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QUANTITATIVE RISK ANALYSIS SUPPORT TO DECISION-MAKING FOR NEW SYSTEMS
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Nowadays, it is widely accepted that scenario-based
probabilistic risk assessment (PRA) is needed to support
key decisions about new space flight systems. However,
taking a risk estimate at face value and comparing it with
a management “threshold” to determine whether a
system is safe enough is too simplistic. This paper
discusses considerations that need to accompany PRA
results in particular decision contexts. The present point
is not to criticize PRA itself; others have eloquently
stressed the point that, for complex, high-stakes systems,
whatever PRA’s imperfections, doing PRA is better than
not doing it. But while all analysis results are hostage to
underlying assumptions, this is especially true for PRA,
and over the years, PRA results have occasionally been
overinterpreted or otherwise misused. In short, there are
more enlightened and less enlightened ways to
understand and use PRA results. This paper discusses
several issues relating to these concerns, and suggests
ways of dealing with them.

I. INTRODUCTION

Compliance with classical engineering requirements
on a system's physical performance can be demonstrated
by running the system. However, the analog of that
demonstration does not work for risk targets; it cannot in
general be "proven" that an ambitious risk target is
satisfied. If we want to demonstrate a very small per-
launch risk of failure, we would need a very large number
of launches, along with a long list of prerequisite
assumptions. Purely statistical evidence from a single
trial, or even a group of trials, cannot "prove" that system
reliability actually meets an explicit target, except that a
single success is sufficient to show that the reliability is
not zero.

Instead of that sort of statistical demonstration, the
decision-maker needs to rely on a safety assurance case.'”
The sort of case we are talking about is not absolute proof
of “safety,” but it is a marshaling of the relevant evidence
that we have, including a clear-eyed focus on the
limitations of that evidence: limitations (various types of

uncertainty) that the decision-maker must understand.
Nowadays, for a complex, high-stakes system, such a case
will include a scenario-based model of the risk associated
with the system. This paper is about the proper role of
scenario-based probabilistic risk analysis (PRA) in the
formulation of such a case, and certain issues associated
with applying PRA results in decision-making.

Nowadays, it is widely accepted that scenario-based
PRA is needed to support key decisions about new flight
systems.* However, taking a risk estimate at face value
and comparing it with a management-specified
“threshold” value to determine whether a system is safe
enough is too simplistic.

This being the case, why have risk targets?

e Risk targets articulate a policy tradeoff: they
express the level of risk that is deemed
justifiable by a given class of missions.

e  Risk targets suggest:

o how rigorous the risk analysis processes
need to be (smaller risk targets imply
more rigor),

o how comprehensive and trustworthy the
input evidence needs to be,

o how hard the developers need to work
in order to reduce the uncertainties.

e Risk targets say something about the level of
safety at which we no longer need to
sacrifice performance for safety in the
design.

This paper discusses considerations that need to
accompany PRA results in particular decision contexts.
The present point is not to criticize PRA itself; others’
have eloquently stressed the point that for complex, high-
stakes systems, whatever PRA’s imperfections, doing
PRA is better than not doing it. But while all analysis
results are hostage to underlying assumptions, this is
especially true for PRA, and over the years, PRA results
have occasionally been overinterpreted or otherwise
misused. This paper discusses several issues relating to
these concerns, and suggests ways of dealing with them.



11. ISSUES
II.A. Conditionality and Allocation

A naive description of the intent of a risk model
would suggest that its purpose is to quantify “the” risk.
Often, however, such a model is developed in the context
of a need to make a technical case that the system is
adequately safe. This circumstance affects the choices that
are made during the modeling effort. Any convergent
modeling effort will initially try to focus on the
subsystems that are going to make the most difference in
the results; additionally, if the results are going to be
compared with a risk target, modeling attention may focus
on the systems whose performance can be modeled with
the least uncertainty, because the resulting analysis will
be more convincing to reviewers of the case. Finally, in a
world of finite resources, when the answer seems to be
good enough to make the case convincingly, additional
modeling effort will be reduced.

On the other hand, sometimes, in order to attain
results suggesting that the system is adequately safe, it
may have been necessary to credit capabilities that are
marginal in some sense. This complicates the
interpretation of risk analysis results. Extremely low
failure probabilities need to be viewed with skepticism,
and should be presumed to have large uncertainties.

Broadly speaking, there are only certain ways to
drive down the model result for a risk metric. Those ways
include the following: take credit for more success paths
(e.g., more redundancy) to perform a critical safety
function; reduce the potentials for human error and
common cause failure probability, along with the model’s
assessment of those potentials; incorporate in the design,
and take credit for, greater operating margin; or take
credit for smaller frequencies for system perturbations
(e.g., initiating events) and/or lower basic event
probabilities. Each of these ways may add to system cost
and complexity: increased redundancy means increased
capital cost and increased volume and mass (in the case of
space systems); reducing common cause failure potential
implies at least some redundancy, along with additional
engineering effort to eliminate common influences on
nominally redundant elements; smaller “independent”
failure probabilities may call for increased quality
assurance (QA), increased testing, and so on, and
reducing assessed human error probabilities may call for
all sorts of things.

In practice, we do not infallibly forecast component
reliability. There is no way to absolutely guarantee a low
failure probability for a given active component, even if
conscientious effort is exerted to perform tests and
maintenance at appropriate frequencies. The component-
level equivalent of “unknown unknowns” may act on the
component, or there may be a lapse in a maintenance
activity. Or the actual service conditions may violate the
component’s engineering design basis in an unappreciated
way. Correspondingly, the United States (US) Nuclear
Regulatory Commission (NRC) imposes failure-tolerance
requirements in safety systems of nuclear power plants.
Similarly, the National Aeronautics and Space
Administration (NASA) has failure-tolerance
requirements for its human-rated space systems.

Some years ago, all US nuclear power plants were
required® by the NRC to carry out “Individual Plant
Examinations (IPEs)” to check for vulnerabilities to
beyond-design-basis scenarios. There was no official
requirement to demonstrate satisfaction of a particular
target value of the risk metrics (one metric being “core
damage frequency”), but most plants reported values
comfortably satisfying a perceived target value for that
metric (related to consistency with the Commission’s
Safety Goal Policy Statement’).

NASA has instituted requirements for establishing
Agency-level safety thresholds and goals that define
“long-term targeted and maximum tolerable levels of risk
to the crew as guidance to space systems developers in
evaluating “how safe is safe enough” for a given type of
mission.”® Safety thresholds specify the minimum
tolerable/allowable level of crew safety (maximum
tolerable level of risk) for the design in the context of its
design reference mission, and are to be used by the
Agency as criteria for program acquisition decisions.

Given all this, it is natural to ask what capabilities
have been credited in the risk model in order to reach the
desired risk target. For IPEs, the answer to that question
was captured in a data base,” in terms of the success
strategies invoked by the plant for each initiating event
modeled, and the system-level success paths available to
implement each strategy. This provided a visual
indication of redundancy and diversity in system
capability, which could then be roughly correlated with
the risk analysis results.

For some purposes, it is useful to recast this
discussion as an inverse problem. Think of the decision
problem of optimizing a design: deciding what to include
in the design (e.g., how much redundancy), and what
levels of performance to commit to, and how to assure
that those levels of performance are coming true. This is
related to the problem of deciding what the PRA model
inputs need to be, in order for the PRA’s output risk



metrics to satisfy current objectives. Put differently: What
does the PRA need to take credit for, in order to satisfy
current objectives? And how much credit does it need to
take? What failure probabilities can we tolerate, and what
do we need to do in order to justify them? As is the case
for many inverse problems, there are different methods
for developing answers to such questions. One method is
“Top Event Prevention Analysis,” a method for finding
answers to these questions that are optimal in some
sense.'®!2 The decision to implement one of these
answers is “allocation,” discussed further below.

1I.B. “Data”

There exist many sources of “data” intended for use
in PRAs. But even if such data are derived from a large
experience base, they do not represent constants of nature,
and their applicability to a new system cannot be taken for
granted. To claim a small failure probability in a specific
system is to claim an engineering accomplishment. Even
if a small probability of failure of a particular component
seems justifiable based on operating experience, the claim
implicit in using that number in an analysis is that the
engineering codes and standards applied to the component
being analyzed will be at least as rigorous as the codes
and standards that were applied to the components whose
operation gave rise to the data. Attainment and
maintenance of a low level of risk imply a decision to
invest to attain that level of reliability performance. This
includes key design attributes, including levels of
redundancy and diversity, along with other reliability
assurance activities: what to include in the actual system,
how to configure it, and how to operate it, in such a way
that the project team actually succeeds in achieving the
engineering accomplishments credited in the risk model,
so that the model reflects the actual safety performance of
the system.

These considerations operate even for a unitary
decision-maker: one who is making decisions affecting
only himself or herself. If the decision-maker is deciding
on behalf of other stakeholders, it is even more important
to carefully establish the basis for a claim of high
reliability.

It is appropriate to use risk models to reason about
these things, provided that the analyst thinks in terms of
functional success paths, rather than individual
components; but attaching credence to a low level of risk
calls for appreciation of the difficulties in general of
claiming low levels of risk, and the demands placed by
such claims on the rigor of the methods used to argue
those low levels of risk. Moreover, the difficulties of
actually fulfilling those claims need to be appreciated.
This is discussed below.

II.C. Performance-Based Approaches

The previous subsection discussed a thought process
in which the structure of a risk model was used to allocate
performance over systems, subsystems, and even
components in some optimal fashion. But the allocation is
only part of the story. It is then necessary to formulate the
implementation: the approach to actually achieving the
levels of performance that have been allocated. For
example, if we are making decisions that are predicated
on allocated levels of system reliability, we need for that
level of system reliability to be attained in practice, so we
need to think about how to ensure it. In fact, consideration
of the practicality and the cost of implementation should
be considered in the process of downselecting to a
particular design approach.

In the past, in some domains, it was assumed that in
order to achieve adequate levels of reliability, it was
sufficient simply to levy prescriptive requirements on
system providers to follow specific engineering practices.
This may have been helpful, but it turned out not to assure
highly reliable performance in all cases; and in some
cases, compliance with the prescriptive requirements was
found to be burdensome.  Appreciation of these
circumstances (ineffectiveness and burden) led to the idea
of “performance-based” approaches.!> ¥ In a
performance-based approach, instead of hoping that
burdensome prescriptive requirements will justify the
presumption of desired levels of system performance, one
measures (verifies) enough about system performance to
be sure of what level of performance is, in fact, being
attained. It may be found that good performance is
attained even if the burden of compliance with
prescriptive requirements is reduced.

This is illustrated in Fig. 1, which contains a
hierarchy of levels of integration at which requirements
could be levied, and/or performance could be measured.
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Fig. 1. Example Hierarchy of Functional Performance
Suppose that we have a firm idea of the reliability
that we need at the system / function level, and we are
deciding how best to allocate performance over the
subsystems to achieve the desired reliability performance
at the higher level. It is easy enough to default to process
requirements imposed at lower levels of Fig. 1, and hope
that those requirements yield subsystem performance that
achieves the higher goal; but how would we know that
adherence to process was actually giving us the reliability
that we allocated? It would be much more satisfactory to
be able to confirm the reliability of the subsystems. That
way, we would have at least some information about what
level of reliability is being attained at the higher level.

This is the essence of what is meant by
“performance-based,” and why it is a desirable approach,
provided that it is practical. In general, the phrase
“performance-based” is applied to implementations that
are based on measuring performance at higher levels of
this hierarchy, as opposed to relying on prescriptive
requirements, which may not be applicable at higher
levels. This is not to say that it is always practical to
measure reliability at the function level: even if we can do
a certain amount of functional testing, it may be
impractical to actually verify functional reliability by
testing a large number of times. In a large-scale system,
testing may be limited to verification that the function can
succeed with appropriate margin; our understanding of

functional reliability will need to be derived by
integrating the results of analysis, and testing at lower
levels of the hierarchy. This may still be better than
simply requiring providers to follow generic engineering
practices and document their processes.

These considerations are discussed in several
references,'>!> including steps for formulating a
maximally performance-based implementation for a given
system. The bottom line is that while pure performance-
based approaches are very difficult to formulate, it is
straightforward to formulate implementations that
combine performance-based elements with process-based
elements and with more prescriptive elements, and it
should generally be beneficial to do so. But the state of
practice of modeling the actual benefits of performance-
based approaches is still evolving.

ILLD. Risk Model Incompleteness, Precursor
Analysis, and Reliability Growth

Scenario-based Quantitative Risk Analysis (QRA) is
“synthetic:” that is, it builds up (synthesizes) a list of risk
contributors, through various processes that we will refer
to here as “hazard analysis” (including everything from
Hazard and Operability studies to fault-tree / event-tree
analysis and beyond). This is contrasted with actuarial
risk analysis, in which analysts build up statistics on
occurrence rates of particular event consequences,
essentially without regard to the details of the scenarios
leading up to the outcomes that are captured in the
statistics. An example of the latter is assessment of the
risk of dying in an automobile accident; quite a bit of
statistical information is available to support such an
assessment. In the US, tens of thousands of people die
every year in auto accidents, and this fact is often invoked
in discussions of the relative safety of different
transportation modalities. It is possible to parse these data
in much more detail, to reflect the variation in fatality
rates with geographic area, time of day, day of the week,
make of car, etc. However, it is not (yet) typical to try to
predict this rate by building up from scratch a detailed
synthetic model of how people drive: enumerating all
possible accidents, such as Driver A being distracted or
drowsy during an approach to a red light or a stop sign,
while another car is approaching the intersection from one
side or the other when Driver A heedlessly enters the
intersection, and so on. If we had no access to statistics
and tried to estimate the rate of fatal accidents from such
an exercise, we might later find that we had left out quite
a bit, especially if we had little or no experience driving
different cars in a broad range of road conditions, weather
conditions, and traffic conditions, not to mention
inebriation.



We have learned a great deal about the causes of
automobile accidents, but a comparable level of
completeness is very difficult to achieve in the
development of a synthetic risk model for a novel system.
We may successfully identify some previously-unknown
failure modes, but we are likely to miss some others, so
that our model does not reflect contributions from
“unknown unknowns.”

Q: Given that we cannot eliminate UU’s a priori:
what CAN we do?

A: Learn from  operating  experience  as
expeditiously as possible.

Published reviews of launch vehicle history (see, for
example, Morse et al.') and a body of experience
reflected in MIL-HDBK-189'7 indicate that the first few
flights of a novel launch technology are relatively risky,
because of previously unknown or underappreciated
failure modes. Some launch systems have done better
than others, but on average, they are relatively risky early
in deployment, and then improve with time (possibly with
some ups and downs), as a result of changes to design and
operation that result from learning from experience.

This learning process is what reliability growth
modeling captures. Reliability growth modeling is not
perfect, but it can be made to fit available information,
and the implied narrative offers some actionable insights.

* Reliability growth modeling focuses on
accomplished results viewed from the outside in, rather
than trying to model launch vehicle behavior a priori by
listing, and then modeling, failure modes.

* Because reliability growth modeling simply
keeps score, all influences on reliability that operate in a
particular case are implicitly taken into account, including
organizational factors. Classical (fault-tree / event-tree)
PRA can be made to try to account for organizational
behavior, but reliability growth modeling is really about
the whole complex of System + Organization +
Environment + ... and is moreover empirical. Classical
PRA can incorporate empirical insights but is
fundamentally synthetic in nature.

* Reliance on “process” to identify all failure
modes has not been successful in past programs. It may
be hoped that better process will do a better job of this in
future developments, but it is doubtful that early-flight
risk can be eliminated by better process alone. Arguably,
early-flight risk can be reduced, but not eliminated,
particularly for new technologies. If it were
straightforward to eliminate early-flight risk, it should
have been done by now.

* Reliability-growth modeling has been successful
in describing program histories. After a certain number of
flights, and a certain number of failures have been
observed and largely eliminated, and the growth curve

looks predictable, some argument can be made about
current system reliability. But reliability-growth modeling
is really about overall trends rather than being predictive
of specific flight outcomes, and is only weakly predictive
of first-flight risk. The “prediction” is this: Unless the
subject system is atypical of history, there is a very real
chance of one or more failures in the first several flights.

To some extent, the rate of learning from experience
is under management control.'® It cannot be increased
arbitrarily, because we cannot learn from things that have
not been identified in the hazard analysis and also have
not happened yet. However, we can try to assure that
anomalies that occur in testing or in flight are understood
as completely as possible. One name for this is
“precursor” analysis,'® but this needs to be understood as
analyzing anomalies in general, and not just obvious
“near misses.” Many failure modes will manifest initially
as anomalies that signal the failure mode’s existence, and
create an opportunity to eliminate that failure mode,
without having been severe enough to cause an accident,
and without having occurred at a time or in a location
where an accident would have resulted, even at the given
severity. Accidents, then, are either previously-manifested
failure modes that were not successfully identified or
eliminated, or anomalies whose very first instantiation
was severe enough to cause failure, without a previous
manifestation having occurred.

In principle, precursor analysis has very significant
potential to accelerate the rate of Ilearning from
experience, and thereby reducing the accident rate. It is
well known? that precursor analysis improves the risk
situation in long campaigns; arguably, precursor analysis
has the potential to improve the risk situation even for
short campaigns. For this purpose, “precursor analysis”
needs to be formulated so as to analyze anomalies
(surprises) in general,?! and not just obvious near misses.
Anomalies whose failure mechanisms were integral to the
losses of Space Transportation Systems (STS) Challenger
and Columbia had been occurring within the STS fleet
prior to those accidents. Both the Rogers Commission
Report and the Columbia Accident Investigation Board
report found that processes in place at the time did not
respond to the prior anomalies in a way that shed light on
their true risk implications.!” In order to help to avoid
normalization of deviance, the activity needs to be
predicated on a normalcy map: ?? a prior characterization
of the envelope of system behaviors under normal
operation, based on the current understanding, and a
commitment to aggressively analyze penetrations of the
normalcy envelope. A normalcy map can be a byproduct
of a suitably formulated assurance case for the system,
showing that outcomes are satisfactory within that
envelope; what is added by this recommendation is a
requirement that if the envelope is seen to be penetrated,



then the assurance case needs to be revisited, and
reoccurrence of the anomaly should either be precluded,
or mitigated. These measures are not guaranteed to
eliminate newly identified failure modes on the first try,
but on average, they should be more effective than less
structured responses.

ILE. System Maturity and PRA Results

The current idea that PRA corresponds to a “mature”
system result is a hope, rather than an insight. By
definition, PRA cannot explicitly quantify ‘“unknown
unknowns” (UUs) (i.e., by listing them and modeling
them), and therefore, its results do not apply to a system
that has UU’s. However, within a naive picture,
maturation is seen as a process of eliminating UUs; it is
then argued that when the elimination is complete, the
system is mature, and the PRA has become valid (the
design has evolved to be consistent with PRA
assumptions). Within this picture, the failure modes are
all independent of each other, and every identified UU
failure mode is eventually eliminated without the system
being otherwise affected. There is no guarantee that the
sources of UU risk, which are not in the PRA, will be
reducible to a level of insignificance relative to the PRA
result as they are uncovered and mitigated. They may be
inherent in the system. Every system modification can
introduce new failure modes, and it may not be
practicable to eliminate any given failure mode entirely,
without increasing the probability of other failure modes.
This sort of reasoning suggests that PRA does not furnish
an estimate of mature system performance; rather, PRA
corresponds to a rough upper bound on the reliability of
the “mature” system, a bound that is attained only if

1. the UU failure modes are eliminated without
introducing new failure modes or exacerbating old ones,

2. the PRA faithfully models the remaining failure
modes, and

3. the performance commitments implied by the
PRA inputs (the basic event probabilities) are satisfied.

ILF. Treatment of Epistemic (State of knowledge)
Uncertainty in Decision Analysis

The standard formalism of decision-making under
uncertainty helps us decide what to do, given an
unambiguous (precise) statement of uncertainty (among
other things). The formalism does not eliminate
uncertainty; it tells us how to reconcile our decisions with
our values, given that uncertainty. It can tell us the
expected value of different testing strategies, given that
uncertainty. But under what conditions do we actually
have a precise statement of uncertainty?

In the early 1980’s, the state of practice in PRA was
to formulate a diffuse prior, update it with available data,
and live with the result; if data were sparse, the posterior
would tend to reflect uncertainty commensurate with that
of the prior, and as data accumulated, the posterior would
home in on the right answer.?* But short of having infinite
data to update with, even a diffuse prior will leave its
footprints in the posterior;* and in many cases, it is
essentially impossible to formulate a “precise” statement
of uncertainty.?> 2 We are aware of being uncertain, but
we cannot rigorously justify using any single, precisely
specified mathematical function as a description of that
uncertainty. Partly for reasons such as this, a significant
and growing community of practice rejects the claim that
we can justify a precise prior distribution in many cases.

The literature on “Robust Bayes” provides a sort of
gateway intuition on this.>® In Robust Bayes, instead of
writing down a specific distribution as the prior, we
define an ensemble of distributions that are deemed to
span the set of all distributions that are reasonably
consistent with our state of knowledge. Updating each
member of this ensemble of distributions, we obtain an
ensemble of posterior distributions; and in a favorable
case, all members of the ensemble will imply the same
decision. In contrast to this, the current state of practice is
either to subjectively pick a distribution or assume a flat
distribution between estimated upper and lower bounds
on a parameter, and then average over the distribution that
we picked. Unfortunately, neither current practice is
really correct. For some purposes at least, we do not get to
average over intervals.

Those issues relate to the treatment of epistemic
uncertainty, especially the practice of proceeding as if we
had a single explicit probability density distribution
describing our state of knowledge regarding model
parameters. Given such a distribution, for a properly-
formulated decision problem, we can use the distribution
to calculate “expectations:” quantities such as “expected
utility of selecting a specific decision alternative” or “the
expected value of reducing uncertainty regarding the
model parameters.” Standard decision analysis makes
essential use of these ideas. But unfortunately, if we do
not have explicit distributions for epistemic uncertainty,
we can no longer calculate expectations; we can only
bound the possibilities. This is the tip of the iceberg of
“probability bounds analysis.””?’

This is not a denial of Bayes’ “theorem.” Bayes’
theorem tells you what to do with the distributions (the
priors and the likelihood models), if you have them. But
by itself, Bayes’ theorem doesn’t guarantee that you have
them. The subjectivists argue that you do have them, or
have something that is close enough; but investigators
working with sparse data can observe the effects of prior
distributions, even ostensibly “noninformative” ones.?*

LT3



The skeptics argue that to the degree that the uncertainty
is significant, there is inherent imprecision in the
formulation of the prior, and the decision-maker needs to
understand the implications of this imprecision.

Some ways of addressing this issue call for working
with an ensemble of probability density functions (pdfs),
spanning the space of reasonable prior distributions in a
context-specific way to build some prior knowledge into
the ensemble of priors. Instead of specific pdfs for
specific performance metrics, this leads to an ensemble of
pdfs for performance metrics. So, instead of (for example)
computing expected utility of a given decision alternative,
we compute an ensemble of results for utility.

Unfortunately, we do not yet know how to weight the
members of this ensemble: we do not know how to
compute an expectation over the ensemble of results,
because we do not know which members are most likely
to be “right” in some sense. However, in a favorable case,
the “ensemble” of posterior distributions may be so
tightly clustered around a particular result that we can use
the results essentially in a traditional way. Even better, all
of the members of the ensemble may point to the same
decision, despite variation among the ensemble members.
The implications of this picture for “value of information”
are, essentially, that even within the revisionist picture, it
is sometimes clear that new information will add little or
nothing, because the uncertainties do not cause the
analysis results to straddle the effective decision criterion.
But in other cases, the results will straddle the criterion. In
those cases, we do not yet know how to calculate an
expected value of collecting more information, but we
know how to bound the prospective value of information
collection.?

III. SUMMARY

Making a risk acceptance decision about a novel
system 1is difficult: by definition, our understanding of a
“novel” system cannot be based on experience with that
system, and we must rely instead on modeling and
analysis. Sometimes, it is tempting to reason about system
adequacy based on a “worst case” scenario, but this is
very often a bad idea. Historical applications of worst-
case reasoning have had problems: either they push for
more margin in a system than is optimal, or they miss key
points that do not arise in consideration of the “worst”
case. Worst-case arguments promote that which ought not
to be done, and leave unconsidered that which ought to be
done.

For complex, high-stakes systems, risk-informed
decision-making supported by scenario-based modeling is
clearly the right way to go. Scenario-based modeling
provides the ability to rank risk contributors defensibly,

taking account of uncertainty, and then either come up
with suitable mitigations for those risks, or a suitable
rationale for accepting them.

Applying the scenario-based risk model in an inverse
mode has important benefits. That is, instead of
specifying input parameter values and trying to apply the
resulting risk result, it is useful to start with a notional
threshold value of risk, and ask what levels of system and
subsystem reliability need to be credited in order to
satisfy that threshold value. In general, there will be more
than one way to satisfy the threshold; deciding which one
of those ways to implement is “allocation.” Then, having
decided what to take credit for, and how much credit to
take, it is useful to ask what needs to be done in practice
in order to achieve these levels of reliability, and confirm
that they are being maintained (the “implementation”).
Finally, it is useful to consider whether all these
implementation measures are going to be practical, and if
not, to reconsider the allocation process.

In modeling a novel system, we have no way of being
sure that we have captured all of the important
contributors to risk; and even for the contributors that we
have captured, there may be very significant epistemic
uncertainties regarding completeness, frequencies, and
consequences. This limits our ability to assert compliance
with probabilistic thresholds, and places a premium on
maturing the system through testing and operation as
quickly as possible.
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