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Gyrokinetic particle simulation of the field-reversed configuration (FRC) has been developed using

the gyrokinetic toroidal code (GTC). The magnetohydrodynamic equilibrium is mapped from

cylindrical coordinates to Boozer coordinates for the FRC core and scrape-off layer (SOL), respec-

tively. A field-aligned mesh is constructed for solving self-consistent electric fields using a

semi-spectral solver in a partial torus FRC geometry. This new simulation capability has been suc-

cessfully verified and driftwave instability in the FRC has been studied using the gyrokinetic simu-

lation for the first time. Initial GTC simulations find that in the FRC core, the ion-scale driftwave is

stabilized by the large ion gyroradius. In the SOL, the driftwave is unstable on both ion and elec-

tron scales. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4930289]

I. INTRODUCTION

A field-reversed configuration (FRC) is an elongated

prolate compact toroid formed without toroidal magnetic

field.1 FRCs were accidentally discovered in the late

1950s upon the application of a reversed-direction bias

magnetic fields to theta pinches.2,3 They were not studied

intensively until two decades later, when they were recog-

nized to have several properties favorable for fusion reac-

tors. The FRC represents a high b plasma with

surprisingly good macroscopic stability. The compact na-

ture of the plasma and lack of toroidal magnetic field

simplify many engineering requirements of a fusion reac-

tor. Engineering is also aided by the scrape-off-layer

(SOL), which encloses the plasma core and extends to the

device ends, acting as a natural divertor. The high b,

high temperature, low collisionality plasma of laboratory

FRCs is also characteristic of a number of space and

astrophysical plasmas, including those in the outer solar

corona, solar superflares,4 and in accretion discs.5 A

resurgence of interest in FRCs since the late 1980s has

contributed to both theoretical and experimental advances

in FRC physics in the last 25 years.6

It was suggested by Rostoker et al., in 1993, that adding

a significant energetic ion population via neutral beam injec-

tion (NBI) would improve FRC macro-stability but, due to

the large ratio of the fast ion Larmor radius to the plasma

size, would not significantly contribute to the destabilization

of micro-turbulence, thus preserving the FRCs favorable

transport properties.7–12 In 2008, Tri Alpha Energy, Inc.

(TAE) launched a campaign on the FRC experiment, C-2, a

facility designed to demonstrate the viability of the NBI con-

jecture as a step towards an aneutronic fusion reactor con-

cept.13 Goals of this campaign included understanding fast

particle effects on stability and transport in an FRC, develop-

ing tightly coupled simulation and theory capabilities, and

building global collaborations to achieve these ends. To

date, the C-2 campaign has succeeded in demonstrating sig-

nificantly longer and reproducible confinement using

NBI.14–16 Analysis of data from over 40 000 C-2 discharges

is ongoing with great need for simulation and theoretical

analysis to rigorously understand transport scaling.

Historically, short confinement times in FRCs have lim-

ited thorough studies of transport, however, much work has

been done to identify contributing physics. Particle,17,18

flux,19 and energy confinement are well identified as anoma-

lous. Possible electrostatic micro-instabilities have been

investigated,20 with the lower hybrid drift instability (LHDI)

identified as the most linearly unstable. Numerical simula-

tions of the linear LHDI have been carried out,21–23 however

nonlinear transport and saturation mechanisms have not been

investigated. Electron-temperature-gradient-driven electro-

magnetic modes may also be present in FRCs (Refs. 24

and 25) but have not been studied in detail. The per-

turbed magnetic field associated with these electromag-

netic instabilities can disrupt flux tubes thus contributing

to anomalous resistivity.26 In general, electromagnetic

effects may be important to drift instabilities due to the

high-b characteristic of FRC plasmas.27 The plasma edge,

near the separatrix, is of particular interest in understand-

ing confinement properties. Confinement is significantly

affected by radial diffusion through the edge,28,29 where

particles may move from the closed field lines of the core

to the open field lines of the SOL. A number of analyti-

cal studies have been made of classical transport in sim-

ple equilibria30–33 and using quasi-steady 1-D plasma

profiles.34–36 Numerical models of transport have included

more details using both simple 1-D and 2-D

equilibria.17,19,37–40

A thorough, theoretical understanding of FRC transport

scaling is critical to predict confinement properties as experi-

ments move towards fusion relevant densities and tempera-

tures. To our knowledge, first-principles simulation of

turbulent transport in a realistic FRC geometry has not been

previously carried out. To investigate the FRC transport, we
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apply a mature, benchmarked turbulence simulation, the

Gyrokinetic Toroidal Code (GTC)41,42 to the FRC with real-

istic parameters from the C-2 experiment. GTC has been

successfully applied to simulate microturbulence,43 energetic

particle transport,44 Alfv�en eigenmodes,45,46 and magnetohy-

drodynamic (MHD) instabilities, including the kink mode47

and tearing mode48 in fusion plasmas. This paper details the

necessary upgrades which have been made to GTC to carry

out simulations of an FRC.

In this study, a formulation for gyrokinetic particle

simulation of the FRC is presented, with emphasis on the

construction of a field-aligned mesh using magnetic Boozer

coordinates49,50 and the implementation of a field solver in

the FRC magnetic geometry. As a first step in developing

FRC simulation capabilities, this study is confined to elec-

trostatic effects. Electromagnetic instabilities, demonstrated

to be relevant in FRC plasmas,25,27,51 will be investigated

in detail in a future study, and the authors note that electro-

magnetic capabilities are already present in the GTC

framework.41,52–54 Verifications carried out on the newly

implemented features are noted and results from first simu-

lations are presented. Initial simulations find a pressure-

gradient-driven driftwave instability on the ion scale in the

SOL. Most interestingly, the ion scale driftwave is stabi-

lized in the core by the large ion gyroradius.55

In Section II, we develop a coordinate mapping algo-

rithm to produce magnetic Boozer coordinates from an

MHD equilibrium in cylindrical coordinates. We also detail

an extension of these Boozer coordinates into the SOL, con-

stituting the first open field line simulation domain for GTC.

Section III explains modifications to the field solver to

accommodate the FRC’s poloidal-only magnetic field. We

demonstrate some initial simulation results in Section IV,

in both the FRC core and SOL. Finally, conclusions,

discussion, and direction of future efforts are presented in

Section V.

II. MAPPING TO MAGNETIC BOOZER COORDINATES
IN AN FRC MAGNETIC FIELD GEOMETRY

There are a number of advantages to using magnetic-
flux coordinates in a particle-in-cell simulation of magneti-

cally confined plasma. Magnetic-flux coordinates are

obtained by applying the constraint that the constant coordi-

nate surfaces of one coordinate, typically referred to as the

“radial coordinate,” correspond to the surfaces traced out by

magnetic field lines. Such a coordinate system greatly sim-

plifies expressions for physical quantities, such as the mag-

netic field, B, and electric current, J. Plasma equilibrium

quantities, including density, temperature, and pressure,

are uniform on a magnetic flux surface and thus can be

expressed as one-dimensional profiles using flux coordinates.

Applying a second constraint on a magnetic-flux coordinate

system, namely, that magnetic field lines are straight in the

plane of the remaining two coordinates, results in straight
field line coordinates. Advantages to using straight field line

coordinates are manyfold. One such advantage is the ability

to represent the magnetic field with scalar functions. Another

advantage is having a field-aligned computational mesh,

which simplifies the implementation of the field solver and

particle equations of motion and minimizes the grid number

required to resolve unstable modes, which are typically elon-

gated along magnetic field lines. For any such flux coordi-

nates, the magnetic field may be expressed in terms of

coordinate gradients, B ¼ $wtor � $hþ $wr
pol � $f, where

wtor is the toroidal flux and wr
pol is the poloidal flux.

Represented in this form, the magnetic field is automatically

divergence-free and the existence of flux surfaces is

guaranteed.

A third constraint is still required to establish a unique

coordinate system. One common choice is to require that the

periodic part of the magnetic scalar potential goes to zero,

resulting in a simplified expression for the coordinate

Jacobian. This particular choice, established by Boozer in

the early 1980s, is referred to as magnetic Boozer coordi-
nates.56 The simplified form of the Jacobian appears as

J ¼ ðqIpol þ ItorÞ=B2, where Ipol is the poloidal current, Itor

is the toroidal current, and q is the safety factor. These terms

will be explained in greater depth in Section II B.

GTC is formulated using Boozer coordinates, so the first

step in implementing FRC simulation capabilities is produc-

ing a mapping algorithm to translate FRC equilibria from cy-

lindrical coordinates into magnetic Boozer coordinates. The

mapping algorithm is most easily formulated by division into

three stages. First, we map from the cylindrical coordinates,

given as input from an MHD equilibrium code, to any set of

magnetic-flux coordinates. Second, we establish a system of

straight field line coordinates from the initial magnetic-flux

coordinates. Third, we develop a transformation from the

straight field line coordinates to the unique Boozer coordi-

nates. With this three-stage coordinate mapping, we may

interpolate values of the needed physical quantities onto the

new grid in GTC.

One important note in establishing this algorithm is that

the coordinate transformation only needs to be performed

once for a given equilibrium, and the output may be saved.

This work flow makes run-time efficiency of the coordinate

mapping a relatively low priority. Numerical fidelity, by

comparison, is critical, since the self-consistency of the equi-

librium magnetic field will affect the numerical accuracy of

the particle push and field solver in every time step of the

simulation.

In the remainder of this section, we present an imple-

mentation of coordinate mapping from cylindrical coordi-

nates to Boozer magnetic coordinates, including

simplifications specific to FRC magnetic field geometry and

verifications.

A. Input to the coordinate mapping

The input magnetic equilibrium to the coordinate map-

ping algorithm is generated by a 2-D equilibrium code,

LR_eqMI, developed at TAE.57 The code LR_eqMI is

designed to model equilibria in plasmas with multiple ion

species. It allows for realistic boundary conditions with any

combination of electrically conducting or insulating walls in

an arbitrary geometry.
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This input includes the magnitude and vector direction

of the magnetic field on a cylindrical coordinate grid,

ðR; Z; fÞ, where

fR 2 R j 0 < R <1g
fZ 2 R j �1 < Z <1g
ff 2 R j 0 � f < 2pg:

Cartesian coordinates may be related back to these cylindri-

cal coordinates via the expression

x ¼ R cos f

y ¼ Z

z ¼ R sin f: (1)

Note that this definition is different from the conventional

cylindrical coordinates, ðr; h; zÞ. To maintain right-

handedness, the direction of the angular coordinate is

reversed relative to convention. A number of physical

quantities may be optionally included in the LR_eqMI

equilibrium. The mapping algorithm requires only the

magnetic flux, wr
pol and the vector magnetic field in cylin-

drical coordinates, B ¼ ðBR;BZ;BfÞ. Plasma parameters,

including ion density, electron density, ion temperature,

and electron temperature, are taken from the LR_eqMI

equilibrium grid to produce one-dimensional plasma pro-

files which are used directly as GTC input.

The top panel of Fig. 2 shows the cylindrical input grid,

which is symmetric in f, in the R–Z plane, along with color

contours of the flux surfaces.

B. Establishing flux coordinates and straight field line
coordinates

A magnetic flux surface is a smooth surface such that

B � n ¼ 0 everywhere, where n is a perpendicular to the sur-

face. In a toroidal field geometry, these surfaces are nested

and donut shaped. The innermost surface, as the donut nar-

rows to a ring, is designated as the magnetic axis. Flux coor-

dinates use these surfaces to represent one position in three-

dimensional coordinate space.

The first step in developing the desired mapping algo-

rithm is establishing some set of flux coordinates. As desig-

nated in Section II A, our initial cylindrical coordinate

system is ðR; Z; fÞ. These cylindrical coordinates may be

simply transformed into toroidal coordinates, a donut-shaped

coordinate system conventionally used for toroidal geome-

tries, denoted ðr; h; fÞ, where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� R0Þ2 þ Z2

q
h ¼ arctanðZ=ðR� R0ÞÞ
f ¼ f: (2)

The R0 in (2) is the R location of the magnetic axis, and is

easily obtained from the LR_eqMI input equilibrium by

locating the minimum flux value. The r̂; ĥ, and f̂ compo-

nents of vector quantities are, respectively, referred to as

radial, poloidal, and toroidal, and this nomenclature carries

over to topologically similar coordinate systems, such as

those discussed in the remainder of this paper.

Obtaining magnetic flux coordinates requires replacing

the radial coordinate, r, with a flux surface label, w. As men-

tioned in Section II A, this magnetic flux is supplied on the cy-

lindrical grid in the input to the mapping algorithm.

Specifically, we have the poloidal flux as a function of cylin-

drical coordinates, wr
polðR; ZÞ. Here, “poloidal” refers to the

poloidal component of magnetic field, which is integrated

over a surface, Sp, a ring-shaped ribbon in the r � f plane,

stretched from the magnetic axis to the flux surface of interest.

wr
pol ¼

ð
Sp

B � dS:

This flux may be used in place of r in the toroidal coordi-

nates expressed in (2). One feature of the FRC geometry is

symmetry in the coordinate f which means establishing the

radial flux coordinate is a matter of simple 2-D interpolation

on the R–Z coordinate plane.

The second step in developing a mapping algorithm is

obtaining straight field line coordinates, which we denote with

a subscript “f.” Straight field line coordinates are a set of mag-

netic flux coordinates, ðwf ; hf ; ffÞ, such that magnetic field

lines drawn in the hf � ff plane are straight lines. In the gen-

eral case, establishing a set of straight field line coordinates

from arbitrary flux coordinates may be quite involved. FRCs,

however, contain only poloidal magnetic field, that is to say,

Bf ¼ 0, so magnetic field lines drawn in the h� f plane are al-

ready straight, horizontal lines. Therefore, the set of magnetic

flux coordinates which we have already established is also a

set of straight field line coordinates in an FRC geometry. Our

straight field line flux coordinate now looks like

wf ¼ wr
polðR; ZÞ

hf ¼ h

ff ¼ f: (3)

C. Determining Boozer coordinates from straight field
line coordinates

The formal derivation of Boozer coordinates is well

established, and we leave it to the reader to procure the

details from a previous publication. We recommend the text

by D’haeseleer et al., which provides a general treatment for

the derivation of Boozer coordinates along with a myriad of

other flux coordinate choices.50 Here, we summarize the

result for the general case

wB ¼ wf

hB ¼ hf þ _w
r

pol

2p
l0

~U
_w

r

polItor þ _wtorIpol

fB ¼ ff þ _wtor

2p
l0

~U
_w

r

polItor þ _wtorIpol

; (4)

where l0 is the permeability of free space, _wtor is the deriva-

tive of the toroidal flux with respect to wf ,
_w

r

pol is the
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derivative of the poloidal flux with respect to wf , and ~U is

the periodic part of the magnetic scalar potential. Here, we

have chosen the radial flux coordinate wr
pol ¼ wf so the value

of _w
r

pol ¼ 1. The toroidal flux, wtor, on a flux surface labelled

wf is the toroidal magnetic field component integrated over a

surface, St, in the wf � hf plane contained within the flux sur-

face of interest,

wtor ¼
ð

St

B � dS:

The magnetic scalar potential, U, is the homogeneous solu-

tion to Ampere’s law, that is

l0J ¼ $� B

¼ $� ð$Uþ BjÞ where

0 ¼ $� $U

l0J ¼ $� Bj:

It may be composed of both constant and periodic parts,

U ¼ U0 þ ~U, of which we are only interested in the periodic

portion, ~U.

In the case of FRC magnetic geometry, simplifications

to Eq. (4) may be considered. First, since there is no toroidal

magnetic field, the toroidal flux and its derivatives are zero,

wtor ¼ _wtor ¼ 0. Correspondingly, there may only be equilib-

rium current in the toroidal direction and thus the poloidal

current is also zero, Ipol ¼ 0. Making these substitutions, (4)

becomes

wB ¼ wf

hB ¼ hf þ
2p
l0

~U
Itor

fB ¼ ff : (5)

Combining (5) and (3), we can write our fully simplified

Boozer coordinate transformation in an FRC magnetic field

geometry

wB ¼ wr
pol R; Zð Þ

hB ¼ arctan
Z

R� R0

� �
þ 2p

l0

~U wr
pol R; Zð Þ; hf ; ff

� �
Itor

fB ¼ f: (6)

Notably, the periodic magnetic scalar potential, ~U, is left in

terms of hf and ff since we are considering the periodicity in
the straight field line coordinates. All of the quantities on the

right hand side of this transformation are physical and may

be determined from the information given on the input cylin-

drical mesh from LR_eqMI.

To implement the coordinate transformation, numeri-

cal values for wr
pol,

~U, and Itor must be determined. The

poloidal flux, wr
pol, is provided directly in the LR_eqMI

input, but the others must be computed. If we consider

the covariant expression of the magnetic field, B, the

directional components of B contain both ~U and Itor

terms:

B ¼ �l0~g þ @ ~U
@wf

 !
rwf

þ l0

2p
Itor þ

@ ~U
@hf

 !
rhf

þ l0

2p
Ipol þ

@ ~U
@ff

 !
rff : (7)

Since there is no toroidal field in FRC geometry, the

rff component of B is zero. This gives

l0

2p
Ipol þ

@ ~U
@ff

¼ 0: (8)

As noted, Ipol ¼ 0, and therefore @ ~U=@ff ¼ 0 must also be

true. The magnetic scalar potential, ~U, has no ff dependence,

which is expected since we still have axisymmetry in the

straight field line coordinates.

The rhf component of B is non-zero

Bhf
� jB�rwf j
jrwf �rhf j

¼ l0

2p
Itor þ

@ ~U
@hf

: (9)

The Bhf
term on the left-hand side of (9) may be computed

directly by expressing the terms in cylindrical coordinates.

Doing so yields

Bhf
�

���� BRR̂þBZẐ þBff̂
� 	

� @wf

@R
R̂þ @wf

@Z
Ẑ þ @wf

@f
f̂

� ��������� @wf

@R
R̂þ @wf

@Z
Ẑ þ @wf

@f
f̂

� �
� @hf

@R
R̂þ @hf

@Z
Ẑ þ @hf

@f
f̂

� �����
¼ l0

2p
Itorþ

@ ~U
@hf

: (10)

Using the relationship expressed in (3), partial derivatives

may be numerically computed everywhere.

Because ~U is periodic in hf, the derivative, @ ~U=@hf , can-

not have a constant component. By contrast, Itor is a flux

function and is constant with respect to hf. By applying a dis-

crete Fourier transform to the total term, Bhf
, the constant

and oscillatory parts can be separated as Fourier components,

giving values for Itor and @ ~U=@hf , respectively.

In our implementation, the forward and inverse Fourier

transforms of Bhf
take the form

Bk ¼
XN

j¼1

Bje
�2pıð Þ j�1ð Þ k�1ð Þ=N

Bj ¼
1

N

XN

k¼1

Bke 2pıð Þ j�1ð Þ k�1ð Þ=N: (11)

Here, the real-space function is Bj ¼ Bhf
ðhfðjÞÞ, where

hfðjÞ ¼ 2pðj� 1Þ=N. The k-space function is represented

by Bk, where k¼ 1 represents the constant component and

k ¼ 2; 3; 4;… represent higher oscillatory harmonics. To ensure

good numerical resolution, the number of grid points, N, of

the intermediary straight field line grid, Bhf
, is at least a
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factor of five greater than the desired number of grid points

in the final Boozer coordinate mesh.

To obtain the toroidal current, Itor, only the constant

component is kept from the transform

l0

2p
Itor wf ; hf jð Þð Þ ¼ 1

N

X1

k¼1

Bke 2pıð Þ j�1ð Þ k�1ð Þ=N

¼ 1

N
Bk¼1

¼ 1

N

XN

j¼1

Bje
0

Itor wfð Þ ¼
2p
l0N

XN

j¼1

Bhf
hf jð Þð Þ: (12)

Notably, there is no j dependence in the final expression

since we keep only the k¼ 1 term. As expected, Itor is a flux

surface constant.

We need to integrate the partial derivative term from

(10) to obtain ~U. Integrating around the flux surface in real

space aggregates numerical error, so the total error in ~U near

hf ¼ 2p would become large. By taking advantage of the

Fourier transform and integrating in k-space instead, these

numerical issues are avoided. Applying the Fourier trans-

form, the integration operator becomes

ð
dhf !

�ı

k � 1
:

Keeping only the oscillatory components, the complete mag-

netic scalar potential looks like

~U wf ; hf jð Þð Þ ¼ 1

N

XN

k¼2

�ı

k � 1
Bke 2pıð Þ j�1ð Þ k�1ð Þ=N

¼ 1

N

XN

k¼2

�ı

k � 1

XN

j0¼1

Bj0 � e �2pıð Þ j0�1ð Þ k�1ð Þ=N � e 2pıð Þ j�1ð Þ k�1ð Þ=N
� 	0

@
1
A

~U wf ; hf jð Þð Þ ¼ 1

N

XN

k¼2

XN

j0¼1

�ı

k � 1
Bhf

hf j0
� �� �

� e 2pıð Þ j�j0ð Þ k�1ð Þ=N

� �
: (13)

Now the results in (12) and (13) are simply plugged into

transformation (6), and the cylindrical to Boozer coordinate

transformation algorithm is established.

D. Output requirements from the coordinate mapping

The code which we are modifying for the FRC simula-

tion, GTC, is formulated to push particles and solve electric

and magnetic fields in Boozer coordinates. The desired out-

put of the mapping algorithm is a coordinate grid system,

regularly spaced in Boozer coordinates, with the cylindrical

coordinate location of each of these new grid points. This

constitutes an inverse coordinate mapping, RðwB; hB; fBÞ;
ZðwB; hB; fBÞ, and fðwB; hB; fBÞ, from Boozer to cylindrical

coordinates. These inverse coordinate transformations are

used for gyroaveraging and computation of the metric tensor

in GTC. Using splines, they also provide a quick method to

determine a cylindrical position from a given Boozer coordi-

nate location, which is practical for plotting diagnostics and

comparison to experiments.

A series of one-dimensional high-resolution splines are

used to implement the inverse transformation. For a given

flux surface, a set of regularly spaced h is generated, and cor-

responding hB are produced using (3) and (5). From these val-

ues, a one-dimensional spline of hðhBÞ is generated on the

flux surface, and this spline is used to determine h values at

the desired, regularly spaced hB positions. This must be done

for every flux surface of interest, so regularly spaced values of

wB are selected to be sampled from the LR_eqMI input from

the beginning of the mapping algorithm. Looking at Eq. (6)

makes it apparent that most of the complexity of the coordi-

nate mapping algorithm is contained in the relation between h
and hB. Fig. 1 shows a sample of the relationship between h
and hB on a reference flux surface. A similar one-dimensional

spline may be formed on a given straight radial ray in toroidal

coordinates which corresponds to a single h. First, a set of reg-

ularly spaced r is generated. With h fixed, each r corresponds

to a single flux value, giving the spline, rðwBÞ.
The physical values of magnetic field magnitude, den-

sity, and temperature are also needed on the new grid. Once

the (R, Z) coordinate locations are obtained for the regularly

spaced Boozer grid, these physical quantities are simply

interpolated from the original LR_eqMI input file using a

standard 2-D interpolation algorithm.

E. Extension of Boozer coordinates in the SOL

Understanding transport in the scrape-off-layer is criti-

cal to understanding global FRC transport. Because the SOL

acts as a divertor, transport behaviour inside and outside of

the separatrix is qualitatively different.

A major obstacle to using GTC for simulations of the

SOL is that magnetic Boozer coordinates are not defined for

open magnetic field lines. Since the field lines in the region

are not closed, the periodic magnetic scalar potential

becomes meaningless. For equilibria that are symmetric over

the Z¼ 0 axis, which is approximately true for C-2, one solu-

tion is to enforce periodicity across the Z boundary when
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performing the Fourier decomposition on each flux surface.

This provides a consistent coordinate system to use in

the SOL. Note that enforcing this periodicity for the coordi-

nate transformation is distinct from the choice of boundary

conditions applied to the field solver and particle equations

of motion during the simulation, which is discussed in

Section III. One consequence of enforcing periodicity during

the coordinate mapping is that the spacing of the poloidal hB

-coordinate in the SOL is dependent on the length, in Z, of

the simulation domain. A wider domain in Z will produce

larger spacing between constant-hB surfaces. This means

that necessarily, hB is discontinuous across the separatrix.

Consequently, simulations may be carried out separately in

the core or the SOL but not both simultaneously.

With this implementation of SOL coordinates, the descrip-

tion of Boozer coordinates in FRC geometry is complete. The

method outlined in this subsection is sufficient to investigate

transport isolated in the SOL. The effects of core-SOL cou-

pling are also of critical interest and will be investigated with a

different model in future work. Progression of the coordinate

mapping from cylindrical to straight field line to Boozer coor-

dinates in the core and SOL is illustrated in Fig. 2.

III. FORMULATION OF POISSON SOLVER IN FRC
GEOMETRY

We begin by introducing the electrostatic gyrokinetic

equations58 to describe a toroidal plasma in an inhomogene-

ous magnetic field, using the gyrocenter position, X, mag-

netic moment, l, and parallel velocity, vk, as a set of

independent variables

d

dt
fa X; l; vk; t
� �

� @

@t
þ _X � $þ _vk

@

@vk
� Ca

" #
fa; (14)

_X ¼ vk
B0

B0

þ vE þ vd; (15)

_vk ¼ �
1

ma

B�0
B0

� l$B0 þ Za$/ð Þ � Za

mac

@Ak
@t

: (16)

The subscript, a ¼ e; i, represents the particle species, either

ions or electrons. The effective magnetic field is

B�0 ¼ B0 þ
B0vk
Xa
r� b0: (17)

The additional velocity terms are the E�B drift velocity, vE,

and the magnetic drift velocity, vd, which is the sum of the

magnetic curvature drift and the $B drift. In the perturbative

ðd f Þ simulation,59–62 the distribution function, fa, may be

broken into an equilibrium part, f0, and a perturbed part, d f ,

such that fa ¼ f0 þ d f . Corresponding to the distribution

function, we can define perturbed gyroaveraged densities for

each species of particle

dna ¼
ð

d fad3v: (18)

FIG. 1. Mapping from the geometry poloidal angle, h, to the Boozer coordi-

nate poloidal angle, hB on a reference flux surface.

FIG. 2. Poloidal plane meshes for three

coordinates systems. In the top panel,

cylindrical coordinates, (R, Z), with

contours beneath showing magnetic

flux extracted from the LR_eqMI input

equilibrium. In the middle panel, the

straight field line coordinate mesh,

ðwf ; hfÞ. In the bottom panel, Boozer

coordinates, ðwB; hBÞ are shown. The

separatrix is indicated by the wide

black line.
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The difference between the magnetic geometries of

the tokamak and FRC makes it necessary to reformulate

the Poisson solver. In the gyrokinetic formulation, electric

and magnetic fields are solved on the plane perpendicular

to magnetic field lines. In tokamaks, the field is primarily

toroidal with a small poloidal component, while in FRCs,

the field is entirely poloidal. GTC has several methods for

solving the Poisson equation,63 and for the FRC, we solve

the gyrokinetic Poisson equation with the Pad�e approxima-

tion. The normalized form of the gyrokinetic Poisson equa-

tion and its representation in FRC geometry may be

expressed as

r2
?U ¼ ð1�r2

?Þðdni � dneÞ; (19)

¼ gww @2

@w2
þ gff @

2

@f2

 !
U; (20)

where dni is the perturbed ion density, dne is the perturbed

electron density, U is electrostatic potential, and gnanb � rna

�rnb is the metric tensor element.63

Our initial focus is on the linear properties of FRC insta-

bilities. In this work, we present simulations of single-n
modes, where n, the toroidal mode number, is an integer

related to the mode’s toroidal wave number by ktor ¼ n=R0.

Characterizing linear instabilities in the FRC requires param-

eter scans consisting of many such single-n simulations. To

make these scans feasible, we implement optimizations in

the Poisson solver. The first optimization is the reduction of

the toroidal simulation domain to a partial-torus which elimi-

nates grid size dependence on the toroidal mode number as

detailed in Section III A. The gyro-kinetic treatment of par-

ticles is detailed in Section III B. In Section III C, the second

optimization, the semi-spectral operator used to solve the

gyrokinetic Poisson equation, is outlined.

A. Partial torus domain

To accurately resolve shorter toroidal wavelength

modes, a finer simulation grid is necessary, incurring higher

computational costs. We make use of the toroidal periodicity

of single-n modes to attain a computational cost that is inde-

pendent of the toroidal mode number, n, in the linear simula-

tion of a single n mode.

The computational cost of a simulation is proportional

to the number of grid points used. In the field solver,

increased number of grid points means that the matrix rep-

resenting the Laplacian operator becomes larger. For fixed

particles per grid cell, the total number of particles in the

simulation is also proportional to the number of grid

points. In a full torus, the total number of grid points is a

product of grid points per wavelength and wavelengths per

torus. While grid points per wavelength determines how

well the mode in question is resolved, wavelengths per

torus adds computational cost without benefit. The perio-

dicity of a single-n mode in the toroidal direction allows

reduction of the domain size from a full torus, ½0; 2p�, to a

partial torus, ½0; 2p=n�. This partial torus domain corre-

sponds to one wavelength of the mode. Implementation of

this scheme requires only minor modification of the parti-

cle boundary conditions, which are already periodic in

the full torus case. Particles passing out through 0 enter

from 2p=n and vice versa. The mode can now be well

resolved without sacrificing computational efficiency. The

total number of particles, particles per wavelength, number

of grid points per wavelength and, correspondingly, com-

putational cost and mode resolution are all independent of

the mode wavelength.

In future non-linear simulations, when inclusion of mul-

tiple n modes is desirable, the partial torus domain may still

be used to sample a single toroidal mode number plus its har-

monics: 0, n, 2n, 3n,. The full torus domain will be applied

in instances where all n modes are kept.

B. Gyroaveraging

For turbulence and transport, the plasma phenomena

of interest often evolve on a time-scale longer than the ion

gyro-period. The salient feature of gyrokinetic formula-

tions is averaging over the gyro-phase angle, which

reduces the phase space dimensionality from six dimen-

sions to five dimensions and allows a much coarser simula-

tion time step. In order to retain realistic finite Larmour

radius effects, we must perform accurate gyro-averaging

on particles.

In the FRC implementation, the gyro-average of a func-

tion is split into radial gyro-averaging and toroidal gyro-

averaging. In the toroidal direction, spatial sampling is

expensive, because domain decomposition requires message

passing between toroidal neighbors. Fortunately, when simu-

lating single-n modes, mode variation in the toroidal direc-

tion is simple and easy to approximate. By contrast, spatial

sampling in the radial direction does not require expensive

communication, but all radial wave numbers are retained

making approximation of the radial mode variation impracti-

cal. These qualitative differences lead us to treat the two

dimensions separately.

Radial gyro-averaging is represented by gyro-particles

sampling different locations of the gyro-ring. In the case

where the radial and toroidal wavenumbers are similar in

magnitude, kr 	 kf, radial two-point averaging may be used

to include gyroaveraged effects.64 In radially local simula-

tions, where kr 
 kf, radial gyro-averaging is omitted, since

its effects are negligible. In both cases, toroidal gyro-

averaging is represented as the multiplication of a Bessel

function of the first kind J0ðkfqcÞ, where the arguments are

kf ¼ n=R and qc ¼ mv?=jqjB. Here, n is the toroidal mode

number, R is the major radius measured from the machine

axis to the particle position, m is the particle mass, q is the

particle charge, v? is the particle velocity perpendicular to

the magnetic field, and B is the magnetic field strength at the

particle position. The value of the Bessel function is calcu-

lated using an intrinsic Fortran function for each individual

particle, and the multiplication of this factor is self-

consistently applied to each particle in the accumulation of

the charge density on the grid and in the time-advancement

of particle positions. Timing tests indicate that use of the

Fortran intrinsic Bessel function does not significantly affect
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the simulation runtime. In future simulations, with increased

number of particles, if the current implementation becomes a

bottleneck, the Bessel functions may be implemented more

efficiently by table look-up.

C. Semi-spectral operator

Taking advantage of the toroidal periodicity, we

Fourier-decompose in the f̂ direction to obtain the semi-

spectral Laplacian operator

f w; h; fð Þ ! f̂ w; hð Þe�ınf

@

@f
! �ın

r2
? ! r2

n ¼ gww @2

@w2
� gffn2: (21)

Numerically, the derivative in the ŵ direction is still

found by central finite differencing, where i is the grid index

corresponding to w

r2
n ¼ gwwð/iþ1 � 2/i þ /i�1Þ � gffn2/i

¼ gwwð/iþ1 þ /i�1Þ � ð2 gww þ n2 gffÞ/i: (22)

Because one of the perpendicular directions is f̂, this

results in a tri-diagonal matrix with total number of non-zero

elements equal to 3� Nw and a total matrix size of N2
w which

is solved using the Krylov method implemented in PETSc.65

Here, Nw is the number of radial grid points, Nh is the num-

ber of poloidal grid points, and Nf is the number of toroidal

grid points. The general process of solving the Poisson equa-

tion is summarized in the following:

(1) Density is split into w� f planes of size Nw � Nf to pro-

cessors based on h value assigned to individual

processor;

(2) Transform density planes of size Nw � Nf by FFT

to semi-spectral density on w� n planes of size

ðNw � NfÞ=2þ 1;

(3) Semi-spectral potential is found on each w� n plane of

size ðNw � NfÞ=2þ 1 by PETSc;

(4) Semi-spectral potential on w� n plane of size ðNw � NfÞ=
2þ 1 is transformed back by FFT�1 to real-space potential

in w� f plane of size (mpsi�mtoroidal), keeping only n
of interest non-zero;

(5) Potential on w� f plane of size Nw � Nf is passed back

to every processor to construct 3D potential of size

Nw � Nf � Nh;

IV. INITIAL SIMULATION RESULTS

In this section, we report on initial simulation of drift-

wave instabilities in the FRC, using the newly implemented

code features described in Sections II and III. More detailed

physics analysis will be reported in a forthcoming publica-

tion.66 Prior to these simulations, simple test cases were run

using both the new implementation and old less efficient (for

FRC geometry) algorithms in GTC. We verified that the real

frequency and growth rate from both sets of simulations

matched, before undertaking more intensive simulations

with the new implementation. Additionally, energy and mo-

mentum were recorded over the timescale of the simulation

to ensure conservation. The divergence of the magnetic field

was computed numerically in the new equilibrium and con-

firmed to be zero everywhere. The following results come af-

ter these verifications.

Linear simulations assume that the toroidal wavelength

is much shorter than the radial wavelength of the instabil-

ities, or equivalently, kr 
 kf. Thus, we can approximate

that the radial simulation domain is localized to a single flux

surface. This is achieved by modifying the scatter and gather

operations such that all dynamics of the system are on the

same flux surface. For these single flux surface simulations,

the Laplacian operator is further reduced from its spectral

form in (21) to r2
n ¼ n2 gff.

Initial linear simulations are localized to the flux surface

where r=a � 0:906 in the core and r=a � 2:244 in the SOL,

where r is the position of the flux surface relative to the mag-

netic axis and a is the distance from the separatrix to the

magnetic axis, as measured along the mid-plane axis. Radial

scans show these locations to be in the region where growth-

rates are largest. The domain of the core simulations also

excludes the magnetic axis where gyro-kinetic approxima-

tions are poor due to the null magnetic field. The simulation

domains are shown in Figs. 3 and 4, for the core and SOL,

respectively. In future simulations, where the domain is a fi-

nite annulus, the radial derivative in the Laplacian operator

will be computed via finite differencing.

In the simulations presented in this section, both tempera-

ture and density gradient drives are included. The scale length

of the gradient of a plasma parameter, f, is 1=Lf ¼ @
@r lnðf Þ.

Here, g characterizes the relative strength of the temperature

and density gradients, and is the ratio between the two scale

lengths, where gi ¼ LTi
=Ln and ge ¼ LTe

=Ln correspond to

ions and electrons, respectively. In these simulations, gi ¼ ge

¼ g ¼ 1. The simulated ion species is deuterium. Collisional

effects were evaluated using the Fokker-Planck model67 and

found to have only small effect on linear growth rates, chang-

ing them by less than 10%. For simplicity, collisions are

excluded in the following results. The distance from the

FIG. 3. Simulation domain used in core region.

FIG. 4. Simulation domain used in scrape-off layer region.
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machine axis to the magnetic axis is R0 ¼ 26:96 cm, and the

distance from the magnetic axis to the separatrix on the outer

midplane is a¼ 11.15 cm. The simulation parameters and

some calculated quantities, including the ion and electron

gyro-radii (qi ¼
ffiffiffiffiffiffiffiffiffi
miTi

p
=ðeBÞ; qe ¼

ffiffiffiffiffiffiffiffiffiffi
meTe

p
=ðeBÞ) and sound

velocity (Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
) are listed in Table I.

Boundary conditions for the particles are reflective on

the radial boundaries and periodic on the axial boundary.

The field solver assumes a fixed value field on the edges of

the grid. Simulations are initialized with particles distributed

uniformly across computational cells, with random spatial

placement within each cell. The velocity distribution of par-

ticles is assumed to be Gaussian about the thermal tempera-

ture listed in Table I.

The growth-rates and frequencies of the mode shown in

Section IV B are listed alongside the transit frequencies and

effective collisionalities in Table II. The transit frequencies

of electrons and ions passing along a field-line are �tr�e

¼ Vth�e=l and �tr�i ¼ Vth�i=l, respectively, where l is

the field line length. In the core, the field-line length is esti-

mated by l ¼ ðR0 þ rÞ � p, and in the SOL, l � 4 m. For

each separate region, the effective collisionalities are listed

in Table II. Effective collisionality is the collisional fre-

quency normalized by the transit frequency

��e�e ¼ �e�e=�tr�e

��e�i ¼ �e�i=�tr�e

��i�i ¼ �i�i=�tr�i:

The effective collisionality is quite low for each region

due to the short field-line length and the low ion impurity,

Zeff ¼ 1:5, in both regions.

A. Simulation of the FRC core

In the core, ion-scale modes are found to be stable. For a

mode with wavenumber kfqi ¼ 1:0, the simulation was first

run with density and temperature gradients with experimen-

tally realistic values, R0=Ln ¼ R0=LTi
¼ R0=LTe

¼ 2	4.

When no instability was found, gradient drive was artificially

increased to the limits of numerical validity of the gyroki-

netic model, but still, no linear instabilities were driven.

Possible contributors to mode stabilization are ion finite

Larmour radius effects and the magnetic field gradient.

Detailed stabilization mechanisms for the ion scale turbu-

lence are under investigation. In general, we expect that

higher wavenumber modes are driven more easily than low

wavenumber modes. Electron scale turbulence in the core is

still under evaluation and will be reported on, in detail in

future work.

B. Simulation of the FRC scrape-off layer

In the scrape-off layer, we find unstable ion-scale and

electron-scale modes showing typical exponential amplitude

growth with real frequency in the ion diamagnetic direction.

An unstable collisional mode with kfqi ¼ 5:42 is shown in

Fig. 5. The mode is driven by density and temperature gra-

dients, R0=Ln ¼ R0=LTi
¼ R0=LTe

¼ 4:04, and has real fre-

quency xrðR0=CSÞ ¼ 9:5 and growth-rate cðR0=CSÞ ¼ 2:3.

The conservation of momentum and energy for both ions

and electrons is shown in the bottom two panels of Fig. 5.

TABLE I. Equilibrium parameters used in both the core and SOL simulation

regions.

Core SOL

B0 533:7 G 2430:5 G

ne 4:0� 1013 cm�3 2:0� 1013 cm�3

Te 80 eV 40 eV

Ti 400 eV 200 eV

qi 5:3 cm 2:3 cm

qe 0:039 cm 0:017 cm

TABLE II. Real frequencies, growth rates, characteristic transit frequencies,

and effective collisionalities for each species in both the collisionless core

and collisional SOL.

Core SOL

xrðR0=CSÞ – 9.5

cðR0=CSÞ – 2.3

�tr�e
R0

Cs

� �
5.47 3.23

�tr�i
R0

Cs

� �
2:02� 10�1 1:24� 10�1

��e�e 1.16 3.81

��e�i 2.45 8.61

��i�i 1:20� 10�1 2:61� 10�1

FIG. 5. Time histories of kfqi ¼ 5:42 instability in the FRC SOL. The top

two panels show the electrostatic potential in linear and semi-log plots. The

bottom two panels show conservation of energy and momentum for each

species, with left and right axes corresponding to energy and momentum,

respectively.
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Overall change in energy and momentum is less than 1% for

both species.

The mode structure of the instability is shown in Fig. 6.

The mode is characterized by m¼ 0, 1, 2, 3 mode number

components. This structure is common to all of the scanned

single-n modes in the SOL. The curvature, magnitude of the

magnetic field, and the radial gradient of the magnetic field are

also shown in Fig. 6. Small-scale fluctuations in the magnetic

curvature are due to numerical differencing on the discrete

grid. Geometrically, the scrape-off layer region has weaker

curvature than the core but a much stronger magnetic field

gradient.

Numerical convergence tests have been carried out in

the SOL. Mode frequencies converge with only a single par-

ticle per cell. Across the entire particle-per-cell convergence

scan, the variation in x is less than 5% and variation in c is

less than 0.1%. The implementation of the partial torus do-

main allows a significant number of particles per wavelength

even in simulations using only one particle per cell. Linear

growth rate, c, converges around a time step size,

DtðR0=CsÞ ¼ 0:005, while x shows little variation over the

scan. The frequency converges at 64 poloidal grid points,

while the growth-rate converges around 128 grid points.

V. DISCUSSION

In this study, a formulation for gyrokinetic particle sim-

ulation of a field reversed configuration is presented. A map-

ping algorithm to produce Boozer magnetic coordinates has

been developed and verified, along with an extension of

Boozer coordinates into the scrape-off layer region. A for-

mulation for an efficient linear Poisson solver with particle

gyroaveraging is also established. All of these new features

have been implemented in the GTC, and linear instabilities

in an FRC geometry have been simulated.

Initial results from GTC represent, to date, the only first-

principles gyrokinetic simulation of an FRC in realistic

geometry. Simulation in the scrape-off layer also represents

the first inclusion of open field line geometry in the GTC for-

mulation. Initial simulation parameters and results are pre-

sented. Pressure gradient driven driftwave modes are

observed and effects of collisionality are considered. One no-

table caveat is that electromagnetic effects are expected to

be important in high-b FRC plasmas, but are excluded in this

study. Electromagnetic effects, already included in the GTC

framework, will be investigated in FRCs in the future.

Interestingly, in the FRC core, ion scale instability is

found to be suppressed, likely by large ion Larmour radius.

Electron scale turbulence is also strongly stabilized, but details

of possible electron scale modes are still under evaluation. In

the scrape off layer, both ion and electron scale linear drift-

waves are present and unstable. Remarkably, considering the

electrostatic limitation of the computational model, linear

instability thresholds in both the core and SOL have good qual-

itative agreement with experimental turbulence fluctuation

measurements made with Doppler backscattering in the C-2

FRC experiment.68 More detailed theoretical analysis of the

physics in both the FRC core and SOL will be discussed in a

forthcoming publication.66 Comparisons against experimental

data will be reevaluated as the computational model is refined.

The ultimate goal of first principles FRC simulations is

to understand the transport scaling in the FRC plasma,

towards the goal of creating a fusion reactor. Understanding

the coupling between the core and SOL regions of the FRC

is a critical piece of the transport scaling picture. Immediate

efforts in the future are towards developing coupled core-

SOL simulations. Other priorities include electromagnetic

simulations and a Vlasov ion pusher, which has already been

implemented in GTC, to accurately capture large ion

Larmour radius effects.
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