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The goal of this project was to explore, understand, and ultimately control the competing electronic
ordered states ubiquitously present in correlated materials, with particular emphasis in unconventional su-
perconductors, such as iron-based and copper-based materials. While on the one hand the competition with
different types of magnetic, orbital, and charge order limits the transition temperatures of these uncon-
ventional superconductors, on the other hand the enlarged ground-state degeneracy associated with these
multiple many-body instabilities can give rise to unusual inhomogeneous correlated normal states, such as
electronic smectic and nematic phases. To achieve the aforementioned goals, we employed a multi-faceted
theoretical approach consisting of: (i) The investigation of relatively unexplored regimes with the potential
to unveil novel behaviors – in particular, the study of competing phases taken out of equilibrium to explore
the potential to enhance the transition temperatures of unconventional superconductors by optical pulses.
(ii) The embracement of realistic features of correlated materials in their microscopic descriptions – in par-
ticular, the investigation of the impact that disorder, in its various forms, has on competing and emergent
inhomogeneous states present in the phase diagrams of unconventional superconductors. (iii) The promotion
of synergy with established and novel experimental probes (with particular emphasis on scanning tunneling
microscopy and ultrafast spectroscopy) not only by using data as input of theoretical models, but also by
providing concrete guidance for experiments.

A total of 68 manuscripts acknowledging this award have been published or submitted for publication
[1–68]. The full list can be found in the end of this report, and includes papers published in Nature Physics,
Nature Communications, Physical Review Letters, PNAS, Physical Review X and Physical Review B, among
other journals. This three-page report provides an overview of the main accomplishments reported in these
manuscripts, highlighting their impact on the elucidation of correlated materials. Overall, our studies shed
new light on the intricate connection between the competing phases present in the phase diagrams of several
correlated materials, unveiling novel routes to control and exploit them.

One of the highlights was the development of a unified theoretical framework to elucidate the several
different ordered states that emerge in the underdoped phase diagram of the iron-based superconductors.
In this framework, the rich landscape of ordered phases observed experimentally can be attributed to the
same microscopic electronic interactions, which promote different types of magnetically ordered states as
well as partially-melted magnetic phases with non-trivial orbital order. In particular, for a long time, it was
believed that the magnetic ground state of the iron pnictides was the orthorhombic stripe-type magnetic
state. Theoretical studies, including our own [2, 5], showed that the same low-energy electronic model also
favors double-Q magnetic phases that preserve tetragonal symmetry. In [2], it was shown that these so-
called C4 magnetic phases can be stabilized by doping. The two types of C4 double-Q phases were dubbed,
in Ref. [13], spin-vortex crystal (a double-Q non-collinear phase) and charge-spin density-wave (a double-Q
collinear phase). Both types of C4 order were directly observed experimentally in Co-doped CaKFe4As4 and
in Na-doped SrFe2As2, respectively, via joint experimental-theoretical collaborations [14,38]. Interestingly,
in Ref. [5] we found that the C4 phases compete much more strongly with superconductivity than the stripe
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phase, in agreement with experimental observations.
An important question motivated by experiments was why nearly-degenerate C4 and stripe magnetic

phases proliferate near the putative magnetic quantum critical point. In Refs. [42, 43], we attributed this
behavior to the interplay between spin-orbit coupling and quantum fluctuations. In particular, spin-orbit
coupling promotes spin anisotropy, which in our renormalization-group calculations was found to promote
a stable Gaussian fixed point with essentially degenerate C4 and stripe magnetic phases. The impact of
spin-orbit coupling on the magnetic properties of the iron-pnictides was invoked by us to explain the spin-
reorientation seen in some hole-doped pnictides [12], to address the experimentally-observed anisotropy
of the so-called resonance mode inside the superconducting state [28], and to predict an unusual type of
loop-current order that accompanies stripe magnetism [41].

An important property of the stripe magnetic phase is that it can melt in two stages, giving rise to an
intermediate nematic state in which spin-rotational symmetry is restored, but tetragonal symmetry remains
broken. In this framework, the nematic phase can be thus understood as a vestige of the stripe magnetic
order, which naturally explains why the nematic and magnetic transition temperature lines follow each
other closely in the phase diagrams of most iron-based superconductors. In Ref. [13], we showed that
the C4 magnetic states also support vestigial phases, characterized by emergent charge order (in the case
of the charge-spin density-wave) or emergent spin-current order (in the case of the spin-vortex crystal).
In the same way that nematic order triggers ferro-orbital order, we found that these vestigial phases are
characterized by unusual types of orbital order, manifested for instance as Rashba/Dresselhaus spin-orbit
interactions and staggered atomic spin-orbital coupling [60]. These investigations not only provided a simple
and appealing unifying framework to explain the complexity of the normal-state instabilities of the iron-
based superconductors, but also led to a much broader understanding of the concept of vestigial orders
beyond nematicity or iron-pnictide compounds. As a result, the concept of vestigial phases was applied to
explain a puzzling phase transition seen in titanium oxypnictides [31] and the unusual response to strain of
certain triangular-lattice antiferromagnets [65]. The promising idea of vestigial order as a route to explain
the intertwinement between different ordered states in correlated systems was reviewed by us in Ref. [57].

While this model of nematic order as a vestige of a stripe magnetic phase was employed to successfully
explain a variety of experimental observations on several iron-based superconductors – including those
arising from NMR, neutron scattering, and scanning tunneling microscopy measurements [4, 23, 39, 48, 55]
– one challenge is the case of FeSe, where nematic order appears in the absence of long-range magnetic
order. Importantly, FeSe in monolayer form displays the highest Tc of any iron superconductor. Our works
in Refs. [7,10,27] proposed appealing theoretical scenarios in which magnetic fluctuations promote nematic
order even when stripe magnetic order is completely suppressed. Different aspects of the interplay between
nematicity and superconductivity in FeSe featured in a series of publications. In Ref. [24], we showed
that pairing mediated by nematic fluctuations in thin-film FeSe leads to degenerate s-wave and d-wave gap
states, with the degeneracy being lifted by spin-orbit coupling. Refs. [46,50] focused on the situation where
superconductivity emerges in a state with pre-existing long-range nematic order, such as the case of bulk
FeSe. The impact of nematicity on superconductivity was invoked to explain the unusual anisotropy of the
gap function observed experimentally, and to predict the possible formation, at low enough temperatures, of
an exotic superconducting state that breaks time-reversal symmetry. Successful models were also developed
to explain the origin of the resistivity anisotropy observed experimentally in the nematic phase of FeSe
[21, 22], as well as the puzzling ARPES and scanning tunneling microscopy data on FeSe [66].

Beyond nematicity in FeSe, we also addressed how a novel B1g nematic phase emerges in heavily hole-
doped BaFe2As2 due to a change in the dominant magnetic interactions [62]. In this B1g nematic phase,
the Fe-As-Fe bonds become inequivalent, in contrast to the more standard B2g nematic phase observed in
other iron pnictides, where the Fe-Fe bonds become unequal. The transition from B2g to B1g nematics that is
expected to take place upon doping led to our joint theoretical-experimental proposal of a nearly-XY nematic
phase in hole-doped pnictides [54]. Besides iron-based superconductors, we also explored manifestations
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of nematic order in nickel-arsenides [64], in f -electron systems [9, 35, 56, 68], and in cuprates [8].
The competition between unconventional superconductivity and antiferromagnetism was another topic

intensively studied in this award, via phenomenological approaches [34], microscopic calculations [53], and
joint theoretical-experimental investigations [18, 32, 45]. Interesting results came from extensive Quantum
Monte Carlo (QMC) simulations of the spin-fermion model [33, 44], where electrons interact with each
other only via the exchange of antiferromagnetic fluctuations, which can be tuned to become quantum
critical. The two-band version of the spin-fermion model can be simulated with QMC without the infamous
fermionic sign-problem. As a result, one can probe much lower temperatures than those accessible via QMC
simulations that suffer from the sign problem, providing important benchmarks to compare with analytical
field-theoretical calculations. In Ref. [33], we demonstrated that the superconducting instability of the spin-
fermion model is governed by special states of the Fermi surface called hot spots, validating an analytical
hot-spots Eliashberg approximate solution to the spin-fermion model. In Ref. [44], we established that the
same antiferromagnetic fluctuations that favor superconductivity also promote an unusual d-wave charge
order, which however is fragile against the emergence of the former, as it is strongly affected by states other
than those near the hot spots.

Another set of studies shed new light on the impact of disorder on competing and vestigial orders.
Ref. [47] showed that rare-region effects, typically found in inhomogeneous systems, have a very strong
impact on the coupled vestigial nematic and stripe magnetic phase transitions at the putative quantum critical
point. Specifically, while the two zero-temperature transitions are predicted to be simultaneous and first-
order in a completely clean system, in disordered systems the effects of rare regions devoid of impurities split
the two transitions, giving rise to a smeared nematic quantum critical point and to an inhomogeneous nematic
state. The latter may offer an interesting avenue to understand the puzzling experimental observation of
inhomogeneous nematic fluctuations in a doped iron pnictide superconductor [16]. The dramatic impact
of disorder on quantum critical points was also explored in Ref. [19], where it was shown that pairing
promoted by the exchange of quantum critical magnetic fluctuations is much more robust against pair-
breaking impurity scattering than the case of classical fluctuations. Disorder was demonstrated to be a viable
tuning knob to tilt the balance between competing orders, be it superconductivity and magnetism [58] or C4
versus stripe magnetic phases [17].

Non-equilibrium perturbations were shown to be another promising way to manipulate phases that com-
pete with superconductivity. In Ref. [37], we proposed to excite non-equilibrium acoustic phonons (via
e.g. shock waves) to selectively melt density-wave orders that compete with superconductivity. The basis
of this idea is that driven acoustic phonons generate a momentum-dependent effective temperature, mak-
ing different regions of the Fermi surface subject to distinct effective temperatures. To control competing
nematic orders, we proposed the excitation of an optical Eu phonon mode generically present in tetragonal
systems [52]. Both proposals avoid excessive heating, which is very detrimental to superconductivity. Be-
sides the possibility to control competing orders, non-equilibrium excitations can also be used to probe the
structure of the superconducting condensate by providing access to the coherent dynamics of the Cooper
pairs. In the joint pump-probe experimental-theoretical investigation reported in Ref. [59], we put forward
a formalism to explain the puzzling observation of damping of the superconducting order parameter in the
picosecond time scale, before lattice relaxation sets in. In Ref. [67], we developed a powerful self-consistent
perturbative method that predicts unique signatures of multi-band superconductivity in the gap dynamics.

A final highlight is our recent strong-coupling theoretical model developed to describe the correlated
phases of twisted bilayer graphene [51]. For twist angles near the so-called magic angle, the gate-voltage
temperature phase diagram of this system was recently shown to display superconducting domes in the
vicinities of correlated insulating phases. Our work derives a strong-coupling expansion of a low-energy
model used to describe the nearly-flat bands that appear near the magic angle, resulting in an effective
anisotropic SU(4) model.
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