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ABSTRACT
Learning the causal graph in a complex system is crucial for knowl-
edge discovery and decision making, yet it remains a challenging
problem because of the unknown nonlinear interaction among
system components. Most of the existing methods either rely on
predefined kernel or data distribution, or they focus simply on the
causality between a single target and the remaining system. This
work presents a deep neural network for scalable causal graph learn-
ing (SCGL) through low-rank approximation. The SCGL model can
explore nonlinearity on both temporal and intervariable relation-
ships without any predefined kernel or distribution assumptions.
Through low-rank approximation, the noise influence is reduced,
and better accuracy and high scalability are achieved. Experiments
using synthetic and real-world datasets show that our SCGL al-
gorithm outperforms existing state-of-the-art methods for causal
graph learning.

CCS CONCEPTS
• Computing methodologies → Causal reasoning and diag-
nostics.
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1 INTRODUCTION
Causal discovery on time series data is an important analysis task
used to obtain insight into the underlying mechanisms of a whole
system. It helps to interpret data, formulate and test hypotheses,
and build or improve the theories of modeling. Causal discovery
also is crucial for the rapidly evolving field of Explainable Artifi-
cial Intelligence [13], which aims to construct interpretable and
transparent algorithms that also can explain how they model the
data.
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Figure 1: Example of data nonlinearity differentiating: the
blue boundedparts are temporal nonlinearity defined on the
univariate level, while intervariable nonlinearity defined on
the multivariate level is surrounded in red. X (i, tj ) denotes
the value of the i-th variable at time tj .

Specifically, we are interested in learning the causal graph, where
each node represents a variable or component of the targeted sys-
tem. The edges are directed and each describes the causality rela-
tionship between the two connected nodes. In many applications,
this graph structure is unknown or partially known, and a first
issue is to infer the unknown causal relationship between nodes
from the data. However, it is an especially challenging task because
of 1) the unknown and complex (usually nonlinear) relationship
existing inside the system, 2) noise in the dataset, and 3) scalability
problem stemming from the large number of nodes.

Traditional causal graph learning methods are based either on
linear systems (VARGranger analysis, GeneralizedAdditiveModels)
[22] or certain pre-assumed regression models [29]. However, many
interactions are nonlinear and with unknown distribution [9, 23].
Selecting the appropriate kernel or distribution model for each time
series requires a deeper understanding of domain knowledge and,
in many cases, is not even possible. Furthermore, the data noise,
system diversity, and scales (i.e., number of nodes) all challenge
their ability to derive a reliable causal graph [15, 28, 33].

Deep learning techniques have become more and more popular
in industrial and scientific applications. Yet, there is scant research
about how deep learning can contribute to learning causal graphs
on time series data. One problem is how to learn causal graphs
given complex nonlinearity in the temporal data. In this research,
we differentiate data nonlinearity into two types: temporal nonlin-
earity on the univariate level and intervariable nonlinearity on the
multivariate level. Figure 1 shows an example, where blue rounded
parts are temporal nonlinearity on the univariate level, while the
red rounded ones represent intervariable nonlinearity involving
more than two variables. We assume that any nonlinear causal-
ity can be represented by the combination of these two types of
nonlinearity.

In our research, these two types of nonlinearity are learned
in a deep neural network called Scalable Causal Graph Learning,
or SCGL. Figure 2 shows the proposed model design. SCGL can
discover nonlinear causality between any pair of nodes (input vari-
ables) without any knowledge of generalization rules (e.g., prede-
fined kernel or distribution assumption). We approximate the causal
graph through low-rank decomposition. Through such low-rank
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Figure 2: Our model learns a causal graph through a regression setting. It consists of four modules. Module 1 learns the tempo-
ral nonlinearity. Module 2 discovers the underlying causal graph through low-rank approximation, while Module 3 prospects
intervariable nonlinearity. Module 4 is the prediction module.

learning, our SCGL model is less sensitive to data noise and has
higher scalability in time and space.

Contributions of this work include:
(1) Our SCGL model not only learns the causality associated to

a single targeted variable, but the whole causal graph with
relationships between each pair of variables.

(2) By differentiating nonlinearity into two types, our SCGL
model can discover complex causality without any prede-
fined kernel or distribution assumption.

(3) We propose a multi-chain framework to explore the rele-
vance of different-level nonlinearity to the underlying causal
graph. Relevance is designed to be learnable and adaptive to
different datasets.

(4) The underlying causal graph is learned in a low-rank setting,
which provides model robustness against data noise and is
scalable in time and space.

2 PRELIMINARIES
This section mathematically describes the problem setting, begin-
ning with formally defining our notation.

2.1 Problem Definition
Our SCGL model input is the historical data ofm time series with
time lengthn, i.e.,X = {X (1, ∗),X (2, ∗), ...,X (m, ∗)} ∈ Rm×n , where
eachX (i, ∗) ∈ R1×n is a single time series associated to the i-th vari-
able. We denote X (i, tj ) as the value of the i-th time series at time tj
and X (i, tj − ℓ + 1 : tj ) ∈ R1×ℓ as the values of the i-th time series
from tj − ℓ + 1 to tj . X (∗, tj ) = {X (1, tj ),X (2, tj ), ...,X (m, tj )} ∈

Rm×1 are the values of all time series at time tj , and X (∗, tj − ℓ + 1 :
tj ) = {X (1, tj − ℓ + 1 : tj ),X (2, tj − ℓ + 1 : tj ), ...,X (m, tj − ℓ + 1 :
tj )} ∈ R

m×ℓ are the values of all time series from time tj − ℓ + 1 to
tj .

Our goal is to learn the underlying causal graph A ∈ Rm×m ,
which is a directed and non-negative matrix. When the value of
A(i, j) is much larger than zero, it denotes that the i-th time series
is among the factors (causes) of the j-th time series in time. We use
A(∗, j) ∈ Rm×1 to represent the j-th column of A, which tells the
influencing factors of the j-th time series.

2.2 Multivariate Granger Causality
Multivariate Granger causality analysis usually is performed by
fitting a vector autoregressive model (VAR) to the time series in-
put [22]. In particular, it is formulated as the following regression
problem, which tries to predict X (∗, tj + 1) with X (∗, tj − ℓ + 1 : tj ):

X (∗, tj + 1) =
ℓ∑

r=1
ArX (∗, tj + 1 − r ) + ϵ(∗, tj + 1), (1)

where ϵ(∗, tj +1) ∈ Rm×1 is a white Gaussian random vector at time
tj + 1, ℓ is the time order (involving time lags), and Ar is the causal
graph for each time lag r . Time series X (i, ∗) is called a Granger
cause of time series X (j, ∗) if at least one of the elements Ar (i, j)
for r = 1, 2, ..., ℓ is significantly larger than zero (in absolute value).

However, Equation (1) is purely linear and does not capture any
nonlinear causal relationships [11]. In our research, we want to
discover a more general and complex relationship by exploring
the capability of deep neural networks, which do not involve any
kernel assumption as found in the linear autoregression model for
Equation (1). Furthermore, this research involving our SCGL model
focuses solely on learning one global causal graph A.

3 THE PROPOSED SCGL MODEL
We deconstruct data nonlinearity into two types: temporal and
intervariable nonlinearity. Temporal nonlinearity is defined on the
univariate level, which describes the nonlinearity between time



Figure 3: Relationship of the four modules in Figure 2. The
bottom is raw input. Function д(∗) in Module 1 provides the
set of univariate nonlinearity among different time lags in
each time series. Module 2 learns the causal graph and se-
lects those relevant univariate nonlinearity G̃Σ. Function
h(∗) in Module 3 learns multivariate nonlinearity HD . Fi-
nally, Module 4 approximates the regression target.

lags in each time series. Intervariable nonlinearity is defined on
multivariate level, which describes the nonlinearity between time
series.

By differentiating and integrating these two types of nonlinear-
ity in the SCGL model, we approach the causal graph A through a
regression setting: to predict X (∗, tj + 1) with X (∗, tj − ℓ + 1 : tj ).
Figure 3 shows how to integrate the two types of nonlinearity along
with the causal graph learning and regression module. The bottom
blue layer denotes the raw input from each time series. The д(∗)
function in Module 1 is a nonlinear function that represents all of
the useful temporal nonlinearity on each time series (univariate
level). In other words, G(i, ∗) learns the nonlinear transformation
involving different time lags in X (i, ∗) that contribute to the final
regression. In Module 2, the nonlinear variables relevant to regress-
ing X (i, ∗) are selected by a learned causal graph. Module 3 rolls all
of the selected time series G̃Σ in a nonlinear way, which amounts
to intervariable nonlinearity set HD between time series. The final
nonlinearity set is used in Module 4 to approximate the regression
target.

Figure 2 shows the design of our deep neural network. It consists
of four modules with the functionality shown in Figure 3. The fol-
lowing subsections describe them individually. Section 3.1 focuses
on Module 1 that explores the temporal nonlinearity. Section 3.2
introduces Module 2 that aims to discover the causal graph, while
Section 3.3 explains Module 3 that prospects intervariable nonlin-
earity between time series. Section 3.4 details Module 4 and the
model’s loss function.

3.1 Module 1: Learning Temporal Nonlinearity
In the first module, we apply a residual neural network (ResNet)
[14] with learnable relevance on each layer as shown in Figure 4(b).
Through this design, we will:

(a) Traditional ResNet with Stochastic Depth [16]

(b) Our ResNet with Learnable Relevance

Figure 4: Figure 4(b) shows the Module 1 design. Different
from traditional ResNet with stochastic depth (Figure 4(a)),
we design a ResNet with Learnable Layer Relevance to the
underlying causal graph (Figure 4(b)). At the end, all the
layer outputs (not just the last layer) are sent to Module 2.

(1) Learn the temporal nonlinearity on univariate level with
deep yet easily trainable architecture while avoiding vanish-
ing gradient.

(2) Discover the relevance of different levels of temporal non-
linearity to the underlying causal graph.

By setting G0 = X (∗, tj − ℓ + 1 : tj ), a typical ResNet proposed
in [14] is defined as:

Gq = ReLU (Gq−1Bq + id(Gq−1)), q = 1, 2, ...,Q (2)

where Gq ∈ Rm×p denotes the output of the q-th residual block,
Bq ∈ Rp×p notes the weight matrix in the q-th block1 , id is an
identity mapping, andQ is the total number of residual blocks. The
core idea of ResNet is to introduce an identity shortcut connection
that skips one or more layers if they have no contribution to the
final target. Therefore, the SCGL model goes deeper as it will not
produce a training error greater than its shallower counterparts.
In other words, if identity mappings are optimal, the solvers may
simply drive the weights in Bq toward zero to approach identity
mappings [14]. To accelerate this learning speed, Huang et al. [16]
proposed ResNet with stochastic depth:

Gq = ReLU (bq (Gq−1Bq ) + id(Gq−1)), q = 1, 2, ...,Q (3)

where bq is a Bernoulli random variable that can be only 1 or 0
(indicating if the q-th block is active). The block becomes a normal
residual block when bq = 1 and an identity layer otherwise. The

1The first weight B1 ∈ Rℓ×p



authors in [16] drew an intuition that the earlier layers extract
low-level variables used by later layers and, therefore, should be
more reliably present, i.e., bq should more possibly be zero than
bq−1 and so forth. In practice, they introduced:

Gq = ReLU (βq (Gq−1Bq ) + id(Gq−1)), (4)

where βq is the survival probability of layer q, which is a hyperpa-
rameter that can be predefined by:

βq = 1 −
q

Q
(1 − βQ ), (5)

where βQ is set as 0.5.
Normally as the ResNet goes deeper, we have more opportu-

nities to discover complicated nonlinearity on the temporal level.
However, in practice it is difficult to know which layer (level of non-
linearity) is more relevant to the underlying causal graph. In fact,
their relevance to the underlying causal graph varies on different
datasets. Here, we design their relevance to be learnable variables.
It remains the same as Equation (4), but all βq ,q = 1, 2, ...,Q be-
come variables. Figure 5 shows the learned relevance of different
layers across epochs for two datasets (described in the Experiment
section). It indicates that during training, the relevance converge
fast to a stable status, and the underlying causal graph has different
relevance to different level of temporal nonlinearity on different
datasets. This demonstrates the rationality behind our design of
Module 1.

Figure 5: The learned relevance of different layers to the un-
derlying causal graph of two datasets (described in the Ex-
periment section) across epochs. Y axis is the layer index,
and X axis is the epoch index. It is evident that: 1) the rel-
evance vector converges to a stable status, and 2) different
datasets may assign distinct relevance to each layer, which
motivates us to make the relevance learnable.

Specifically, the input layer of Module 1 is X (∗, tj − ℓ + 1 : tj ) ∈
Rm×ℓ , and the output of the q-th residual layer isGq ∈ Rm×p . Each
Gq represents a certain level of temporal nonlinearity. GivenQ is the
total number of residual blocks,G1:Q (i, ∗) can approximateG(i, ∗)
in Figure 3. So we use the output of all the blocks, i.e., G1:Q (∗, ∗),
as the input to the next module.

Before we describe the rest of the SCGL model, please note:
(1) Each column in B1 can be treated as a one-dimension convo-

lution filter with size ℓ. Each filter performs on all of them
time series, respectively.

(2) In this module, we focus only on the temporal nonlinearity
on univariate level without rolling information between time
series. The reason is that such rolling should only involve
the factor variables of each time series, which should be

Figure 6: Module 2 learns the causal graph using low-rank
approximation.

controlled by the causal graph learned in Module 2. If we
involve it too early, it will disrupt the causal graph learning.

(3) Apart from traditional ResNet that only makes use of the
last layer output, we feed the output from all layers to the
causal learning module. The motivation is the same as for
introducing layer relevance: causality also may exist on the
shallow level of temporal nonlinearity. Therefore, in our
model, we feed different levels of temporal nonlinearity into
the next module to explore their effects on the underlying
causal graph.

3.2 Module 2: Learning Causal Graph
The second module is the SCGL model’s key component, which is
to learn the causal graph. For each Gq ∈ G1:Q (i, ∗) from Module 1,
we want to select those variables, that only contribute to predict
each X (i, tj + 1), i = 1, 2, ...,m. Given a causal graph Aq , this can
be done by

G̃T
q (∗, i) = G

T
qAq (∗, i), i = 1, 2, ...,m (6)

Such an operation can be extended to the whole variable space.
However, when the size of variables (m) is quite large, learning the
full size of A ∈ Rm×m would be unscalable.

In practice, the number of factor variables usually is small, and
the relationship between variables is low-rank in hidden space
[10, 36, 37]. In our model, we approximate A through a k-rank
matrix decomposition with k < m.

Figure 6 illustrates the Module 2 design. For each of the nonlinear
temporal embedding Gq from Module 1, Module 2 projects them
from the originalm space into k-rank embeddings (latent factor
space). This is done via nonlinear mapping with a weight matrix
Uq,k ∈ Rm×k . Then, a scalingmatrix (diagonal matrix Sq,k ∈ Rk×k )
will be learned to scale each low dimension. Finally, the k-rank
embeddings will be projected back to originalm space with a weight
matrixVq,k ∈ Rk×m . The following equation describes this process:

G̃T
q = σ ((σ (GT

qUq,k )Sq,k )Vq,k ), (7)

where Uq,k contains factor mapping information, Vq,k contains
information from effect mapping, and Sq,k are scaling factors. The
causal graph Aq can be approximated by

Aq ≈ Uq,kSq,kVq,k . (8)



Figure 7:Module 3 is used to learn intervariable nonlinearity
via a simple FC chain.

The number of parameters needed to learn through Equation (8)
is 2mk + k2, which is much smaller than m2 when k ≪ m. By
experiment, we set the first and second activation functions as tanh
and Relu, which give the best performance. Notably, we did not add
any activation function on Equation (8) because our causal graph
construction is not based on the inputGT

q but instead on the relative
weights of factor, effector and scalar matrix, i.e.,Uq,kSq,kVq,k . Our
empirical studies also confirm our choice.

Similar to traditional SVD, we force the Uq,k and Vq,k to be
orthonormal, which is done by applying weight penalty |UT

q,kUq,k−

I | and |VT
q,kVq,k − I | to loss function. Orthogonality regularization

is discussed and popularly used [4, 6, 34]. By doing so, the weight
matrix is maintained as a unitary matrix that preserves a vector’s
length. The constructed embedding also has theoretical connection
to Stiefel manifolds and spectral theorem [30].

For eachGq fromModule 1, we perform the preceding procedure
and get Aq , respectively. The global causal graph A is obtained by

A ≈

Q∑
q=1

βqAq , (9)

where βq is the learned relevance of Gq from Module 1.

3.3 Module 3: Learning Intervariable
Nonlinearity

To learn the nonlinearity among the time series, we designed Mod-
ule 3. The input is all G̃q ∈ Rm×p ,q = 1, 2, ...Q from Module 2
(Equation (7)). We concatenate them column-wisely and denote the
whole matrix as: G̃Σ ∈ Rm×

∑
p . Module 3 consists of a series of

fully connected layers, and the j-th layer output is defined as:

Hj = σ (Hj−1Wj + bj ), j = 1, 2, ...,D (10)

where Hj−1 ∈ Rm×dj−1 is the output of layer j − 1,Wj ∈ R
dj−1×dj

is a weight matrix, and bj is a bias vector. The activation function
here is tanh. We set H0 = G̃Σ. The final output of this module is
HD ∈ Rm×dD where D is the total number of layers in Module 3.

Intuitively, G̃Σ(i, ∗) contains linear combinations of all the tem-
poral nonlinearity from the factor variables of time series X (i, ∗).
Module 3 rolls them in a nonlinear way. In other words, our model
learns intervariable nonlinearity using Module 3.

(a) Module 4 with 1 time-stamp prediction

(b) Module 4 with 2 time-stamp prediction

Figure 8: Module 4 predicts the regression target.

3.4 Module 4: Regression
The final module predicts the regression target X̂ (∗, ti + 1) ∈ Rm×1

using the outputHD fromModule 3. Here, themodel learns a weight
matrix R ∈ Rm×dD . The regression is performed by a row-wise dot
product (Figure 8(a)):

X̂ (i, ti + 1) = HD (i, ∗) ◦ R(i, ∗), i = 1, 2, ...,m (11)

The residual between the predicted X̂ (∗, ti + 1) and the actual
X (∗, ti + 1) is calculated by mean squared error (MSE) with regu-
larization terms. Our loss function is defined as:

loss =
1
mn

∑(
X (∗, ti + 1) − X̂ (∗, ti + 1)

)2
+ λ1

∑
q

(


Uq,k 


2 + 


Vq,k 


2)
+ λ2

∑
q

(


UT
q,kUq,k − I





2
+




VT
q,kVq,k − I





2

)
, (12)

where n is the total number of samples and m is the number of
variables. We pose two regularization terms. The first aims to avoid
over-fitting on the causal graph, while the second one is used for
imposing orthonormality toU and V (as described in Section 3.2).
Then, the calculated error would be backpropagated through the
model to update its parameters.

Intuitively, the i-row of HD contains all of the possible con-
tributing nonlinear forms from the factors of X (i, tj + 1), where
i = 1, 2, ...,m. Module 4 constructs their optimal combination to
approach X (i, tj + 1). In practice, we predict more than one future
timestamp. Figure 8(b) shows that we predict X (∗, tj + 1 : tj + 2) by
learning two layers of R respectively. The motivation here is that
by involving more timestamps as regression targets, we may be
able to learn a more accurate causal graphA because we have more
information in every training step. We will verify this intuition
further in the Experiment Section.



4 DISCUSSION
In this section, we examine our proposed SCGL method, includ-
ing its connection with other causal graph learning theories and
methods. We also justify the utility of our SCGL model by briefly
discussing the connection and distinction with a few other existing
methods.

Granger Causality. In [12], Granger causality detects the tem-
poral causal time-lag relationship of two time series. The proposed
method in [5] first establishes a VAR model on two variables then
performs F -statistics tests on the residuals of one variable with
and without considering the other. This method can be performed
m2 times to learn the full causal graph. Among all the limitations
of this method, the most notable one is its high false alarm rate
because it only models two variables at a time without considering
the effect from other variables. Later works such as [17, 35] are built
on pairwise conditional Granger causality where allm variables are
involved in VAR. However, such methods have three limitations.
First, it requires performing F -tests to detect any causal relation-
ship between two variables. It assumes normal distribution on the
dataset, which is not always true in real applications. Second, the
causal graphs are still constructed by a pairwise relationship, even
though we can include other conditional variables. Therefore, any
more than three joint relationships cannot be effectively reflected
in the final causal graph. Third, the VAR model is still inherently
linear. In contrast, our proposed approach does not rely on any
distribution assumption or pairwise causal graph construction, and
can detect nonlinear causality.

Transfer Entropy. It was firstly proposed in [27] for learning
pairwise causality without distribution assumption and linear set-
ting. One variable X is considered a cause of another variable Y if
the past values of X significantly decrease the uncertainty, mea-
sured by Shannon entropy, in the future value of Y given its past.
Such method is extended in the work [20] to be more robust and
computationally efficient. However, this type of methods only de-
tect pairwise causality and thus share similar limitations of Granger
Causality in this aspect.

Graph Learning. Research such as [1, 2, 7] learn causality by
adding lasso or ridge regularization to VAR. The causality between
any two variables can be learned by detecting whether or not the
sum of weights of these two variables across all timestamps is
close to zero. These methods generate causal graph in the form
of graph adjacency matrix in one shot. However, it can only learn
linear temporal relationship. On the contrary, our SCGL method is
designed to capture complicated nonlinear uni- and inter-variate
relationships.

Kernel-based Methods. Work in [19, 24, 25, 28] proposed a
series of conditional Granger causality analysis using kernel-based
VAR model. Several types of kernels are used to capture the non-
linear temporal relationship. However, such methods come with a
heavy computational cost. For example in [28], it is claimed that
their computational complexity is O(m3 + n3) , where m is the
number of variable and n is the number of total timestamps. On the
other hand, our model is more scalable. Please refer to Section 5.7
for scalability comparison.

Supervised Learning Methods.Works such as [8, 21] formu-
late the causal inference problem as a cause-effect classification

problem. Concretely, the classification model request relationship
labels: 1 (X causes Y ), -1 (Y causes X ), and 0 (no causal relation-
ship) between certain number of variable pairs. Technically, this
is achieved by mapping the conditional distribution of X with and
without a previous state ofY to a point by kernel mean embeddings,
then calculating the distance as a metric of causality classification
in the reproducing kernel Hilbert space. However, such methods
request labeled relationship for training, which is quite difficult to
collect in many cases. Comparatively, our SCGL learns a full causal
graph through time series regression without any label.

MLP and LSTM. Work in [31, 32] proposed multi-layer percep-
tion (MLP) and a long short-term memory (LSTM) deep learning
framework to learn causal graph. They all try to learn causal graph
through time series regression. The MLP-based method is consid-
ered as an extension of the VAR method with more hidden layers
to capture nonlinear relationships, while LSTM is widely used in
sequential data. Both methods learn causality by detecting if the
sum of the weights in the first neural network layer is close to zero
or not. However, this kind of method has worse performance than
our SCGL method because they do not have a systematical way
to learn different type of nonlinearity (please refer to Experiment
Section).

Graphical Neural Network.Work in [18] use graph neural net-
work to learn latent interaction in multi-variate dynamics system.
It is a type of message passing neural network where node-edge
message passing operations are defined through multi-layer percep-
tron (MLP) for encoder and LSTM or MLP as decoder. However, 1)
the designed model is for a general relationship learning, not causal
relationship learning, and 2) there is no low-rank approximation
to learn causal relationship. Therefore, these models suffer from
overfitting and are not scalable to large number of variables. On
the other hand, our SCGL is designed for more general types of
interaction graph, and have good scalability both in time and in
memory.

5 EXPERIMENT
This section demonstrates the superior capability of our SCGL
method via a thorough comparison with several popular baselines
on both synthetic and real-world datasets 2.

5.1 Experiment Setup
Construction of Synthetic Dataset

For simulation test, we constructed two datasets. We first con-
struct the causal graphs to build the datasets and later use them as
groundtruth to evaluate our result. Based on the constructed causal
graph, we then generate the time series data with certain nonlinear
relationships. Specifically, the underlying causal graph is generated
by initially designing a three-layer hierarchical structure. Nodes in
the top layer serve as the cause of nodes in the second layer. The
second layer nodes then are the cause of the bottom layer nodes.
To increase the complexity, we add random directed edges between
nodes within the second layer. We call the nodes in the top layers as
masters, and the remaining nodes as effectors. This causal structure
is very common in biology science (e.g. gene regulatory network).

2The code and simulated datasets are available in https://drive.google.com/open?id=
1Py6Sr108ccfO-mxR2CxaoSGTMsTxBQqS

https://drive.google.com/open?id=1Py6Sr108ccfO-mxR2CxaoSGTMsTxBQqS
https://drive.google.com/open?id=1Py6Sr108ccfO-mxR2CxaoSGTMsTxBQqS


(a) Hierarchical causal structure with 5-
15-45 nodes distribution

(b) The corresponding causal graph.
A(i, j) = 1 means node i is the factor of
node j .

Figure 9: Causal graph for Synthetic Dataset A.

We assign 5-15-45 nodes in the three layers of Synthetic Dataset
A, while Synthetic Dataset B has a hierarchical structure of 10-30-90
nodes. Figure 9 illustrates the causal structure and causal graph
of Synthetics Dataset A. Based on the causal graph, we design the
temporal causal relationship as follows:
Synthetic Dataset A. For masters, we pose a self-regulating rela-
tionship with time-lag 2:

X (i, tj ) = cos(
√
3d(i) × X (i, tj − 1) × d(i)2 × X (i, tj − 2)) + ϵ(i, tj ),

(13)

where d(i) is the decay factor of node i that randomly selected from
uniform distribution U(0.95, 1), and ϵ(i, tj ) is the random noise
sampled from normal distribution N(0, 1). The expression value of
effectors is generated by

X (k, tj ) =
m∑
l=1

log((r (l ⇒ k) × X (l , tj − p(l ⇒ k)))2) + ϵ(k, tj ),

(14)

with r (l ⇒ k) following U(−1, 1) if node l is among the factors
of node k and 0 otherwise. Term p(l ⇒ k) represents the time lag
of the temporal causal relationship from l to k and is randomly
selected from {1, 2, 3}. The first three timestamp values of all nodes
are randomly generated from N(0, 1). Thus, Synthetic Dataset A is
designed to have the model order 3.
Synthetic Dataset B. For masters, we constitute the following self-
regulating relationship with time-lag 5:

X (i, tj ) = arctan(
√
3d(i) × X (i, tj − 1) + d(i)2 × X (i, tj − 5)2) + ϵ(i, tj ).

(15)

The expression value of effectors is simulated in a more complicated
way. Here we introduce an intermediate variable Zl (k, tj ) as

Zl (k, tj ) = r (l ⇒ k) × X (l , tj − p(l ⇒ k)), (16)

where r (∗) and p(∗) are defined in the same manner as Synthetic
Dataset A. Zl (k, tj ) then represents the contributing value of node
l to node k at timestamp tj . We then let

X (k, tj ) =
m∑
l=1

(Z 2
l (k, tj ) + tanh(Zl (k, tj ) × X (k, tj − p(l ⇒ k))))

(17)

+

m∑
s=1

m∑
l=1

(sin(Zs (k, tj ) × Zl (k, tj ))) + ϵ(k, tj ).

As such, the entire time series dataset is designed to have model
order 5. Here, the value of node k at timestamp tj is affected by
the interaction of its previous value with its factor node l . It is also
affected by the interaction of previous values of node l and node s
if they both are node k’s factors.
Evaluation Metrics and Baseline Methods

To evaluate the learned causal graph against ground truth, we
use two metrics: area under precision and recall curve (AUPR)
and area under receiver operating characteristics curve (AUROC).
We compare our SCGL method with the following five popular
baselines:

(1) VAR [1]. It is one of the most well-known methods, which
applies the vector autoregressive model with ridge regular-
ization to learn causal graph.

(2) PCKGC [25]. It stems from pairwise conditional kernel-based
Granger causality analysis [24] and only considers the par-
tial conditioning to a pre-selected variable subset with the
highest mutual information scores to save the heavy compu-
tational cost in original methods.

(3) Copula [3]. It transforms the marginal distribution of each
variable to Gaussian domain and then apply VAR graph learn-
ing methods. Certain levels of high order temporal relation-
ship can be captured. We used ridge regularization instead
of original lasso for better performance in our experiments.

(4) cLSTM [32]. It applies LSTM to past values of all variables
to regress future value with group lasso regularization on
the model parameters of the first neural network layer. The
causal graph is then generated from the absolute sum of all
the corresponding parameters.

(5) pTE [20]. It calculates the phase transfer entropy by trans-
forming temporal signals of each variable to discrete phases
with certain histogram-based probability functions.

5.2 Comparison on Synthetic Datasets
For experiments on Synthetic Dataset A, we use the following hy-
perparameter setting: the input time series window is set to 3, and
the prediction window size (pre-win) is set to 2. We set the number
of temporal layers Q = 5 in Module 1, each with dimension p = 20
and low-rank embedding k = 30 in Module 2. We use a single fully
connected layer with dimension d1 = 50 in Module 3. For Synthetic
Dataset B, we set the input time series window to be 5 and the
prediction window size as 3. We set the number of temporal layers
Q = 6 with dimension p = 20 and low-rank embedding k = 55. In
Module 3, we use a single fully connected layer with dimension
d1 = 50. For both experiments, we use 80% of the data for train-
ing and the remaining data for validation. For more details please
refer to our uploaded code. For the other baselines, we tune their
hyperparameters to the best of our knowledge.



Figure 10: Comparison of AUPR andAUROC of allmethods.

Figure 10 shows the comparison result on the two synthetic
datasets. Apparently, our SCGL is superior to all the baselines, es-
pecially as the ground truth causal graph is quite sparse and AUPR
is the more appropriate metric [26]. The AUPR by our SCGL is sig-
nificantly larger than all the baselines (40%+ improvement at least).
The AUROC of our SCGL is also the best. The pTE and Copula are
the second and third best methods, since they do not require any
statistical assumptions and can capture certain level of nonlinearity.
Comparatively, cLSTM gives a little bit lower performance. It only
uses parameters of the first layer to detect causality, which tends
to provide a relatively lower recall rate with a given precision rate.
PCKGC and VAR have the worst performance. It is because that
PCKGC only detects the conditional Granger causality which is
conditioned to a pre-selected subset of variables, while VAR suffers
from its linear regression setting.

To show the convergence of our SCGL method, we plot the
training loss, validation loss, and AUPR across training epochs in
Figure 11. First, it shows that both the training loss and validation
loss converge well, proving that our SCGL model is reasonably
stable. Second, it is evident that AUPR rises simultaneously as loss
converges, which illustrates that the quality of the learned causal
graph improves as the prediction error converges.

5.3 Comparison on a Real-world Dataset
This section details the causal learning test on real-world engine
operating data. The dataset contains six months data collected from
50 different engines. The number of total training samples exceeds
180k . For privacy reason, we didn’t include sensitive descriptions.
In this test, we use the following setting in SCGL: input time series
window = 10, pre-win= 2, Q = 3, p = 20, k = 10 and d1 = 40.

Figure 12 shows the comparison of the learned causal graphs.
Due to space limitation, we only show 14 key variables by the
SCGL and the best result from baselines (by qualitative study on
this dataset). Based on knowledge from domain experts, our SCGL
model successfully captures the following causal relationships:

(1) Corrected Altitude (BrCrtAlt) measures altitude based on a
function of total pressure (TtlPrs) and total air temperature
(TtlAirTmp).

(2) Computed Airspeed (CmptAirSp) is subject to air-density
changes, which is relevant to BrCrtAlt.

Figure 11: Training/Validation loss andAUPRacross epochs.

Figure 12: Learned causal graph of real-world data.

(3) Adjustment of fan air flow rate, which is relevant to fan speed
(N1ActEng), provides a desired cooling outlet temperature
(PrCLOutTmp).

(4) Fan speed (N1ActEng), which measures the rotational speeds
of engine sections, is affected by Pressure (DuctPrs) and
Bleed Position (BldPst).

(5) Outflow Valve is the actuator of the Cabin Pressure Regu-
lating System. The change of Valve Position (OutVlvPst) is
triggered by the change of BrCrtAlt and PrCLOutTmp.

Compared against our method, cLSTM and the other baselines fail
to discover these physical relationships between sensors.

5.4 Robustness against Noise Levels
In Figure 13, we evaluate the robustness of all models against vari-
ous noise levels. We injected three noise levels 20%, 35%, and 50%
into data, e.g., noise 20% is added in the following way:

X20%(i, tj ) = X (i, tj ) × U(1 − 20%, 1 + 20%) (18)



Figure 13: Comparison with various noise levels.

Figure 14: AUPR with various temporal layers in Module 1.

where i = 1 · · ·m and tj = 1 · · ·T , andU indicates uniform distri-
bution. Generally, all methods’ performance drop as noise increases.
However, the SCGL method still maintains AUPR no less than 0.6
and 0.4 for the two datasets respectively even with 50% noise. This
confirms SCGL’s robustness against noise by low-rank embedding,
and our discussion in Section 3.2.

5.5 Effect of Number of Low-rank and Multiple
Temporal Layers

Here, we discuss the effect of two important hyperparameters in
SCGL. In Figure 14, we test the AUPR by our SCGLmodel with vari-
ous numbers of temporal layers (Q in Module 1). It can be observed
that by increasingQ , AUPR increases in the beginning but gradually
decreases after reaching its peak. This tells that a certain number
of layers are already enough to capture the nonlinear relationship
on univariate level. But adding more layers may lead to overfitting.

In Figure 15, we test various values of k for k-rank embeddings in
causal graph learning inModule 2. It shows that ourmodel can learn
a more accurate causal graph with reasonably large k . However,
AUPR gradually decreases as k is getting too large. This shows
that the dimension of low-rank should be large enough to learn
complicated causality, but small enough to exclude noise influence
from data and modeling process.

Figure 15: AUPR with various k-rank in Module 2.

Figure 16: AUPR of various size of input window and
predicting-window (pre-win) on two synthetic datasets

.

5.6 Robustness against Input Window and
Pre-win Size

Figure 16 shows AUPR with different numbers of input time win-
dows (denoted as window) and timestamps that we want to predict
(noted as pre-win) on two synthetic datasets. We find that AUPR
does not change much by increasing the time windows beyond
the model order, which means that the temporal convolution in
Module 1 correctly weights different time-lags during training. On
the other hand, we found that for a given input window size, the
AUPR decreases with too small or too large pre-win. One possible
reason is that more than one predicting windows can involve more
information that may contribute to learning better causal graph.
But too many pre-wins will increase the difficulty in prediction,
which causes more and more instability and leads to poor quality
of the learned causal graph.

5.7 Scalability Comparison
In Figure 17, we evaluate the scalability of all methods with increas-
ing number of variable (m). All of the experiments are performed
with Intel Xeon E5-2670 processors with 128G memory. Figure 17
shows that the computing time of VAR, Copula, PCKGC and pTE are
in the order of O(m3), while SCGL and cLSTM are in relatively lower
order. However, SCGL has much better accuracy than cLSTM in
learning causal graph. This confirms that our SCGL is both scalable
and effective.

PCKGC consumes too much time when the number of variable
reaches 103 or greater, whereupon we stopped measuring its com-
puting time.



Figure 17: Scalability test of all models.

6 CONCLUSION
In this work, we present a scalable causal graph learning method,
or SCGL, for multivariate time series data by deep neural network.
This method can discover complex causality without any prede-
fined kernel or distribution assumptions. Specifically, it learns the
underlying causal graph through low-rank approximation, which
makes the model more scalable and robust against noise. Using
both synthetic and real-life datasets, we show that our proposed
SCGL method outperforms other baselines by a significant margin.
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