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Abstract— The dynamics of powertrain control systems are
complicated and involve both nonlinear plant model and control
functionalities, albeit they are well defined and formulated
using first principle approaches. This constitutes difficulties in
exploring implementable optimal tuning rules for some selected
control parameters using vehicle-to-vehicle (V2V) communica-
tions. This paper presents a way to use neural networks (NN)
to represent the problem of parameter tuning for optimizing
fuel consumption. For this purpose, physical modelling and
validation have been firstly performed for the closed loop
powertrain system of the concerned vehicle for some given
driving cycles. This is then followed by the sensitivity analysis
that selects most influential control parameters to optimize.
Using the data generated from the obtained physical models,
an equivalent NN formulation has finally been obtained that
gives simple yet unified objectives and constraints ready to be
used to solve the optimization problem that produces optimal
tuning rules for the selected control parameters to minimize
fuel consumption.

Keywords— Parameter optimization, V2X, Powertrain mod-
eling, Neural Network

I. INTRODUCTION

With the increasing concerns about limited availability of
fossil energy sources and air pollution, improving the fuel
efficiency and reducing harmful gas emissions have become
a major concern for the vehicle research community. Hybrid
Electric Vehicles (HEV) have been a good solution to this
problem. To further maximize the fuel efficiency for the
HEVs, there have been many approaches in recent years.
Moreover, the emerging Connected Vehicle (CV) technology
which utilizes present and future traffic information [1] has
motivated researchers to develop optimal power management
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schemes using V2V and V2I information as an optimization
input to maximize the fuel efficiency for HEVs.

Past studies have made major contributions in develop-
ing power management for HEVs to maximize the fuel
efficiency. There have been two popular groups of power
management strategies: rule based methods and optimiza-
tion based methods. Rule based (RB) power management
methods are considered as a conventional way of managing
power as it is widely used by many popular vehicles such
as Honda and Toyota. The control law of RB method is
defined based on a set of “if-then” rules, which depends on
human expertise, operation boundaries and safety consider-
ations. The advantages of these methods are their simple
mathematical calculation and the convenience to apply up-
dates to commercially produced vehicles. In [2], the authors
developed power follower control strategy, which is a well-
known strategy within the rule based methods. In [3]–[9],
fuzzy rule based methods have been introduced, which is
very robust to various modelling errors. However, most rule
based methods do not go through an optimization process to
minimize the operation cost. On the other hand, optimization
based power management methods minimize the operation
cost over time, and this has been a trend in research in
recent years. For example in [10], the authors considered
optimal power control problem for HEVs when the future
driving conditions are not available. Furthermore, there has
been an emerging trend of using traffic information as an
optimization input to the vehicle controls recent years. In
[11] and [12], a dynamic programming technology has been
used with optimal control schemes to predict driving cycles
and design trip-based optimal power management.

To summarize, these existing studies considered the op-
timal control problem with respect to the controlled vari-
ables of the powertrain. Such approaches will require the
construction of new control models to the vehicles. Thus it is
difficult to apply such control scheme to the existing vehicles.
Moreover, the optimization is not considered in most rule
based methods. To address these issues, optimal parameter
tuning strategies for the rule based powertrain controller can
be considered to maximize fuel efficiency. However, the di-
rect mathematical model for powertrain controller parameters
to fuel efficiency is difficult to obtain. Moreover, with the
emerging trend of connected vehicle, it has been a challenge
to obtain a mathematical model for powertrain dynamic
with V2V/V2I information. To simplify the calculation for a
parameter tuning based optimization scheme, one natural ap-
proach is to use neural network equivalent model to represent
the input-output relationship between powertrain controller



parameters, V2V/V2I information and fuel consumption.
From the discussion above, we formulate an equivalent

neural network model for the connected HEVs. This model
can be further used for parameter tuning strategy for fuel
consumption optimization. The main contributions of this
work are:
• Develop and validate a Toyota Prius hybrid system

simulation model;
• Carry out sensitivity study for the powertrain control

parameters with respect to change in fuel efficiency;
• Determine the driving cycle characteristics for modeling

use;
• Use neural network techniques to establish algebraic

equivalent models for fuel consumption, and powertrain
state dynamics;

• Formulate the parameter tuning based optimization
problem to maximize fuel efficiency.

The reminder of this paper is organized as follows: Section
II introduces the HEV model, the selected control parame-
ters, and the V2V/V2I information. Section III formulates
the equivalent neural network models for the system dynam-
ics and the fuel consumption model. Section IV contains
concluding remarks and discusses the future works.

II. PROBLEM STATEMENT

This section first introduces the HEV model used in this
study, then describes sensitivity study to find the parameters
that fuel efficiency is most sensitive to, and characterizes
V2V/V2I information with future driving cycle predictions.
Finally control objectives are presented based on the defini-
tion of the parameters.

A. Dynamic Model of HEV

In this paper, the dynamic model of a 2017 Toyota hybrid
is considered. This model is derived based on previous stud-
ies in [13], [14]. The Toyota hybrid system uses a planetary
gear as the power split device, which consists of a ring
gear, a sun gear and the planetary carrier [15]. The engine
is connected to the planetary carrier, the motor/generator
MG1 is connected to the sun gear and the output shaft and
motor/generator MG2 are both connected to the ring gear.
The output shaft is linked to the wheels through reduction
gears and the differential. The power generated by the engine
is split between a mechanical path (connected to the vehicle
drive axle) and an electrical path (transformed to electricity
through MG1).

Planetary gear system. The planetary system dynamic
equations by [13] are summarized as the following:

(Is + IMG1)ω̇MG1 = FS − TMG1 (1)
(Ic + Ie)ω̇e = Te = FR− FS (2)

(
Rtire

K
m+ IMG2K + IrK)ω̇r = (TMG2 + FR)K

− Tf −mgfrRtire

− 0.5ρACd(
ωr

K
)2R3

tire (3)

where TMG1, TMG2 and Te are the torques generated by
two motor/generator sets and the engine; Ir, Is and Ic are
inertias of the ring gear, sun gear, and carrier gear, IMG1

and IMG2 and Ie are the inertias of the power sources, F
represents the internal force on the pinion gears and m is
the vehicle mass, Tf is the brake torque, K is the final drive
ratio, fr is the rolling resistance coefficient, and 0.5ρACd is
the aerodynamic drag resistance.

Battery system. The battery energy status is reflected by
the battery state of charge (SOC). The battery SOC satisfies
the following equation:

˙SOC = − Ib
Qmax

(4)

where Ib is the battery current and Qmax is the battery
capacity. The battery power to supply the electrical machines
satisfies the following relationship

Pb = (TMG1ωMG1η
k
MG1η

k
i1 + TMG2ωMG2η

k
MG2η

k
i2) (5)

where ηkMG1 and ηkMG2 are the electric machine efficiency,
and ηki1 and ηki2 are the inverter efficiency. k = 1 when
the battery is charging and k = −1 when the battery
is discharging. The sign of Pb will indicates whether the
battery is charging (Pb > 0 when the battery is discharging).
Based on (5) and the battery internal resistance model Pb =
VoIb − I2bRb, the state of charge model can be rewritten as

˙SOC = −Vo −

√
−V 2

o − 4PbRb

2RbQmax
(6)

where Vo is the open circuit battery voltage, Rb is the battery
internal resistance.

B. Hybrid Vehicle Simulation Model Validation

A first principle model based on Matlab/Simulink is used
to represent the dynamics of the powertrain and aftertreat-
ment system of a 2017 Toyota Prius Hybrid, based on (1-3)
and (6). Aftertreatment modeling is performed using AD-
VISOR (a MATLAB based package developed by National
Renewable Energy Laboratory, US Department of Energy).
To further validate the Simulink model for the 2017 Toyota
Prius hybrid, we conducted an experiment on an actual
vehicle with our collaborator at the University of Michi-
gan. Measured data for several key operating parameters
that characterize the vehicle and powertrain behavior were
compared to the Simulink model predictions. The driving
route evaluated for this validation is shown in Figure 1. This
integrated model shown in Figure 2 which is validated using
the measurement collected from several test drives of a 2017
Toyota Prius Hybrid.

Figure 3 shows the powertrain validation performances of
our developed model. The red colored curve shows measured
data and the blue curve gives simulated data from the
integrated model. In the figure, engine and vehicle speed
show accurate validation performances when compared to
real measured data. Engine and generator torque also indicate
satisfactory performance from validation. The aftertreatment



Fig. 1: Driving path for powertrain model validation.

system is also well validated by validating the mass flow rate,
coolant temperature and emission rate of NOx, HC and CO.
Due to the page limitation, the results are not shown here.
Based on the validation results, we can conclude that the
Simulink model can well represent the actual Toyota Prius
hybrid vehicle system.

C. Controller Parameter Selection

From the first principle based Matlab/Simulink model in
Fig. 2, it can be seen that there are a lot of control parameters
involved. These control parameters contribute to the level of
the fuel consumption with different degree of impact. To
realize the optimal tuning of these parameters using V2V
and V2I information, it is imperative to identify what level
of impact these parameters have on the fuel consumption.
This requires us to carry out a sensitivity analysis of these
control parameters with respect to the fuel consumption. This
will allow us to focus on those control parameters which
have the most significant impact on the fuel consumption,
and subsequently develop relevant V2V/V2I based parameter
tuning mechanisms so as to minimize the fuel consumption.
In the following some fundamental aspects of the parameter
sensitivity analysis will be described.

1) Bayesian definition of sensitivity: For a system with
input X and output Y , sensitivity in Bayesian notation can
be expressed as

S =
varX [E(Y |X)]

var(Y )
, (7)

where Y indicates the fuel consumption and X indicates
the control system parameters in the powertrain, E(Y |X)
denotes the expectation of Y conditional on a fixed value
on X , and the variance varX is taken over all the possible
values of X .

TABLE I: Three control parameters selected for the sensi-
tivity analysis.

Parameter
Name

Physical
Meaning

Nominal
Value

Range
used

θ1
Generator speed controller

proportional gain 0.9 [0.5,
1]

θ2
Generator speed

integral gain 0.005 [0.0001,
0.05]

θ3
Charging Controller

gain 15000 [13000,
17000]

2) FAST Method: We have calculated the first order
sensitivity index using FAST method [16]. Based on the
first order sensitivity index definition with respect to the
total fuel consumption, Table I tabulates the indices along
with the nominal and acceptable range of operations for
the selected control variables. These parameters are from
the generator speed controller of motor/generator set one
(MG1) and battery charging controller. Denote as θ1, θ2,
θ3, respectively.

MG1 Generator Speed Controller. The control objective
of the MG1 speed controller is to have the generator speed
tracks a given reference optimal generator speed. The track-
ing control is achieved via a classic PI control. The controller
structure is

uMG1(t) =Kp1(ωopt(t)− ωMG1(t))

+Ki1

∫ t

0

(ωopt( τ)− ωMG1(τ))dτ (8)

where uMG1 = TMG1 is the control input indicating the
generator torque, ωopt is the referenced optimal generator
speed, ωMG1 is the generator speed, Kp1 = θ1, Ki1 = θ2
are the proportional and integral gain of the PI controller
selected for parameter optimization.

Battery Charging Controller. The objective of the bat-
tery charging controller is to have the battery state of
charge (SOC) follow a given reference optimal SOC, which
is achieved by proportional control with saturation. The
controller structure is

up(t) =

{
up1(t), up1(t) < upmax

upmax, up1(t) ≥ upmax
(9)

up1(t) = Kp2(SOCopt(t)− SOC(t)) (10)

where up = Pb is the control input indicating the battery
charging power, upmax is the upper bound of charging power,
SOCopt is the given optimal state of charge. Kp2 = θ3 is the
proportional gain of the P controller selected for parameter
optimization.

To tune the selected parameters, one can see that it is
difficult to directly derive optimization scheme based on
the dynamic system in (1-3) and (6). Thus, it is necessary
to estimate the direct input-output model to represent the
dynamic for these parameters.

D. Use of V2V/V2I Information

In this work, we use V2V/V2I information as an op-
timization input. The objective is to find the influence
of future driving condition on the controller parameter to
achieve maximum fuel saving, i.e., find the function which
represent driving condition and parameter to fuel saving. To
this end, we need to characterize the real-time signals into
mathematical term to be used in optimization design. The
V2I information mainly contains the traffic signal ST , and
the V2V information includes the speed and the acceleration
of the preceding vehicle and the front vehicles on left/right
lanes, denoted by vp, ap, vl, al, vr, ar respectively. In this



Fig. 2: Integrated powertrain and aftertreatment Simulink model.
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Fig. 3: Powertrain validation results (red denotes simulation
and blue denotes measured data).

study, we consider the effect of V2V/V2I information and
how it can be used to predict the future vehicle speed vf for
minimized fuel consumption:

vf = W (ST , vp, ap, vl, al, vr, ar). (11)

III. EQUIVALENT NEURAL NETWORK MODEL
FORMULATION

This section forms the equivalent input-output neural net-
work (NN) model of HEV system for further optimization
control design. First the principle of neural network is
introduced. Then the fuel consumption dynamics and state
dynamics are represented using neural network. Finally the
optimization problem is formulated based on the equivalent
NN model.

Fig. 4: Multi-layered neural network example [17].

A. Equivalent Neural Network Models for Optimization

As described in Subsection II-B, a MATLAB Simulink
model is used in this study to characterize the powertrain
system dynamics (1-3) and (6). The accuracy of this model
is verified through the validation process. Although the op-
timization problem can be directly constructed based on the
first principle model used to build this Simulink model, the
amount of calculation required is computationally significant
as there are 3 parameters to be optimized in total and they are
interdependent. As a result, this work proposes to first run
the Simulink model and collect data for the input (sensitive
parameters, driving cycle information, state information:
torque and speed state of different powertrain components)
and output (fuel consumption, state prediction) variables we
need to broadly characterize the Simulink model response.
The model is run many times, then we train the function
for the input/output relationship using neural networks so as
to obtain a simple yet easy-to-use equivalent model for the
powertrain and fuel consumption rate. The objective using
the equivalent Neural Network model is to directly find the
relationship between the three powertrain control parameters
and the fuel efficiency powertrain system output. Fig. 4 is an
example of a MLF neural network, which is trained using
back-propagation training algorithms.



B. Fuel Consumption Dynamics

The fuel consumption can be considered as the cost func-
tion for formulating an optimization problem to minimize
fuel consumption based on knowledge of future speeds.
The input-output model between the control parameters,
V2V/V2I information and fuel consumption is

J =

n∑
i=1

∆fi(θ, cyci) (12)

where i is the step size, n is the control horizon, θ =
(θ1, θ2, θ3) are the three parameters that fuel consumption
is most sensitive to, based on the sensitivity study described
in Subsection II-C, cyci indicates the V2V/V2I information
characterizing future vehicle speed information at the ith
step. ∆fi is the amount of fuel consumption at ith step. The
physical meaning of the cost function J is the amount of
fuel used within a driving cycle. The goal of the optimiza-
tion problem is to find the optimized parameters θ, which
minimize J for a given driving cycle cyc. Note that since
all the sampled data are generated based on the simulation
of an actual driving cycle, there is an explicit constraint that
the driving pattern for each driving cycle is fixed. Therefore,
the driving trajectory and speed are fixed, and one can only
minimize J by tuning the sensitivity parameters. A neural
network is used to predict the fuel consumption function
∆fi.

The predicted cost function is

J̃ =

n∑
i=1

∆f̃i(θ, cyci), (13)

where ∆f̃i is obtained by training the neural network. The
neural network expression is given by

∆f̃i = wc2(tanh(wc1zc + bc1) + bc2, (14)

which indicate a neural network with 1 input layer zc =
[θ, cyci]

T (6 inputs, 3 controller parameters θ ∈ R1×3 and
3 steps of future driving speed information ahead cyci ∈
R1×3), 1 hidden layer (10 neurons), 1 output layer (1
output: fuel consumption), and wc1 ∈ R10×6, wc2 ∈ R1×10

are the weights, bc1 ∈ R10×1, bc2 ∈ R are the biases.
The prediction results are shown in Fig. 5, where the blue
curve shows the actual fuel consumption in different driving
cycles and the red curve is the fuel consumption predictions.
Based on the error histogram and the prediction of fuel
consumption function J̃ for each driving cycle in comparison
to the actual fuel consumption J , we can conclude that the
neural network represented by (14) can accurately predict
the fuel consumption trend, and sufficiently predicts the
cost function. The neural network training characteristics are
shown in Fig. 6, including the training error histogram and
the validation performance.

C. Powertrain State Dynamics

The powertrain state dynamic with the change of future
driving information controller parameter is a necessary con-
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Fig. 6: Neural network training performances for fuel con-
sumption predictions.

straint for the optimization problem. The equivalent power-
train state dynamic model is

x(k + 1) = g(x(k), θ, cyc), (15)

where k is the step size, x = [Te, Tg, Tm, ωe, ωg, ωm]T

which are engine torque, generator torque, motor torque,
engine speed, generator speed, motor speed, respectively. We
construct a neural network model g. For this purpose, the
inputs to the neural network are the state at kth step, the
sensitive parameters and the driving cycle information. The
output of the neural network is the state at the (k + 1)th
time step. The prediction of the state constraint function is
expressed by the neural network

g̃ = ws2(tanh(ws1zs + bs1) + bs2, (16)

which indicates a neural network with 1 input layer zs =
[θ, cyc, x]T (12 input, θ ∈ R1×3, cyc ∈ R1×3, x ∈ R1×6), 1
hidden layer (10 neurons), 1 output layer (6 output), and
ws1 ∈ R100×12, ws2 ∈ R1×100 are the weights, bs1 ∈
R100×1, bs2 ∈ R6×1 are the biases. The prediction results are
shown in Fig. 7, where the blue curves are the actual states
and the red curves are the state predictions. We can conclude
that the neural network represented by (16) can accurately
predict future state information. The neural network training
characteristics are shown in Fig. 8, including the training
error histogram and the validation performance.

D. Optimization Problem Description

Based on the analysis above, the parameter optimization
problem is formulated as follows:
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predictions.
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Design an optimization problem to optimize the sensi-
tive powertrain control parameters θ to minimize the fuel
consumption, as characterized by the cost function (12).
Moreover, we consider the state model (15) as constraints
to the optimization problem. The optimization problem is
simplified in this work by optimizing the approximated cost
function (13) for the sensitive parameters θ, with approxi-
mated state model (16) as constraints.

IV. CONCLUSIONS AND FUTURE RESEARCH

This paper formulated a new optimization problem model
to maximize the fuel efficiency for HEVs. The cost function
and the constraints are predicted using the neural network
given in Section III. This optimization problem model is
then verified from the physical model of the powertrain
built in Simulink. The significance of this work is to build

the simplified model for parameter tuning based on an
optimization scheme, which is an optimal yet easily applied
approach for commercial vehicles.

The future work based on this research is to solve this
optimization problem. The ultimate goal of solving this
problem is to come up with an online parameter update
law based on the V2V/V2I information to maximize the fuel
efficiency.
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