ever, the relaxation spectra forming the core of these integrals are defined in terms of the
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material time and, correspondingly, the clock. From Eqn. 4 it may be observed that the
clock has substantial history dependence and is implicitly defined. As such, the clock is
implicitly defined and a corresponding non-linear numerical solve is needed to perform the
stress update. In this instance, a Newton-Raphson scheme is used to find the current value
of the clock. Additionally, throughout all of these operations, the integrals needed to be
continually reevaluated. Thus, two different numerical operations are needed to perform the
stress integration (i) numerical integration of the hereditary integrals and (ii) determination
of the material clock. Both will be briefly described here while additional details may be
found in the LAME manual [18].

3.1 Hereditary Integral Integration

First, the ability to accurately and efficiently evaluate the hereditary integrals is a well
recognized problem for viscoelasticity (e.g. [8, 10]). To emphasize this point, Eqns. 1 and 4
may be recast,
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If arbitrary functions are allowed to represent the relaxation spectra, each value of the
integral would have to be stored leading to prohibitively expensive storage requirements
for viscoelastic models. However, this problem has long been addressed by restricting the
functional representations to specific classes of forms which can remove such a need. For the
PEC and SPEC models (see [1, 6]), Prony series are used to this end such that,
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Note the shorthand,

f (t* — s*) = f (t* — s* , o) = E wk exp 
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has been used. In the previous relations, k is the number of Prony terms in the series, Tk
is the kth characteristic time and wk is the corresponding weight. As prefactors may be
found leading the integral, the spectra here are normalized such that 0 < f (x) < 1 with
Ek Wk = 1.

Written in this way, Jl, Hip J3, and Q contain the time history and are the terms that need
to be numerically integrated. To that end, approaches to integrate J3 shall be discussed and
the underlying schemes may be easily extended to the other variables and therefore will not
be presented for clarity. As a first step, it is noted that
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in which nv is the number of volumetric spectra Prony terms and a superscipt v denotes a
corresponding volumetric quantity. As the weights (4') are constant,

d J3 nt vd4 

dt = k=1 Wk dt

and by differentiating Eqn. 15 it can be shown that,

(17)
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d4 dT 1 jk

dt dt aTk 3
(18)

Thus, by considering Eqn. 16 it may be observed that J3 may be found by updating each
4 via Eqn. 18. However, the derivative in Eqn. 18 is implicit in the current value of 4
necessitating a numerical approximation to be able to integrate the term appropriately.
Multiple schemes may be used to perform such an operation. The approach that is currently
used with the SPEC model is a variant of a midstep scheme [6, 18]. Specifically, consider a
timestep At = f.-n+1 tn where time tn is a completely known state. Evaluating Eqn. 18 at
the midstep „n+1/2 (1/2) (tn+1 tr,) yields,

1 Tn+1 — Tn )
dt Itn+1/2 -

un+1/21 

jk 
3 in+1/2 At

(19)

with subscripts n, n + 1/2, and n + 1 denoting values at tn, tn+l/2, and tn+i, respectively.
If the rate d4/dt is approximated as constant over the timestep At such that,

(4)n+i — (4)n 
dt At

the value at the midstep may be taken to be,

(4) n+1/2 (4)n±1 + (4)n
2

Solving Eqns. 19-21 for the updated value produces,
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Alternative approaches may be derived from consideration of a typical, general integration
scheme with,

dJh' d4 

(4)n±1 = (4) n (1 13) At dt ItTh + °At dt Itn+'
(23)

and 0 = [0, 1] being the integration parameter such that /3 = 0 results in a foward Euler,
explicit integration scheme, 0 = 1/2 is a midstep rule, and 0 = 1 is a backward Euler,
implicit scheme. Such approaches are fairly standard (see e.g. [19]). To that end, if the fully
implicit case of 0 = 1 is considered,



Distribution —7— September 17, 2019

v
j3k)n-Fl an+1'

„r 
k  ((y3c) ,n + AT)

an+i T'k) + At \
(24)

where AT = Tn+1—Tn. In what follows, the backward Euler approach of Eqn. 24 will be used
as a comparison benchmark. The forward Euler scheme is not considered due to potential
timestep size limitations associated with stability of such schemes and the ,3 = 0.5 scheme
is not considered as the existing method is already a midstep variant.

3.2 Material Clock Determination

Finding the current value of the material clock revolves around solving the non-linear equa-
tion posed by Eqn. 3 that depends on the complex history dependent clock, N, defined by
Eqns. 4 and 7. For the current purposes a pure thermal loading shall be considered by setting
C3 = C4 = 0 such that,

N = T — Tref J3- (25)

Extending the solution is straightforward in the case of C3 = C4 0. However, those cases
require some tensorial derivatives that, while reasonably straighforward, may be cumbersome
and as such are neglected for simplicity and clarity of presentation.

In residual form, the non-linear Eqn. 3 may be rewritten,

C1N
ra = logio a + 

+ N 
= 0, (26)

providing the equation to be solved for a. Introducing "in” to be a non-linear correction
iteration, Eqn. 26 may be linearized such that,
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with Aa being the non-linear correction in a such that am+1 = + Aa. Noting that
temperature is fixed over a correction iteration and independent of a,

ON J3 
n,
,84 
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(28)

As 4 depends implicitly on a (see Eqn. 15) directly determining/evaluating the correspond-
ing derivative can be complicated. However, Eqns. 22 and 24 provide expressions that may



Distribution -8- September 17, 2019

be readily differentiated in terms of an+13. Setting rma +1 = 0, Eqn. 27 may be solved for Aa
as,

(q + N)2 a ln 10
Aa = [(q + N)2 — a (ln 10) Clq'9.+: 

ra 
m.

4 Results

(29)

To evaluate the numerical performance and convergence of the SPEC model, the parameter-
ization of a representative inorganic glass (Schott 8061) given in a recent work by Chambers
et al. [3] is used. This specific calibration is selected as it is a recent, complete set resulting
from thorough characterization and validated against a variety of experiments. The non-zero
model parameters (as provided by Chambers et al. [3]) are given in Table 1. Additionally,
Table 2 presents the relaxation spectra used for this study. Note, in their work Chambers et
al. only give the bulk spectra parameterized in terms of a stretched exponential. Here, the
full spectra (in terms of weights and times) are presented for consistency and completeness.
The following sections will present and discuss results from different representative loadings.
Finite element simulations are performed with Sierra/SolidMechanics [20].

Table 1:

Kg 33 GPa Kc.o 6 GPa
dKg/dT -20.5 MPa/°C dKoo/dT -5.9 MPa/°C

r3g 27x10-6 °C-1 /300 90x10-6 °C-1
Gg 24.8 GPa Goo 248 kPa

dGg/dT -7.0 MPa/°C dGoo/dT 0
C1 17 (-) C2 350°C

Tref 460°C

Non-zero SPEC model parameters provided by Chambers et al. [3].

4.1 No-load Cool

As a first consideration, the simple problem of a no-load cooling is considered. Specifically,
the material is assumed to be initially at 510°C (Tref + 50) and cooled to a temperature of
150°C (Tref — C2 + 40). Noting the implicit assumption in Eqn. 22 of a constant rate of
change over a load step, a particular response of interest is a non-linear temperature profile.
To this end, the expression,

\ t
T (t) = Thigh + (Tow — Thigh) () (30)

3Such an approach also has advantages in terms of consistency between the hereditary integral integration
and linearization.
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Tk (s) 

1X10-9

1X10-8

1X10-7

1X10-6

lX10-4

lX10-3

1X10-2

1X10-1

1

lx1.131

1 x 102
1.9953 x 102

1 x 103
1 x 104

Ws

0
4.24345 x 10-3
6.63991 x 10-3
6.55255 x 10-3
1.41373 x 10-2
1.40109 x 10-2
2.01033 x 10-2
2.66430 x 10-2
4.31981 x 10-2
5.98391 x 10-2
1.46465 x 10-1
1.62036 x 10-1
2.57094 x 10-1
2.39037 x 10-1

0

wv

4.42389 x 10-4
7.38956 x 10-4
1.53310 x 10-3
3.02200 x 10-3
6.04301 x 10-3
1.19125 x 10-2
2.36083 x 10-2
4.54541 x 10-2
8.68161 x 10-2
1.51936 x 10-1
2.43200 x 10-1
2.51843 x 10-1
2.54964 x 10-2
1.35599 x 10-1
1.23552 x 10-2

relaxation spectra for use
provided by Chambers et al. [3].

September 17, 2019

with the SPEC model parameterization

is used for the temperature profile. The final time, tf, is the total time it would take for a
linear profile (k = 1) to cool at 5°C/min. The considered profiles are given in Fig. 1.
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Figure 1: Temperature profiles considered for the no-load cooling simulations.

Results from finite element simulations with different values of k and various fixed, constant
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timesteps are given in Fig. 2. Specifically, the relative error for the strain4 (Fig. 2a), heredi-
tary integral J3 (Fig. 2c), and the log of the shift factor (1og10 a; Fig. 2c) are presented. The
solution of simulations using a fixed timestep of At = 0.5s are assumed to be converged and
taken as reference values for purposes of computing relative errors. Additionally, for smaller
values of k larger timesteps did not converge. In those cases, the data is simply not reported.
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Figure 2: Relative error convergence of (a) strain, (b) J3, and (c) 1og10 a through no-load
cooling paths with different fixed timesteps. Simulations with At = 0.5s (for each k value)
are taken to be the "converged" solutions for purposes of calculating error.

As is expected, it is clear from all three results that error does decrease with timestep size.
Additionally, from the k = 1 results, the current integration routine recovers the quadratic
rate of convergence expected for such a method. By comparing Fig. 2b with Figs. 2a and 2c
it may be seen that the hereditary integral value, J3, exhibits generally lower error for a given

4Given the pure thermal loading, a uniform volumetric strain is produced. For convenience, En is chosen as
a measure of the strain although any of the three normal strains would be equivalent.
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timestep than the other quantities. As J3 is the quantity actually being integrated, such an
observation makes sense. With respect to the impact of k, it may also be observed that error
increases with increasing non-linearity (decreasing k). This issues seems more pronounced
with the strain value. Furthermore, while higher k values keep the approximately quadratic
rate of convergence, the k = 0.25 responses are clearly closer to linear. Thus, as non-linear
temperature profiles are introduced higher error is introduced with this numerical scheme.

For comparison, Fig. 3 presents the convergence results for k = 1 (Fig. 3a) and k = 0.5
(Fig. 3b) for two different methods — the existing midstep and implicit backward. Note, two
results are shown for the existing scheme. Specifically, the finite element results are presented
(denoted by an "(N)") alongside a separate implementation "(A)" referred to as analytic for
sake of convenience. The "analytic" scheme is a special, reduced form for this load-path
implemented in a stand-alone fashion to enable broader consideration of the performance.
While minor differences may be observed associated with small difference in implementation
(e.g. no global solve), clear agreement is noted between the two schemes enabling further
study. A similar "analytie implementation of the backward Euler method (denoted "Imp.
= 1") is also presented. It recovers the expected linear convergence rate. While the

existing midstep scheme does show lower error and a higher convergence rate in both cases,
it may be noted that the quadratic convergence in the k = 1 case is not preserved with
k = 0.5 for the midstep scheme. The implicit approach, on the other hand, has a slightly
higher overall error but the linear convergence is maintained in both cases. As such, while
it has higher error the implicit scheme exhibits less sensitivity to non-linear temperature
profiles than the existing midstep approach.
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Figure 3: Relative error convergence of different numerical methods with (a) k=1 and (b)
k = 0.5. "Existine refers to the current midstep method with (N) denoting a numerical
result from Sierra/SolidMechanics while (A) is for the analytic implementation. The implicit,
backward Euler scheme results are also presented and denoted "Imp. /3 = 1".
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4.2 Creep

Creep tests in which a constant stress is applied and held at a fixed (or variable) temperature
for extended duration are a common way of characterizing the viscous responses of viscoelas-
tic materials (e.g. [6, 3]). As such, the numerical convergence of the response through such
loadings is considered here. A representative schematic of the considered stress-temperature
path is shown in Fig. 4. While 3-point bend tests are commonly used for such tests (i.e. [3]),
here an uniaxial tensile loading is investigated to remove any possible structural effects.

In the considered path, T (t = 0) = Tref + 50 = 510°C and cooled at 2°C/min to the creep
temperature, Tcreep, which is T„„p = Tref — 50 = 410°C in Fig. 4. The considered tensile
load (50 MPa in Fig. 4) is then applied in 5s and the material is then held for a creep
time of two hours (120 minutes). Note, some of the loading parameters (i.e. cooling rate,
loading time, hold time, load values) come from the discussion of Jamison et al. [21] in their
efforts to model the creep response of a glass-ceramic. For the following comparisons, the
"creep-strain", Ec which is the strain generated in the direction of loading after the load is
applied at temperature is used as the metric of interest. In Fig. 4 the "zero" creep time tcreep
is indicated such that F-C - creep ) = E (tcreep) — E (0).
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Figure 4: Illustration of creep loading history considered for current studies.

The numerical convergence behavior for different applied loads and creep temperatures is
shown below in Fig. 5. Note while different timesteps are used during the creep stage, fixed
time increments of Atc001 = 5s and At--load = 0.25s are used during cooling and loading,
respectively. To investigate the response, creep temperatures of 360, 385, 410, and 435°C
(which correspond to T„„p = T„f — 100, 75, 50, and 25°C, respectively) and loads of 30, 50,
70, and 90 MPa were considered. Figures 5a and 5b show the influence of temperature and
the lowest (30 MPa) and highest (90 MPa) loads while Figs. 5c and 5d consider the coolest
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and hottest temperatures at different loads. In the results of Fig. 5, a minimum relative
error of 1 x 10-12 was considered.
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Figure 5: Relative error convergence of creep strain at various temperatures and loads:
different creep temperatures with and applied load of (a) 30 MPa and (b) 90 MPa or various
loads at Tcreep = (c) 360°C and (d) 435°C. Simulations with At = 0.5s (for each k value) are
taken to be the "converged" solutions for purposes of calculating error.

By comparing the results in Fig. 5, the applied stress (at least in the domains considered)
seems to have a minor impact on the error. In fact, at the highest temperature considered

(Tcreep = 435°C) the various curves lie nearly on top of each other. With respect to tem-
perature, however, Figs. 5a and 5b indicate that higher creep temperatures produce larger
overall integration errors. In all cases, however, similar slopes and convergence rates may be
observed.
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4.3 Cooling under Load

In the previous examples, mechanical loading and temperature sweeps were performed sep-
arately. To consider the combined effects a modified loading is investigated in which the
cooling is performed under load. Specifically, an initially unloaded specimen at T (t = 0) =
Tref + 50°C is subjected to a hydrostatic mechanical load p in which ajj = pSij is applied over
lOs and then cooled through the various profiles in Fig. 1 with the load held constant. As
C3 = 0 there is no asymmetry in the tension-compression response so the loading is tensile
for convenience. Additionally, a hydrostatic loading is considered as the J1 and J3 hereditary
integrals have a common dependence on the volumetric spectra, fv, and the interaction may
be assessed. Furthermore, such a selection means that the deviatoric spectra should have no
impact. This loading is schematically illustrated in Fig. 6 for the case of k = 1.
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Figure 6: Illustration of cooling under load loading history considered for current studies.

For such loadings, convergence (in terms of the final strain) of the various simulations with
timestep are presented in Fig. 7 for mechanical loads of p = 50 MPa (7a) and p = 200
MPa (7b). While the results given in Fig. 7 show many similar trends to previous results
— e.g. higher error with smaller k-values — some characteristics are quite different. For
instance, with the k = 0.625 and other more non-linear cases a near invariance of the strain
to timesteps is noted at larger timesteps. Furthermore, the k = 0.75 case seems to experience
periods with larger convergence rates than the linear response.

In considering the source of these differences, it is noted that the initial loading temperature
is above the nominal glass-transition reference temperature and then cooled through that
temperature as indicated by the black line in Fig. 6. With larger timesteps, and especially
the case of non-linear temperature profiles, a possible consideration is whether or not there
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Figure 7: Relative strain error convergence of the cooling under load path with an applied
load of (a) p = 50 MPa and (b) p = 200 MPa. Simulations with At = 0.5s (for each k value)
are taken to be the "converged" solutions for purposes of calculating error.

are sufficient timesteps to account for the large change in shift factor associated with glass-
transformation. To this end, Fig. 8 presents the number of timesteps for a given temperature
profile and timestep size in the rubbery phase (above Tref). This is done by solving Eqn. 30
for the time when T = Tref and dividing by the corresponding timestep size. As observed in
Fig. 8, there are in fact many instances in which there is less than one timestep in the glassy
domain.

The impact of the not having sufficient timesteps before the glass-transition may be observed
in Fig. 9 in which the strain histories are plotted as a function of time for k = 1 (9a) and
k = 0.625 (9b) with p = 200 MPa for all of the different timestep sizes. The assumed
converged response (with At = 0.5s) is indicated as a solid black line. Importantly, the lines
colored green indicate those with at least one timestep after load is applied in the rubbery
phase while red lines are those in which there are no timesteps above Tref after load. From
these results, especially Fig. 9b, there is a clear separation of responses between those with
and without a timestep in the rubbery domain.

Importantly, in Fig. 9 the final error is not a result of continually compounding errors whose
sum increases. Instead, there is a clear and large difference in peak strain immediately after
load is applied. Thus, by using too coarse of a timestep issues may arise both regarding
final error measures and specific response characteristics like the post-loading strain increase
observed in Fig. 9. These observations highlight the impact of careful selection of a inte-
gration timestep for a viscoelastic model. The viscous nature of the material phenomenol-
ogy means there are intrinsic timescale(s) associated with the response and appropriately
resolving different characteristics requires considering corresponding numerical integration
timesteps. Given the number of viscoelastic spectra and even more numerous characteristic
times comprising their Prony series representations arriving at a rule or metric for bounding
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Figure 8: Number of timesteps after load is applied while T > Tref for the case of cooling
under load.
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Figure 9: Strain history through the cooling under load case with p = 200 MPa and (a)
k = 1 and(b) k = 0.625 for all the different considered timesteps. The arrows indicate
the directions of increasing timestep size which the solid black line indicates the assumed
converged response with At = 0.5s. Responses colored green have at least one timestep after
loading prior to crossing T = Tref while the red lines do not have a timestep after loading
above T = Tref.

considerations remains a challenge. Adaptive approaches using non-constant timestep sizes
may be a path towards addressing this issue. No attempt is made towards either approach
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at this time. Instead, this example is used to reinforce the impact of such selections.

5 Conclusion

Non-linear viscoelastic models, including the SPEC formulation, have complex thermome-
chanical history dependence. Such formulations depend not only on a temperature or single
internal state variable history, but also on volumetric and deviatoric loading paths. There-
fore, appropriate numerical integration schemes are needed as prerequisites for use in any
analysis. The viscous nature of the model further compounds this necessity.

In this work, attempts were made to study the numerical integration scheme of the im-
plementation of the SPEC model. While prior studies have considered simpler viscoelastic
forms, the impact of extra non-linearities and complexities in the form of interest have not
been assessed. To pursue such an endeavor, a variety of simplified purely thermal loading
paths were simulated with different fixed timesteps to assess error and convergence. Results
of these efforts demonstrate that even with the additional non-linearities of the SPEC formu-
lation the numerical integration is able to reproduce some of the desired behaviors observed
during earlier iterations in the considered loadings.

Generally speaking, the performance of the model was as desired and a quadratic rate of
convergence was observed as expected for a midstep integration scheme. Comparison to
a backward Euler scheme again demonstrated superior convergence and smaller error for
the considered loading cases. However, by considering temperature paths with increasing
non-linearity it was observed that error generally increased with the deviation form linearity
although the implicit backward Euler convergence rates were less sensitive to this issue.

To assess the behavior of combined thermomechanical loading paths, a variety of creep sim-
ulations were performed with different histories. In these cases, the model did generally
exhibit desired behaviors for convergence and broadly speaking error seemed to be more
sensitive to temperature rather than load. By performing coolings under load, in which the
load is applied above the reference glass-transition temperature, it was demonstrated that
appropriate selection of the timestep can have a large impact on the predicted responses
and corresponding errors if too coarse with respect to material phenomenology. These issues
highlight the impact of considering the numerical timestep resolution with desired phys-
ical response and load-path as the complex history dependence of the viscoelastic model
compounds the impact of numerical approach.
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