

Ultrahigh pressure isostructural electronic transitions in hydrogen

Cheng Ji^{1,2}, Bing Li^{1,3}, Wenjun Liu⁴, Jesse S. Smith^{2†}, Arnab Majumdar⁵, Wei Luo⁵, Rajeev Ahuja⁵, Jinfu Shu¹, Junyue Wang¹, Stanislav Sinogeikin^{2§}, Yue Meng^{2†}, Vitali B. Prakapenka⁶, Eran Greenberg⁶, Ruqing Xu⁴, Xianrong Huang⁴, Wenge Yang¹, Guoyin Shen^{2†}, Wendy L. Mao^{7,8}, Ho-Kwang Mao^{1,*}

¹Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; ²High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL 60439, USA; ³Center for the Study of Matter at Extreme Conditions and Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33199, USA; ⁴Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA; ⁵Condensed Matter Theory, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Uppsala, S-75120, Sweden; ⁶Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA; ⁷Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA; ⁸Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA; [†]Present address: X-ray Science Division, Argonne National Laboratory, IL 60439, USA; [§]Present address: DAC Tools LLC, Naperville, IL 60565, USA.

*maohk@hpstar.ac.cn

17 Understanding the high-pressure transitions leading hydrogen molecules to become a proposed
18 molecular metallic solid and finally an atomic metal¹, which is predicted to show exotic new
19 physics with the topology of two-component (electron and proton) superconducting, superfluid
20 condensate^{2,3}, remains one of the great unresolved problems in condensed matter physics^{4,5}.
21 Measurements of the crystal structures of solid hydrogen, which provide crucial information
22 towards understanding the metallization of hydrogen under compression, are missing for most of
23 the high pressure phases due to the significant technical challenges. Here we present a single-
24 crystal X-ray diffraction (SXRD) study of solid hydrogen up to 254 GPa which reveals the
25 crystallographic nature of transitions from phases I to III and IV. Hydrogen molecules remain in
26 the hexagonal close-packed (hcp) crystal lattice accompanied by a monotonic increase in
27 anisotropy as shown by a drop of the c/a ratio from 1.63 to 1.53, with a substantial kink upon the
28 transformation to phase IV. The pressure dependent shift of unit-cell volume also exhibits a slope
29 change entering phase IV, suggesting a second-order isostructural phase transition. Our study

30 **suggests that hydrogen may undergo a series of isostructural transitions due to the massive
31 distortion of the hcp Brillouin zone prior to eventual band closure and metallization.**

32 Seven high pressure solid phases of molecular hydrogen have been reported as a result of
33 prodigious experimental efforts during the past four decades, namely phases I⁶, II⁷, II'(deuterium)⁸, III⁹,
34 IV^{10,11}, IV¹², and V¹³, all based on optical changes such as peak broadening, peak splitting, and
35 intensity changes in Raman and IR spectra. Phases III and IV show the greatest spectral changes among
36 these phases and are the focus of experimental investigations and theoretical interpretations. At room
37 temperature (RT), phase I is stable from 5 to 190 GPa with freely rotating hydrogen molecules forming
38 the hcp crystal structure as determined by SXRD¹⁴⁻¹⁶. Phase II is a low-temperature (<130 K) phase
39 with minor shift of Raman and IR vibrons, revealing quantum orientational ordering of the hydrogen
40 molecules on the hcp lattice¹⁷. Phase III appears above 150 GPa (low-temperature) with major shifting,
41 splitting, and intensification in Raman and IR vibron and rotons, which was interpreted as classical
42 orientational ordering of the hydrogen molecules, with crystal structures remaining close to hcp¹⁷. Phase
43 IV, discovered at RT above 220 GPa, exhibits two distinct vibrational modes with pressure-dependent
44 broadening and a steep frequency drop of the first vibron¹⁰, in contrast to the single vibrational mode of
45 phases I, II, and III. Fundamental structural changes with novel alternating molecular and graphene-like
46 layers were theoretically proposed for phase IV^{18,19}. At higher pressures at RT, phases IV' (270 GPa)¹²
47 and V (325 GPa)¹³ were reported on the basis of relatively subtle modifications in Raman spectra
48 compared to phase IV, and their structures were thought to be slight modifications²⁰ of the proposed
49 structure of phase IV. Direct crystallographic information for the pivotal phase IV has been the focus of
50 hydrogen research since its discovery¹⁰, but no successful result has yet been published.

51 Diamond-anvil cell (DAC) coupled with synchrotron XRD is the only feasible method for crystal
52 structural determination of hydrogen above 100 GPa. Extending XRD of hydrogen to 200 GPa poses
53 several daunting challenges. X-ray scattering power is proportional to the square of the atomic number.
54 With the atomic number one, hydrogen has the lowest possible scattering power which further
55 diminishes at high pressures due to its extremely high compressibility that shifts XRD peaks to smaller

56 *d*-spacings and its extremely strong Debye-Waller effect that defines the decrease of X-ray scattering
57 power with increasing scattering momentum ($2\pi/d$). The hydrogen XRD signals are easily
58 overshadowed by the strong background scattering from surrounding materials, such as Compton
59 scattering from the diamond anvils and diffraction from the heavy metal gasket materials (due to the tail
60 of focused X-ray beam), resulting in a poor signal/background ratio (S/B). The S/B problem was first
61 tackled by growing single crystals of hydrogen, which concentrated the intensity from an XRD ring for
62 polycrystalline hydrogen samples into an XRD spot without changing the background level, thus
63 increasing the S/B and enabling the successful determination of the hcp structure of phase I^{14,16}.
64 Growing hydrogen single crystals within a helium (He) medium, which reduces fragmentation of
65 hydrogen crystals under compression, has extended SXRD of hydrogen up to 119 GPa¹⁵, which was the
66 previous record for studies at RT. At 100 K, XRD of fragmented crystals of phase III up to 190 GPa has
67 been reported²¹ with a relatively big sample using an anvil culet size larger than 100 μm . The breakage
68 rate of such large cutlets increases greatly with further pressure increase. Many experimental groups in
69 ultrahigh-pressure hydrogen research have been working to push hydrogen XRD to higher pressures,
70 but the obstacles are formidable. Hundreds of experiments during the past decade have ended in broken
71 diamonds without publishable structural information.

72 We spent the past five years conducting more than a hundred experiments in search of a solution to
73 this experimental challenge. We identified two key problems, namely, premature diamond failure
74 caused by their exposure to X-rays in the presence of highly compressed hydrogen, and the low S/B
75 ratio of submicron fragmented hydrogen crystals above megabar pressures. DAC has been used
76 successfully in X-ray studies of materials to the limit of beveled diamond anvils up to approximately
77 400 GPa. Hydrogen studies have also reached this general pressure limit near 400 GPa in Raman
78 spectroscopic studies but not in X-ray studies. After excessive failure of diamond anvils in XRD
79 experiments above 180 GPa, a test was conducted by loading H₂ samples in DACs, compressing to 180-
80 270 GPa, leaving them at constant pressure for three days, and subjecting the samples to occasional
81 Raman studies with laser. The samples survived under laser exposure, and pressures remained

unchanged. Then the samples were subjected to XRD studies using high brilliance synchrotron monochromatic x-ray with energy ranging from 20 to 35 keV, and all experiments failed due to diamond breakage within 1 to 20 hours of X-ray exposure, thus clearly demonstrating the detrimental effect of X-ray exposure to diamonds in contact with high-pressure hydrogen. Nevertheless, XRD at these pressures is possible if the experiments can be managed with minimal X-ray exposure and rapid data collection within several hours.

This SXRD study extends the pressure of single-crystal H₂ in He method¹⁵ up to 160 GPa (phase I) beyond which the method becomes impractical due to the requirement of a much bigger sample chamber (~10 μm) for extra He and the diffusive nature of He (see Methods). Compressing small pure solid hydrogen samples (~ 5 μm) has been known to achieve multi-megabar pressures¹⁰, but it produces fragmented submicron hydrogen crystals which reduce diffraction signal by more than three orders of magnitude in comparison to a single crystal. Three additional approaches were taken to reduce the background signals from gasket, diamond, and x-ray radiation outside the submicron sampling area to overcome the low S/B ratio problem of the submicron crystals. Through fabrication of a composite gasket with a metal girdle and a cubic boron nitride (cBN) or magnesium oxide (MgO) insert (originally developed for electrical conductivity measurements¹¹) which consists of lighter elements and lower X-ray scattering power than the commonly used heavy-metal tungsten or rhenium (Re) gaskets, the small H₂ samples (~5 μm in diameter) could be sealed and compressed to the maximum pressure, and XRD patterns without background from a surrounding heavier metal could be collected (Extended Data Fig. 1). This sample preparation approach was combined with either one of the two following diagnostic improvements. 1) multi-channel collimator (MCC)²² was used to select a segment along the incident X-ray beam by accepting the diffraction signal from the hydrogen sample while rejecting the background signals before and after the sample, thus reducing the Compton scatterings from diamond anvils by more than 80%. 2) to continue the SXRD method with fragmented H₂ crystallites, the submicron grain size was matched by focusing X-ray nano-beam²³ (FWHM≈300 nm) onto the crystallites that produced valuable SXRD signal and eliminated excess beam outside the crystallites. The strategy of multiple

108 improvements finally paid off; we firstly extended the SXRD study of phase I to 190 GPa and fit the
109 pressure-volume (P - V) data by a third order Vinet equation-of-state (EOS) that yields $K_0=0.110(6)$ GPa
110 and $K'_0=7.36(7)$ by fixing¹⁵ $V_0=84.495$ Å³. Then we were able to measure SXRD spots of H₂ phases III
111 and IV up to 254 GPa. Our SXRD data indicate that both phases III and IV remain in hcp as phase I.

112 Three successful SXRD experiments of H₂ phase III were conducted at 194 GPa, 210 GPa, and 212
113 GPa at RT using the monochromatic nano-focus X-ray probe. Fig. 1a shows the sample configuration
114 and the phase III characteristic Raman spectrum of the 212 GPa experiment. SXRD data was obtained
115 by rotating the DAC about the Ω -axis from -19° to 19° with data collection step size of 0.2°. The MgO
116 gasket insert resulted in a relatively clean background in the XRD images from the 5 μm hydrogen area,
117 as shown in Fig. 1b. The low XRD background, in great contrast to that from a heavy metal gasket,
118 enabled a total of 26 weak diffraction spots of H₂ to stand out above the background (Fig. 1c). The spots
119 are sharp with a good S/B ratio owing to the use of the nano-focus probe, which matches the grain size
120 as illustrated in the Methods section. The 26 SXRD spots can be categorized into three families, (100),
121 (002), and (101) of a hexagonal unit cell with d -spacings of 1.4978(6) Å, 1.356(1) Å, and 1.311(1) Å,
122 respectively (Fig. 1d). The corresponding hcp unit cell parameters are $a=1.7294(1)$ Å, $c=2.7119(3)$ Å,
123 and $V=7.0245(8)$ Å³. Due to the rapid decrease of the Debye-Waller factor at small d -spacing, the
124 higher order reflections above (101) are extremely weak, below the present S/B detection limit. The
125 measured XRD spots are from different crystallites, as it is impractical to keep the nano-focused X-ray
126 probe on the same submicron crystallite during the sample rotation of ±19°. The observation of the hcp
127 lattice at RT is consistent with the previous powder XRD study of phase III, measured at 100 K up to
128 190 GPa that suggested the H₂ molecules remaining in the hcp sites²¹.

129 The same strategy was applied for SXRD of H₂ phase IV at four pressures and RT, 220 GPa, 232
130 GPa, 244 GPa, and 254 GPa. For the sample at 232 GPa, three sets of Ω -scans were conducted at
131 three adjacent sample positions 1 μm apart (shown in Fig. 2a). A total of 40 sharp XRD spots were
132 identified (Fig. 2b), with 20, 14, and 6 XRD spots (Fig. 2c) observed at each sample position (Extended
133 Data Table 1 and Extended Data Fig. 2 provide detailed information of individual XRD spots). These

134 reflections can be categorized into three *d*-spacing values of 1.4795(9) Å, 1.322(1) Å, and 1.2910(9) Å,
135 and indexed as (100), (002), and (101), respectively, of a hexagonal lattice (Fig. 2d) with unit cell
136 parameters of $a=1.7084(1)$ Å, $c=2.6431(2)$ Å, and $V=6.681(1)$ Å³. In addition, another three H₂ samples
137 at 251 GPa, 251 GPa, and 244 GPa were measured by using a 2x1 μm^2 focused X-ray probe and with
138 the use of MCC. Due to the larger X-ray beam, diamond failure occurred during exposure to the high
139 brilliance synchrotron X-ray beam within 3 hours. One or two reflections, corresponding to (100), (002),
140 or (101) could be recorded before diamond failure for each experiment and the results are plotted in Fig.
141 2e. The unit cell parameters of H₂ phase IV at 254 GPa are: $a=1.6878(1)$ Å, $c=2.5866(9)$ Å, and
142 $V=6.381(2)$ Å³ which is a thirteen-fold compression from its initial $V_0=84.495$ Å³ (a fitting value at
143 ambient pressure from the literature¹⁵), and represents a record high densification reported in
144 experimental measurements of solids. Again, phase IV is demonstrated to be consistent with the hcp
145 structure within experimental uncertainty of $\Delta d/d = \pm 0.1\%$.

146 The hexagonal unit cell parameters of H₂ phases I, III, and IV at RT are plotted as functions of
147 pressure in Fig. 3. The lattice parameter *a* decreases smoothly under compression (Fig. 3a), but an
148 obvious kink in the pressure shift in *c* is observed across the phase boundaries (Fig. 3b), showing the
149 collapse of *c* in phase IV. The unit cell volumes of phases III and IV follow the extrapolation of phase I
150 without first-order discontinuity, but phase IV appears to be more compressible than phase I (Fig. 3c),
151 revealing a second-order phase transition. The bulk modulus at 235 GPa, $K_{235} = -V_{235} \times (\frac{dP}{dV})_{235}$, of
152 phase IV (461.5 GPa) is 14% smaller than that based on the EOS of phase I (536.8 GPa). The *c/a* ratio
153 of hydrogen phase I at 5.4 GPa¹⁴ is 1.630 which is close to the ideal value 1.633 for close-packed
154 spheres. In previous XRD studies, hydrogen phase I has been reported to become anisotropic with
155 increasing pressure, exhibiting a reduced *c/a* ratio^{15,16,24}. Our measurements show that the *c/a* ratio
156 keeps decreasing and the anisotropy continues to grow under further compression into phases III and IV
157 (Fig. 3d). The transition to phase IV clearly marks a kink in the rate of the *c/a* ratio dropping which
158 accelerates in phase IV and reaches 1.5325(5) at 254 GPa.

159 Phase IV of hydrogen was originally discovered based on changes of the Raman spectra. Raman
160 optical spectra were collected along with XRD studies, and the results confirm previous observations in
161 phase III and IV^{10,11} (Extended Data Fig. 3), with a precipitous drop in Raman vibron frequency and an
162 increase in vibron FWHM at the I-III transition. The trend of spectral changes continues and accelerates
163 through the III-IV transition, with the emergence of an additional vibron peak ν_2 . The XRD
164 measurements, which probe the mass centers of H₂ molecules and suggest the lattice being close to hcp,
165 however, are insensitive to the intramolecular symmetry of the molecules. Combining the observations
166 from both XRD and Raman, phase IV appears to be isostructural with phases I and III but possessing
167 intramolecular symmetry breaking. The characteristics of two vibrational modes in Raman and
168 intensified Infrared spectra could have several potential causes, namely, H₂ motif distortion²⁵, ortho-
169 para state²⁶, charge transfer, electron-phonon coupling, *etc.* The clarification of the exact structure of
170 phase IV requires further theoretical investigations taking into account of the constraints provided by
171 our XRD measurements.

172 Such high-pressure isostructural transitions with *c/a* anomaly and changes of optical and vibrational
173 properties are not rare in hcp elements, such as Fe²⁷, Co²⁸, Os²⁹, Hf³⁰, *etc.*, and invariably indicate
174 electronic topological transitions (ETTs). Although these elements are atomic metals and high-pressure
175 solid hydrogen is a molecular insulator on its way to an atomic metal, the theory of ETT would be a
176 reasonable starting concept to consider. Since the XRD results suggest iso-structural phase transitions,
177 we performed theoretical calculations of the electronic band structure using the hcp model (*P6₃/mmc*
178 and structure of phase I) as an approximation. Our preliminary theoretical calculations indicate that ETT
179 may be a promising direction to account for phase transitions in hydrogen (See Extended Data for more
180 details). A full treatment of the electronic nature of the isostructural transition, however, would be the
181 goal of future comprehensive theoretical studies.

182 In summary, by overcoming a series of obstacles, the pressure range of SXRD studies on H₂ at RT
183 was doubled to 254 GPa covering phases I, III, and IV. The SXRD data demonstrate that these high-
184 pressure transitions in H₂ are not caused by major crystallographic changes of the hcp structure,

185 remaining isostructural except for a severe distortion in the c/a ratio and an increase in anisotropy.
186 Raman measurements confirm the previous observation of substantial peak broadening and frequency
187 plummeting during the transitions. We identify the transition to phase IV phenomenologically as
188 molecular symmetry-breaking isostructural transition of hydrogen, possibly with changes in its
189 electronic structure. With a new generation of synchrotron nano-probes on the horizon, our work opens
190 up opportunities for understanding the fascinating phase diagram of hydrogen by direct SXRD study to
191 even higher pressure-temperature ranges.

192 **References**

- 193 1 Wigner, E. & Huntington, H. B. On the Possibility of a Metallic Modification of Hydrogen. *J
194 Chem Phys* **3**, 764 (1935).
- 195 2 Babaev, E., Sudbø, A. & Ashcroft, N. W. A superconductor to superfluid phase transition in
196 liquid metallic hydrogen. *Nature* **431**, 666-668 (2004).
- 197 3 Bonev, S. A., Schwegler, E., Ogitsu, T. & Galli, G. A quantum fluid of metallic hydrogen
198 suggested by first-principles calculations. *Nature* **431**, 669-672 (2004).
- 199 4 McMahon, J. M., Morales, M. A., Pierleoni, C. & Ceperley, D. M. The properties of hydrogen
200 and helium under extreme conditions. *Rev of Mod Phys* **84**, 1607-1653 (2012).
- 201 5 Mao, H.-k., Chen, X.-J., Ding, Y., Li, B. & Wang, L. Solids, liquids, and gases under high
202 pressure. *Rev of Mod Phys* **90**, 15007 (2018).
- 203 6 Mao, H.-k. & Hemley, R. J. Ultrahigh-pressure transitions in solid hydrogen. *Rev of Mod Phys*
204 **66**, 671-692 (1994).
- 205 7 Lorenzana, H. E., Silvera, I. F. & Goettel, K. A. Orientational phase transitions in hydrogen at
206 megabar pressures. *Phys Rev Lett* **64**, 1939 (1990).
- 207 8 Liu, X. D., Howie, R. T., Zhang, H. C., Chen, X. J. & Gregoryanz, E. High-Pressure Behavior of
208 Hydrogen and Deuterium at Low Temperatures. *Phys Rev Lett* **119**, 065301 (2017).
- 209 9 Hemley, R. J. & Mao, H. K. Phase transition in solid molecular hydrogen at ultrahigh pressures.
210 *Phys. Rev. Lett.* **61**, 857-860 (1988).
- 211 10 Howie, R. T., Guillaume, C. L., Scheler, T., Goncharov, A. F. & Gregoryanz, E. Mixed
212 molecular and atomic phase of dense hydrogen. *Phys Rev Lett* **108**, 125501 (2012).
- 213 11 Eremets, M. I. & Troyan, I. A. Conductive dense hydrogen. *Nat Mater* **10**, 927-931 (2011).
- 214 12 Howie, R. T., Scheler, T., Guillaume, C. L. & Gregoryanz, E. Proton tunneling in phase IV of
215 hydrogen and deuterium. *Physical Review B* **86** (2012).
- 216 13 Dalladay-Simpson, P., Howie, R. T. & Gregoryanz, E. Evidence for a new phase of dense
217 hydrogen above 325 gigapascals. *Nature* **529**, 63-67 (2016).
- 218 14 Hazen, R. M., Mao, H. K., Finger, L. W. & Hemley, R. J. Single-crystal x-ray diffraction of n-
219 H₂ at high pressure. *Phys Rev B* **36**, 3944-3947 (1987).
- 220 15 Loubeyre, P. *et al.* X-ray diffraction and equation of state of hydrogen at megabar pressures.
221 *Nature* **383**, 702-704 (1996).
- 222 16 Mao, H.-k. *et al.* Synchrotron X-ray Diffraction Measurements of Single-Crystal Hydrogen to
223 26.5 Gigapascals. *Science* **239**, 1131-1134 (1988).
- 224 17 Mazin, I. I., Hemley, R. J., Goncharov, A. F., Hanfland, M. & Mao, H.-k. Quantum and
225 Classical Orientational Ordering in Solid Hydrogen. *Phys rev lett* **78**, 1066-1069 (1997).
- 226 18 Liu, H., Zhu, L., Cui, W. & Ma, Y. Room-temperature structures of solid hydrogen at high
227 pressures. *J Chem Phys* **137**, 074501 (2012).

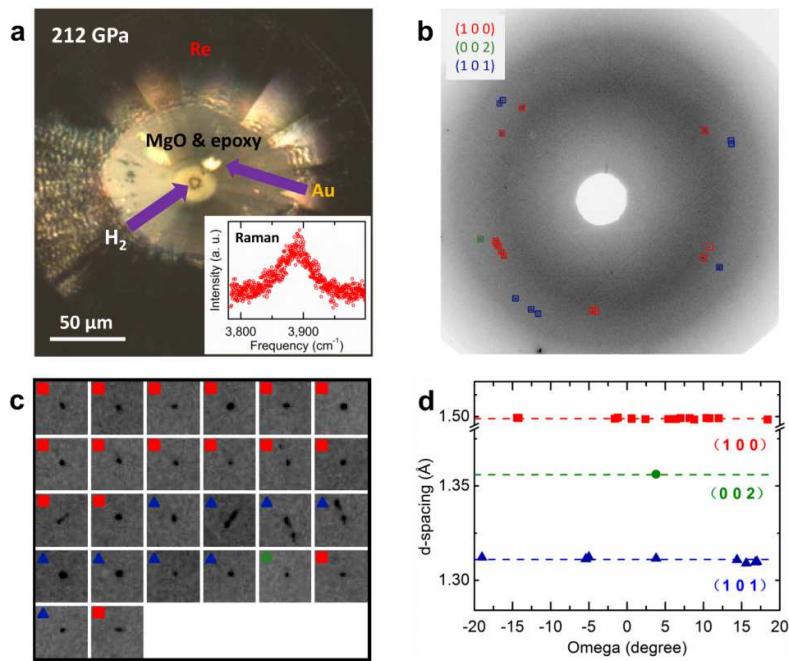
- 228 19 Pickard, C. J., Martinez-Canales, M. & Needs, R. J. Density functional theory study of phase IV
229 of solid hydrogen. *Phys Rev B* **85**, 214114 (2012).
- 230 20 Monserrat, B. *et al.* Structure and Metallicity of Phase V of Hydrogen. *Phys Rev Lett* **120**,
231 255701 (2018).
- 232 21 Akahama, Y., Mizuki, Y., Nakano, S., Hirao, N. & Ohishi, Y. Raman scattering and X-ray
233 diffraction studies on phase III of solid hydrogen. *J of Phys Conf Ser* **950**, 042060 (2017).
- 234 22 Prescher, C. *et al.* Beyond sixfold coordinated Si in SiO₂ glass at ultrahigh pressures. *Proc Natl
235 Acad Sci U S A* **114**, 10041-10046 (2017).
- 236 23 Wang, L. *et al.* Nanoprobe measurements of materials at megabar pressures. *Proc Natl Acad Sci
237 U S A* **107**, 6140-6145 (2010).
- 238 24 Akahama, Y. *et al.* Evidence from x-ray diffraction of orientational ordering in phase III of solid
239 hydrogen at pressures up to 183 GPa. *Phys Rev B* **82**, 060101 (2010).
- 240 25 Magdău, I. B., Marqués, M., Borgulya, B. & Ackland, G. J. Simple thermodynamic model for
241 the hydrogen phase diagram. *Physical Review B* **95** (2017).
- 242 26 Goncharov, A. F., Eggert, J. H., Mazin, I. I., Hemley, R. J. & Mao, H.-k. Raman excitations and
243 orientational ordering in deuterium at high pressure. *Phys Rev B* **54**, R15590-15593 (1996).
- 244 27 Glazyrin, K. *et al.* Importance of correlation effects in hcp iron revealed by a pressure-induced
245 electronic topological transition. *Phys Rev Lett* **110**, 117206 (2013).
- 246 28 Kvashnin, Y. O., Sun, W., Marco, I. D. & Eriksson, O. Electronic topological transition and
247 noncollinear magnetism in compressed hcp Co. *Phys Rev B* **92**, 134422 (2015).
- 248 29 Feng, Q., Ekholm, M., Tasnádi, F., Jönsson, H. J. M. & Abrikosov, I. A. Topological transitions
249 of the Fermi surface of osmium under pressure: An LDA+DMFT study. *New J Phys* **19**, 033020
250 (2017).
- 251 30 Sun, W., Luo, W., Feng, Q. & Ahuja, R. Anisotropic distortion and Lifshitz transition in α -Hf
252 under pressure. *Phys Rev B* **95**, 115130 (2017).

253 **Figure Legends**

254 **Fig. 1 | Phase III sample and data.** **a.** Micro-image of the hydrogen sample at 212 GPa and RT (phase III
255 conditions), with illuminated in both transmitted and reflected light. Inset shows the measured Raman vibron. **b.**
256 Merged raw XRD images showing the XRD spots. The color-code, with red, green, and blue representing (100),
257 (002), and (101) reflections, respectively, is used throughout b, c, d. **c.** Montage of 26 XRD spots showing the
258 data quality. **d.** Quality of indexing, showing d -spacing of (100), (002), and (101) reflections measured at
259 different Ω angles. Dash lines show the calculated d -spacing values based on fitted unit cell parameters.

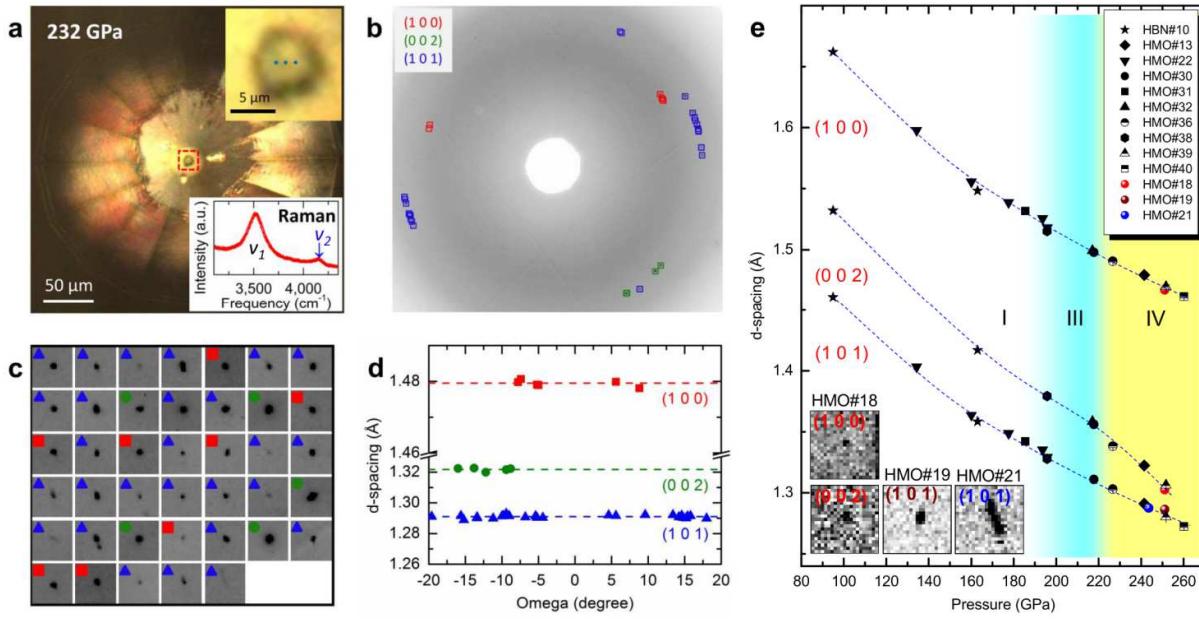
260 **Fig. 2 | Phase IV sample and data.** **a.** Micro-image of the H_2 sample at 232 GPa and RT (phase IV conditions)
261 with illuminated in both transmitted and reflected light. Upper inset shows the magnified image on the sample
262 area corresponding to the red dash box in the main image. Three blue dots mark the SXRD sampling positions.
263 Lower inset shows the measured Raman vibrons. Blue arrow marks the characteristic new peak of phase IV. **b.**
264 Merged raw XRD images showing the XRD spots. Red, green, and blue boxes mark (100), (002), and (101)
265 reflections, respectively for b, c, d. **c.** Montage of 40 XRD spots showing the data quality. **d.** Quality of indexing,
266 showing d -spacing of (100), (002), and (101) reflections measured at different Ω angles. Dash lines show the
267 calculated d -spacing values based on fitted unit cell parameters. **e.** Comparison of d -spacing of reflections
268 measured from the samples using the $2 \times 1 \mu\text{m}^2$ X-ray probe (HMO#18, #19, and #21) with that measured by using
269 Nano-probe. HMO#19 and #21 were measured with MCC, and HMO#18 was measured without MCC. HMO and
270 HBN represent the samples with MgO and cBN as insertion materials in the composite gaskets, respectively.
271 Insets show diffraction spots from the three samples.

272 **Fig. 3 | Unit cell parameters of H_2 under high pressures at RT.** **a** and **b** show pressure dependent unit cell
273 parameters a and c , respectively. Solid circles and solid triangles represent data collected by using MCC and
274 nano-probe, respectively, with different colors marking different runs. Red squares represent data collected from
275 H_2 crystals grown in He media. Black and blue lines are fitting of phases I and IV data, respectively. Legends in a
276 and b also apply in c and d. **c.** Pressure dependent unit cell volume of H_2 . Open blue squares are data from
277 Loubeyre *et al*¹⁵. **d.** Evolution of c/a ratio with compression. In all figures, error bars represent standard
278 deviations. Many error bars are smaller than the size of symbols. Calibrated pressure-dependent shift of d_{100} of H_2
279 was used as the pressure scale.


280

281 **Acknowledgement**

282 The authors thank R. Ferry and M. Somayazulu for helps with gas loading systems, Y. Wang for the use
283 of the MCC of GeoSoilEnviroCARS (GSECARS), E. Gregoryanz, A. Goncharov, D. Kim, D. Popov, Y.
284 Ma, H. Liu, and J. Tse for useful discussions. This research was supported by the Department of Energy
285 (DOE), Office of Basic Energy Science, Division of Materials Sciences and Engineering under Award
286 DE-FG02-99ER45775. Portions of this work were performed at 34 IDE, 16 IDB (HPCAT), 13 IDD
287 (GSECARS), and 1-BM of Advanced Photon Source (APS), Argonne National Laboratory (ANL) in
288 USA, as well as BL15U1, Shanghai Synchrotron Radiation Facility (SSRF) in China. HPCAT
289 operations are supported by DOE, National Nuclear Security Administration under Award DE-
290 NA0001974. VP is grateful to the NSF MRI EAR/IF1531583 award. GSECARS is supported by the
291 National Science Foundation—Earth Sciences (Grant No. EAR-1128799) and DOE—Geosciences
292 (Grant No. DE-FG02-94ER14466). This research used resources of the APS, a U.S. DOE Office of
293 Science User Facility operated for the DOE Office of Science by ANL under Contract No. DE-AC02-
294 06CH11357. A.M, R.A and W.L would like to acknowledge the support from Carl Tryggers Stiftelse
295 for Vetenskaplig Forskning (CTS) and the Swedish Research Council (VR). SNIC and HPC2N are also
296 acknowledged for providing computing time.


297 **Author contributions**

298 H.K.M. conceived and supervised the project; C.J., and B.L. conducted the synchrotron XRD
299 measurements; W-J.L., R.X., J.S.S., S.S., Y.M., V.B.P., E.G., and G.S. developed techniques on
300 synchrotron beamlines for H₂ XRD measurements; J.W., J.S., B.L., W.Y., X.H., and C.J. developed
301 DAC related techniques to achieve the target ultrahigh pressure experimental conditions; C.J. conducted
302 the Raman experiments; C.J. and J.S. prepared DAC samples; C.J., H.K.M., G.S., and W.Y., performed
303 the analysis; H.K.M and W.L.M. conceived and developed the ETT interpretation. A.M., W.L., and R.A.
304 conducted the *ab-initio* calculations. H.K.M. and C.J. wrote the manuscript in consultation with W.L.M.,
305 G.S., W.Y., V.B.P., E.G., B.L., W-J.L., J.S.S., A.M., W.L., R.A., and Y.M.

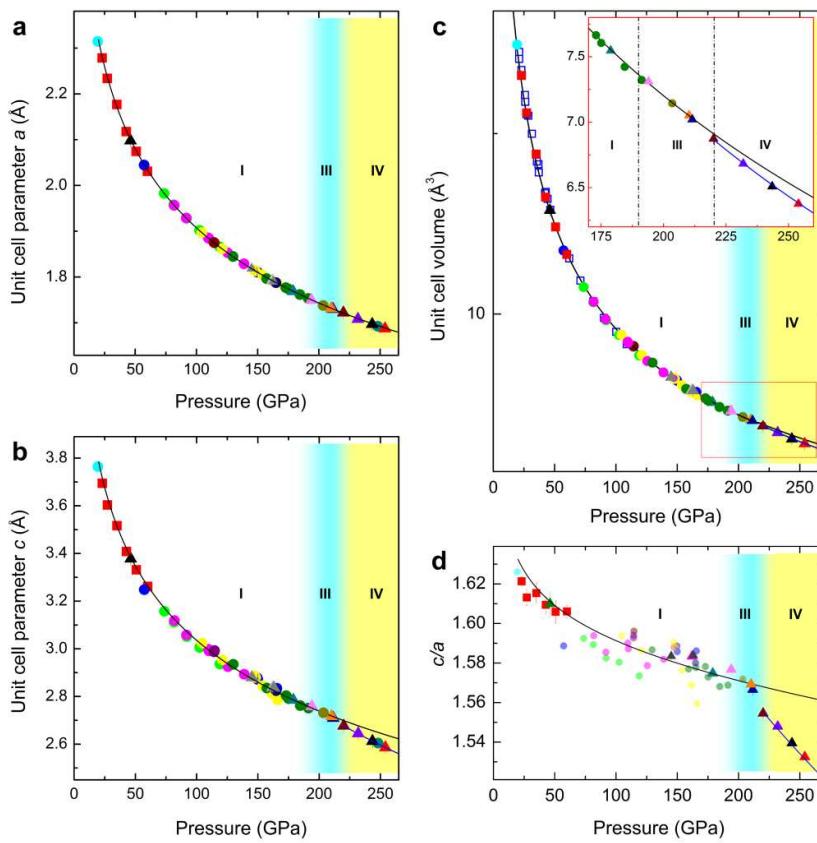

306
307

Fig.1.

308
309

Fig. 2.

310
311

Fig.3.

312 **Methods**

313 Symmetric DACs were used to generate ultrahigh pressures. Diamond anvils with culet size ranging
314 from 150 μm down to 20 μm (anvils with culet sizes of 30 to 20 μm were used to achieve target
315 pressures of phases III and IV) were used with more than a total of 100 samples prepared during the
316 entire study. No surface coating was applied to the tips of diamond anvils. Two sample preparation
317 strategies were used. The first type of samples had H₂ single crystal grown in the He pressure media,
318 similar to the method reported by Loubeyre *et al*¹⁵. Premixed normal H₂ and He gas of 99.9% purity
319 with 1:4 volume ratio was purchased from Airgas Inc. This type of samples is referred as H₂-He
320 samples. H₂-He samples had sample chambers (laser drilled in pre-indented rhenium (Re) or tungsten
321 (W) gaskets) relatively large in diameter (15 to 20 μm at megabar pressures) to allow growing H₂ single
322 crystals with reasonable size (5 to 10 μm in diameter) for the XRD measurements. There is enough
323 room in such a H₂-He sample chamber for loading a thin gold (Au) flake as the pressure marker³¹. The
324 inset of Extended Data Fig. 5a shows the typical sample configuration of the H₂-He sample. We didn't
325 observe any obvious difference of Raman spectra of the H₂-He samples comparing to pure H₂ samples
326 at megabar pressures, as shown in Extended Data Figs. 5b and c. Immiscibility of solid H₂ and solid He
327 was also reported up to 110 GPa and 250 GPa by Loubeyre *et al*¹⁵ and Turnbull *et al*³², respectively.
328 Thus the pressure-dependent shift of the (100) *d*-spacing (*d*_{100-P}) measured from the H₂-He samples was
329 used as the pressure scale (Extended Data Fig. 5a) for the samples in which no Au pressure marker was
330 loaded. Since the H₂-He samples typically have strong preferred orientations so that almost only the
331 (100) class can be measured. As a result, the measurements of H₂-He samples mainly serve to provide
332 the *d*_{100-P} pressure scale. The XRD measurements of the H₂-He samples were performed at 16IDB of
333 APS, ANL, with 6 μm by 7 μm focused monochromatic beam at 30 keV; at 13 IDD of APS, ANL, with
334 3 μm by 2 μm focused monochromatic beam at 37 keV; at BL15U1 of SSRF, with 2 μm by 2 μm
335 focused monochromatic beam at 20 keV. These data were recorded by either Mar165 CCD detectors or
336 a Pilatus 1M detector. The H₂-He samples require a relatively large sample chamber (\sim 15 μm) for
337 growing hydrogen single crystal (\sim 5 μm). The larger the sample chamber the more exposure of the

338 diamond anvil surface to the highly diffusive hydrogen or He, thus increasing the probability of
339 premature diamond anvil failures which limited our measurements using H₂-He samples to below 160
340 GPa.

341 The second type of samples had pure H₂ loaded with composite gaskets in order to achieve clean
342 XRD background on small samples. The application of the second sample preparation method with pure
343 H₂ samples allowing small sample chamber (~5 μm in diameter) is to counter the premature diamond
344 anvil failure problem which we have suffered by using the H₂-He single crystal method. The composite
345 gaskets are the key to achieve clean XRD background. It has Re outskirt and MgO+epoxy or
346 cBN+epoxy as inserts. The epoxy used is totally amorphous, pre-examined by XRD measurements.
347 Sample chambers were fabricated using the laser micro-fabrication system³³ located at HPCAT, APS,
348 ANL. All samples were loaded by sealing high pressure normal H₂ gas, of 99.99% purity commercially
349 obtained (Airgas Inc.), at 0.16 GPa to 0.2 GPa using gas loading systems. No Au pressure marker was
350 loaded inside the sample chambers to avoid strong diffraction of Au which may interfere with the
351 identification of hydrogen XRD peaks. As mentioned above, the pressure scale derived from the H₂-He
352 samples was used for the pressure determination of all pure-H₂ samples. Diamond Raman edge³⁴ and the
353 equation of state of MgO³⁵ were also measured to cross-check pressures. For instance, pressure values
354 obtained by Diamond Raman edge, d₁₀₀-P, and MgO pressure scales, for one of the phase IV samples
355 measured using nano-focus probe, are 234 GPa, 232 GPa, and 238 GPa, respectively. The largest
356 difference between these numbers is approximately 2.5% of the mean value, which is reasonable at the
357 two-megabar pressure range.

358 The sample positions of the X-ray transparent small H₂ samples were determined by performing 2D
359 diffraction contrast imaging based on XRD intensity of the insert gasket materials (MgO or cBN) as
360 demonstrated in Extended Data Figs. 6a and b. XRD of pure-H₂ samples were measured using the nano-
361 focus probe (34 IDE of APS, ANL) or 1 μm by 2 μm probe with MCC (16 IDB of APS, ANL). At
362 34IDE, X-ray probe was typically focused down to 300 nm in FWHM at 24 keV. The data using nano-
363 focus probe was collected by rotational step scans typically of 0.2° step size within a ±19° angular range

364 about the Ω -axis, and recorded using a Mar165 CCD detector. Typical data collection time for each
365 angle ranges from 60s to 120s. At 16 IDB, $2 \times 1 \mu\text{m}^2$ focused monochromatic beam at 30 to 35 keV was
366 used. Two types of MCC were used, with 10° and 30° vertical opening angles (4-theta), respectively.
367 The MCC with 30° vertical opening angle was especially developed by HPCAT to facilitate the SXRD
368 data collection of H_2 in phase IV conditions, as shown in Extended Data Fig. 7. A Pilatus 1M detector
369 was used in the experiments with MCC. The data collection by MCC was performed by scanning the
370 MCC by an angle range of typically 4° . Our data collection time for one frame ranges from 5 min to 20
371 min, depending on the data quality. Most of the P - V data of phase I was measured using the pure- H_2
372 samples with the use of the 10° MCC.

373 The Raman measurements were conducted using the con-focal micro-Raman system at HPSync and
374 GSECARS, located at the APS, ANL. Both systems are equipped with red excitation lasers, 659.5 nm,
375 with the backscattering geometry and CCD camera. Dioptas³⁶ was used for XRD data reduction. XDI
376 was used to perform the 2D XRD contrast imaging data analysis³⁷. Fityk³⁸ was used to perform peak
377 fitting to subtract the peak positions from the reduced XRD data. EoSFit7-GUI³⁹ was used for fitting the
378 EOS.

379 The theoretical calculations of structural optimizations and total energy computations were
380 performed using VASP⁴⁰ by solving the Kohn-Sham equations within the Density Functional Theory
381 (DFT) framework⁴¹. The projector augmented wave (PAW) method⁴², and the generalized gradient
382 approximation (GGA) with the Perdew-Burke-Ernzerhof parametrization (PBE)⁴³ have been used to
383 describe the electronic exchange-correlation effects. A dense Monkhorst-Pack⁴⁴ k-point mesh (30 x 30 x
384 20) was used for the Brillouin zone integration for the optimization of the structures, keeping a cut-off
385 energy of 700 eV. For accurate electronic properties calculations, the GW approximation (implemented
386 in VASP) was employed interfaced with the Wannier90 code⁴⁵.

387 **Submicron hydrogen crystallites above megabar pressures**

388 For the phase IV sample measured at 232 GPa using nano-focus probe, XRD patterns collected at
389 the same Ω angle but at different spatial positions (1 μm apart) do not show the same XRD spot. This

390 suggests that the size of crystal grains is submicron. However, since the samples above 210 GPa
391 experienced diamond anvil failures during SXRD data collections, subsequent 2D XRD contrast
392 imaging (tracking an selected H₂ XRD spot) was unable to be performed to exactly map out the grain
393 size of the phase III or the phase IV samples. Fortunately, such an analysis was able to be performed on
394 two hydrogen samples in phase I up to 163 GPa. The (100), (002), and (101) reflections were observed
395 with spotty peak profiles similar to that obtained from the samples in phases III and IV. The size of the
396 grains, resolved by the 2D contrast imaging analyses, is typically below one micron (Extended Data
397 Figs. 6c to h). It is technically challenging to lock on a particular submicron crystal grain using the
398 nano-focus probe while performing SXRD data collection by the rotating the DAC with a wide angle
399 range.

400 **XRD diagnostic strategies**

401 The effects of using MCC and nano-focus probe, respectively, for measuring XRD of hydrogen at
402 megabar pressures are briefly discussed as the following. The use of MCC with DAC in general
403 improves the S/B ratio by cutting out the majority of the Compton scattering background from the thick
404 diamond anvils. The thickness of a typical hydrogen sample above 200 GPa is tiny, approximately 1 μm ,
405 compared to the 4.8 mm total thickness of two diamond anvils. Our measurements show the background
406 reduction being achieved by ~80% (Extended Data Figs. 8 a to c). However, data collection time is
407 significantly increased due to the limited throughput of MCC. MCC with large vertical opening angle is
408 especially beneficial for the SXRD data collection of hydrogen (Extended Data Fig. 7). Above multi-
409 megabar pressures, H₂ crystals break down to submicron level (Extended Data Figs. 6c to h). Using a
410 nano-focus X-ray probe to match the grain size significantly improves the S/B ratio. For example, if the
411 grain size is 500 nm, using the 500 nm X-ray probe improves the S/B ratio by approximately a factor of
412 16 compared to that using a 2 μm by 2 μm X-ray probe with the same total flux (Extended Data Figs. 8d
413 to f). A combination of nano-focus probe with the MCC could achieve even better S/B ratio. Since the
414 use of MCC significantly increases the sample to detector distance (by a factor of 3 in our case),
415 combining the nano-focus probe techniques with MCC requires a nano-focus beamline to be capable to

416 deliver high flux photons with relatively high energy (>30 keV) or be equipped with a large area
417 detector, such as the Pilatus 6M detector. Such developments are to be conducted to further facilitate the
418 XRD measurements of solid hydrogen at ultrahigh pressures.

419 **Electronic band structure calculations**

420 Theoretical *ab initio* calculations were performed to check for ETT. Electronic band structures were
421 calculated for various pressures, spanning all the three phases (I, III and IV). We utilized the hcp
422 ($P6_3/mmc$) model, which is dynamically stable, for all the three phases studied. In agreement with
423 earlier experimental observations on solid hydrogen⁴⁶, the electronic band gaps at 50 GPa and 100 GPa
424 were calculated to be 4.3 eV and 3.8 eV, respectively (Extended Data Figs. 9a and b). The conduction
425 band minimum (CBM) occurs at the Γ point while the valence band maximum (VBM) is found to occur
426 from the $\Gamma \rightarrow A$ and $\Gamma \rightarrow K$ high symmetry directions, thus rendering phase I to be an indirect band gap
427 semiconductor. However, a remarkable feature is obtained at higher pressures. With further
428 compressions, the band gap keeps decreasing but the nature of the dispersion curves change drastically
429 both in the valence and conduction regions in the vicinity of the Fermi level. At the same position of the
430 VBM ($\Gamma \rightarrow A$ and $\Gamma \rightarrow K$) for phase I, there now appear Dirac-like cones (Extended Data Figs. 9c-e).
431 The conduction band close to Fermi level is mainly of *s*-character (80%) with mixture of *p*-character
432 (20%). It is also noticed from electronic structure that unoccupied *p* states are moving faster than *s*
433 states towards the Fermi level. There are several immediate inferences which can be drawn. Due to the
434 appearance of the Dirac-like cones in close proximity to the Fermi level, the density of states on either
435 side of the Fermi level changes. This is a requirement for non-degenerate semiconductors to undergo
436 ETT. The CBM and VBM (belonging to the Dirac-like cones) manifest in the lower effective mass. The
437 hcp phase now becomes a direct bandgap semiconductor. It would be interesting to further study how
438 the Lifshitz transition would renormalize the bands and redistribute the electronic density of states.
439 Although the metallization and superconductivity of hydrogen is predicted to happen at higher pressures,
440 our findings pave the way for future studies to explore how the Dirac-like cones will affect the metallic
441 and superconducting phases.

442 Admittedly, simple H₂ molecules at hcp lattice sites do not explain multiple Raman vibrons and
443 intense IR spectra of phase IV and have a higher energy by DFT calculations in comparison to other
444 candidate models, namely *C2/c*⁴⁷, *P6₁22*⁴⁸, *Pc*¹⁹, *Cc*¹⁸, *Pca2₁*²⁰, *etc.* (Extended Data Fig. 10). The
445 problems of intramolecular symmetry breaking and tens of meV higher energy can be easily accounted
446 for by molecular level phenomena, such as: H₂ motif distortion²⁵, ortho-para state²⁶, charge transfer,
447 electron-phonon coupling *etc.* We used hcp as an approximation to explore changes of electronic band
448 structure for the iso-structural phase transitions from phases I to III to IV.

449 **References**

- 450 31 Anderson, O. L., Isaak, D. G. & Yamamoto, S. Anharmonicity and the equation of state for gold. *J Appl Phys* **65**, 1534 (1989).
- 451 32 Turnbull, R. *et al.* Reactivity of Hydrogen-Helium and Hydrogen-Nitrogen Mixtures at High
452 Pressures. *Phys Rev Lett* **121**, 195702 (2018).
- 453 33 Hrubiak, R., Sinogeikin, S., Rod, E. & Shen, G. The laser micro-machining system for diamond
454 anvil cell experiments and general precision machining applications at the High Pressure
455 Collaborative Access Team. *Rev Sci Instrum* **86**, 072202 (2015).
- 456 34 Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 410 GPa.
457 *J Phys Conf Ser* **215**, 012195 (2010).
- 458 35 Speziale, S., Zha, C.-S., Duffy, T. S., Hemley, R. J. & Mao, H.-k. Quasi-hydrostatic
459 compression of magnesium oxide to 52 GPa: Implications for the pressure-volume-temperature
460 equation of state. *J Geophys Res* **106**, 515-528 (2001).
- 461 36 Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray
462 diffraction data and data exploration. *High Pressure Res* **35**, 223-230 (2015).
- 463 37 Hrubiak, R., Smith, J. S. & Shen, G. Multimode scanning X-ray diffraction microscopy for
464 diamond anvil cell experiments. *Rev Sci Instrum* **90**, 025109 (2019).
- 465 38 Wojdyr, M. Fityk: a general-purpose peak fitting program. *J Appl Crystallogr* **43**, 1126-1128
466 (2010).
- 467 39 Gonzalez-Platas, J., Alvaro, M., Nestola, F. & Angel, R. EosFit7-GUI: a new graphical user
468 interface for equation of state calculations, analyses and teaching. *J of Appl Crystallogr* **49**,
469 1377-1382 (2016).
- 470 40 Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. *Phys Rev B* **47**, 558(R)
471 (1993).
- 472 41 Kohn, W. & Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects.
473 *Phys Rev* **140**, A1133 (1965).
- 474 42 Blöchl, P. E. Projector augmented-wave method. *Phys Rev B* **50**, 17953 (1994).
- 475 43 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple.
476 *Phys Rev Lett* **77**, 3865 (1996).
- 477 44 Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. *Phys Rev B* **13**,
478 5188 (1976).
- 479 45 Mostofi, A. A. *et al.* An updated version of wannier90: A tool for obtaining maximally-localised
480 Wannier functions. *Comput Phys Commun* **185**, 2309-2310 (2014).
- 481 46 Goncharov, A. F., Gregoryanz, E., Hemley, R. J. & Mao, H.-k. Spectroscopic studies of the
482 vibrational and electronic properties of solid hydrogen to 285 GPa. *Proc Natl Acad Sci U S A* **98**,
483 14234-14237 (2001).
- 484

- 485 47 Pickard, C. J. & Needs, R. J. Structure of phase III of solid hydrogen. *Nat Phys* **3**, 473-476
486 (2007).
- 487 48 Monserrat, B., Needs, R. J., Gregoryanz, E. & Pickard, C. J. Hexagonal structure of phase III of
488 solid hydrogen. *Physical Review B* **94** (2016).
- 489

490 **Data Availability Statement**

491 The data that support the findings of this study are available from the corresponding author upon
492 request.

493 **Extended Data legends**

494 **Extended Data Table 1 | Detailed information of the 40 reflections of the sample measured at 232**
 495 **GPa using the nano-focus probe.** Position # represents the sample position where the XRD data was
 496 measured. Ω angle represents the rotation angle of the sample about the Ω -axis. χ angle represents the
 497 azimuth angle of a diffraction spot on the CCD detector. Definition of the χ angle is illustrated in
 498 Extended Data Fig. 3. Only a few reflections were captured at the #3 sample position because the pre-
 499 mature failure of diamond anvil occurred during the early stage of the step scans at that sample position.

500 **Extended Data Fig. 1 | Comparison of the XRD raw images obtained by using a pure Re gasket**
 501 **versus a composite gasket at the same beamline.** **a.** XRD image at 45 GPa by using Re gasket. Inset
 502 shows the microscope image of the sample after gas loading, with the chamber diameter being 17 μm .
 503 At 45 GPa, the chamber shrunk with diameter being approximately 10 μm . **b.** Raw XRD of the sample
 504 at 162 GPa using insertion gasket (cBN+epoxy). Chamber diameter is 7 μm at 162 GPa. Setups of the
 505 beamline focusing device (Kirkpatrick-Baez (KB) mirrors) were similar for both a and b. Clean-up
 506 pinholes were used, with 20 μm for a and 60 μm for b, respectively. It needs to be emphasized that even
 507 though the X-ray probe used in b has larger tail (due to larger size of clean-up pinhole), b shows
 508 significantly cleaner background. MgO+epoxy insert produces similar level of clean background
 509 compared to that from the cBN+epoxy insert. Red masks in both a and b cover the gaps between the
 510 sensor chips on the Pilatus 1M detector.

511 **Extended Data Fig. 2 | Definition of χ angle in the XRD image.** Blue arrow points to a diffraction
 512 spot, which is inside the red circle.

513 **Extended Data Fig. 3 | Features of Raman vibrons of hydrogen under high pressures.** **a.** Pressure
 514 dependent frequency shift of vibrational modes of H_2 at RT. **b.** Pressure dependent shift of the widths
 515 (FWHM) of H_2 vibrational modes at RT. ν_1 and ν_2 represent the two fundamental vibrational modes of
 516 H_2 , as shown in Extended Data Fig. 4. Solid circles and triangles represent ν_1 and ν_2 modes, respectively.
 517 Different colors represent different runs. Dash lines are visual guides. In phase III, the frequency of ν_1
 518 significantly softens with pressure compared to that in phase I. While, the Raman peak significantly
 519 broadens simultaneously. In phase IV, the behavior of ν_1 is similar to that in phase III, while a new
 520 fundamental vibrational mode ν_2 appear at higher frequency. Phase IV also exhibits new low frequency
 521 modes, as shown in Extended Data Fig. 4.

522 **Extended Data Fig. 4 | Complete Raman spectrum corresponding to the Raman spectrum in the**
 523 **inset of Fig.2a (phase IV).** It clearly shows the characteristic Raman features of phase IV, marked by
 524 blue triangles, the low frequency mode at 303 cm^{-1} and the second vibron at 4149 cm^{-1} . Inset shows the
 525 Diamond Raman edge with pressure determined to be 234 GPa, which shows a 2 GPa difference
 526 compared to our d_{100} -P scale.

527 **Extended Data Fig. 5 | XRD measurements for the d_{100} -P pressure scale and immiscibility of H_2**
 528 **and He indicated by Raman measurements.** **a.** Evolution of d -spacing of the (100) reflection of H_2
 529 measured in the H_2 -He samples with Au as the pressure marker. The (111) reflection of Au standard
 530 was used to calculate pressure³¹. Inset shows the sample configuration. **b.** Raman spectra of the H_2 -He
 531 samples at selected pressures. Different colors mark different runs. **c.** Comparison of the pressure-
 532 dependent shift of vibron frequency between the H_2 -He samples and the pure H_2 samples. Open
 533 symbols represent pure hydrogen samples. Solid symbols represent H_2 -He samples. Samples with
 534 names starting with HP and HX including H27 are pure H_2 samples. Other samples with names starting
 535 with H are H_2 -He samples.

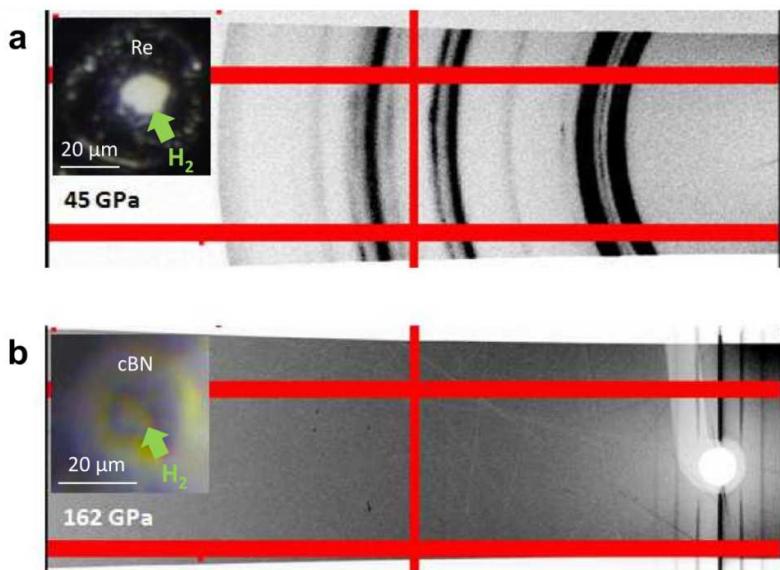
536 **Extended Data Fig. 6 | 2D diffraction contrast imaging of MgO and H_2 (submicron crystallites).** **a.**
 537 2D diffraction contrast imaging based on the intensity of MgO (200) Bragg peak. Darker color
 538 represents higher intensity of MgO (200) peak. White area represents hydrogen sample. **b.** Micro-image
 539 of the same sample area with illuminated in both transmitted and reflected light. **c-h.** 2D diffraction
 540 contrast imaging based on intensities of selected XRD spots of H_2 samples at 97 GPa (**c**, **d**, and **e**), 163
 541 GPa (**f** and **g**), and 162 GPa (**h**). Darker color represents higher peak intensity. Step size of the two-

542 dimensional scan is 500 nm in both the horizontal and the vertical directions. Data analysis was
543 performed using the XDI software³⁷.

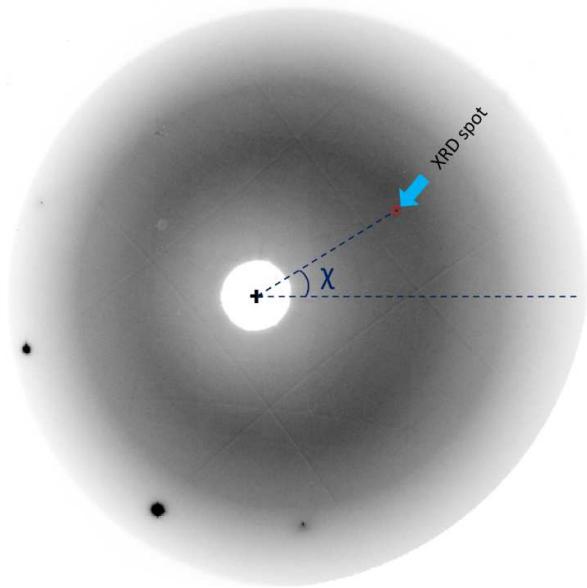
544 **Extended Data Fig. 7 | XRD raw images obtained by using MCCs with two different vertical**
545 **opening angles of 10° (a) and 30° (b) in 4-theta, respectively.** Data was collected using Pilatus 1M
546 area detector. MCC with 10° vertical opening was obtained from GSECARS, APS, ANL. It is mainly
547 designed for Large Volume Press, and for DAC in the studies of amorphous samples or powder samples.
548 With 10° MCC in place, approximately only one third of the area detector can be exposed by X-ray
549 (enclosed area inside the red box in a). This limited vertical opening isn't a problem in the study of
550 amorphous or powder sample, because the X-ray scattering or diffraction is uniformly distributed about
551 the X-ray beam thus can be captured by the area detector through the small window. However, for
552 SXRD data collection, XRD spots show up at particular azimuth angles on the area detector. The
553 limited vertical opening becomes an issue. As a result, the data collection using the MCC with 10°
554 vertical opening was not trivial. It consists of the following steps: 1) Identify XRD spots without the
555 MCC at low pressure; 2) rotate the sample about the χ -axis to move the target XRD spot into the MCC
556 opening; 3) increasing pressure and track the XRD spot with the MCC. It would be extremely time
557 consuming for directly searching a diffraction spot of hydrogen at above megabar pressure with the 10°
558 MCC. Meanwhile, using the 10° MCC also indirectly result in the measurements of scattered *c/a* ratio,
559 as can be noticed in MCC data of Fig. 3d. Most of these data above 100 GPa was measured using MCC
560 with 10° vertical opening. Since searching for XRD spot using the MCC with 10° vertical opening is
561 difficult, as explained above, and data collection with MCC takes extended exposure time, usually one
562 (100) peak and one (101) peak were measured to determine the *c/a* ratio. These peaks are from different
563 crystals with different crystal orientations, sustaining different stress conditions, resulting in the
564 scattering *c/a* among different samples. MCC with 30° vertical opening was then designed especially by
565 HPCAT to overcome the above problems. By using the 30° vertical opening MCC, almost the whole
566 area detector can be exposed (enclosed area inside the red box in b). This significantly facilitates the
567 SXRD data collection of H₂ at multi-megabar pressures. It is also suitable for performing SXRD study
568 of other low Z materials in DAC at very high pressures.

569 **Extended Data Fig. 8 | Demonstration of the effects of using MCC and submicron probe,**
570 **respectively, for measuring XRD of solid hydrogen at megabar pressures. a.** Comparison of the
571 integrated hydrogen (100) peak with and without MCC at 143 GPa. With MCC, the background of data
572 was reduced by a factor of 5. **b** and **c** show the corresponding raw images of the (100) peak. Integrations
573 were performed using the same region of interest, which contains the target peak (as shown in b and c),
574 and the same setups in Dioptas³⁶. Data collection times with and without MCC are equivalent (the
575 exposure with MCC is actually several times longer due to the limited throughput of MCC). Data was
576 collected by using 2x1 μm^2 focused X-ray probe at 16IDB of APS. **d**, **e**, and **f** show the XRD images
577 which correspond to equivalent beam size of 300 nm (real), 1 μm and 2 μm , respectively. Data was
578 collected using 300 nm nano-focus probe. Data in d was collected at a single sample position with 60s
579 exposure. Image in e was obtained by merging 9 images measured by a 3 by 3 two-dimensional scan
580 with the same exposure time for each image (60s). Image in f was obtained by merging 49 images
581 collected by a 7 by 7 two-dimensional scan with the same exposure time for each image (60s). Step size
582 in these 2D scans was 500 nm. Red dots represent X-ray probe. It is obvious that a larger beam size
583 which includes more background deteriorates the data quality.

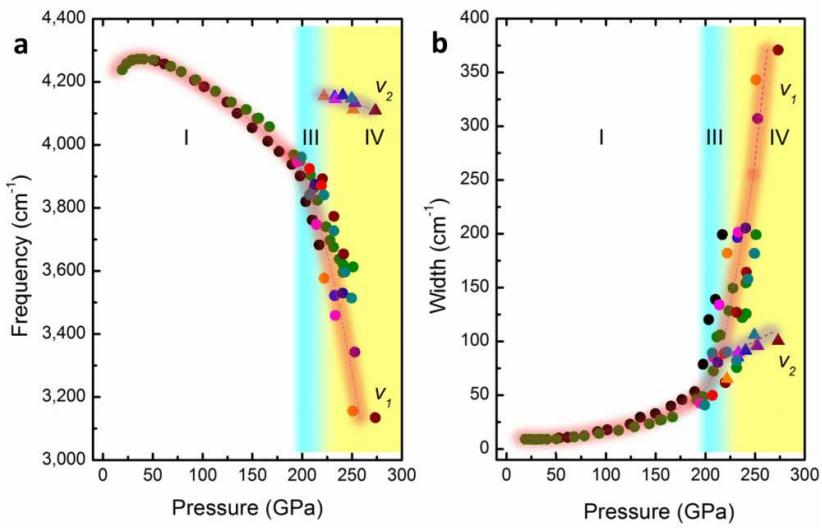
584 **Extended Data Fig. 9 | Electronic band structures calculated at 50 GPa (a), 100 GPa (b), 156 GPa**
585 **(c), 193 GPa (d) and 240 GPa (e).**


586 **Extended Data Fig. 10 | Enthalpy difference of various phases of hydrogen as a function of**
587 **pressure based on DFT calculation.**

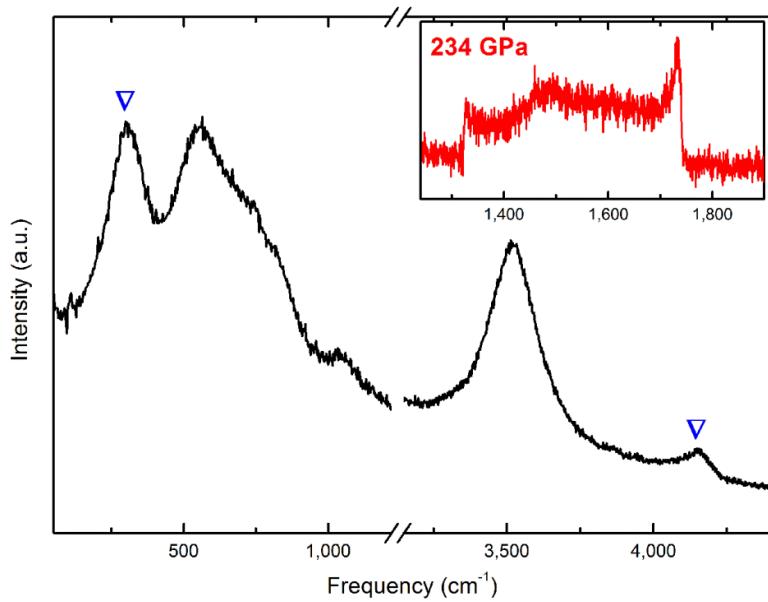
588 **Extended Data Table 1**


589

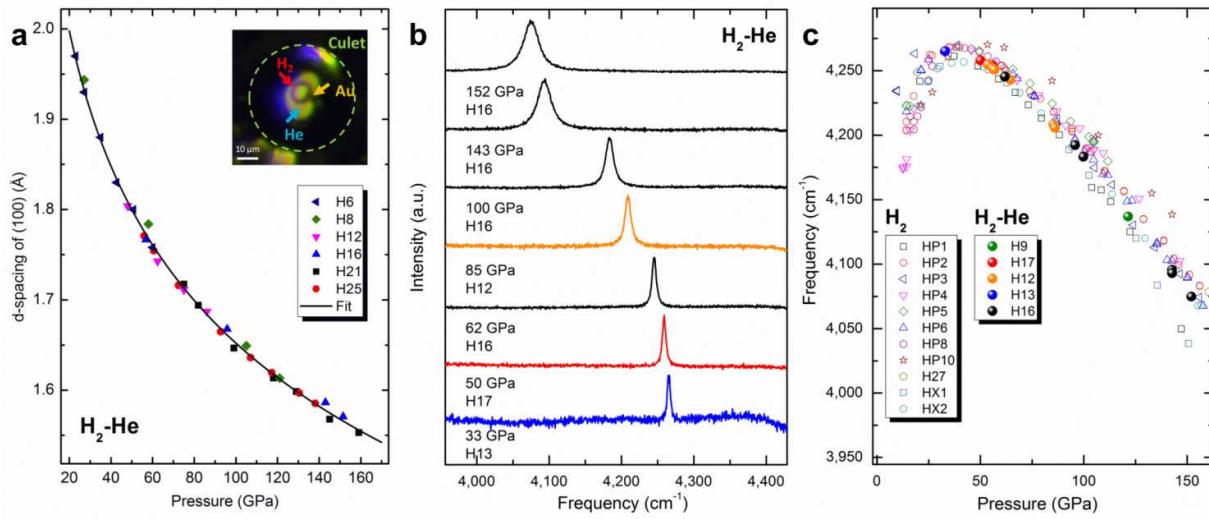
Peak #	Position #	Ω (°)	χ (°)	d -spacing (Å)
1	1	-15.6	28.0	1.2915
2	1	-9.4	305.0	1.2929
3	1	-9	18.0	1.2915
4	1	-8.8	314.1	1.3223
5	1	-7.8	34.0	1.4798
6	1	-7.4	31.8	1.4807
7	1	-7.4	32.1	1.4807
8	1	-6.8	7.4	1.2907
9	1	-5.2	31.4	1.4791
10	1	-5.2	14.4	1.2904
11	1	-4.4	13.8	1.2904
12	1	5.6	161.9	1.4799
13	1	5.6	199.3	1.2916
14	1	13.4	202.4	1.2921
15	1	14.6	199.7	1.2918
16	1	14.6	200.4	1.2909
17	1	14.8	191.7	1.2903
18	1	15.2	198.1	1.2900
19	1	15.4	201.0	1.2913
20	1	18	192.4	1.2899
21	2	-19.6	4.2	1.2910
22	2	-10	19.0	1.2913
23	2	-9.8	16.4	1.2915
24	2	-9	18.0	1.2915
25	2	-5.4	7.2	1.2914
26	2	-5	32.2	1.4790
27	2	-5	32.3	1.4789
28	2	4.6	201.3	1.2919
29	2	9.6	203.0	1.2922
30	2	14.2	200.3	1.2907
31	2	15.8	194.2	1.2915
32	2	-12.2	317.2	1.3199
33	2	8.8	163.2	1.4781
34	2	-9.4	299.7	1.3216
35	3	-16	300.0	1.3224
36	3	-15.2	63.2	1.2888
37	3	-13.8	300.0	1.3227
38	3	-13.4	63.6	1.2901
39	3	-13.4	16.4	1.2907
40	3	-11.2	21.1	1.2899

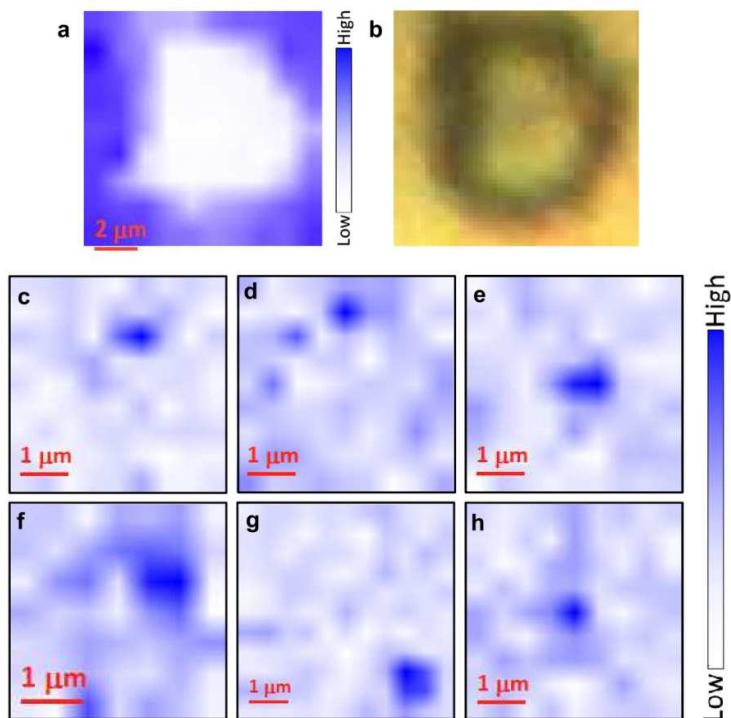

590

591
592 **Extended Data Fig. 1**

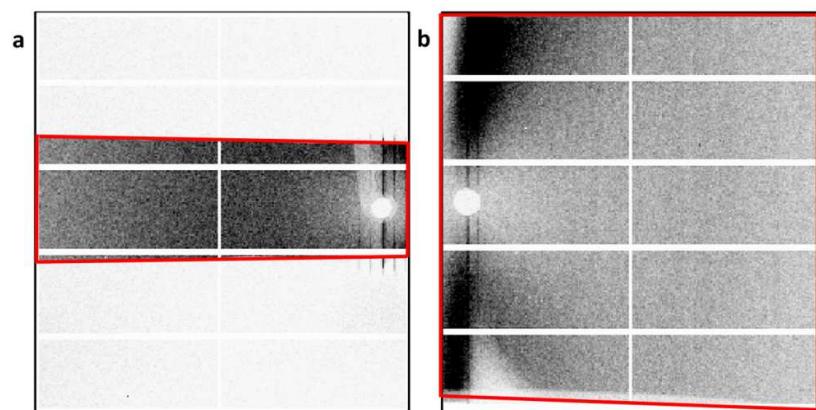


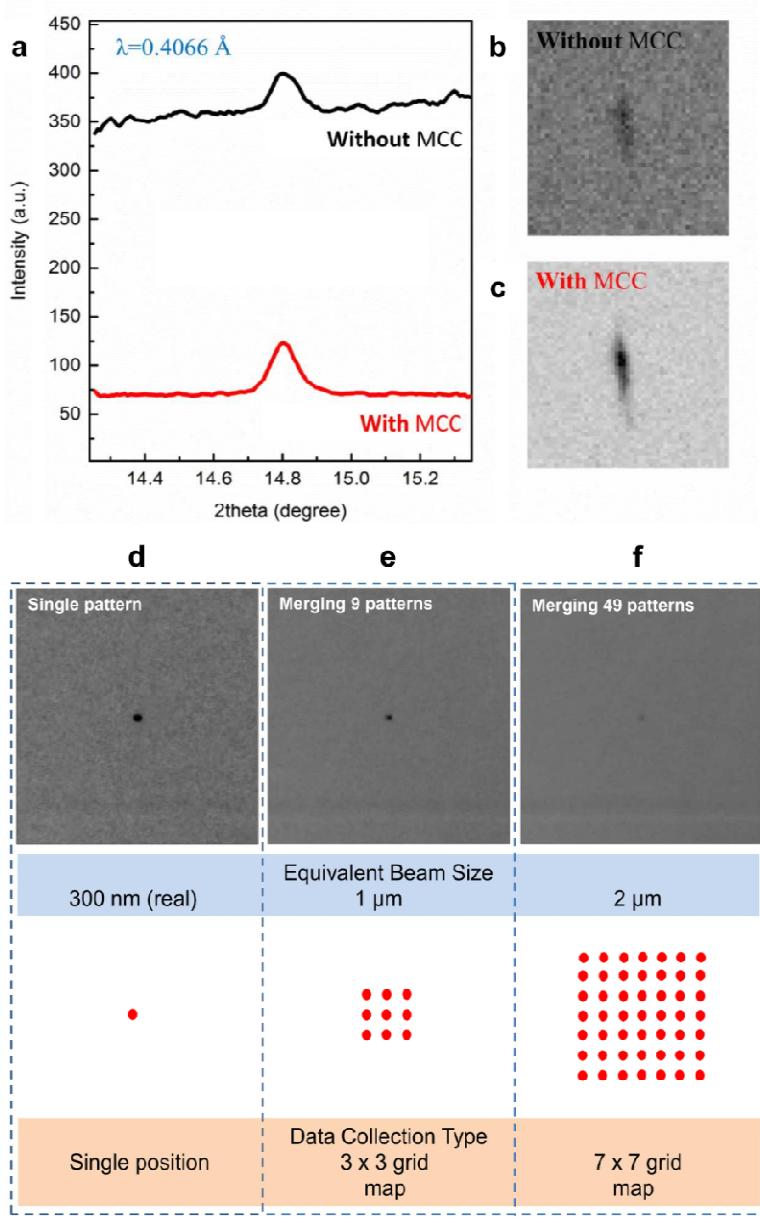
593
594 **Extended Data Fig. 2**



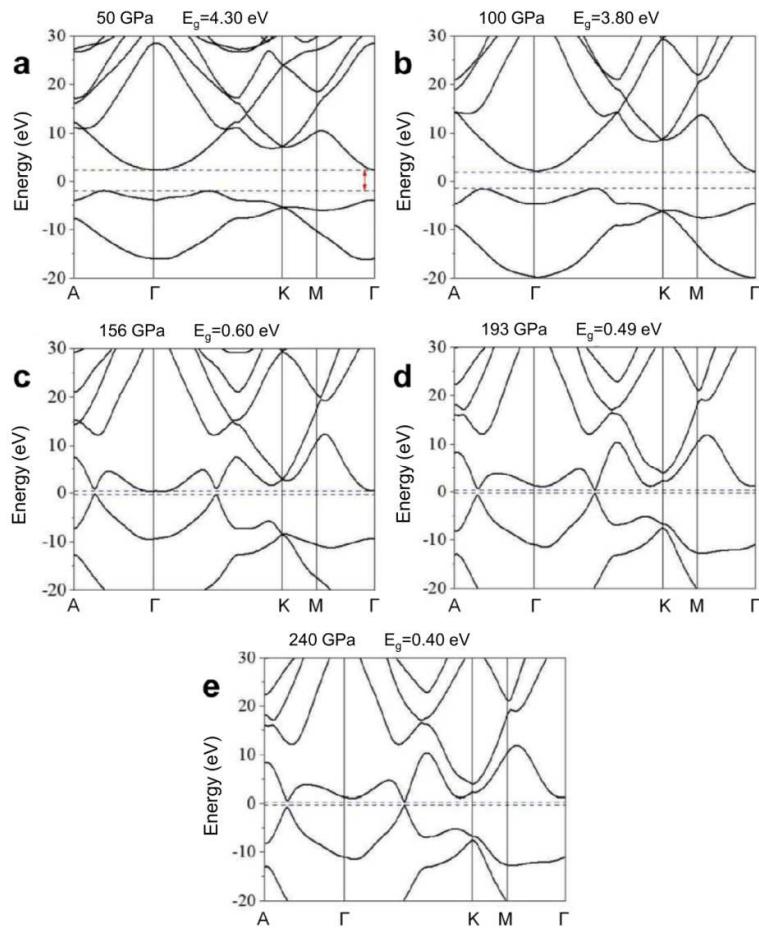

595
596

Extended Data Fig. 3

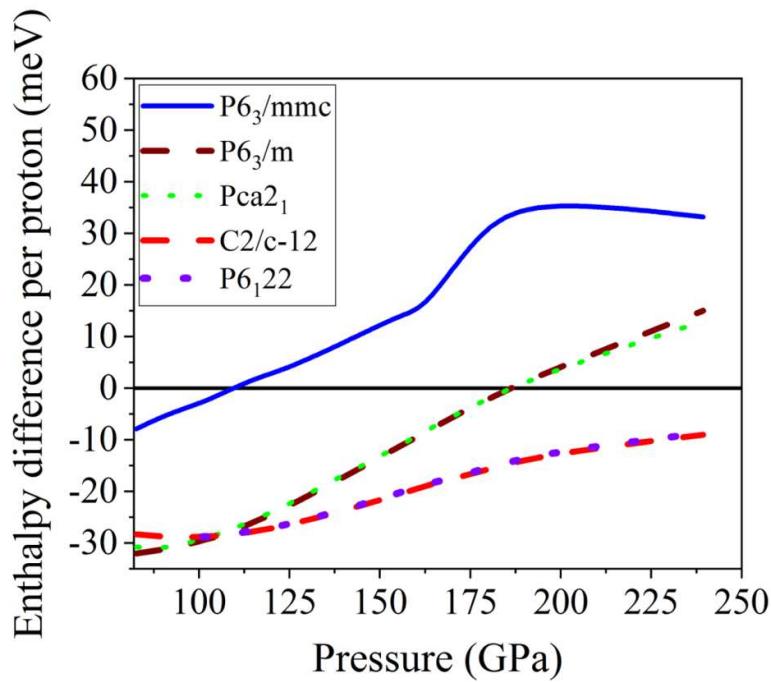

597
598 **Extended Data Fig. 4**


601
602

Extended Data Fig. 6

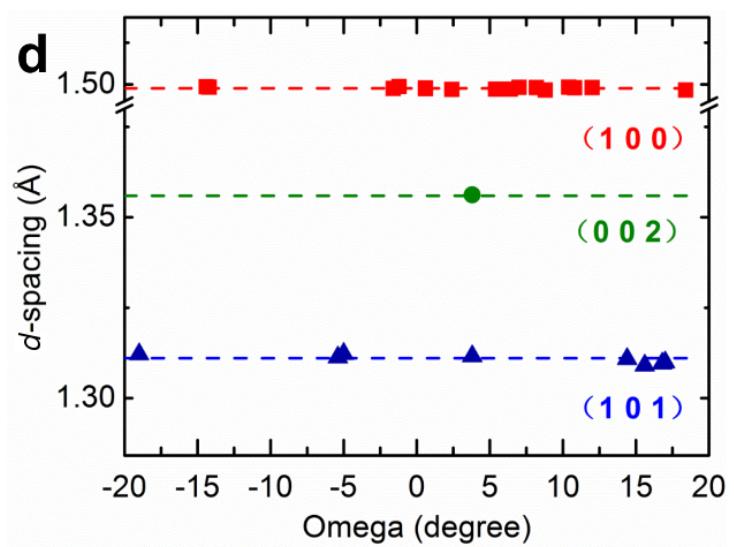
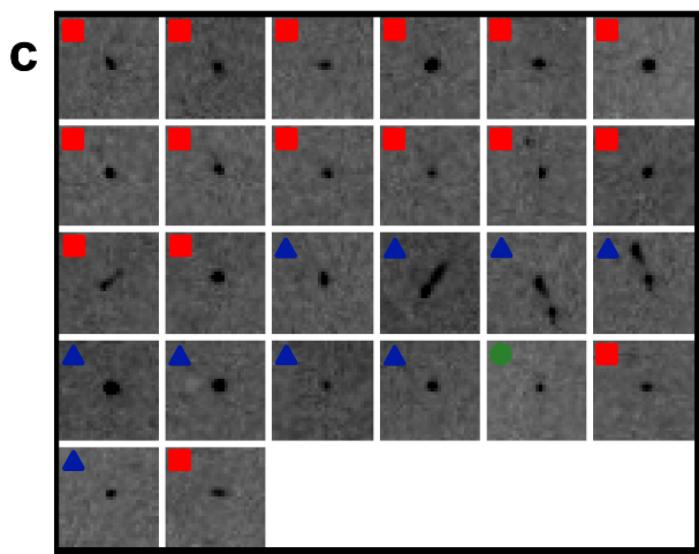
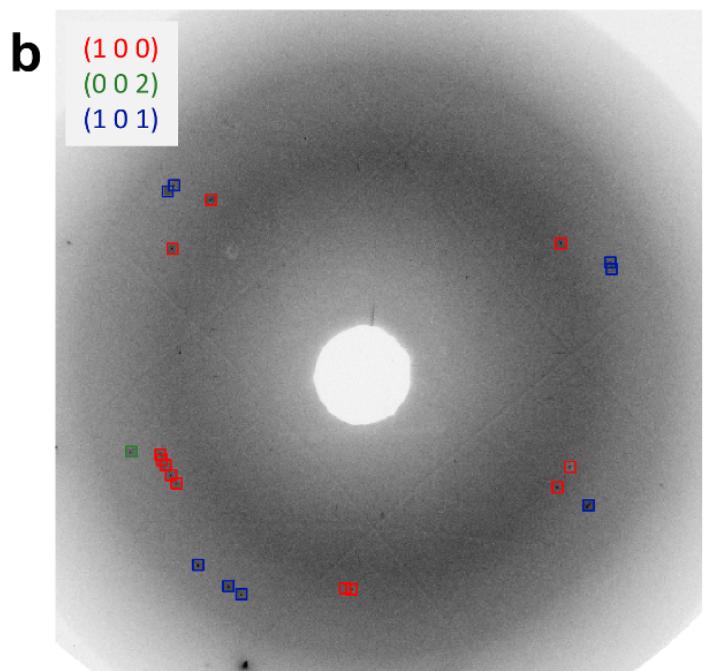
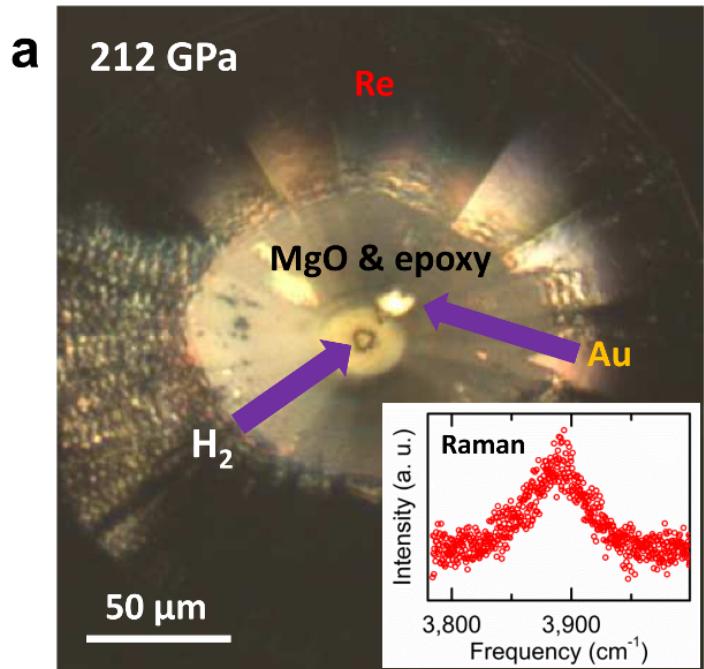

603
604

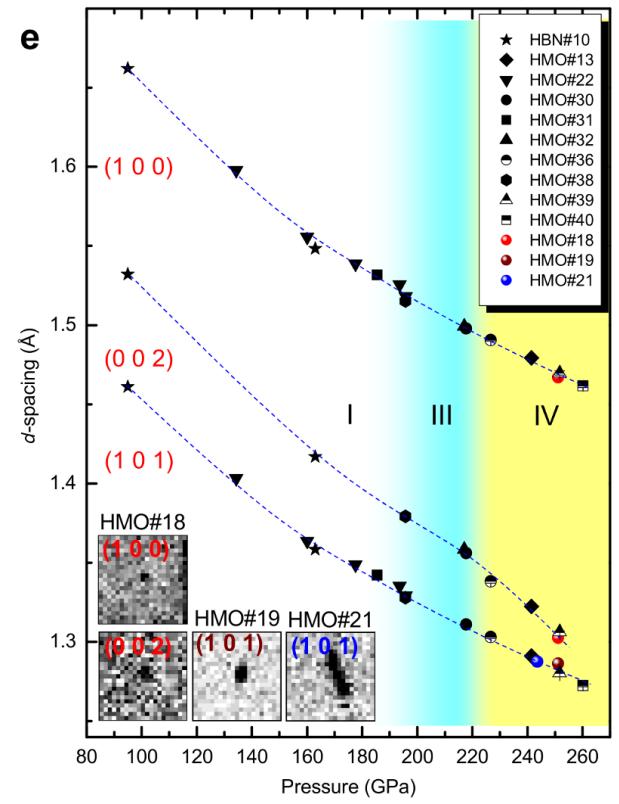
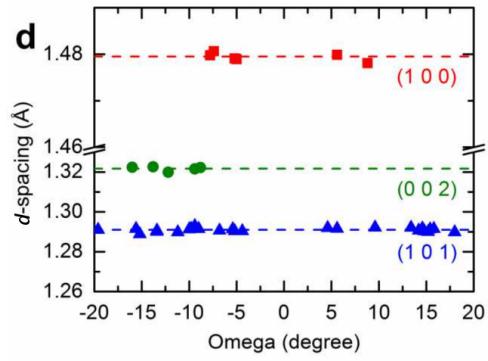
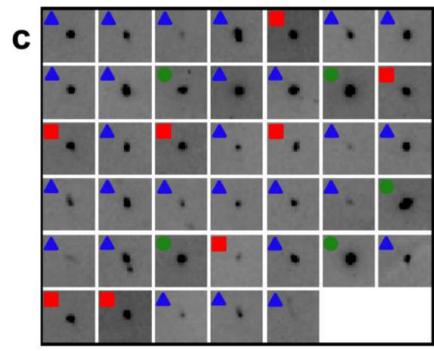
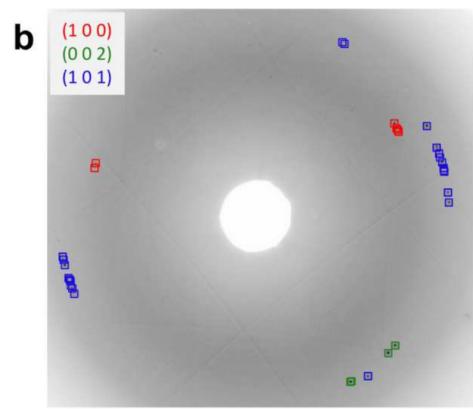
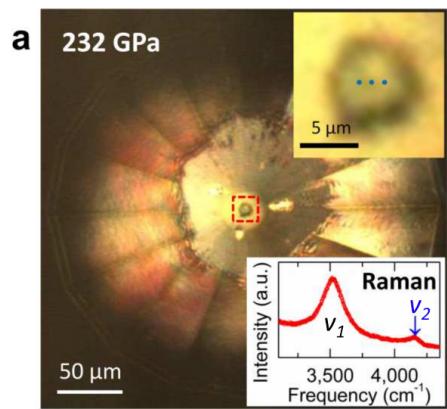
Extended Data Fig. 7

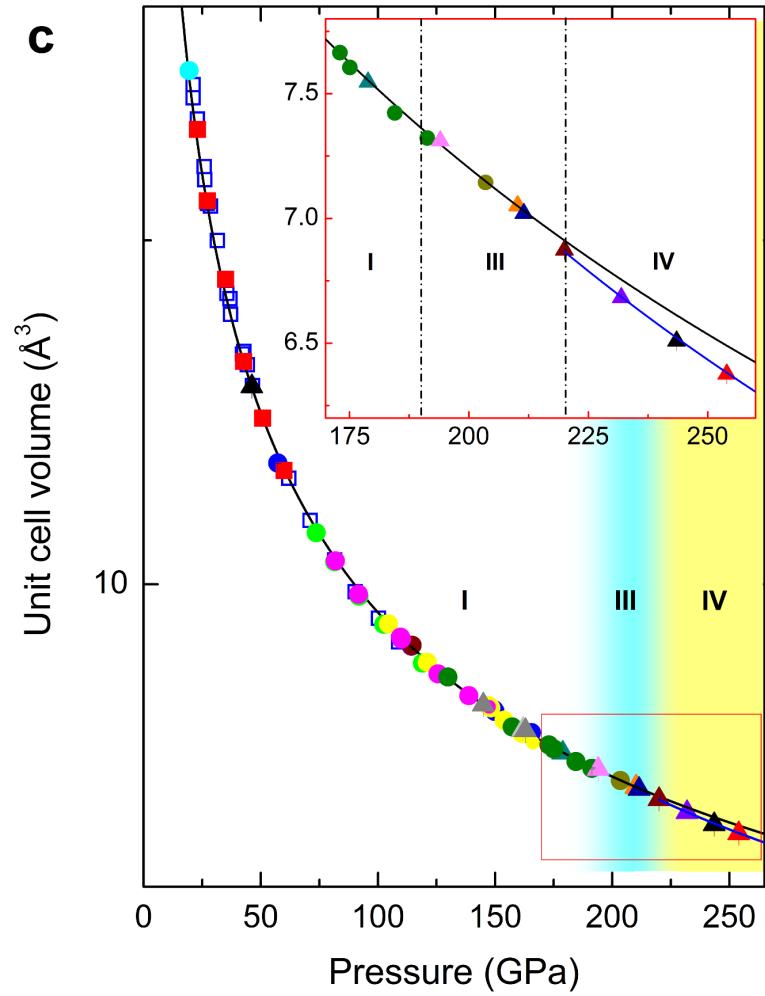
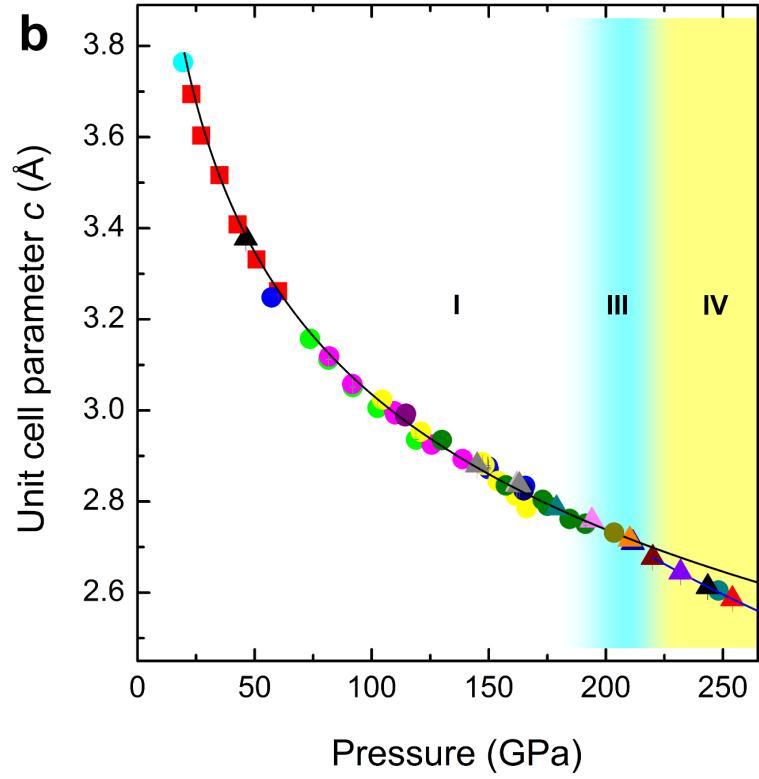
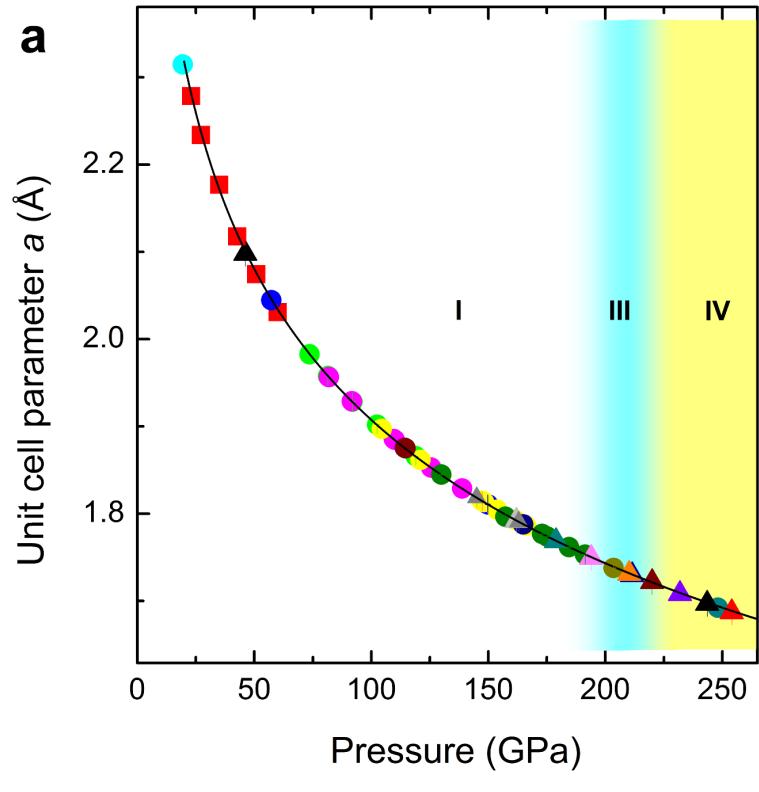


605
606

Extended Data Fig. 8






607
608 **Extended Data Fig. 9**

609
610

Extended Data Fig. 10

