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Abstract: 

This work was motivated by the need to understand the passivation of metal surfaces to provide 

resistance against chemical degradation, given that corrosion is a major limiting factor in the 

operational lifetime of metals and their alloys. In this study, a unified analysis for an oxide growth 

model was presented. The oxide growth model was consistent with the literature and accounted 

for the transport of oxygen defects through a growing oxide film, as well as the electrochemical 

reactions of oxygen defects at the metal/oxide and oxide/environment interfaces. A linear potential 

profile across the oxide film was assumed.  The model was analyzed for different rate-limiting 

steps in the physicochemical process and perturbation techniques were utilized when necessary. 

The investigation yielded the well-known linear, parabolic, logarithmic and integral rate laws and 

the conditions that led to these rate laws were discussed. 

 

Introduction: 

Corrosion is an important performance-limiting factor for metals and their alloys, particularly 

under extreme conditions such as nuclear reactor environments, turbine systems, long term storage 

of hazardous materials or oil and gas handling. The so-called “passivation” of a metal or alloy 

surface with respect to corrosion occurs when a stable protective oxide film forms on its surface 



hindering further corrosion of the metal. Therefore, predictive modeling of the kinetics of oxide 

growth has emerged as a matter of great significance to various engineering and industrial 

applications. Establishing accurate analytical or numerical models for passivity would be a core 

component for next-generation integrated computational material engineering (ICME) approaches 

to corrosion resistant alloy (CRA) design and optimization. 

Over the past century, a large number of investigators have sought to uncover the different 

mechanisms involved in metal oxide growth. Wagner in 1933 [1] was one of the pioneers in 

attempting to develop a theoretical understanding of oxidation kinetics. Subsequently the Mott-

Cabrera model [2] was proposed and in that model the authors assumed the transport of metal 

cations through oxide film was the rate-limiting step and that the activation energy of this step was 

reduced by the electric field in the oxide film. This model led to a parabolic time dependence in 

the limit of a weak field (thick oxides). In the limit of thin oxides (thin oxides), the limiting step 

was assumed to be the injection of cations into the oxide film and this led to an inverse logarithmic 

growth law.  

Fehlner and Mott [3] subsequently modified the model by assuming that anion transport was the 

rate limiting step and the activation energy for the process was assumed to increase linearly with 

the oxide thickness. Furthermore, the model assumed the strength of the electric field to be constant 

in the oxide and independent of thickness. This model predicted a logarithmic rate law. Sato and 

Cohen [4] proposed a place exchange mechanism to explain their experimental data and this 

approach also yielded a logarithmic rate law.  

Macdonald et al. [5] developed and then continually improved [6] the point defect model (PDM) 

to study oxide film kinetics. The model assumed a linear potential profile in the oxide film in 

addition to accounting for potential drops across the interfaces. The original version of the model 



assumed that the transport of anionic vacancies across the oxide was responsible for the oxide 

growth. This led to a logarithmic rate law. In an extension of the model [7], Macdonald considered 

the case where the growth was controlled by interfacial reactions and this yielded another 

logarithmic rate law. Sun et al. [8] incorporated dissolution to the PDM to account for steady state 

oxide film thickness.  

Marcus et al.[9, 10] developed a Generalized Growth Model (GGM) in which the transport of 

anions and cations was considered and the time dependent behavior of film was explored in 

contrast to the quasi-steady approximation. The authors recovered parabolic rate laws for both thin 

and thick oxides whereas the rate laws for intermediate oxides were determined via numerical 

integration. The authors were also successful in recovering linear time dependence for the case 

where the growth was limited by the injection of cations at the metal/oxide interface. 

Suo et al. [11] conducted a mathematical analysis on the kinetics of oxidation growth. In that work, 

the authors did not use the quasi-steady state approximation but rather treated the variation of the 

boundary using the Landau transformation. In this work, the authors used perturbation methods to 

analyze the problem and recovered a parabolic dependence on time in the limit of fast interfacial 

kinetics. However, the authors in this work did not take into account the role of migration in the 

transport and did not account for the electrochemical nature of the interfacial reactions. 

Baroody et al. [12] recently presented a well-developed model for oxide formation and growth on 

platinum. The model was based on the transport of oxygen vacancies and a parametric analysis of 

the model was performed. The authors were successful in reproducing a wide range of growth laws 

observed in the experimental literature. However, the authors in this work accounted for the 

electrochemical nature of the interactions at the interfaces by utilizing an ad hoc hyperbolic tangent 



function at the metal/oxide interface in an attempt to produce reasonable results. Furthermore, the 

approach followed by the authors employed the quasi-static approximation.  

From the overview of the available literature, it is clear that different kinetic laws have been 

observed in different models for different limiting cases. In this work, we will present a 

mathematical analysis of the limiting steps in oxide film growth kinetics in an attempt to reconcile 

the different rate laws observed. We will start by building on Baroody’s recent model by first 

modifying it to account for the electrochemical nature of the interactions at the interfaces and also 

by considering the fully unsteady situation when possible. The goal is to analyze extreme cases 

and rigorously derive time dependences for the oxide film growth in different regimes. In this work 

we will ignore the role of pH and variations in the applied potential to keep the problem tractable 

and amenable to analytical solutions. 

Mathematical Analysis, Results and Discussion: 

Model Description: 

 In the present model which is inspired by the ideas of the point defect model and particularly by 

some of the ideas of the oxide growth model recently presented by Baroody et al. [12], only one 

species is tracked namely oxygen defects. These unfilled oxygen defects are produced at the 

metal/oxide interface via an oxidation reaction of the form: 

𝑉
					#$			%⎯⎯' 	𝑉() + 𝑛𝑒-								(𝐼) 

These defects then transport through the length of the oxide and are finally annihilated at the oxide 

solution interface through a reduction reaction of the form: 

𝑉() + 𝑛𝑒-
				#1			%⎯⎯' 		𝑉							(𝐼𝐼) 



In the model, the oxide can only grow at the metal/solution interface hence the x=0 boundary at 

the metal/oxide interface is fixed, and the oxide can only grow at the x=L(t) end located at the 

oxide/solution where the defects may recombine with adsorbed oxygen atoms on the oxide surface. 

An illustration is included in figure 1. In this study, CV denotes the concentration of the filled 

oxygen defects and C denotes the concentration of the oxygen vacancies Vn+. In a future work, the 

motion of metal defects in the opposite direction will be accounted for. However, this was 

neglected for now to enable analytical manipulations. 

 

Figure 1. An illustration of the model used in the study 

 

 The present model assumes that the potential is a linear function with respect to the oxide 

position consistent with the PDM model. This assumption was indeed shown to be a good 



assumption when the Poisson equation was solved along with the Nernst-Planck equations for 

the different species [13]. Accordingly, the potential function in the oxide film will be assumed 

to be of the form: 

 𝜙(𝑥) = 	𝜙5 − 𝑚𝑥  

In the equation for the potential 𝜙5 > 0 is the potential at the metal/oxide end of the oxide film (at 

𝑥 = 0) and  𝑚 > 0 is a positive number so that the potential drops towards the oxide/solution 

interface. The metal itself is considered to be held at a potential of E and the potential at the solution 

is zero. 

Another important process which plays a role in determining the oxide thickness is the thinning of 

the oxide due to the interaction of the oxide with the solution. This process has been postulated to 

be a function of the pH of the solution and helps establish a steady state thickness for the oxide. 

This process however is not expected to play an important role in the initial stages of oxide growth 

and will not be considered for now. 

In this simple model there are three different processes involved in the kinetics of the oxide growth 

process, namely the production of the oxygen defects at the metal/oxide interface, the transport of 

the defects through the oxide, and the kinetics involved in the recombination reaction at the 

oxide/solution interface.  

Limiting Cases: 

The goal of this work is to present the functional form for the dependence of the oxide thickness 

growth on time for several limiting cases and thus giving a theoretical explanation for the different 

experimentally-observed time dependences of the oxide growth reported in the literature. It is well-

known that the kinetics of a multi-step process is determined by the rate-limiting step (the slowest 



step) and as such we will consider different cases in this work where each of the aforementioned 

processes may be the rate-determining step in the oxide film growth. 

Case 1: The oxygen defect production (at x = 0) is the rate limiting step: 

Reaction (1) at the metal/oxide interface is an oxidation reaction which is associated with the 

transfer of charge and in this case we may use the Butler-Volmer equation to describe the 

kinetics of the process. Accordingly, we have the boundary condition: 

 𝑑𝐿
𝑑𝑡 = 𝐴𝐶?𝑘5A exp E

(1 − 𝛼)𝑛𝐹
𝑅J𝑇

(𝐸 − 𝜙(0))M − 𝑄				; 			𝐿(0) = 0 
(1) 

As we alluded to earlier, Q is a term accounting for the thinning of the oxide and is assumed to 

be a function of the solution pH and the thickness of the oxide film and we hypothesize that it 

assumes the following form: 

 𝑄 =	 P
0			𝑖𝑓		𝐿(𝑡) ≤ 𝐿TUVW
𝑓(𝑝𝐻)				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2) 

As mentioned before, we will focus our attention in this study on the early stages of oxide 

growth and as such we set 𝑄 = 0 in equation 1. In equation (1), A is the cross sectional area, 𝐶? 

is the concentration of metal atoms that will give rise to the oxygen vacancies and which is 

assumed to be held constant at the bulk value 𝐶? = 	𝐶_ (where 𝐶_ is the concentration of the 

bulk metal) and from our definition of the potential in the previous section we find that	𝜙(0) =

	𝜙5 (a constant). The other terms in reaction 1 involve 𝑘5A which is the reaction rate constant at 

the formal potential (with units of cm2/s), 𝛼 is the charge transfer coefficient, T is the 

temperature and 𝑅J is the universal gas constant. The initial conditions for the oxide thickness 

are also given. Therefore, we may write the solution as: 



 
𝐿(𝑡) = 𝐴𝐶_𝑘5A expE

(1 − 𝛼)𝑛𝐹
𝑅J𝑇

(𝐸 − 𝜙5))M ∗ 𝑡	 
(3) 

By examining equation (3) we observe that we recover the linear dependence on time 𝐿(𝑡) 	∝ 𝑡. 

This analysis agrees with the conclusion of the analysis by Marcus et al. [9]. 

Case 2: The oxygen defect annihilation (at x = L(t)) is the rate limiting step: 

In this case we write the equation for the oxide thickness according to Butler-Volmer kinetics, 

where the kinetics of the reduction reaction occurring at the oxide solution boundary become 

given by the equation: 

 𝑑𝐿
𝑑𝑡 = 𝐴𝐶(𝑥 = 𝐿(𝑡), 𝑡)𝑘cA exp d

−𝛼𝑛𝐹
𝑅J𝑇

e0 − 𝜙f𝐿(𝑡)ghi − 𝑄				; 			𝐿(0) = 0 
(4) 

In equation 4, C actually represents the concentration of the charged oxygen defect (Vn+) which 

we track in this model and which transports across the oxide film. In this particular case study, 

we now assume that the transport process is much faster than the kinetics of the reaction at the 

oxide/solution interface and therefore we write 𝐶(𝑥 = 𝐿(𝑡), 𝑡) = 𝐶_. Throughout this study we 

are only interested in the early stages of oxide growth so, again, we set 𝑄 = 0. Finally, the 

potential at the oxide/solution end of the oxide is:  𝜙f𝐿(𝑡)g = 𝜙5 − 𝑚𝐿(𝑡)	 (from our 

assumption regarding the linear form of the potential). Hence we may write: 

 𝑑𝐿
𝑑𝑡 = 𝐴𝐶_𝑘cAexpd

−𝛼𝑛𝐹
𝑅J𝑇

(−𝜙5 + 𝑚𝐿(𝑡)	)i				 ; 			𝐿(0) = 0	 
(5) 

By solving the separable initial value problem indicated by (5) we arrive at: 



 𝐿(𝑡) =
1
𝑚𝑃 𝑙𝑛

(𝑅𝑡 + 1) (6) 

where we used the symbol 𝑅 = 𝑚𝑃𝐴𝐶_𝑘cA𝑒𝑥𝑝 e
l(mn$
opq

h	 and the dimensionless quantity 𝑃 = l(m
opq

. 

From this analysis we arrive at a logarithmic rate law. 

Case 3: The transport of oxygen defects through the oxide is the rate limiting step: 

In our discussion, we will use our assumption of a known linear potential function (𝑥) = 𝜙5 −

𝑚𝑥 . Hence, we may write the governing Nernst-Planck equation for the transport of oxygen 

defects (concentration C) through the oxide as: 

 𝜕𝐶
𝜕𝑡 = 𝐷

𝜕c𝐶
𝜕𝑥c − 𝑚𝐷

𝑧𝐹
𝑅J𝑇

𝜕𝐶
𝜕𝑥 

(7) 

In this limiting case, the reaction rates at both interfaces are assumed to be extremely fast in 

comparison with the transport. Hence, the defect concentration at the metal/oxide interface is 

always available at bulk concentration and any defects that reach the oxide/solution interface are 

quickly annihilated and thus an appropriate choice for the boundary conditions is: 

 𝐶(0, 𝑡) = 𝐶_									𝑎𝑛𝑑								𝐶(𝐿, 𝑡) = 0	 (8) 

Finally, the change of the oxide film thickness in the model is assumed to be proportional to the 

flux at the oxide/environment interface hence: 

 𝑑𝐿
𝑑𝑡 = 𝛽5 E−𝐷

𝜕𝐶
𝜕𝑥wxyz(W)

M			 ; 				𝐿(0) = 0 
(9) 

In equation (9), the migration term’s contribution to the flux at x=L(t) vanishes given the 

boundary conditions in equation (8) (since 𝐶(𝐿, 𝑡) = 0) 



We start our analysis by non-dimensionalizing the problem described by equations 7,8, and 9. 

We use the following quantities: 

𝑋 = 	
𝑥
𝐿A
	; 	𝑌 = 	

𝐿
𝐿A
	; 	𝜏 = 	

𝑡𝐷
𝐿Ac
		 ; 		𝑈 = 	

𝜙
𝑈A
	; 

	𝜌 = 	 �
��
	; 		𝑀 = 𝑚 z�

��
		 ; 		𝑃 = �m

opq
		 ; 	𝛽 = 𝐶_𝛽5	  

 

(10) 

By transforming the equations, the dimensionless problem assumes the form: 

 𝜕	𝜌
𝜕𝜏 =

𝜕c	𝜌
𝜕𝑋c − 𝑀𝑈A𝑃

𝜕	𝜌
𝜕𝑋  

(11) 

 
𝜌(0, 𝜏) = 1				; 			𝜌(𝑌, 𝜏) = 0				; 								

𝑑𝑌
𝑑𝜏 = −𝛽

𝜕𝜌
𝜕𝑋w�y	�(�)

		 ; 				𝑌(0) = 0 
(12) 

Typically, P is expected to be of order of magnitude O(10) or O(1) (C/J) for room temperature 

and elevated temperatures respectively. The reference potential 𝑈A usually ranges between O(1) 

and O(10-2) Volts [10] and M is of order O(1). Finally, the oxide thickness growth is typically on 

the order of tens of nm per year [14], but can be much faster on the order of O(10-13) cm/s [10] 

and the diffusivity of the oxygen defects in the oxide is of order O(10-20) cm2/s [10, 13] but this 

number depends on the temperature and increases for higher temperatures. The typical 

concentration of the oxygen vacancies in the oxide is on the order of about (10-2 mol/cm3) [10, 

12]  hence, 𝛽 may span several orders of magnitude from O(10-4) to O(102).  Therefore, we can 

consider a few distinct limiting cases: 

Case 3a:        𝑀𝑈A𝑃 ≪ 	𝛽 ≪ 1 

If:     𝑀𝑈A𝑃~𝑂(𝜖c)    and   𝛽~𝑂(𝜖) where 𝜖 = 10-5 and if we re-express 𝜌(𝑋, 𝜏) as a function 

of 𝜌(𝑋, 𝑌) instead we can write: 



 𝜕	𝜌
𝜕𝑌

𝑑𝑌
𝑑𝜏 =

𝜕c	𝜌
𝜕𝑋c − 𝜖

c 𝜕	𝜌
𝜕𝑋  

𝜌(0, 𝜏) = 1				; 			𝜌(𝑌, 𝜏) = 0				; 								
𝑑𝑌
𝑑𝜏 = −𝜖

𝜕𝜌
𝜕𝑋w�y	�(�)

		 ; 				𝑌(0) = 0 

 

(13) 

This problem corresponds to the case where diffusion dominates the transport process and the 

effect of migration is small. The problem is reformulated as: 

 
E−𝜖

𝜕𝜌
𝜕𝑋w�y	�(�)

M	
𝜕	𝜌
𝜕𝑌 =

𝜕c	𝜌
𝜕𝑋c − 𝜖

c 𝜕	𝜌
𝜕𝑋  

𝜌(0, 𝜏) = 1				; 			𝜌(𝑌, 𝑌) = 0				; 								
𝑑𝑌
𝑑𝜏 = −𝜖

𝜕𝜌
𝜕𝑋w�y	�(�)

		 ; 				𝑌(0) = 0 

 

(14) 

We seek a regular perturbation solution of the form: 

𝜌(𝑋, 𝑌) = 𝜌A(𝑋, 𝑌) + 𝜖𝜌5(𝑋, 𝑌) + 𝜖c𝜌c(𝑋, 𝑌) + ⋯ 

Hence we can write an approximate perturbed solution to problem 13 (see appendix A for 

details) as: 

 
𝜌(𝑋, 𝑌) = 1 −

𝑋
𝑌 + 𝜖 E

𝑋�

6𝑌� −
𝑋
6𝑌M + 𝑂(𝜖

c) 
(15) 

Furthermore, the oxide thickness is given by (Appendix A): 

 
𝑌(𝜏) = 	�2𝜖𝜏 −

2
3 𝜖

c𝜏 
(16) 

Thus, we recover the experimentally observed time dependence of the form  𝐿(𝑡) 	∝ √𝑡 

consistent with the Mott-Cabrera model. 



Case 3b:    𝛽 ≪ 	𝑀𝑈A𝑃 ≈ 𝑂(1) 

This is the case where migration and diffusion are both important for the transport process and 

the oxide thickness changes slowly. In this case, we denote 𝑀𝑈A𝑃 = 𝐺 which is of order O(1), 

and the problem is cast in the form: 

 𝜕	𝜌
𝜕𝑌 E−𝜖

𝜕𝜌
𝜕𝑋w�y	�(�)

M =
𝜕c	𝜌
𝜕𝑋c − 𝐺

𝜕	𝜌
𝜕𝑋  

𝜌(0, 𝜏) = 1				; 			𝜌(𝑌, 𝜏) = 0				; 								
𝑑𝑌
𝑑𝜏 = −𝜖

𝜕𝜌
𝜕𝑋w�y	�(�)

		 ; 				𝑌(0) = 0 

 

(17) 

And to leading order we obtain (see Appendix B): 

 𝑌 +
1
𝐺 𝑒

-�� −
1
𝐺 = 𝜖𝐺𝜏 (18) 

This is similar to the integral rate law which emerges from the PDM model [15]. For oxide layers 

that are thick enough, this equation reduces to the linear growth law. The equation was solved 

numerically for different values of G and 𝜖. The results are included in figure 2 below and are 

consistent with the literature [12]. 



 

Figure 2. The oxide growth for case 3b described by equation 28 plotted for different values of 
G and 𝝐. 

 

Case 3C:        𝐺 ≫ 1 ≫ 𝛽  (The case where migration dominates over diffusion) 

This version of the problem yields the following boundary value problem: 

 𝜕	𝜌
𝜕𝑌 E−𝜖

c 𝜕𝜌
𝜕𝑋w�y	�(�)

M = 𝜖
𝜕c	𝜌
𝜕𝑋c −

𝜕	𝜌
𝜕𝑋  

𝜌(0, 𝜏) = 1				; 			𝜌(𝑌, 𝜏) = 0				; 								
𝑑𝑌
𝑑𝜏 = −𝜖c

𝜕𝜌
𝜕𝑋w�y	�(�)

		 ; 				𝑌(0) = 0 

(19) 

This is a singular perturbation problem and its solution (Appendix C), yields a linear dependence 

𝑌 ∝ 𝜏 in the form: 



 𝑌 = 	 (𝜖 + 𝜖�)𝜏 + 𝑂(𝜖�) (20) 

Discussion 

The above mathematical analysis shows that, starting with a single model and solving under 

various limiting conditions, a variety of phenomena can be predicted for oxide growth rate laws. 

To summarize: 

In case 1 the oxygen defect production at the oxide/metal interface led to a linear dependence on 

time. Case 2 explored the situation where oxygen defect annihilation at the oxide/environment 

interface was the rate-limiting step and this gave rise to a logarithmic rate law. In case 3 we 

considered the transport of oxygen defects through the oxide to be the rate limiting step and in 

this case we studied three distinct sub-cases. In the first subcase 3a, diffusion was dominant over 

migration and this gave rise to a parabolic dependence. In case 3b, diffusion and migration were 

both equally important and this case led to an integral rate law. Finally, subcase 3c considered 

the situation were migration dominated the transport process and this yielded a singular 

perturbation problem which eventually led to a linear rate law. For all these cases considering 

transport as the limiting process for oxide growth, the oxide growth was assumed to be slowly 

varying with the flux of oxygen defects at the oxide/environment interface.    

These results are consistent with experimental observations in the literature. For example, 

Chandrasekharan et al. [16] studied the thermal oxidation of tantalum films of various oxidation 

states from 300 to 700 oC. The authors observed the growth rate of the oxide to be logarithmic at 

300 oC, parabolic at 500 oC and then a multistep growth behavior (a combination of parabolic 

and linear growth at 700 oC. Unutulmazsoy et al. [17] examined the oxidation kinetics of thin 

nickel films between 250 and 500 oC. The authors observed a parabolic growth rate which 



indicated that the process was diffusion-controlled and further noticed accelerated Ni diffusion 

along the grain boundaries. Dighton and Miley[18] showed that copper may oxidize 

parabolically over a limited thickness range and then change to a logarithmic growth rate. 

Next generation versions of the model would incrementally add complexity, and hence, further 

realism to the model. Consequently, however, the convenience of obtaining an analytical 

solution to the model would be replaced with the need for numerical solutions. Examples of the 

development that could be pursued, in approximate order of increasing complexity, include: 

a) Direct solution of the potential across the oxide instead of assumption of a linear drop. 

b) Include the possibility for cation transport.  

c) Develop the model for alloys by allowing for multiple types of cations transporting  

d) Consider phase transitions within the oxide film, such that  inner and outer films of 

different composition, stoichiometry and transport properties could be considered  

e) Consider the formation of phases other than oxides (i.e. sulfides or carbonates for metals 

in oil and gas conditions) 

f) Develop models that incorporate the physics of microstructure (such as grain boundaries) 

g) Include the role of mechanical stresses that build up during oxide growth 

h) Simulation of porosity and microcracks in oxides that will influence the transport of ions 

and solution across porous or cracked oxide films 

Obviously some of these factors will be significantly more complex and require the use of 2D 

and 3D models to describe increasingly realistic scenarios. 

Appendix A: 

By plugging this proposed solution into the governing equation of problem 14 we find that: 



The O(1) problem: 

 
0 =

𝜕c	𝜌A
𝜕𝑋c  

	𝜌A(0, 𝑌) = 1				; 			𝜌A	(𝑌, 𝑌) = 0											 

(A1) 

The O(𝜖) problem: 

 
E−

𝜕𝜌A
𝜕𝑋 w�y	�(�)

M	
𝜕	𝜌A
𝜕𝑌 =

𝜕c	𝜌5
𝜕𝑋c  

𝜌5(0, 𝜏) = 0				; 		𝜌5(𝑌, 𝑌) = 0				 

 

(A2) 

The O(𝜖c) problem: 

 
E−

𝜕𝜌5
𝜕𝑋 w�y	�(�)

M	
𝜕	𝜌A
𝜕𝑌 + E−

𝜕𝜌A
𝜕𝑋 w�y	�(�)

M	
𝜕	𝜌5
𝜕𝑌 =

𝜕c	𝜌c
𝜕𝑋c −

𝜕𝜌A	
𝜕𝑋  

𝜌c(0, 𝜏) = 0				; 		𝜌c(𝑌, 𝑌) = 0											 

 

(A3) 

And so on… 

The solution satisfying problem A1 may be expressed as: 

 𝜌A(𝑋, 𝑌) = 1 −
𝑋
𝑌 (A4) 

The solution to problem A2 is: 

 
𝜌5(𝑋, 𝑌) =

𝑋�

6𝑌� −
𝑋
6𝑌 

(A5) 

Hence we can write an approximate perturbed solution to problem 13 (see appendix A for 

details) as: 



 
𝜌(𝑋, 𝑌) = 1 −

𝑋
𝑌 + 𝜖 E

𝑋�

6𝑌� −
𝑋
6𝑌M + 𝑂(𝜖

c) 
(A6) 

Now we examine the film thickness: 

 𝑑𝑌
𝑑𝜏 = −𝜖

𝜕𝜌
𝜕𝑋w�y	�(�)

		 ; 				𝑌(0) = 0 
(A7) 

Hence, we must solve the separable initial value problem: 

 𝑑𝑌
𝑑𝜏 = 𝜖 �

1
𝑌� − 𝜖

c �
1
2𝑌 −

1
6𝑌�				 ; 				𝑌

(0) = 0	 (A8) 

The solution is given as: 

𝑌(𝜏) = 	�2𝜖𝜏 −
2
3 𝜖

c𝜏 
(A9) 

Appendix B: 

We again seek solutions of the form:    𝜌(𝑋, 𝑌) = 𝜌A(𝑋, 𝑌) + 𝜖𝜌5(𝑋, 𝑌) + 𝜖c𝜌c(𝑋, 𝑌) + ⋯ 

The perturbation problem allows us to break this complicated problem into a series of easier 

problems and we arrive at: 

The O(1) problem: 

 
0 =

𝜕c	𝜌A
𝜕𝑋c − 𝐺

𝜕𝜌A	
𝜕𝑋  

𝜌A(0, 𝑌) = 1				; 			𝜌A	(𝑌, 𝑌) = 0				 

 

(B1) 

The O(𝜖) problem: 



 
E−

𝜕𝜌A
𝜕𝑋 w�y	�(�)

M	
𝜕	𝜌A
𝜕𝑌 =

𝜕c	𝜌5
𝜕𝑋c − 𝐺

𝜕𝜌5	
𝜕𝑋  

𝜌5(0, 𝜏) = 0				; 		𝜌5(𝑌, 𝑌) = 0		 

 

(B2) 

And so on … 

The solution to the zeroth order problem represented by equation B1 is: 

 
𝜌A(𝑋, 𝑌) = 1 +

1 − 𝑒��

𝑒�� − 1 
(B3) 

Appendix C: 

This is a singular perturbation problem and it can be shown that the boundary layer is located at 

X=Y. Therefore, we first proceed to find the outer solution. The solution for the outer solution 

comes from setting  𝜖 = 0 and by satisfying the boundary condition at X=0. Thus we arrive at: 

 𝜌��q = 1 (1C) 

Within the boundary layer, the approximation is derived by finding the proper scale and 

renormalizing the coordinate. Hence, we define a stretching variable: 

 𝜉 = 	
𝑌 − 𝑋
𝜖  (2C) 

Performing a change of variable yields the following problem: 

 𝜕	𝜌
𝜕𝑌 E𝜖

c 𝜕𝜌
𝜕𝜉w�y	A

M =
𝜕c	𝜌�(( U
𝜕𝜉c +

𝜕	𝜌�(( U
𝜕𝜉  

			𝜌�(( U(𝜉 = 0, 𝜏) = 0				 

 

(3C) 

This problem has the solution:  𝜌�(( U(𝜉, 𝜏) = 	𝐶f1 − 𝑒-�g 



Finally, and to determine C we apply the matching condition:   

 lim
�→_

𝜌�(( U = lim
�→A

𝜌��q (21C) 

And the uniform solution which is the addition of the inner and outer solutions and subtraction of 

the common part yields: 

 𝜌(𝑥, 𝜏) = 	1 − 𝑒e
�-�
¥ h + 𝑂(𝜖) (22C) 
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