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Abstract. Recently, we applied an ab initio method, the no-core shell model combined with
the resonating group method, to the transfer reactions with light p-shell nuclei as targets and
deuteron as the projectile. In particular, we studied the elastic scattering of deuterium on 7Li
and the 7Li(d,p)8Li transfer reaction starting from a realistic two-nucleon interaction. In this
contribution, we review of our main results on the 7Li(d,p)8Li transfer reaction, and we extend
the study of the relevant reaction channels, by showing the dominant resonant phase shifts of
the scattering matrix. We assess also the impact of the polarization effects of the deuteron
below the breakup on the positive-parity resonant states in the reaction. For this purpose, we
perform an analysis of the convergence trend of the phase and eigenphase shifts, with respect
to the number of deuteron pseudostates included in the model space.

1. Introduction
The stripping of a proton (p) or a neutron (n) from the deuteron (d) projectile is the simplest
nuclear transfer reaction. The deuteron is the first stable isotope synthesized after the Big Bang;
henceforth, (d, p) and (d, n) are among the key reactions in the formation of the light elements
in the primordial nucleosynthesis. Because of its simplicity, the transfer of a nucleon, stripped
from the deuteron, into a target nucleus is an efficient process implemented in the experimental
studies of the ground-state (g.s.) and excited states of nuclei, of their energies, spin, and parity
properties [1].

The aim of an ab initio description of the deuteron-induced transfer reaction is to connect the
dynamics of the scattering to the first principles, which in low-energy nuclear reaction are the
nucleons, considered as the relevant degrees of freedom, interacting though realistic forces. Such
a description has been successfully carried out for light target nuclei in the framework of two
ab initio many-body methods: the no-core shell model [2] combined with the resonating group

http://creativecommons.org/licenses/by/3.0
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method (NCSM/RGM) [3], and the no-core shell model with continuum (NCSMC) [4, 5], which
are both suited for realistic nucleon-nucleon (NN) and three-nucleon (3N) forces. The former is
a cluster approach applied to the A-nucleon wave function, which is partitioned in a a nucleons
projectile and a (A-a) nucleons target, allowing for the description of scattering states. The
latter is built by treating on the same footing the cluster states of the NCSM/RGM method,
and the A-nucleons wave-functions computed in the NCSM approach. The NCSM/RGM and
NCSMC approaches have been first applied to the elastic (d-α) [6, 7] and 3H(d, n)4He and
3He(d, p)4He transfer reactions [8, 9].

In a recent work [10], we extended the scope of the NCSM/RGM description of the deuteron-
induced transfer reactions to p-shell nuclei. We studied the 7Li(d,p)8Li transfer reaction, whose
excitation function below the deuteron-breakup energy is adopted as a calibration tool for the
measurement of the radiative proton capture on 7Be [11]. We could then compute the energy,
spin and parity of the resonances above the d+7Li threshold in the 9Be spectrum. Even in
the energy range below the deuteron breakup, the internal excitations of the deuteron (i.e.
polarization and virtual breakup) are expected to influence the shape of the cross section. Their
correct description poses a challenge to the approaches that do not include explicitly the breakup
of the deuteron. In the NCSM/RGM, the formalism for the description of the three-body
continuum has been fully worked out with the introduction of the three-cluster wavefunction
ansatz [12], but it is not yet implemented in the transfer reaction calculations. In the present
approach, the virtual breakup of the two-nucleon projectile is approximated by discretizing
the continuum, obtained by considering the positive-energy states (pseudostates) of the NCSM
spectrum.

In this contribution, we revisit the main equations of the NCSM/RGM formalism, and our
results for the 7Li(d,p)8Li transfer reaction of Ref. [10], then we discuss the binary-cluster
channels that contribute to the resonances above the p+8Li threshold. Moreover, we assess
our treatment of the deuteron continuum, via an analysis of the convergence of the resonant
phase and eigenphase shifts in terms of the number of deuteron pseudostates included in the
model space basis.

2. Basic equations of the NCSM/RGM formalism
A general presentation of the equations of the NCSM/RGM formalism can be found in Ref. [3].
The idea of the cluster wave function, typical of the RGM approach, is exploited by building
the following expansion over the antisymmetrized binary-cluster channel states |ΦJπT

νr 〉,

|ΨJπT 〉 =
∑
ν

∫
dr r2

gJ
πT

ν (r)

r
Âν |ΦJπT

νr 〉 , (1)

with the coefficient of the expansion gJ
πT

ν (r) being the unknown amplitudes of the relative motion
between the clusters. The quantum numbers J , π, and T , are the total angular momentum,
parity and isospin.

Due to the introduction of the auxiliary variable r in Eq. (1), formally distinct from the inter-

cluster relative coordinate �rA−a,a = rA−a,ar̂A−a,a, the antisymmetrization operator Âν acts only

on the channel states. For the case of the binary cluster, the operator Âν acts on the product
state,

|ΦJπT
νr 〉 =

[
( |At αtI

πt
t Tt〉

∣∣∣Ap αpI
πp
p Tp

〉
)(sT ) Y� (r̂A−a,a)

](JπT ) δ(r − rA−a,a)
rrA−a,a

, (2)

where
∣∣∣At(p) αt(p)I

πt(p)

t(p) Tt(p)

〉
are translational-invariant eigenstates of the target (projectile).

Each channel is identified by a index ν = {AtαtI
πt
t Tt;ApαpI

πp
p Tp; s�} collecting the total spin
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s, the relative orbital angular momentum �, and the quantum numbers of each cluster: angular
momentum I, parity π, isospin T and energy α.

The target and projectile states in the binary-cluster channel are in turn obtained from the
intrinsic Hamiltonian Ĥ = T̂int + V̂ , composed by the internal kinetic energy T̂int and nuclear
interaction V̂ , by solving the following eigenvalue problem,

Ĥ |AαI πT 〉 = Eα |AαI πT 〉 . (3)

In the NCSM approach [2] the eigenstates of Eq. (3) are obtained by diagonalizing Ĥ in a model
space spanned by a complete harmonic oscillator (HO) basis. The size of the basis is fixed by
the maximum number Nmax of HO quanta, while the same HO frequency Ω is used for both
clusters in the binary-cluster channel.

Note that the RGM cluster ansatz of Eq. (1) is linked to the NCSM method consistently, that

is the same microscopic Hamiltonian of Eq. (3) is used. The basis states Âν |ΦJπT
νr 〉 of Eq. (1)

give rise to a coupled-channel set of equations for the unknowns gJ
πT

ν (r),

∑
ν

∫
dr r2

[
HJπT

ν′ν (r′, r)− EN JπT
ν′ν (r′, r)

] gJπT
ν (r)

r
= 0 , (4)

with the norm and Hamiltonian kernel given by,

N JπT
ν′ν (r′, r) =

〈
ΦJπT
ν′r′

∣∣∣ Âν′Âν

∣∣∣ΦJπT
νr

〉
, (5)

and

HJπT
ν′ν (r′, r) =

〈
ΦJπT
ν′r′

∣∣∣ Âν′ĤÂν

∣∣∣ΦJπT
νr

〉
, (6)

respectively.
In our implementation of the deuteron-induced reactions, two different mass partitions are

taken into account in the asymptotic states: the one with the deuteron (A-2,2) and the one
with the scattered nucleon (A-1,1). As a consequence, two types of kernels appear in the
matrices (5) and (6). The diagonal kernels correspond to the elastic channel of the reaction,
where the deuteron is present as a scattered particle in the asymptotic state or as a cluster in
the intermediate composite nucleus, that is

HJπT
ν′ν (r′, r) =

〈
ΦJπT
ν′r′

∣∣∣ Â(A−2,2)HÂ(A−2,2)
∣∣∣ΦJπT

νr

〉
=

〈
ΦJπT
ν′r′

∣∣∣HÂ2
(A−2,2)

∣∣∣ΦJπT
νr

〉

=
[
Trel(r

′) + V̄C(r
′) + E

I′1T
′
1

α′1
+ E

I′2T
′
2

α′2

]
N JπT

ν′ν (r′, r) + VJπT
ν′ν (r′, r), (7)

where Trel(r
′) and V̄C(r

′) are the relative kinetic energy and average Coulomb interaction,

respectively; E
I′1T

′
1

α′1
and E

I′2T
′
2

α′2
are NCSM energy eigenvalues for the two clusters, and VJπT

ν′ν
is the potential kernel (see Eq. (B2) of Ref. [10]). The off-diagonal kernels couple different
mass partitions and correspond to the transfer process: the complete list of the expressions of
the diagonal and coupling kernels, both for the norm and the Hamiltonian, can be found in
Refs. [6], [8] and [10]. Once the norm and Hamiltonian kernels have been computed, the set of
coupled integral-differential equations in (4) is solved on a Lagrange mesh within the microscopic
R-matrix method [13].
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3. Results on 7Li(d, p)8Li transfer reaction and 9Be energy spectrum
For the description of the 9Be spectrum above the d+7Li threshold, and of the 7Li(d, p)8Li
transfer reaction, we start from specific choices of the nuclear interaction and model space:

• Interaction: The chiral N3LO NN potential of Ref. [14], evolved through a similarity
renormalization group (SRG) transformation with evolution parameter Λ=2.02 fm−1. We
do not include 3N forces.

• HO basis: The nuclear wave function is expanded in the HO basis, with frequency of
h̄Ω = 20 MeV and two truncations corresponding to a total number of excitations above
the 2h̄Ω minimum-energy configuration of Nmax = 6 and 8. To match the corresponding
absolute number of HO quanta, we described the deuteron in Nmax = 8, and 10 model
spaces, respectively.

• Model space: Two 7Li states (32
−
g.s. and 1

2

−
first excited state) and four 8Li states (2+ g.s.

and 1+, 3+, 0+ excited states) are taken as the clusters in the binary products of Eq. (2).
For the deuteron, we included the g.s. and up to 4 pseudostates in the 3S1-

3D1 channel.
Tables 1 and 2 give the energies of 7Li and 8Li states, and deuteron g.s. and pseudostates,
respectively.

Table 1. Ground-state and excitation energies of 7Li and 8Li calculated within the NCSM
with Nmax= 6, 8 and 10 in the HO basis and HO frequency h̄Ω=20 MeV, compared to the
experiment. The values in the last column have been adjusted in order to reproduce the Q-value
of the 7Li(d,p)8Li reaction, as explained in Section 3.2.

Nucleus State E (MeV)
Jπ Nmax Exp Threshold

6 8 10 7Li(d,p)8Li

7Li 3
2

−
-36.20 -38.01 -38.94 -39.25 -38.01

1
2

−
-35.80 -37.64 -38.60 -38.77 -37.53

8Li 2+ -37.60 -39.66 -40.75 -41.28 -40.04
1+ -36.36 -38.47 -39.63 -40.30 -39.06
3+ -34.76 -36.78 -37.86 -39.02 -37.78
0+ -33.75 -36.16 -37.56 -36.83

3.1. 7Li(d, p)8Li scattering (eigen)phase shifts
A first insight on the dynamics of 7Li(d, p)8Li transfer reaction can be obtained from the different
(JπT ) components of the scattering matrix. The different binary-cluster states of Eq. (1),
having good angular momentum, parity and isospin, contribute to different partial waves in the
scattering matrix. The impact of different partial waves can be inferred from the eigenphase
shifts, while the importance of a specific binary-cluster channel state within a partial wave is
given by the phase shifts.

In Fig. 1(a) and (b) we show a selection of the computed T = 1
2 eigenphase shifts for negative-

and positive-parity states, respectively. These partial waves are responsible for the shape and
strength of the 7Li(d, p)8Li cross section, as shown in Section 3.2.

The positive-parity eigenphase shifts show a resonant shape just above the p+8Li threshold.

In particular the dominant eigenphase shift carries the
(
5
2

+ 1
2

)
quantum numbers. The
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Table 2. Ground-state and pseudostate energies of the deuteron calculated within the NCSM,
with Nmax = 8, 10 and 12 basis space, and HO frequency h̄Ω=20 MeV. In the calculations we
included up to 4 pseudostates in the 3S1-

3D1 channel.

E (MeV)
Nmax= 8 Nmax= 10 Nmax= 12

g.s. -1.96 -2.12 -2.13
1∗ 9.91 8.36 6.93
2∗ 15.22 12.82 11.06
3∗ 33.24 26.6 22. 80
4∗ 40.20 33.23 28.45
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Figure 1. Calculated (a) negative and (b) positive-parity eigenphase shifts within the coupled
(d,7Li)+(p,8Li) NCSM/RGM basis, as a function of the relative kinetic energy in the c.m. frame
and with respect to the p+8Li threshold. The SRG-N3LO NN potential with Λ=2.02 fm−1, and
the HO frequency of h̄Ω=20 MeV were used.

deformation and virtual breakup of the deuteron can be important even at low energies, therefore
they may influence these resonances located just above the reaction threshold. In this respect,
we analyse the influence of the deuteron pseudostates in Fig. 2, where the dependence of the

JπT = 3
2

+ 1
2 and

5
2

+ 1
2 eigenphase shifts on the number of deuteron states in the

3S1-
3D1 channel is

shown. Both resonances are significantly enhanced by the inclusion of the deuteron pseudostates.
We cannot claim that the solid line curves in Fig. 2, corresponding to 4 pseudostates included in

the model space, are fully converged. However, considering the 3
2

+
eigenphase shift in Fig. 2(a),

the relative difference between the resonance positions computed with 3 and 4 pseudostates
is within 5%, whereas the position of the resonance in the calculation without the deuteron
continuum is shifted by 50% with respect to our best attempt. Therefore, we are not expecting
significant changes of the shape of the eigenphase shifts, by adding more pseudostates in the
calculation.

Figure 3(a) further compares the two main phase shifts, labeled with the notation 2s�Jπ ,

contributing to the JπT = 5
2

+ 1
2 resonant state. In the d-7Li mass partition (solid red line),

the 7Li g.s. is coupled to the deuteron in the relative P -wave motion, while the g.s. of 8Li
has an S-wave coupling with the proton in the p-8Li channel (black solid line), giving rise to
a phase shift with a clear resonant behavior. The dependence of the p-8Li 6S5/2+ channel on
the number of deuteron pseudostates is shown in Fig. 3(b). Again, we see that the inclusion of
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Figure 2. Trend of convergence with respect to the deuteron pseudostates of Table 2, for

the calculated (a) JπT = 3
2

+ 1
2 and (b) JπT = 5

2

+ 1
2 eigenphase shifts within the coupled

(d,7Li)+(p,8Li) NCSM/RGM basis, as a function of the relative kinetic energy in the c.m. frame
and with respect to the p+8Li threshold. The SRG-N3LO NN potential with Λ=2.02 fm−1, and
the HO frequency of h̄Ω=20 MeV were used.

the pseudostates in the model space changes drastically the position of the resonance, which is
shifted by ∼600 KeV towards the p+8Li threshold when 4 pseudostates are taken into account
on top of the deuteron ground state.

Figure 3. (a) Eigenphase shifts for JπT = 5
2

+ 1
2 (solid blue line) compared to the d-7Li (solid

red line) and p-8Li (solid black line) elastic phase shifts contributing to the same JπT scattering
amplitude through a P - and S-wave respectively. (b) Trend of convergence with respect to
the deuteron pseudostates of Table 2, for the p-8Li 6S5/2+ elastic phase shift. All results were

obtained within the coupled (d,7Li)+(p,8Li) NCSM/RGM basis, and are plotted as a function
of the relative kinetic energy in the c.m. frame, with respect to the p+8Li threshold.

The non-resonant behavior of the channel states in the d-7Li mass partition is a general feature
of our calculations when both binary-cluster channels are coupled together. For instance, the
6P5/2+ channel, which is a strong resonance in the uncoupled calculation with only d-7Li mass
partition, appears to be quenched in Fig. 3(a) (see Ref. [10] for a thorough discussion).

In Figs. 4(a) and (b) we show the negative- and positive-parity phase shifts corresponding to
the channel states that contribute to the JπT states of Figs. 1(a) and (b), respectively. They all
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belong to the p-8Li mass partition and none of them, except for 5F5/2− , shows a clear resonant
behavior. We note that in the negative-parity partial waves, the dominant channels contain an

Figure 4. Calculated (a) negative and (b) positive-parity phase shifts contributing to the partial
waves shown in Figs. 1, with the corresponding description of the binary-channel states in terms
of the cluster state, total spin s and relative-motion angular momentum � of the binary-channel,
according to the notation 2s�Jπ (see Eq. (1)). The SRG-N3LO NN potential with Λ=2.02 fm−1,
and the HO frequency of h̄Ω=20 MeV were used.

excited state of 8Li; also the JπT = 3
2

+ 1
2 eigenphase shift contains contributions from the 8Li

excited states, and consequently it is shifted at higher energy compared to the JπT = 5
2

+ 1
2

eigenphase shift. From this survey on the phase shifts, we conclude that the partial wave 5
2

+ 1
2 ,

which corresponds the first resonant state above the p+8Li threshold, is the only one showing a
significant contribute of the d−7Li channels, which are otherwise suppressed in the calculations
coupling both the mass partitions.

3.2. 7Li(d,p)8Li integrated cross section
The shape of the excitation functions of the 7Li(d,p)8Li transfer reaction above the d+7Li and
p+8Li thresholds, at about 16 MeV with respect to the 9Be g.s., reflects the pattern found in
the (eigen)phase shifts of Figs. 1, 3 and 4.

In Fig. 5, we compare the calculated 7Li(d,p)8Li integrated cross section to the experimental
data of Refs. [15, 16, 17, 18] for deuteron energies in the laboratory frame up to about 2.3 MeV,
that is the energy range below the breakup threshold of the deuteron. The experimental data
displayed in Fig. 5 are concentrated around the deuteron kinetic energy of 0.78 MeV, where
the cross section exhibits a resonance of width Γ ≈ 0.2 MeV. The position of this peak, with
recommended value of 0.147±0.011 b, is measured routinely to calibrate the 7Be targets used in
experimental studies of the 7Be(p,γ)8B radiative capture [11].

The present computational limit with respect to the size of the HO basis, is given byNmax = 8,
corresponding to the solid line in Fig. 5. We observe that the first resonant peak of the cross
section approaches the experimental E ∼ 0.78 MeV resonance, when we increase the size of the
HO basis from Nmax = 6 to 8. Nevertheless, the position of this first peak is overestimated by
about 0.33 MeV, which is likely due to the fact that our wave function is not yet converged.
The fact that we overestimate the position of the first peak by about 0.33 MeV is related to
the underestimation of the Q-value of the reaction, as it is computed from the values of binding
energies in Table 1: The experimental Q-value is -0.192 MeV, whereas the energies of the g.s.
in our calculation give a Q-value of -0.556 and -0.465 MeV for Nmax= 6 and 8, respectively.
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Figure 5. 7Li(d,p)8Li integrated cross
section for deuteron laboratory energies
up to 2.25 MeV computed within the
NCSM/RGM approach at Nmax = 6 (thin-
dashed line) and 8 (solid line) compared to
the experimental data from Refs. [15, 16,
17, 18] (symbols).

Figure 6. Same as Fig. 5, but for the
integrated cross section computed in the
NCSM/RGM phenomenology approach, in
which the experimental energy difference
between d+7Li and p+8Li thresholds is
taken as input in the calculation (see text
for details).

The wrong threshold affects the NCSM/RGM calculation and its impact on the computed cross
section can be seen in Fig. 6, where the NCSM energies for the d, 7Li and 8Li clusters are correct
in order to reproduced the d+7Li and p+8Li thresholds with a desired level of accuracy. The
values of the clusters energies used to obtain the curve in Fig. 6 are shown in Table 1. This way
to proceed, denoted as ‘NCSM/RGM phenomenology’, brings the calculated total cross section
in fairly good agreement with the measured one in Fig. 6, with the position of the first peak
slightly overestimated and the trend of the cross section qualitatively reproduced, except the
second peak at about 1 MeV above the d+7Li threshold. The lack of this peak in the calculated
cross section could be due to the missing 8Be(α-α)-n mass partition in the model space.

An interesting issue regarding the resonant peak at ∼ 0.78 MeV concerns the determination
of its spin and parity. With the reasonable assumption that the first peak in our integrated
cross section corresponds to the first experimental resonance, we can contribute to decide
between conflicting spin-parity assignments derived from different phenomenological R-matrix
analyses [19, 20]. As illustrated in the eigenphase shifts of Fig. 1 and phase shifts of Fig. 3,

our calculation supports a 5
2

+
spin-parity assignment, as suggested by the analysis in Ref. [20].

In general, by studying the contribution of the different partial waves to the total cross section
(see Fig. 9 of Ref. [10]), we saw that the positive-parity phase shifts reach the maximum of their
gradient at lower energies than the negative-parity ones.

4. Conclusion
We revisited the application of the NCSM/RGM approach to the 7Li(d,p)8Li transfer
reaction [10]. This study is the first application of an ab initio method to the deuteron-induced
transfer reaction with p-shell (A > 4) targets.

We found that the interplay between deuteron-7Li and proton-8Li channels explains some
features of the 9Be spectrum in the energy region where the two thresholds are open. In this
work, we strengthen the conclusion that the first resonant peak in the integrated cross section
of the reaction, detected at deuteron energy of 0.78 MeV, contains a significant contribution
from both the mass partition channels. The other important resonances are instead dominated
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by the proton-8Li channels, with a corresponding quenching of the deuteron-7Li ones.
The study of the evolution of the phase and eigenphase shifts curves with respect to the

number of the deuteron pseudostates, has shown the crucial effect of the continuum given by the
deuteron polarization and its virtual breakup. While the trend of convergence in terms of the
pseudostates suggests that the inclusion of more pseudostates could still affect quantitatively the
position of the resonances, the main conclusions of our study are confirmed: in particular, the
discussion on the experimental spin-parity assignments of the 0.78 MeV resonance, which is used
as a calibration for the target thickness in the proton-capture experiments on 7Be. We found

that our calculations support a spin-parity assignment of Jπ = 5
2

+
for this resonance, suggesting

a reaction mechanism dominated by the coupling of the P -wave d−7Li incoming channel to the
S-wave in the p−8Li exit channel.
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[4] Baroni S, Navrátil P and Quaglioni S 2013 Phys. Rev. Lett. 110(2) 022505 URL
http://link.aps.org/doi/10.1103/PhysRevLett.110.022505
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