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'Ur ABSTRACT 

Multiple node charge collection robust 501 latch designs and
layouts are simulated and tested. MRED is used to identify
potential single-event susceptibilities associated with different
layouts prior to fabrication and to bound potential single-event
testing responses.

BACKGROUND SINGLE NODE CHARGE 
COLLECTION MITIGATED DESIGNS 

• Dual Interlocked Cell (DICE)

Node B2

  lode B1

Fig. 1. 11111Vcurtillmatic of DICE latch with black boxes showing transistors that
should be maximally separated in the circuit layout. No boxed transistors should also
be maximally separated.

• Transient Immune Composite Logic (TICT) or Stacked
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Fig. 2. TICT or double stacked transistor circuit (left side) with simplified schematic
representation (right side). Storage transistors in latches are replaced with TICT for
SEU mitigation and all transistors are replaces with TICT for SEU/SET mitigation.

• Triple Modular Redundancy (TMR) Triplicate sequential
circuits and vote out errors

All above are susceptible to co-incident charge collection
events in two circuit nodes.

MULTIPLE NODE CHARGE COLLECTION 
MITIGATED DESIGNS/LAYOUTS 

• Triple Stacked Transistor Latch

Fig. 3. Triple stacked transistor (left
side) circuit with simplified schematic
representation (right side).

o Triple stacked transistor islands
should not be colinear in layout.
Right triangle layout in Fig. 4.

o Requires sufficient charge collection
in all 3 transistors in a stack to
potentially cause upset.

• Stacked DICE Latch

Fig. 4. Triple stacifed transistor latch showing
layout of susceptib!e circuit nodes.
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Fig. 5. Stacked DICE design with relative transistor
placement.

o Vertical DICE
Redundancy

o Horizontal Stacking
Redundancy

o Requires sufficient
charge collection in 4
specific transistors to
potentially cause upset

•

MRED SIMULATION 

TABLE I. MRED Simulation Results for Normally Incident Ions, Minimum 0.0001 fC.
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TABLE II. MRED Simulation Results for Isotopically Incident Ions, Minimum 0.0001 fC.
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MRED Simulation Parameters

• 100 Million Monte Carlo samples per data point.

• Multiple Node Event Count is 2 for DICE, 3 for Triple Stacked, and
4 for Stacked DICE and in specific node combinations.

• DICE

o Simple circuit simulation of multiple node events reduces all but 1 event with
Cu and 2 events with Kr at normal incidence, but MRED shows potential SEUs.
Example MRED graphical result shown in Fig. 6.

o Most multiple node events remained with isotropic incidence, which shows
limit of DICE reliability.
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Fig. 6. Example MRED simulation output showing multiple node charge
collection in DICE latch, 2 PMOSFETs.

• Triple Stacked

o Review of 4 isotropic Cu events show at least one transistors receives less\
than 1 fC, which was limit for DICE upsets

o Multiple node events observed in lower left sets of transistors

• Stacked DICE

o Layout shown to be vulnerable in isotropic case. Fig. 5 shows a couple paths
that traverse through 4 transistors.

o MRED shows need for improved layout.

LABORATORY DIRECTED RESEARCH & DEVELOPMENT

SEU TEST RESULTS 

• Test Structures

o Two 2k shift registers with common inputs and clocks and error flagging
between outputs, for each latch type.

o Error circuitry design with triple stacked latches for all cases.

• Test Campaign

o Input is static (all Os) with slow clocking. Error flag counts measured in
oscilloscope.

o Testing at Texas A&M Cyclotron with 15 MeV/U beam and ions listed in Tables
I & II at normal incidence.

• Results

o Standard latch was the only
one to upset, results shown
in Fig. 7.

o MRED simulation results
coupled with simple circuit
simulation produces upper
bounds for standard and DICE
latches, also shown in Fig. 7.

o MRED shows that >1x1011
particles/cm2 fluence would
be needed to see statistically
significant DICE upsets.
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Fig. 7. SEU test results for the standard latch
(blue triangles). Also shown are normal incident
cross-sections from MRED simulation for the
standard latch (red diamonds) and DICE latch
(green squares).

CONCLUSIONS 

• Two new robust latches introduced showing mitigation of co-
incident charge collection at 2 circuit nodes.

• MRED capability to assess circuit designs/layouts to predict
SEU test results or to determine if layouts actually
accomplish design goals.
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