

Calcium-facilitated aggregation and precipitation of the uranyl peroxide nanocluster U in the presence of Na-montmorillonite

Luke R. Sadergaski, Meena Said, and Amy E. Hixon

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.8b06731 • Publication Date (Web): 28 Mar 2019

Downloaded from <http://pubs.acs.org> on March 28, 2019

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Publications

is published by the American Chemical Society, 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1 Calcium-facilitated aggregation and precipitation of
2 the uranyl peroxide nanocluster U_{60} in the presence
3 of Na-montmorillonite

4 *Luke R. Sadergaski, Meena Said, and Amy E. Hixon**

5 Department of Civil and Environmental Engineering and Earth Sciences, University of Notre
6 Dame, Notre Dame, IN 46556 USA

7 KEYWORDS: uranyl peroxide nanoclusters, montmorillonite, quartz, feldspar, alkaline cations,
8 sorption, aggregation

9 ABSTRACT: The unique and diverse features of uranyl peroxide nanoclusters may contribute to
10 the enhanced mobility of uranium in the environment. This study examines the sorption of the
11 uranyl peroxide nanocluster $[UO_2(O_2)(OH)]_{60}^{60-}$ (U_{60}) to Na-montmorillonite (SWy-2),
12 plagioclase (anorthite), and quartz (SiO_2) as a function of time, U_{60} concentration, and mineral
13 concentration. SWy-2 was studied in both its untreated form as well as after two different pre-
14 treatments, denoted partially-treated SWy-2 and fully-treated SWy-2. U_{60} was removed ($\sim 99\%$)
15 from solution in the presence of untreated and partially-treated SWy-2. However, U_{60} was not
16 removed from suspensions containing anorthite, quartz, or fully-treated SWy-2, even after
17 several months. The removal of U_{60} from suspensions containing untreated SWy-2 is promoted
18 in part by the exchange of Li^+ counterions, normally weakly associated with U_{60} in solution, for

19 Ca^{2+} ions naturally present in the clay. In solution, Ca^{2+} ions induce the aggregation of
20 nanoclusters which precipitate on the surface of SWy-2. Ca-rich U_{60} aggregates associated with
21 SWy-2 were identified and characterized by scanning electron microscopy with energy
22 dispersive spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. This
23 research enhances our understanding of the molecular-scale processes controlling U_{60} behavior at
24 the mineral-water interface.

25 INTRODUCTION

26 In order to design safe geologic repositories for the long-term storage of nuclear waste, it is
27 important to understand the fate and transport of long-lived actinides such as uranium. The
28 transport of uranium has been addressed in part by batch sorption experiments using UO_2^{2+} and
29 various minerals under a range of geochemical conditions.¹⁻⁶ However, during the last decade, a
30 complex family of uranyl peroxide nanoclusters has been reported.⁷⁻⁸ Formation of uranyl
31 peroxide nanoclusters may be possible under environmentally-relevant conditions, for example,
32 at uranium ore deposits where alpha radiolysis of water may produce hydrogen peroxide in
33 sufficient quantities for the assembly of uranium peroxide species,⁹⁻¹¹ yet their effect on the fate
34 and transport of uranium is not fully understood. The sorption of uranyl peroxide nanoclusters to
35 two common Fe(III)-bearing minerals, namely, hematite (Fe_2O_3) and goethite (FeOOH), has
36 been reported recently.^{12,13} These studies demonstrate that clusters persist in the presence of
37 Fe(III) minerals and common alkali ions, that their sorption behavior mimics that of a discrete
38 anionic species, and that their interactions with mineral surfaces are driven by electrostatic outer-
39 sphere complex formation. Given that colloidal species have been shown to promote the
40 transport of actinide species in environmental systems,¹⁴⁻¹⁷ the formation of uranyl peroxide

41 nanoclusters may represent a source term that is not currently accounted for in reactive transport
42 models.

43 The uranyl peroxide nanocluster $[(\text{UO}_2)(\text{O}_2)(\text{OH})]_{60}^{60-}$ (U_{60}) was used in this study as a model
44 structure for the wider family of uranyl peroxide nanoclusters, which spontaneously self-
45 assemble in solution under alkaline conditions and are several nanometers in diameter (e.g., the
46 diameter of U_{60} is ~ 2.5 nm).^{18,19} U_{60} is comprised of 60 compositionally identical uranyl
47 peroxide hydroxide polyhedra, behaves like an aqueous species when dissolved in solution, and
48 is thermodynamically stable in the absence of excess peroxide.^{9,20-21} U_{60} persists in aqueous
49 solution from pH 7.5 to 11 and the negative charge of the uranyl peroxide cage is balanced by K^+
50 and Li^+ both in solution and when crystallized.¹⁸ Under the solution conditions used in the
51 present study, Li^+ cations are not closely associated with the uranyl peroxide cage, which leaves
52 the cage with an overall negative charge.^{18,21} In the presence of excess cations, U_{60} undergoes
53 rapid self-assembly to form blackberry-type structures, which are on the order of tens of
54 nanometers and have been identified using transmission electron cryomicroscopy (cryo-TEM).²²
55 Blackberries are a particular kind of uranyl peroxide cluster aggregate that are approximately
56 spherical, hollow, and are believed to form primarily due to counterion-mediated attractions.²³⁻²⁵

57 The smectite group member, montmorillonite, is a major component of the natural, geological
58 material bentonite, which has been studied for use as an engineered barrier to ensure the
59 immobility of long-lived nuclear waste.²⁶ Clay barriers will limit water flux towards waste
60 containers and retain radionuclides because of their favorable sorption and cation exchange
61 properties.²⁷ Montmorillonite is a 2:1 phyllosilicate mineral containing two tetrahedral sheets of
62 silica on either side of a central octahedral sheet of alumina. These sheets retain a permanent
63 negative charge (i.e., independent of pH) due to isomorphic substitution of $\text{Al}(\text{III})$ for $\text{Si}(\text{IV})$ and

64 Fe(II) and Mg(II) for Al(III). This generates an appreciable negative charge at the basal surface-
65 water interface. In addition, clays also possess a variable charge because the surface charge of
66 edge sites vary with pH.^{28,29}

67 In this study, we examined the sorption of U₆₀ to quartz, anorthite, and montmorillonite (SWy-
68 2) as a function of mineral concentration (10 – 20 mg·mL⁻¹ SWy-2), U₆₀ concentration (0.5 – 2
69 mg·mL⁻¹), and time (20 minutes – 122 days). Batch sorption experiments were conducted to
70 determine if clay, which is generally a strong sorbent material for contaminant species, would
71 also be suitable to retain species such as uranyl peroxide nanoclusters; additional experiments
72 with quartz and anorthite were conducted to determine their effect on U₆₀ sorption to untreated
73 SWy-2. We hypothesized that direct interactions between U₆₀ and montmorillonite surfaces
74 would be unfavorable due to electrostatic repulsion of the negatively charged basal plane and the
75 negatively charged uranyl peroxide cage. However, it is conceivable that counterions
76 associated with U₆₀ might exchange for cations associated with montmorillonite and that the
77 behavior of uranyl peroxide clusters may depend in part of the concentration and type of
78 dissolved salts in environmental systems. This study attempts to discover if cations play a critical
79 role in the speciation and ultimate sequestration of uranyl peroxide nanoclusters in
80 environmental systems.

81

82 MATERIALS AND METHODS

83 All chemicals were commercially obtained (ACS grade) and used as received unless otherwise
84 stated. All water used was Milli-Q quality (18.2 MΩ·cm at 25°C). Descriptions of methods used
85 for electrospray ionization mass spectrometry (ESI-MS), Raman spectroscopy, X-ray

86 photoelectron spectroscopy (XPS), and microfiltration can be found in the Supporting
87 Information.

88 **U₆₀ Preparation and Characterization.** U₆₀ nanoclusters were synthesized according to
89 previously published procedures¹⁵ and characterized via single crystal X-ray diffraction using a
90 Bruker APEXII single-crystal diffractometer with monochromated Mo K α X-ray radiation at
91 100 K.

92 **Mineral Preparation and Characterization.** Anorthite was obtained from Ward's Science
93 (mineral mined in Grass Valley, CA, USA). It was ball-milled and sieved using U.S.A. standard
94 testing sieves to recover the 63-212 μm size fraction for use in batch sorption experiments.
95 Quartz was obtained from the Unimin Corporation (Spruce Pine, NC) as IOTA-8 high-purity
96 quartz and used as received. The particle size reported by Unimin Corporation is 75-300 μm .

97 Na-montmorillonite (SWy-2) from Crook County, Wyoming, USA was obtained from the
98 Source Clay Repository and used in batch sorption experiments following multiple partial
99 purification procedures: (1) 0.001 M HCl to remove soluble salts; (2) 0.03 M H₂O₂ to minimize
100 the reducing capacity of any impurities and break-up organics associated with the clay; (3) 0.1 M
101 NaCl rinse (four times) to produce a homo-ionic clay suspension; (4) Milli-Q water rinse to
102 remove excess ions until a constant conductivity was achieved ($< 10 \mu\text{S}\cdot\text{cm}^{-1}$); and (5)
103 centrifugation to remove particles $> 2 \mu\text{m}$ (3 minutes at 1000 rpm) and $< 200 \text{ nm}$ (7 minutes at
104 7000 rpm). Conductivity measurements were recorded using a Mettler Toledo FiveGo FG#/EL3
105 conductivity meter. Prepared clay was then freeze-dried using a Labconco Freezone 4.5 freeze
106 drier. Batch sorption experiments were conducted using untreated SWy-2 to preserve its mineral
107 integrity, partially-treated SWy-2 (i.e., steps 1 and 2 of the purification procedure), and fully-
108 treated SWy-2 (i.e., all steps of the purification procedure). Additional mineral characterization

109 including powder X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analysis, and
110 zeta potential measurements can be found in the Supporting Information.

111 **Dynamic Light Scattering (DLS).** DLS was used to determine the hydrodynamic diameter
112 (D_H) of U_{60} in aqueous solutions in the presence and absence of monovalent and divalent cations.
113 All measurements were conducted at 25°C using a Malvern Zetasizer Nano S equipped with a
114 He-Ne laser ($\lambda = 633$ nm) and a backscatter detector. Samples (~1 mL) were placed in
115 disposable polystyrene cuvettes. Aliquots from 0.1 M stock solutions of NaCl, KCl, MgCl₂, and
116 CaCl₂ were added to solutions containing 2 mg·mL⁻¹ U_{60} until a change in the hydrodynamic
117 diameter (indicative of aggregate formation) was detected. The U_{60} and salt stock solutions were
118 passed through 0.2 μ m polytetrafluoroethylene (PTFE) filters before DLS experiments to assure
119 the absence of dust particles. Immediately after spiking salt solution into solutions containing
120 U_{60} , each sample was mixed by hand and with a vortex mixer and subsequently centrifuged for 8
121 minutes at 9,200 rpm to remove dust and precipitates from solution. Measurements were
122 conducted in triplicate sets of 3 runs (60 seconds each) with a 120 second equilibration time and
123 10 second delay between measurements. The hydrodynamic diameter (D_H) values were reported
124 from the intensity distribution, which is based on Rayleigh scattering. The abundance of each
125 particle was determined using the volume distribution, which is less biased toward larger
126 particles. Further discussion is provided in the Supporting Information.

127 **SEM-EDS analysis.** Scanning electron microscopy (SEM) images were taken with a JEOL
128 JCM-6000 Plus Neoscope Benchtop SEM at accelerating voltages from 10-15 kV. Secondary
129 electron mode was used to examine sample morphology and compositional differences across
130 each sample were investigated through backscatter electron (BSE) imaging. Energy dispersive
131 X-ray spectroscopy (EDS) provided multi-element, semi-quantitative analysis through point

132 spectra with an energy resolution of 130-150 eV. Spectra were collected at 15 kV in BSE mode
133 using a silicon drift detector. Reacted SWy-2, unreacted SWy-2, and U₆₀ aggregates (2 mg·mL⁻¹
134 U₆₀ which was intentionally precipitated from a CaCl₂ solution) were prepared for SEM-EDS
135 analysis by dispersing a small quantity of material in the center of carbon tape adhered to an
136 SEM stub.

137 Particle analysis was performed using ImageJ software following standard procedures.³⁰
138 Briefly, ImageJ was used to perform an automatic threshold analysis with a binary mask on
139 select SEM images. Prior to the threshold analysis, the images were identically cropped to omit
140 the instrument information on the bottom of the image, as it would interfere with the particle size
141 analysis calculations. U precipitates were represented by RGB value 0 (black) while the clay
142 background was represented by RGB value 255 (white). Using a bounding rectangle inside of
143 each particle, ImageJ's particle analyzer calculated the height and width of each particle.

144 **ICP-OES Analysis.** Inductively coupled plasma optical emission spectroscopy (ICP-OES)
145 was used to quantify the elemental concentrations in reactor solutions. Elemental analyses were
146 determined using a PerkinElmer Optima 8000 DV ICP-OES instrument with 165 – 800 nm
147 coverage and a resolution of approximately 0.01 nm for multi-elemental analysis. External
148 calibration was used to determine the unknown elemental concentrations of U (0.2 to 20 ppm), K
149 (0.07 to 2 ppm), Li (0.025 to 1 ppm), Fe (0.05 to 5 ppm), Ca (0.1 to 5 ppm), Mg (0.1 to 5 ppm),
150 Na (0.1 to 5 ppm), Si (0.15 to 5 ppm) and Al (0.1 to 6 ppm). Aliquots from each reactor were
151 dissolved in 10 mL of 5% nitric acid. An internal standard (1 ppm Y) was added to each
152 standard, blank, and sample to monitor for instrument drift. Each dilution was measured
153 gravimetrically, using an OHAUS model AX124/E balance with an accuracy of ±0.0001 g.

154 **Batch Sorption Experiments.** Batch sorption experiments were performed in duplicate by
155 spiking the appropriate amount of the U₆₀ stock solution into suspensions containing 235 – 470
156 m²·L⁻¹ (10 and 20 mg·mL⁻¹) SWy-2, 1 – 4.2 m²·L⁻¹ (5 and 20 mg·mL⁻¹) anorthite, or 100 – 500
157 m²·L⁻¹ (29 and 147 mg·mL⁻¹) quartz. SWy-2 suspensions were allowed to equilibrate on a rotator
158 for 24 hours to fully hydrate the clay before the addition of U₆₀. Reactors were sampled at
159 various time points within the time frame of minutes to months. At each time point, a 300 µL
160 aliquot was centrifuged for 8 min at 9,200 rpm to remove clay particles ≥ 200 nm and then
161 diluted for ICP-OES analysis.

162 The pH of reactors was not adjusted in order to avoid introducing species into solution which
163 might affect the stability of U₆₀. A glass pH probe manufactured by Thermo Fisher Scientific
164 (ORION 9103SC) was used to measure pH. The probe was placed in 0.001 M HCl for
165 approximately ten minutes before each measurement in order to remove any soluble salts that
166 might affect the stability of the nanoclusters.

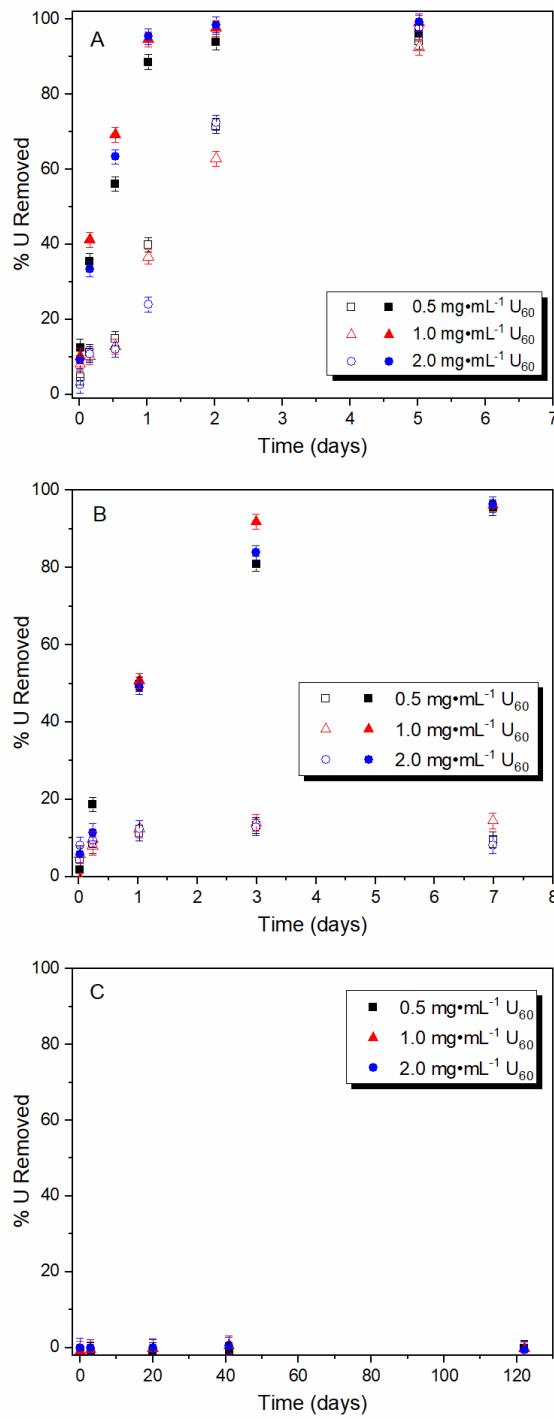
167 U₆₀ sorption curves were calculated as the % U removed according to eq 1, since U₆₀ breaks
168 down to (UO₂)²⁺ in 5% HNO₃, where C₀ is the initial uranium concentration (ppm) and C_f is the
169 concentration of uranium (ppm).

$$170 \quad \% \text{ } U \text{ } Removed = \frac{C_0 - C_f}{C_0} * 100 \quad (1)$$

171

172 RESULTS AND DISCUSSION

173 **Aqueous-Phase Alkali and Alkaline Ion Concentrations as a Function of SWy-2**
174 **Treatment.** The exchange of U₆₀ into the interlayer spacing of SWy-2 is unlikely because both
175 U₆₀ and the clay sheets are negatively charged and the interlayer spacing (~1.3 nm) is smaller
176 than the size of the uranyl peroxide cage (2.5 nm). However, we wanted to know if the

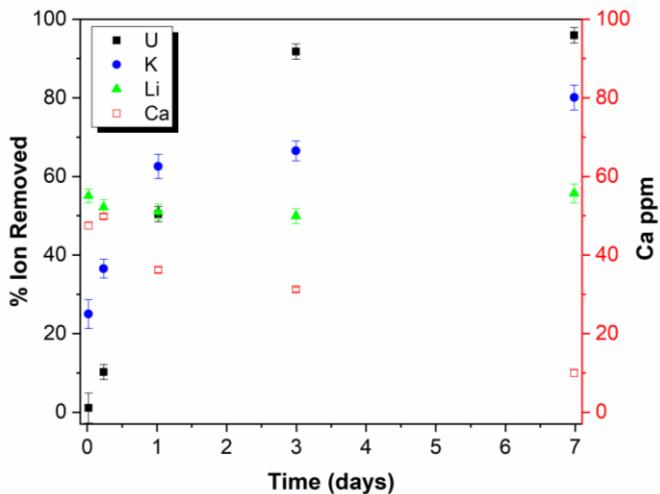

177 countercations naturally present from the dissolution of crystals containing U_{60} , namely, K^+ and
178 Li^+ , could participate in cation exchange while leaving the uranyl peroxide cage intact and
179 persistent in solution. We were also interested in distinguishing between the role of common
180 alkali (i.e., Na^+ and K^+) and alkaline cations (i.e., Ca^{2+} and Mg^{2+}) in the formation of aggregates
181 and precipitates containing U_{60} . Thus, SWy-2 was pre-treated by several means in order to gain
182 insights into the reactivity between the concentration of salts in solution, specific exchangeable
183 cations and U_{60} .

184 Uranyl peroxide nanoclusters self-assemble into larger called blackberries, which remain
185 stable in solution over time. However, the size, shape, and rate of blackberry formation is cation-
186 dependent.^{22,23} Therefore, the concentration of alkali and alkaline ions present in solutions
187 containing untreated and partially-treated SWy-2 could affect the aqueous speciation of U_{60} . In
188 reactors containing $20 \text{ mg}\cdot\text{mL}^{-1}$ untreated SWy-2 we measured $3 \text{ mM } Na^+$, $0.1 \text{ mM } K^+$, 0.5 mM
189 Mg^{2+} , and $1 \text{ mM } Ca^{2+}$ whereas in suspensions containing $20 \text{ mg}\cdot\text{mL}^{-1}$ partially-treated SWy-2,
190 the concentrations were approximately two times lower. The concentration of K^+ was negligible
191 compared to the concentration of K^+ in solution naturally present from the dissolution of U_{60}
192 crystals. The concentration of Na^+ in reactors containing $20 \text{ mg}\cdot\text{mL}^{-1}$ fully-treated SWy-2 was 6
193 mM , however, the concentration of K^+ and divalent cations were all below the detection limit of
194 ICP-OES.

195 **U_{60} Sorption as a Function of Time, U_{60} Concentration, and SWy-2 Treatment.** The
196 percentage of uranium removed from the aqueous phase of suspensions containing untreated,
197 partially-treated, and fully-treated SWy-2 was monitored as a function of time, U_{60}
198 concentration, and mineral concentration. The percentage of uranium removed from solution
199 increased as a function of time in suspensions containing untreated and partially-treated SWy-2

200 (see Figure 1 a, b). In general, the removal was slower than sorption of the uranyl ion to natural
201 bentonite, kaolinite, montmorillonite and the sorption of U_{60} to goethite.^{1,2,13} U_{60} was removed
202 more slowly in systems containing partially-treated SWy-2 than untreated SWy-2, which is
203 consistent with the lower concentrations of cations we measured in solutions containing
204 partially-treated SWy-2. Similar removal trends were observed regardless of U_{60} concentration,
205 which implies that U_{60} was not removed from solution due to the salting-out effect (i.e., the rate
206 of U_{60} sorption would decrease with increasing U_{60} concentration). In addition to the extent of
207 pre-treatment, the mineral concentration played an important role in the removal of U_{60} from
208 solution. As the untreated and partially-treated clay concentrations were increased from 10 to 20
209 $\text{mg}\cdot\text{mL}^{-1}$, more surface area became available, a higher concentration of cations was present, and
210 a larger fraction of uranium was removed from solution. The removal of U_{60} from systems
211 containing 10 $\text{mg}\cdot\text{mL}^{-1}$ partially treated SWy-2 appears to be surface-site limited, but may also
212 be explained by the lower concentration of dissolved cations available to induce aggregation of
213 the nanoclusters (see discussion below). U_{60} was not removed by fully-treated SWy-2 for at least
214 four months (see Figure 1c). This was a much longer time-frame than what was needed to see
215 removal of U_{60} in the presence of the untreated and partially treated SWy-2, which we propose is
216 due to the removal of the exchangeable divalent cation Ca^{2+} from fully-treated SWy-2 during the
217 pre-treatment process.

218 The percentage of Li^+ and K^+ (present in solution due to dissolution of U_{60} crystals) removed
219 from solution was also monitored as a function of time (see Figure 2). Approximately half of the
220 Li^+ was removed from solutions containing partially-treated SWy-2 within the first 30 minutes of
221 the reaction and the amount removed remained approximately constant over the time period
222 studied here. Similar results were obtained regardless of U_{60} concentration and in suspensions


223

224 **Figure 1.** Percentage of uranium removed from solution as a function of time and U₆₀
 225 concentration in the presence of (A) untreated, (B) partially-treated, and (C) and fully-treated
 226 SWy-2 at pH 9.5. The pH drifted to pH 8 in the system containing fully-treated SWy-2. Note that

227 the x-axis scale in panel C is different than the other panels. Closed and open symbols represent
228 20 and 10 $\text{mg}\cdot\text{mL}^{-1}$ of SWy-2, respectively. Data points represent the average of duplicate
229 samples. Error bars represent propagation of error based on the uncertainty of ICP-OES
230 measurements and gravimetric sample preparation.

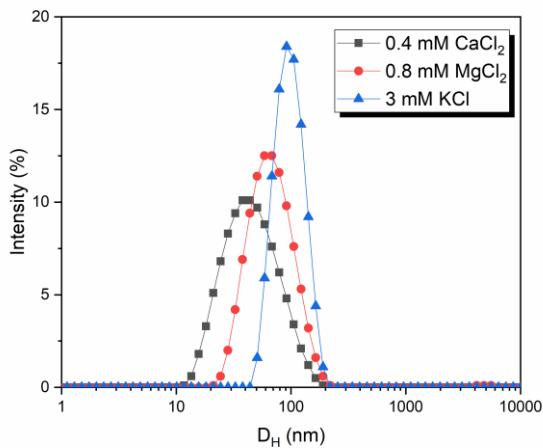
231
232 containing untreated SWy-2 (see Figure S4). These results are contrary to those observed in
233 systems containing hematite and goethite, which showed that less Li^+ is removed than uranium at
234 each time point, and is likely due to ion exchange. The fraction of K^+ removed was similar to
235 that of uranium. This is expected because it is more strongly associated with the uranyl peroxide
236 cage, however, it was not removed identically, which is different than systems containing
237 hematite and goethite.^{12,13} In the present study, a larger fraction of K^+ was removed from
238 solution than uranium at early time points (i.e., 30 minutes, 5.5 hours, and 24.5 hours) and a
239 smaller fraction was removed at later time points. This may be explained by some fraction of K^+ ,
240 which can move in and out of the hexagonal and pentagonal windows of the uranyl peroxide
241 cage, participating in cation exchange at early time-points. At later time-points, the remaining K^+
242 in solution could be explained by the displacement of K^+ inner-sphere complexes, within the
243 hexagonal and pentagonal windows, by another cation. Even though no uranium was removed
244 from solution in the presence of fully-treated SWy-2, K^+ (30%) and Li^+ (70%) were removed
245 from solution before the initial sampling point at 30 minutes and remained at steady-state for at
246 least 122 days (see Figure S16).

247 The concentrations of Na^+ , Mg^{2+} and Ca^{2+} , present in solution from the SWy-2, were also
248 monitored by ICP-OES during batch sorption experiments. In all systems containing untreated
249 and partially-treated SWy-2, the concentration of Ca^{2+} decreased as uranium was removed from

250

251 **Figure 2.** Percent of uranium, potassium, and lithium (present from addition of U_{60}) removed
 252 from solution as a function of time in a system containing $0.96 \pm 0.01 \text{ mg}\cdot\text{mL}^{-1} U_{60}$ and $20.00 \pm$
 253 $0.03 \text{ mg}\cdot\text{mL}^{-1}$ partially-treated SWy-2 at pH 9.5. The concentration of Ca^{2+} in ppm (right
 254 ordinate) was measured at the same time points and is present in solution from SWy-2. Data
 255 points represent the average of duplicate samples. Error bars represent propagation of error based
 256 on the uncertainty of ICP-OES measurements and gravimetric sample preparation.

257


258 solution (see Figure 2) while the concentrations of Na^+ and Mg^{2+} did not (data not shown here).
 259 These results imply that Ca^{2+} preferentially associated with the clusters before they left solution.

260 The removal of Li^+ from solution is attributed to cation exchange with the exchangeable
 261 cations associated with SWy-2, which likely also contributed to the removal of U_{60} from
 262 solution. Untreated SWy-2 has a reported cation exchange capacity (CEC) of $0.85 \text{ meq}\cdot\text{g}^{-1}$ and
 263 contains both Na^+ and Ca^{2+} as exchangeable ions.³¹ Each exchangeable cation is able to replace
 264 the original Li^+ cations and form linkages between uranyl peroxide cages.²² In reactors
 265 containing $2 \text{ mg}\cdot\text{mL}^{-1} U_{60}$ and $20 \text{ mg}\cdot\text{mL}^{-1}$ untreated SWy-2, the largest amount of Li^+ exchange
 266 accounts for $\sim 10\%$ of the CEC. Based on the Hofmeister series,³² it is probable that outer-sphere

267 complexed Ca^{2+} cations were preferentially exchanged. The exchange of Li^+ for Ca^{2+} may result
268 in one of two things: (1) the additional concentration of Ca^{2+} introduced to solution was
269 sufficient to surpass the critical salt concentration; or (2) with Li^+ no longer charge-balancing the
270 solution between clusters, U_{60} may be more prone to participate in charge-balancing interactions
271 (e.g., blackberry formation) with cations such as Ca^{2+} . In either case, U_{60} would likely be
272 removed by precipitation of large aggregates and no longer infinitely suspended in solution.

273 **Aggregate Formation.** The size distribution of U_{60} remaining in solution during batch
274 sorption experiments was examined to determine if U_{60} was present as discrete clusters or U_{60}
275 aggregates. The sizes of U-bearing species (determined via microfiltration) in systems containing
276 untreated and partially-treated SWy-2 are clearly much larger than discrete U_{60} (compare Table
277 S1 to Tables S2 and S3, respectively, in the Supporting Information) and ESI-MS revealed that
278 U_{60} persisted in solution despite the removal of Li^+ and K^+ counterions in batch sorption
279 experiments with fully-treated SWy-2. The exchange for Na^+ (or another cation) resulted in
280 slight shift to a higher mass compared to U_{60} nanoclusters in solution (see Figure S5). Crystals
281 containing U_{60} nanoclusters have not been synthesized with Na^+ as a counterion; nevertheless,
282 Na^+ may be able to charge balance nanoclusters in solution.⁹

283 The major driving force for blackberry formation is counterion-mediated attraction.²⁴ Cations
284 with smaller hydrated sizes are usually more effective in decreasing the charge between
285 neighboring macroions and attracting them together.²³ Dynamic light scattering (DLS) is suitable
286 to determine the size of particles in solution *in situ* and was used to monitor the aggregation of
287 U_{60} . DLS was used to determine the minimum concentrations of alkali and alkaline ion salts
288 required to trigger the self-assembly of U_{60} into larger structures (i.e., the critical salt
289 concentration). An appreciable change in the hydrodynamic diameter (D_H) was observed when 2

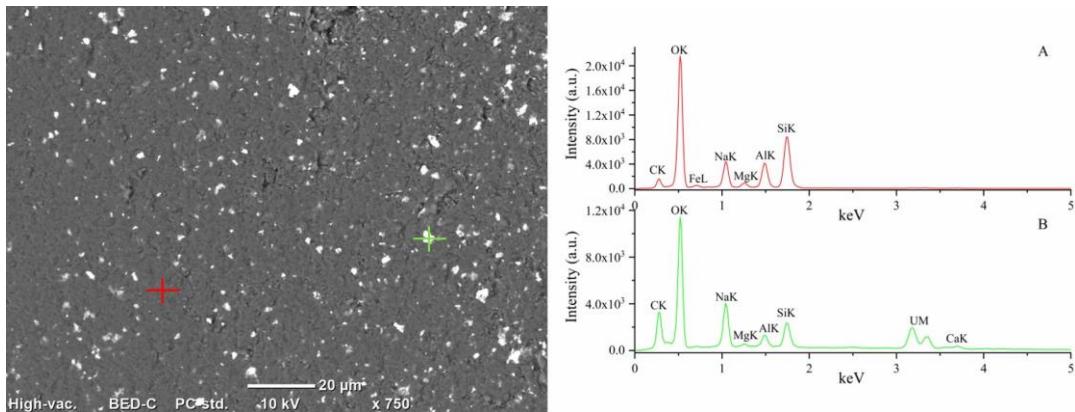
290

291 **Figure 3.** The average hydrodynamic diameter (D_H) of U_{60} aggregates with 0.4 mM $CaCl_2$ (39.3
292 nm), 0.8 mM $MgCl_2$ (60.1 nm), and 3 mM KCl (92.2 nm) after 48 hours. The average D_H of the
293 U_{60} stock solution was 1.5 nm.

294

295 mg·mL⁻¹ U_{60} was mixed with 3 mM KCl, 0.8 mM $MgCl_2$, or 0.4 mM $CaCl_2$ (see Figure 3). No
296 appreciable change in D_H was observed, compared to pure U_{60} , below these concentrations of
297 counterions. Only a slight change in D_H was observed in a system containing 10 mM NaCl
298 (see Figure S6). No visible precipitation occurred at these salt concentrations.

299 These observations follow a normal sequence for cation interactions with polyoxometalates,
300 which is dependent on the hydrated size of the cation (Mg^{2+} has a larger hydrated size than Ca^{2+}
301 and Na^+ has a larger hydrated size than K^+).¹⁸ With a decrease in hydrated size, cations have a
302 higher affinity to penetrate the electric double layer surrounding U_{60} and mediate the negative
303 charge of the uranyl peroxide cage.^{18,25} Thus, the formation of U_{60} aggregates occurred at lower
304 concentrations for cations with smaller hydrated sizes. These results suggest that alkaline ions
305 may follow a similar trend to the alkali ions since less Ca^{2+} is required to prompt aggregation of
306 U_{60} than Mg^{2+} . The greater charge of divalent cations promotes the aggregation of clusters at


307 lower concentrations (mM) than monovalent cations.²² These results are consistent with those of
308 Pigga et al.,³³ which describes that the selective association of the Keplerate polyoxometalate
309 {Mo₇₂Fe₃₀} with counterions is determined according to the valence state and hydrated size of
310 the counterion. In accordance with Coulomb's Law, multivalent counterions interact more
311 strongly with {Mo₇₂Fe₃₀} than monovalent counterions.³³

312 Aggregates remained in solutions containing salts for at least one month. Aggregates in the
313 KCl system showed little fluctuation in size and volume distribution. However, the size of
314 aggregates in the divalent systems increased slightly over time and the Mg-U₆₀ aggregates were
315 consistently larger than Ca-U₆₀ aggregates, which is consistent with previous findings.²² Overall,
316 the sizes of these aggregates are consistent with the size of blackberries as well as secondary and
317 tertiary structures of U₆₀ observed with cryo-TEM.²² The precipitation of U₆₀ aggregates,
318 following the addition of divalent cations to solution at concentrations above the critical salt
319 concentration, occurred rapidly (i.e., in less than 10 minutes). However, in the case of
320 monovalent cations such as K⁺, the ripening effect took more time (i.e., days to weeks) before
321 visible precipitation and settling of U₆₀ aggregates occurred.

322 Given the concentration of Ca²⁺ in the SWy-2 suspensions, and the concentrations of Mg²⁺, K⁺
323 and Na⁺ required to induce aggregation (i.e., above the concentrations in clay suspensions),
324 aggregation induced by Ca²⁺ is likely the first step in the removal mechanism of U₆₀ from
325 solution. However, the precipitation of U₆₀ from solution by a salting-out effect is not supported
326 by the time-scales shown in the sorption curves presented in Figure 1, which occur on the order
327 of days to weeks. Therefore, we hypothesize that the removal of U₆₀ from solution cannot be
328 solely based on aqueous phase interactions and require interactions with the clay surface.

329 The concentrations of cations within the electric double layer of the clay are much higher than
330 in the bulk solution because they balance the permanent and variable negative charge of the clay
331 sheets.³⁴ For example, the strongly hydrated cations Na^+ and Ca^{2+} tend to form outer-sphere
332 surface complexes above the basal clay surface.³² Blackberry-type structures have negatively-
333 charged electric double layers²⁴ that may be attracted to the cations within the diffuse layer at the
334 clay basal plane. Once drawn to the surface, additional blackberries will preferentially deposit
335 themselves to form tertiary structures and large agglomerates on the surface. In essence, cations
336 within the electric double layer generate a surface-induced salting-out effect. Therefore, we
337 propose that the clay surface may act as a nucleation point for the formation of precipitates
338 (species containing U_{60} aggregates).

339 **U_{60} associated with the SWy-2 surface.** Scanning electron microscopy with energy dispersive
340 X-ray spectroscopy (SEM-EDS) was used to provide evidence for the proposed mechanism of
341 U_{60} removal from solution as well as provide information complementary to ICP-OES results.
342 SEM-EDS was used to confirm the presence of U-rich precipitates on the surface of reacted
343 SWy-2 and the association of Ca with these U-rich precipitates. In backscatter electron (BSE)
344 mode, imaging can show compositional differences based on the atomic number of the
345 element(s) that are present. High-Z material (e.g., U) is associated with observed bright white
346 regions whereas low-Z material (e.g., Al, Si) is associated with darker regions. As shown in
347 Figure 4, there was clear evidence of precipitation of a high-Z material on the surface of
348 untreated SWy-2. To confirm elemental composition, EDS point spectra were taken in regions
349 corresponding to both high-Z and low-Z material. High U and Ca concentrations were associated
350 with the bright white regions across the sample. The high-Z precipitate analyzed in Figure 4
351

353 **Figure 4.** Scanning electron microscopy (SEM) image in backscatter electron (BSE) mode (left)
354 and spectra using energy dispersive X-ray spectroscopy (EDS) of low-Z (A) and high-Z areas
355 (B) showing U- and Ca-rich precipitates on the basal plane of untreated SWy-2. Sample
356 contained $1.96 \pm 0.01 \text{ mg} \cdot \text{mL}^{-1}$ U_{60} and $20.1 \pm 0.1 \text{ mg} \cdot \text{mL}^{-1}$ untreated SWy-2.

357
358 contained up to 67 mass % uranium and 1.5 mass % Ca; no appreciable concentration of U or Ca
359 was measured in the low-Z region.

360 Additional samples were also analyzed via SEM-EDS. The shape and size of U- and Ca-rich
361 precipitates, in a system containing $1.0 \text{ mg} \cdot \text{mL}^{-1}$ U_{60} and $20 \text{ mg} \cdot \text{mL}^{-1}$ partially-treated SWy-2,
362 were markedly similar to those shown in Figure 4 (see Figures S7 and S12). It was also
363 confirmed with BSE imaging and EDS point spectra that U_{60} was not removed from solutions
364 containing fully-treated SWy-2 (see Figure S8), providing data that complements the ICP-OES
365 results described above. U_{60} nanoclusters were intentionally precipitated out of a CaCl_2 solution
366 and analyzed via SEM-EDS to probe their morphology as a comparison to the U-rich particles
367 described by Figure 4 (see Figure S9). The sample was made up of inhomogeneous surface
368 features which contributed to a rough, precipitate-like quality. However, EDS showed uranium

369 widely distributed across the material, making it difficult to discern specific morphological
370 characteristics potentially associated with U₆₀ precipitation.

371 Raman spectra of U₆₀ crystals, U₆₀ solutions, U₆₀ reacted with untreated SWy-2, and U₆₀
372 precipitated using Ca²⁺ is provided in Figure S13. The Raman signals of U₆₀ solutions, which
373 appeared at 805.4 and 843.6 cm⁻¹, were assigned to the symmetric stretching of U≡O bonds in
374 uranyl groups and the vibrations of O–O bonds of bridging peroxy groups, respectively.³⁵ Raman
375 signals at 806.1 cm⁻¹ and 844.2 cm⁻¹ were associated with U₆₀ precipitates on the untreated SWy-
376 2 surface and indicate that a uranyl species with a bridged peroxy group is present. Raman
377 signals of U₆₀ precipitated from a CaCl₂ solution, occurring at 804.7 cm⁻¹ and 843.2 cm⁻¹, were
378 almost identical to those from U₆₀ crystals and U₆₀ precipitated from a NaCl solution detailed in
379 an earlier study.¹² These Raman results suggest that the precipitated species on the clay surface
380 contains U₆₀ clusters which aggregated by counterion-mediated attraction.

381 U 4f electrons were probed using XPS to determine the oxidation state of uranium on the
382 untreated SWy-2 surface relative to crystals containing U₆₀ nanoclusters. Spin-orbit interactions
383 split the U 4f envelope into U 4f_{7/2} and U 4f_{5/2} peaks separated by about 10.9 eV. U(VI) satellite
384 peaks generally appear at approximately 4 and 10 eV above these peaks.³⁶ Reacted powder from
385 systems containing 2 mg·mL⁻¹ U₆₀ and 20 mg·mL⁻¹ untreated SWy-2 were analyzed using XPS
386 (see Figure S14). U 4f_{7/2} and U 4f_{5/2} peak positions appeared at 381.30 and 392.15 eV and U(VI)
387 satellite positions occurred at 396.09 and 401.71 eV. These binding energies were in good
388 agreement with those measured for U₆₀ crystals. Therefore, the precipitate on the surface of
389 SWy-2 is entirely U(VI) which indicates that any trace reductants in untreated SWy-2 do not
390 affect the oxidation state of uranium associated with the mineral surface.

391 **U₆₀ Sorption to Anorthite and Quartz.** SWy-2 is shipped as 75% smectite, 8% quartz, 16%
392 feldspar, and 1% gypsum, mica/illite, and kaolinite/chlorite; the < 2 μm fraction contains 95%
393 smectite, 4% quartz, and 1% feldspar, gypsum, mica/illite, and kaolinite/chlorite.³⁷ Therefore,
394 batch sorption experiments were conducted with quartz and anorthite to determine if U₆₀
395 interaction with these minerals could account for the removal of U₆₀ in the presence of untreated
396 SWy-2 sorption experiments.

397 There was no significant removal (i.e., < 2%) of uranium, K⁺, and Li⁺ from solutions
398 containing quartz or anorthite within a 60 day time-frame (see Figure S15). The pH of these
399 systems naturally dropped from pH 9.9 to 8, which is consistent with previous observations from
400 systems containing U₆₀ and hematite.¹² U₆₀ clusters are resistant to hydrolysis, however, Li⁺ ions
401 behave like Lewis acids and are normally associated with water molecules, as opposed to the
402 uranyl peroxide cage.¹⁸ Thus, the drop in pH may be attributed to the hydrolysis chemical
403 reaction between hydrated Li⁺ ions and water. ESI-MS and microfiltration demonstrated that U₆₀
404 persisted and remained intact, at a size consistent with discrete U₆₀, throughout batch sorption
405 experiments with anorthite and quartz (data not shown). The absence of U₆₀ sorption is likely due
406 to electrostatic repulsion of the negatively-charged U₆₀ cage by the negatively-charged mineral
407 surfaces since the suspension pH is well above the PZC/IEP of each mineral.³⁸ This suggests that
408 counterions associated with uranyl peroxide clusters are insufficient to mediate the
409 interactions between the negatively charged uranyl peroxide cage and the negatively charged
410 surface.

411 Anorthite, the calcium endmember of the plagioclase series within the feldspar group, was
412 used for these studies because experiments with untreated SWy-2 indicated that calcium played
413 an important role in U₆₀ sorption. Because electrostatics govern U₆₀ sorption interactions¹³ and

414 feldspars are generally characterized by low PZCs³⁸ we would not expect different results if a
415 more common feldspar, such as albite, was used instead of anorthite.

416 **Environmental Implications.** Uranyl peroxide nanoclusters may not be effectively retained
417 by a large portion of reactive surface sites available in relevant geochemical systems. Quartz,
418 with chemical formula SiO_2 , is the second most abundant mineral, behind feldspar, in the Earth's
419 crust. Electrostatic repulsion of the negatively charged uranyl peroxide nanoclusters inhibits their
420 interactions with quartz and anorthite. On the contrary, U(VI) readily forms sorption complexes
421 with these minerals.⁴⁻⁶ Feldspar and quartz are major constituents of granitic materials, which
422 have been proposed geologic hosts for nuclear repositories. However, the results from this study
423 suggest that they may not be useful in retaining species such as uranyl peroxide nanoclusters.⁴

424 It is unlikely that U_{60} is interacting via an inner-sphere sorption complex with montmorillonite.
425 This is due in part to the unreactive '-yl' oxygens which truncate the uranyl peroxide cage, full
426 coordination of uranium in the equatorial plane, and the relatively low charge/radius density of
427 U_{60} . There are three apparent types of clay surfaces: (1) external basal surfaces, (2) clay edges,
428 and (3) interlayer basal surfaces. Given the negatively charged clay sheets, variable negative
429 charge at the pH these experiments were conducted under,^{28,29} and the fact that U_{60} clusters are
430 larger than the interlayer d-spacing (~1.3 nm) of SWy-2, we would not expect uranyl peroxide
431 nanoclusters to interact with the clay. However, Li^+ and K^+ counterions may undergo cation
432 exchange for cations in the interlayer space and relatively minute concentrations of alkali and
433 alkaline ions trigger the formation of U_{60} aggregates. U_{60} aggregates may be relatively persistent
434 in solution but behave more like colloidal species than soluble macroions given their large size.
435 They may be more attracted to the greater concentration of cations within the electrical double
436 layer at the mineral surface relative to the bulk solution than discrete nanoclusters.

437 Although cations such as Ca^{2+} enhance the mobility of discrete U(VI) through the formation of
438 neutrally-charged ternary species (e.g., $\text{Ca}_2\text{UO}_2(\text{CO}_3)_3$ (aq)),^{5,6} it appears that low concentrations
439 of Ca^{2+} may be responsible for immobilizing U_{60} in the form of precipitates. Therefore, the fate
440 and transport of uranyl peroxide clusters in environmental systems may be considerably
441 dependent on the concentration of naturally abundant cations such as Ca^{2+} and further research in
442 this area is warranted.

443

444 **ASSOCIATED CONTENT**

445 **Supporting Information.** The following files are available free of charge.

446 Extended materials and methods section, pXRD diffraction patterns of untreated minerals, and
447 additional experimental results (e.g., ESI-MS, DLS, SEM, Raman, and XPS) (MS Word)

448

449 **AUTHOR INFORMATION**

450 **Corresponding Author**

451 *Telephone: +1 (574) 631-1872; E-mail address: ahixon@nd.edu.

452 **Author Contributions**

453 The manuscript was written through contributions of all authors. All authors have given approval
454 to the final version of the manuscript.

455 **Funding Sources**

456 This material is based on work supported as part of the Materials Science of Actinides, an
457 Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science,
458 Office of Basic Energy Sciences under award number DE-SC0001089. Student funding was
459 provided in part by the CEST Bayer pre-doctoral research fellowship (L. R. Sadergaski) and the
460 Arthur J. Schmitt Leadership fellowship in Science and Engineering (M. Said).

461 **Notes**

462 The authors declare no competing financial interest.

463

464 **ACKNOWLEDGMENT**

465 The authors thank Mr. Samuel N. Perry and Ms. Rebecca A. Carter for help with the TOC image.
466 The following centers and facilities at the University of Notre Dame provided access to
467 instrumentation used in this research study: the Center for Environmental Science and
468 Technology (CEST) (BET, ICP-OES, zeta potential), the Mass Spectrometry and Proteomics
469 Facility (ESI-MS), and the Center for Sustainable Energy's Materials Characterization Facility
470 (powder X-ray diffraction, Raman spectroscopy).

471

472 **REFERENCES**

473 (1) Bachmaf, S.; Merkel, B. J. Sorption of uranium(VI) at the clay mineral-water interface.
474 *Environ. Earth Sci.* **2011**, *63* (5), 925-934; DOI 10.1007/s12665-010-0761-6.

475 (2) Hu, W.; Lu, S.; Song, W.; Chen, T.; Hayat, T.; Alsaedi, N. S.; Chen, C.; Liu, H.

476 Competitive adsorption of U(VI) and Co(II) on montmorillonite: A batch and spectroscopic

477 approach. *Appl. Clay Sci.* **2018**, *157*, 121–129; DOI 10.1016/j.clay.2018.02.030.

478 (3) Um, W.; Serne, R. J.; Brown, C. F.; Rod, K. A. Uranium(VI) Sorption on Iron Oxides in

479 Hanford Site Sediment: Application of a Surface Complexation Model. *Appl. Geochem.* **2008**, *23*

480 (9), 2649–2657; DOI 10.1016/j.apgeochem.2008.05.013.

481 (4) Gao, X.; Bi, M. Shi, K.; Chai, Z., Wu, W. Sorption characteristic of uranium(VI) onto K-

482 feldspar. *Appl. Radiat. Isot.* **2017**, *128*, 311-317; DOI 10.1016/j.apradiso.2017.07.041.

483 (5) Richter, C.; Müller, K.; Drobot, B.; Steudtner, R.; Grossmann, K.; Stockmann, M.;

484 Brendler, V. Macroscopic and spectroscopic characterization of uranium(VI) sorption onto

485 orthoclase and muscovite and the influence of competing Ca^{2+} . *Geochim. Cosmochim. Acta*

486 **2016**, *189*, 143-157; DOI 10.1016/j.gca.2016.05.045.

487 (6) Fox, P. M.; Davis, J. A.; Zachara, J. M. The effect of calcium on aqueous uranium(VI)

488 speciation and adsorption to ferrihydrite and quartz. *Geochim. Cosmochim. Acta* **2006**, *70* (6),

489 1379-1387; DOI 10.1016/j.gca.2005.11.027.

490 (7) Burns, P. C.; Nyman, M. Captivation with Encapsulation: A Dozen Years of Exploring

491 Uranyl Peroxide Capsules. *Dalton Trans.* **2018**, *47* (17), 5916–5927; DOI

492 10.1039/C7DT04245K.

493 (8) Qiu, J.; Burns, P. C. Clusters of Actinides with Oxide, Peroxide, or Hydroxide Bridges.

494 *Chem. Rev.* **2013**, *113* (2), 1097–1120; DOI 10.1021/cr300159x.

495 (9) Armstrong, C. R.; Nyman, M.; Shvareva, T.; Sigmon, G. E.; Burns, P. C.; Navrotsky, A.

496 Uranyl peroxide enhanced nuclear fuel corrosion in seawater. *Proc. Natl. Acad. Sci. U. S. A.*

497 **2012**, *109* (6), 1874–1877; DOI 10.1073/pnas.1119758109.

498 (10) Kubatko, K.-A. H.; Helean, K. B.; Navrotsky, A.; Burns, P. C. Stability of Peroxide-

499 Containing Uranyl Minerals. *Science* **2003**, *302* (5648), 1191–1193; DOI

500 10.1126/science.1090259

501 (11) Burns, P. C.; Ewing, R. C.; Navrotsky, A. Nuclear Fuel in a Reactor Accident. *Science*

502 **2012**, *335* (6073), 1184–1188; DOI 10.1126/science.1211285.

503 (12) Sadergaski, L. R.; Stoxen, W.; Hixon, A. E. Uranyl Peroxide Nanocluster (U_{60})

504 Persistence and Sorption in the Presence of Hematite. *Environ. Sci. Technol.* **2018**, *52* (5), 3304–

505 3311; DOI 10.1021/acs.est.7b06510.

506 (13) Sadergaski, L. R.; Hixon, A. E. Kinetics of Uranyl Peroxide Nanocluster (U_{60}) Sorption to

507 Goethite. *Environ. Sci. Technol.* **2018**, *52* (17), 9818–9826; DOI 10.1021/acs.est.8b02716.

508 (14) Walther, C.; Denecke, M. A. Actinide Colloids and Particles of Environmental Concern.

509 *Chem. Rev.* **2013**, *113* (2), 995–1015; DOI 10.1021/cr300343c.

510 (15) Novikov, A. P.; Kalmykov, S. N.; Utsunomiya, S.; Ewing, R. C.; Horreard, F.; Merkulov,

511 A.; Clark, S. B.; Tkachev, V. V.; Myasoedov, B. F. Colloid Transport of Plutonium in the Far-

512 Field of the Mayak Production Association, Russia. *Science*, **2006**, *314* (5799), 638–641; DOI

513 10.1126/science.1131307.

514 (16) Santschi, P. H.; Roberts, K. A.; and Guo, L. Organic Nature of Colloidal Actinides
515 Transported in Surface Water Environments. *Environ. Sci. Technol.* **2002**, *36* (17), 3711–3719;
516 DOI 10.1021/es0112588.

517 (17) Kersting, A. B.; Efurd, D. W.; Finnegan, D. L.; Rokop, D. J.; Smith, D. K.; Thompson, J.
518 L. Migration of plutonium in group water at the Nevada Test Site. *Nature*, **1999**, *397*, 56–59;
519 DOI 10.1038/16231.

520 (18) Peruski, K. M.; Bernales, V.; Dembowski, M.; Lobeck, K. L.; Pellegrini, K. L.; Sigmon,
521 G. E.; Hickam, S. Wallace, C. M.; Szymanowski, J. E. S.; Balboni, E.; Gagliardi, L.; Burns, P. C.
522 Uranyl Peroxide Cage Cluster Solubility in water and the Role of the Electrical Double Layer.
523 *Inorg. Chem.* **2017**, *56* (3), 1333-1339; DOI 10.1021/acs.inorgchem.6b02435.

524 (19) Sigmon, G. E.; Unruh, D. K.; Ling, J.; Weaver, B.; Ward, M.; Pressprich, L.; Simonetti,
525 A.; Burns, P. C. Symmetry versus Minimal Pentagonal Adjacencies in Uranium-Based
526 Polyoxometalate Fullerene Topologies. *Angew. Chem. Int. Ed.* **2009**, *48* (15), 2737-2740; DOI
527 10.1002/anie.200805870.

528 (20) Olds, T. A.; Dembowski, M.; Wang, X.; Hoffman, C. Alam, T. M.; Hickam, S.;
529 Pellegrini, K. L.; He, J.; Burns, P. C. Single-Crystal Time-of-Flight Neutron Diffraction and
530 Magic-Angle-Spinning NMR spectroscopy Resolve the Structure of ^1H and ^7Li Dynamics of the
531 Uranyl Peroxide Nanocluster U_{60} . *Inorg. Chem.* **2017**, *56* (16), 9679-9683; DOI
532 10.1021/acs.inorgchem.7b01174.

533 (21) Flynn, S. L.; Szymanowski, J. E. S.; Gao, Y.; Liu, T.; Burns, P. C.; Fein, J. B.
534 Experimental measurements of U_{60} nanocluster stability in aqueous solution. *Geochim.
535 Cosmochim. Acta* **2015**, *156*, 94-105; DOI 10.1016/j.gca.2015.02.021.

536 (22) Soltis, J. A.; Wallace, C. M.; Penn, R. L.; Burns, P. C. Cation-Dependent Hierarchical
537 Assembly of U60 Nanoclusters into Macro-Ion Assemblies Imaged via Cryogenic Transmission
538 Electron Microscopy. *J. Am. Chem. Soc.* **2016**, *138* (1), 191-198; DOI 10.1021/jacs.5b09802.

539 (23) Gao, Y.; Haso, F.; Szymanowski, J. E. S.; Zhou, J.; Hu, L.; Burns, P. C.; Liu, T. Selective
540 Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface
541 Pores and Hydration Shells. *Chem. Eur. J.* **2015**, *21* (51), 18785-18790; DOI
542 10.1002/chem.201503773.

543 (24) Liu, T. Hydrophilic Macroionic Solutions: What Happens When Soluble Ions Reach the
544 Size of Nanometer Scale? *Langmuir* **2010**, *26* (12), 9202-9213; DOI 10.1021/la902917q.

545 (25) Pigga, J. M.; Kistler, M. L.; Shew, C-Y.; Antonio, M. R.; Liu, T. Counterion Distribution
546 around Hydrophilic Molecular Macroanions: The Source of the Attractive Force in Self-
547 Assembly. *Angew. Chem.* **2009**, *121* (35), 6660-6664; DOI 10.1002/ange.200902050.

548 (26) Sellin, P.; Leupin, O. X. THE USE OF CLAY AS AN ENGINEERED BARRIER IN
549 RADIOACTIVE MANAGEMENT – A REVIEW *Clays Clay Miner.* **2013**, *61* (6), 477-498;
550 DOI 10.1346/CCMN.2013.0610601.

551 (27) Zavarin, M.; Powell, B. A.; Bourbin, M.; Zhao, P.; Kersting, A. B. Np(V) and Pu(V) Ion
552 Exchange and Surface-Mediated Reduction Mechanisms on Montmorillonite. *Environ. Sci.*
553 *Technol.* **2012**, *46* (5), 2692-2698; DOI 10.1021/es203505g.

554 (28) Pecini, E. M.; Avena, M. J. Measuring the Isoelectric Point of the Edges of Clay Mineral
555 Particles: The Case of Montmorillonite. *Langmuir* **2013**, *29* (48), 14926-14934; DOI
556 10.1021/la403384g.

557 (29) Liu, X.; Lu, X.; Sprik, M.; Cheng, J.; Meijer, E. J.; Wang, R. Acidity of edge surface sites
558 of montmorillonite and kaolinite. *Geochim. Cosmochim. Acta* **2013**, *117*, 180-190; DOI
559 10.1016/j.gca.2013.04.008.

560 (30) Ferreira, T.; Rasband, W. S. *ImageJ User Guide* — *IJ* 1.46r;
561 <https://imagej.nih.gov/ij/docs/guide/>.

562 (31) Borden, D.; Giese, R. F. BASELINE STUDIES OF THE CLAY MINERALS SOCIETY
563 SOURCE CLAYS: CATION EXCHANGE CAPACITY MEASUREMENT BY THE
564 AMMONIA-ELECTRODE METHOD. *Clays Clay Miner.* **2001**, *49* (5), 444-445; DOI
565 10.1346/CCMN.2001.0490510.

566 (32) Underwood, T.; Erastova, V. and Greenwell, H. C. ION ADSORPTION AT CLAY-
567 MINERAL SURFACES: THE HOFMEISTER SERIES FOR HYDRATED SMECTITE
568 MINERALS *Clays Clay Miner.* **2016**, *64* (4) 472-487; DOI 10.1346/CCMN.2016.0640310.

569 (33) Pigga, J. M.; Teprovich, J. A.; Flowers, R. A.; Antonio, M. R.; Liu, T. Selective
570 Monovalent Cation Association and Exchange around Keplerate Polyoxometalate Macroions in
571 Dilute Aqueous Solutions. *Langmuir*, **2010**, *26* (12), 9449-9456; DOI 10.1021/la100467p.

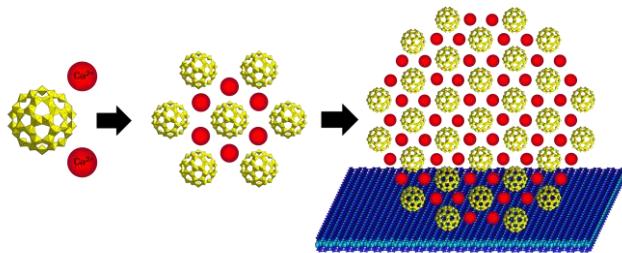
572 (34) Segad, M.; Jonsson, B.; Akesson, T.; Cabane, B. Ca/Na Montmorillonite: Structure,
573 Forces and Swelling Properties. *Langmuir* **2010**, *26* (8), 5782-5790; DOI 10.1021/la9036293.

574 (35) McGrail, B. T.; Sigmon, G. E.; Jouffret, L. J.; Andrews, C. R.; Burns, P. C. Raman
575 Spectroscopic and ESI-MS Characterization of Uranyl Peroxide Cage Clusters. *Inorg. Chem.*
576 **2014**, *53* (3), 1562-1569; DOI 10.1021/ic402570b.

577 (36) Schindler, M.; Hawthorne, F. C.; Freund, M. S.; Burns, P. C. XPS spectra of uranyl
578 minerals and synthetic uranyl compounds. I: The U 4f spectrum. *Geochim. Cosmochim. Acta*
579 **2009**, *73* (9), 2471-2487; DOI 10.1016/j.gca.2008.10.042.

580 (37) Chipera, S. J.; Bish, D. L. BASELINE STUDIES OF THE CLAY MINERALS
581 SOCIETY SOURCE CLAYS: POWDER X-RAY DIFFRACTION ANALYSIS. *Clays Clay*
582 *Miner.* **2001**, *49* (5), 398-409; DOI 10.1346/CCMN.2001.0490507.

583 (38) Sverjensky, D. A. Zero-point-of-charge prediction from crystal chemistry and solvation
584 theory. *Geochim. Cosmochim. Acta* **1994**, *58* (14), 3123-3129; DOI 10.1016/0016-
585 7037(94)90184-8.


586 (39) Shirley, D. A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of
587 Gold. *Phys. Rev. B* **1972**, *5* (12), 4709–4714; DOI 10.1103/PhysRevB.5.4709.

588 (40) Dogan, A. U.; Dogan, M.; Onal, M.; Sarikaya, Y.; Aburub, A.; Wurster, D. E.
589 BASELINE STUDIES OF THE CLAY MINERALS SOCIETY SOURCE CLAYS: SPECIFIC
590 SURFACE AREA BY THE BRUNAUER EMMET TELLER (BET) METHOD. *Clays Clay*
591 *Miner.* **2006**, *54* (1), 62-66; DOI 10.1346/CCMN.2006.0540108.

592 (41) Brantley, S. L.; Mellott, N. P. Surface area and porosity of primary silicate minerals. *Am.*
593 *Mineral.* **2000**, *85* (11-12), 1767-1783; DOI 10.2138/am-2000-11-1220.

594 (42) Malvern Instruments. Size Theory. *Zetasizer Nano User Manual*. Worcestershire United
595 Kingdom, 2010, MAN0317-5.0, pages 13-1-13-5.

596 TOC GRAPHIC

597