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Nowadays, it is widely accepted that scenario-based 
probabilistic risk assessment (PRA) is needed to support 
key decisions about new space flight systems. However, 
taking a risk estimate at face value and comparing it with 
a management “threshold” to determine whether a 
system is safe enough is too simplistic. This paper 
discusses considerations that need to accompany PRA 
results in particular decision contexts. The present point 
is not to criticize PRA itself; others have eloquently 
stressed the point that, for complex, high-stakes systems, 
whatever PRA’s imperfections, doing PRA is better than 
not doing it. But while all analysis results are hostage to 
underlying assumptions, this is especially true for PRA, 
and over the years, PRA results have occasionally been 
overinterpreted or otherwise misused. In short, there are 
more enlightened and less enlightened ways to 
understand and use PRA results. This paper discusses 
several issues relating to these concerns, and suggests 
ways of dealing with them. 
 

 
I. INTRODUCTION 

 
Compliance with classical engineering requirements 

on a system's physical performance can be demonstrated 
by running the system. However, the analog of that 
demonstration does not work for risk targets; it cannot in 
general be "proven" that an ambitious risk target is 
satisfied. If we want to demonstrate a very small per-
launch risk of failure, we would need a very large number 
of launches, along with a long list of prerequisite 
assumptions. Purely statistical evidence from a single 
trial, or even a group of trials, cannot "prove" that system 
reliability actually meets an explicit target, except that a 
single success is sufficient to show that the reliability is 
not zero.  

 
Instead of that sort of statistical demonstration, the 

decision-maker needs to rely on a safety assurance case.1-3 
The sort of case we are talking about is not absolute proof 
of “safety,” but it is a marshaling of the relevant evidence 
that we have, including a clear-eyed focus on the 
limitations of that evidence: limitations (various types of 

uncertainty) that the decision-maker must understand. 
Nowadays, for a complex, high-stakes system, such a case 
will include a scenario-based model of the risk associated 
with the system. This paper is about the proper role of 
scenario-based probabilistic risk analysis (PRA) in the 
formulation of such a case, and certain issues associated 
with applying PRA results in decision-making.  

 
Nowadays, it is widely accepted that scenario-based 

PRA is needed to support key decisions about new flight 
systems.4 However, taking a risk estimate at face value 
and comparing it with a management-specified 
“threshold” value to determine whether a system is safe 
enough is too simplistic.  

 
This being the case, why have risk targets? 

• Risk targets articulate a policy tradeoff: they 
express the level of risk that is deemed 
justifiable by a given class of missions.  

• Risk targets suggest: 
o how rigorous the risk analysis processes 

need to be (smaller risk targets imply 
more rigor),  

o how comprehensive and trustworthy the 
input evidence needs to be,  

o how hard the developers need to work 
in order to reduce the uncertainties.  

• Risk targets say something about the level of 
safety at which we no longer need to 
sacrifice performance for safety in the 
design.  

 
This paper discusses considerations that need to 

accompany PRA results in particular decision contexts. 
The present point is not to criticize PRA itself; others5 
have eloquently stressed the point that for complex, high-
stakes systems, whatever PRA’s imperfections, doing 
PRA is better than not doing it. But while all analysis 
results are hostage to underlying assumptions, this is 
especially true for PRA, and over the years, PRA results 
have occasionally been overinterpreted or otherwise 
misused. This paper discusses several issues relating to 
these concerns, and suggests ways of dealing with them. 



 
 
 
 

II. ISSUES 
 
II.A. Conditionality and Allocation  

 
A naïve description of the intent of a risk model 

would suggest that its purpose is to quantify “the” risk. 
Often, however, such a model is developed in the context 
of a need to make a technical case that the system is 
adequately safe. This circumstance affects the choices that 
are made during the modeling effort. Any convergent 
modeling effort will initially try to focus on the 
subsystems that are going to make the most difference in 
the results; additionally, if the results are going to be 
compared with a risk target, modeling attention may focus 
on the systems whose performance can be modeled with 
the least uncertainty, because the resulting analysis will 
be more convincing to reviewers of the case. Finally, in a 
world of finite resources, when the answer seems to be 
good enough to make the case convincingly, additional 
modeling effort will be reduced. 

 
On the other hand, sometimes, in order to attain 

results suggesting that the system is adequately safe, it 
may have been necessary to credit capabilities that are 
marginal in some sense. This complicates the 
interpretation of risk analysis results. Extremely low 
failure probabilities need to be viewed with skepticism, 
and should be presumed to have large uncertainties. 

 
Broadly speaking, there are only certain ways to 

drive down the model result for a risk metric. Those ways 
include the following: take credit for more success paths 
(e.g., more redundancy) to perform a critical safety 
function; reduce the potentials for human error and 
common cause failure probability, along with the model’s 
assessment of those potentials; incorporate in the design, 
and take credit for, greater operating margin; or take 
credit for smaller frequencies for system perturbations 
(e.g.,   initiating events) and/or lower basic event 
probabilities. Each of these ways may add to system cost 
and complexity: increased redundancy means increased 
capital cost and increased volume and mass (in the case of 
space systems); reducing common cause failure potential 
implies at least some redundancy, along with additional 
engineering effort to eliminate common influences on 
nominally redundant elements; smaller “independent” 
failure probabilities may call for increased quality 
assurance (QA), increased testing, and so on, and 
reducing assessed human error probabilities may call for 
all sorts of things.   

 

In practice, we do not infallibly forecast component 
reliability. There is no way to absolutely guarantee a low 
failure probability for a given active component, even if 
conscientious effort is exerted to perform tests and 
maintenance at appropriate frequencies. The component-
level equivalent of “unknown unknowns” may act on the 
component, or there may be a lapse in a maintenance 
activity. Or the actual service conditions may violate the 
component’s engineering design basis in an unappreciated 
way. Correspondingly, the United States (US) Nuclear 
Regulatory Commission (NRC) imposes failure-tolerance 
requirements in safety systems of nuclear power plants. 
Similarly, the National Aeronautics and Space 
Administration (NASA) has failure-tolerance 
requirements for its human-rated space systems.   

Some years ago, all US nuclear power plants were 
required6 by the NRC to carry out “Individual Plant 
Examinations (IPEs)” to check for vulnerabilities to 
beyond-design-basis scenarios. There was no official 
requirement to demonstrate satisfaction of a particular 
target value of the risk metrics (one metric being “core 
damage frequency”), but most plants reported values 
comfortably satisfying a perceived target value for that 
metric (related to consistency with the Commission’s 
Safety Goal Policy Statement7).  

 
NASA has instituted requirements for establishing 

Agency-level safety thresholds and goals that define 
“long-term targeted and maximum tolerable levels of risk 
to the crew as guidance to space systems developers in 
evaluating “how safe is safe enough” for a given type of 
mission.”8 Safety thresholds specify the minimum 
tolerable/allowable level of crew safety (maximum 
tolerable level of risk) for the design in the context of its 
design reference mission, and are to be used by the 
Agency as criteria for program acquisition decisions.  

 
Given all this, it is natural to ask what capabilities 

have been credited in the risk model in order to reach the 
desired risk target. For IPEs, the answer to that question 
was captured in a data base,9 in terms of the success 
strategies invoked by the plant for each initiating event 
modeled, and the system-level success paths available to 
implement each strategy. This provided a visual 
indication of redundancy and diversity in system 
capability, which could then be roughly correlated with 
the risk analysis results. 

 
For some purposes, it is useful to recast this 

discussion as an inverse problem. Think of the decision 
problem of optimizing a design: deciding what to include 
in the design (e.g., how much redundancy), and what 
levels of performance to commit to, and how to assure 
that those levels of performance are coming true. This is 
related to the problem of deciding what the PRA model 
inputs need to be, in order for the PRA’s output risk 



metrics to satisfy current objectives. Put differently: What 
does the PRA need to take credit for, in order to satisfy 
current objectives? And how much credit does it need to 
take? What failure probabilities can we tolerate, and what 
do we need to do in order to justify them? As is the case 
for many inverse problems, there are different methods 
for developing answers to such questions. One method is 
“Top Event Prevention Analysis,” a method for finding 
answers to these questions that are optimal in some 
sense.10-12 The decision to implement one of these 
answers is “allocation,” discussed further below. 
 
II.B. “Data” 

 
There exist many sources of “data” intended for use 

in PRAs. But even if such data are derived from a large 
experience base, they do not represent constants of nature, 
and their applicability to a new system cannot be taken for 
granted. To claim a small failure probability in a specific 
system is to claim an engineering accomplishment. Even 
if a small probability of failure of a particular component 
seems justifiable based on operating experience, the claim 
implicit in using that number in an analysis is that the 
engineering codes and standards applied to the component 
being analyzed will be at least as rigorous as the codes 
and standards that were applied to the components whose 
operation gave rise to the data. Attainment and 
maintenance of a low level of risk imply a decision to 
invest to attain that level of reliability performance. This 
includes key design attributes, including levels of 
redundancy and diversity, along with other reliability 
assurance activities: what to include in the actual system, 
how to configure it, and how to operate it, in such a way 
that the project team actually succeeds in achieving the 
engineering accomplishments credited in the risk model, 
so that the model reflects the actual safety performance of 
the system. 

 
These considerations operate even for a unitary 

decision-maker: one who is making decisions affecting 
only himself or herself. If the decision-maker is deciding 
on behalf of other stakeholders, it is even more important 
to carefully establish the basis for a claim of high 
reliability.  
 

It is appropriate to use risk models to reason about 
these things, provided that the analyst thinks in terms of 
functional success paths, rather than individual 
components; but attaching credence to a low level of risk 
calls for appreciation of the difficulties in general of 
claiming low levels of risk, and the demands placed by 
such claims on the rigor of the methods used to argue 
those low levels of risk. Moreover, the difficulties of 
actually fulfilling those claims need to be appreciated. 
This is discussed below. 

 

II.C. Performance-Based Approaches 
 
The previous subsection discussed a thought process 

in which the structure of a risk model was used to allocate 
performance over systems, subsystems, and even 
components in some optimal fashion. But the allocation is 
only part of the story. It is then necessary to formulate the 
implementation: the approach to actually achieving the 
levels of performance that have been allocated. For 
example, if we are making decisions that are predicated 
on allocated levels of system reliability, we need for that 
level of system reliability to be attained in practice, so we 
need to think about how to ensure it. In fact, consideration 
of the practicality and the cost of implementation should 
be considered in the process of downselecting to a 
particular design approach. 

 
In the past, in some domains, it was assumed that in 

order to achieve adequate levels of reliability, it was 
sufficient simply to levy prescriptive requirements on 
system providers to follow specific engineering practices. 
This may have been helpful, but it turned out not to assure 
highly reliable performance in all cases; and in some 
cases, compliance with the prescriptive requirements was 
found to be burdensome.  Appreciation of these 
circumstances (ineffectiveness and burden) led to the idea 
of “performance-based” approaches.13, 14 In a 
performance-based approach, instead of hoping that 
burdensome prescriptive requirements will justify the 
presumption of desired levels of system performance, one 
measures (verifies) enough about system performance to 
be sure of what level of performance is, in fact, being 
attained. It may be found that good performance is 
attained even if the burden of compliance with 
prescriptive requirements is reduced. 

 
This is illustrated in Fig. 1, which contains a 

hierarchy of levels of integration at which requirements 
could be levied, and/or performance could be measured.  

 



 
 
Fig. 1. Example Hierarchy of Functional Performance 

Suppose that we have a firm idea of the reliability 
that we need at the system / function level, and we are 
deciding how best to allocate performance over the 
subsystems to achieve the desired reliability performance 
at the higher level.  It is easy enough to default to process 
requirements imposed at lower levels of Fig. 1, and hope 
that those requirements yield subsystem performance that 
achieves the higher goal; but how would we know that 
adherence to process was actually giving us the reliability 
that we allocated? It would be much more satisfactory to 
be able to confirm the reliability of the subsystems. That 
way, we would have at least some information about what 
level of reliability is being attained at the higher level.  

 
This is the essence of what is meant by 

“performance-based,” and why it is a desirable approach, 
provided that it is practical. In general, the phrase 
“performance-based” is applied to implementations that 
are based on measuring performance at higher levels of 
this hierarchy, as opposed to relying on prescriptive 
requirements, which may not be applicable at higher 
levels. This is not to say that it is always practical to 
measure reliability at the function level: even if we can do 
a certain amount of functional testing, it may be 
impractical to actually verify functional reliability by 
testing a large number of times. In a large-scale system, 
testing may be limited to verification that the function can 
succeed with appropriate margin; our understanding of 

functional reliability will need to be derived by 
integrating the results of analysis, and testing at lower 
levels of the hierarchy. This may still be better than 
simply requiring providers to follow generic engineering 
practices and document their processes. 
 

These considerations are discussed in several 
references,13-15 including steps for formulating a 
maximally performance-based implementation for a given 
system. The bottom line is that while pure performance-
based approaches are very difficult to formulate, it is 
straightforward to formulate implementations that 
combine performance-based elements with process-based 
elements and with more prescriptive elements, and it 
should generally be beneficial to do so. But the state of 
practice of modeling the actual benefits of performance-
based approaches is still evolving.    
 
II.D. Risk Model Incompleteness, Precursor 
Analysis, and Reliability Growth 
 

Scenario-based Quantitative Risk Analysis (QRA) is 
“synthetic:” that is, it builds up (synthesizes) a list of risk 
contributors, through various processes that we will refer 
to here as “hazard analysis” (including everything from 
Hazard and Operability studies to fault-tree / event-tree 
analysis and beyond). This is contrasted with actuarial 
risk analysis, in which analysts build up statistics on 
occurrence rates of particular event consequences, 
essentially without regard to the details of the scenarios 
leading up to the outcomes that are captured in the 
statistics. An example of the latter is assessment of the 
risk of dying in an automobile accident; quite a bit of 
statistical information is available to support such an 
assessment. In the US, tens of thousands of people die 
every year in auto accidents, and this fact is often invoked 
in discussions of the relative safety of different 
transportation modalities. It is possible to parse these data 
in much more detail, to reflect the variation in fatality 
rates with geographic area, time of day, day of the week, 
make of car, etc. However, it is not (yet) typical to try to 
predict this rate by building up from scratch a detailed 
synthetic model of how people drive: enumerating all 
possible accidents, such as Driver A being distracted or 
drowsy during an approach to a red light or a stop sign, 
while another car is approaching the intersection from one 
side or the other when Driver A heedlessly enters the 
intersection, and so on.  If we had no access to statistics 
and tried to estimate the rate of fatal accidents from such 
an exercise, we might later find that we had left out quite 
a bit, especially if we had little or no experience driving 
different cars in a broad range of road conditions, weather 
conditions, and traffic conditions, not to mention 
inebriation. 
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We have learned a great deal about the causes of 
automobile accidents, but a comparable level of 
completeness is very difficult to achieve in the 
development of a synthetic risk model for a novel system. 
We may successfully identify some previously-unknown 
failure modes, but we are likely to miss some others, so 
that our model does not reflect contributions from 
“unknown unknowns.” 

 
Q: Given that we cannot eliminate UU’s a priori: 
what CAN we do? 
A: Learn from operating experience as 
expeditiously as possible. 
 
Published reviews of launch vehicle history (see, for 

example, Morse et al.16) and a body of experience 
reflected in MIL-HDBK-18917 indicate that the first few 
flights of a novel launch technology are relatively risky, 
because of previously unknown or underappreciated 
failure modes. Some launch systems have done better 
than others, but on average, they are relatively risky early 
in deployment, and then improve with time (possibly with 
some ups and downs), as a result of changes to design and 
operation that result from learning from experience.  

 
This learning process is what reliability growth 

modeling captures. Reliability growth modeling is not 
perfect, but it can be made to fit available information, 
and the implied narrative offers some actionable insights.  

• Reliability growth modeling focuses on 
accomplished results viewed from the outside in, rather 
than trying to model launch vehicle behavior a priori by 
listing, and then modeling, failure modes. 

• Because reliability growth modeling simply 
keeps score, all influences on reliability that operate in a 
particular case are implicitly taken into account, including 
organizational factors. Classical (fault-tree / event-tree) 
PRA can be made to try to account for organizational 
behavior, but reliability growth modeling is really about 
the whole complex of System + Organization + 
Environment + … and is moreover empirical. Classical 
PRA can incorporate empirical insights but is 
fundamentally synthetic in nature. 

• Reliance on “process” to identify all failure 
modes has not been successful in past programs. It may 
be hoped that better process will do a better job of this in 
future developments, but it is doubtful that early-flight 
risk can be eliminated by better process alone. Arguably, 
early-flight risk can be reduced, but not eliminated, 
particularly for new technologies. If it were 
straightforward to eliminate early-flight risk, it should 
have been done by now. 

• Reliability-growth modeling has been successful 
in describing program histories. After a certain number of 
flights, and a certain number of failures have been 
observed and largely eliminated, and the growth curve 

looks predictable, some argument can be made about 
current system reliability. But reliability-growth modeling 
is really about overall trends rather than being predictive 
of specific flight outcomes, and is only weakly predictive 
of first-flight risk. The “prediction” is this: Unless the 
subject system is atypical of history, there is a very real 
chance of one or more failures in the first several flights. 

 
To some extent, the rate of learning from experience 

is under management control.18 It cannot be increased 
arbitrarily, because we cannot learn from things that have 
not been identified in the hazard analysis and also have 
not happened yet. However, we can try to assure that 
anomalies that occur in testing or in flight are understood 
as completely as possible. One name for this is 
“precursor” analysis,19 but this needs to be understood as 
analyzing anomalies in general, and not just obvious 
“near misses.” Many failure modes will manifest initially 
as anomalies that signal the failure mode’s existence, and 
create an opportunity to eliminate that failure mode, 
without having been severe enough to cause an accident, 
and without having occurred at a time or in a location 
where an accident would have resulted, even at the given 
severity. Accidents, then, are either previously-manifested 
failure modes that were not successfully identified or 
eliminated, or anomalies whose very first instantiation 
was severe enough to cause failure, without a previous 
manifestation having occurred. 

 
In principle, precursor analysis has very significant 

potential to accelerate the rate of learning from 
experience, and thereby reducing the accident rate. It is 
well known20 that precursor analysis improves the risk 
situation in long campaigns; arguably, precursor analysis 
has the potential to improve the risk situation even for 
short campaigns. For this purpose, “precursor analysis” 
needs to be formulated so as to analyze anomalies 
(surprises) in general,21 and not just obvious near misses. 
Anomalies whose failure mechanisms were integral to the 
losses of Space Transportation Systems (STS) Challenger 
and Columbia had been occurring within the STS fleet 
prior to those accidents. Both the Rogers Commission 
Report and the Columbia Accident Investigation Board 
report found that processes in place at the time did not 
respond to the prior anomalies in a way that shed light on 
their true risk implications.19 In order to help to avoid 
normalization of deviance, the activity needs to be 
predicated on a normalcy map: 22 a prior characterization 
of the envelope of system behaviors under normal 
operation, based on the current understanding, and a 
commitment to aggressively analyze penetrations of the 
normalcy envelope. A normalcy map can be a byproduct 
of a suitably formulated assurance case for the system, 
showing that outcomes are satisfactory within that 
envelope; what is added by this recommendation is a 
requirement that if the envelope is seen to be penetrated, 



then the assurance case needs to be revisited, and 
reoccurrence of the anomaly should either be precluded, 
or mitigated. These measures are not guaranteed to 
eliminate newly identified failure modes on the first try, 
but on average, they should be more effective than less 
structured responses. 
 
II.E. System Maturity and PRA Results 
 

The current idea that PRA corresponds to a “mature” 
system result is a hope, rather than an insight. By 
definition, PRA cannot explicitly quantify “unknown 
unknowns” (UUs) (i.e., by listing them and modeling 
them), and therefore, its results do not apply to a system 
that has UU’s. However, within a naïve picture, 
maturation is seen as a process of eliminating UUs; it is 
then argued that when the elimination is complete, the 
system is mature, and the PRA has become valid (the 
design has evolved to be consistent with PRA 
assumptions). Within this picture, the failure modes are 
all independent of each other, and every identified UU 
failure mode is eventually eliminated without the system 
being otherwise affected. There is no guarantee that the 
sources of UU risk, which are not in the PRA, will be 
reducible to a level of insignificance relative to the PRA 
result as they are uncovered and mitigated. They may be 
inherent in the system.  Every system modification can 
introduce new failure modes, and it may not be 
practicable to eliminate any given failure mode entirely, 
without increasing the probability of other failure modes. 
This sort of reasoning suggests that PRA does not furnish 
an estimate of mature system performance; rather, PRA 
corresponds to a rough upper bound on the reliability of 
the “mature” system, a bound that is attained only if 

 
1. the UU failure modes are eliminated without 

introducing new failure modes or exacerbating old ones,  
2. the PRA faithfully models the remaining failure 

modes, and  
3. the performance commitments implied by the 

PRA inputs (the basic event probabilities) are satisfied. 
  
II.F. Treatment of Epistemic (State of knowledge) 
Uncertainty in Decision Analysis 

 
The standard formalism of decision-making under 

uncertainty helps us decide what to do, given an 
unambiguous (precise) statement of uncertainty (among 
other things). The formalism does not eliminate 
uncertainty; it tells us how to reconcile our decisions with 
our values, given that uncertainty. It can tell us the 
expected value of different testing strategies, given that 
uncertainty. But under what conditions do we actually 
have a precise statement of uncertainty? 

 

In the early 1980’s, the state of practice in PRA was 
to formulate a diffuse prior, update it with available data, 
and live with the result; if data were sparse, the posterior 
would tend to reflect uncertainty commensurate with that 
of the prior, and as data accumulated, the posterior would 
home in on the right answer.23 But short of having infinite 
data to update with, even a diffuse prior will leave its 
footprints in the posterior;24 and in many cases, it is 
essentially impossible to formulate a “precise” statement 
of uncertainty.25, 26 We are aware of being uncertain, but 
we cannot rigorously justify using any single, precisely 
specified mathematical function as a description of that 
uncertainty. Partly for reasons such as this, a significant 
and growing community of practice rejects the claim that 
we can justify a precise prior distribution in many cases. 
 

The literature on “Robust Bayes” provides a sort of 
gateway intuition on this.25 In Robust Bayes, instead of 
writing down a specific distribution as the prior, we 
define an ensemble of distributions that are deemed to 
span the set of all distributions that are reasonably 
consistent with our state of knowledge. Updating each 
member of this ensemble of distributions, we obtain an 
ensemble of posterior distributions; and in a favorable 
case, all members of the ensemble will imply the same 
decision. In contrast to this, the current state of practice is 
either to subjectively pick a distribution or assume a flat 
distribution between estimated upper and lower bounds 
on a parameter, and then average over the distribution that 
we picked. Unfortunately, neither current practice is 
really correct. For some purposes at least, we do not get to 
average over intervals.  

 
Those issues relate to the treatment of epistemic 

uncertainty, especially the practice of proceeding as if we 
had a single explicit probability density distribution 
describing our state of knowledge regarding model 
parameters. Given such a distribution, for a properly-
formulated decision problem, we can use the distribution 
to calculate “expectations:” quantities such as “expected 
utility of selecting a specific decision alternative” or “the 
expected value of reducing uncertainty regarding the 
model parameters.” Standard decision analysis makes 
essential use of these ideas. But unfortunately, if we do 
not have explicit distributions for epistemic uncertainty, 
we can no longer calculate expectations; we can only 
bound the possibilities.  This is the tip of the iceberg of 
“probability bounds analysis.”27 

This is not a denial of Bayes’ “theorem.” Bayes’ 
theorem tells you what to do with the distributions (the 
priors and the likelihood models), if you have them. But 
by itself, Bayes’ theorem doesn’t guarantee that you have 
them. The subjectivists argue that you do have them, or 
have something that is close enough; but investigators 
working with sparse data can observe the effects of prior 
distributions, even ostensibly “noninformative” ones.24 



The skeptics argue that to the degree that the uncertainty 
is significant, there is inherent imprecision in the 
formulation of the prior, and the decision-maker needs to 
understand the implications of this imprecision.  
 

Some ways of addressing this issue call for working 
with an ensemble of probability density functions (pdfs), 
spanning the space of reasonable prior distributions in a 
context-specific way to build some prior knowledge into 
the ensemble of priors. Instead of specific pdfs for 
specific performance metrics, this leads to an ensemble of 
pdfs for performance metrics. So, instead of (for example) 
computing expected utility of a given decision alternative, 
we compute an ensemble of results for utility.  

 
Unfortunately, we do not yet know how to weight the 

members of this ensemble: we do not know how to 
compute an expectation over the ensemble of results, 
because we do not know which members are most likely 
to be “right” in some sense. However, in a favorable case, 
the “ensemble” of posterior distributions may be so 
tightly clustered around a particular result that we can use 
the results essentially in a traditional way. Even better, all 
of the members of the ensemble may point to the same 
decision, despite variation among the ensemble members. 
The implications of this picture for “value of information” 
are, essentially, that even within the revisionist picture, it 
is sometimes clear that new information will add little or 
nothing, because the uncertainties do not cause the 
analysis results to straddle the effective decision criterion. 
But in other cases, the results will straddle the criterion. In 
those cases, we do not yet know how to calculate an 
expected value of collecting more information, but we 
know how to bound the prospective value of information 
collection.28 

 
III. SUMMARY 

 
Making a risk acceptance decision about a novel 

system is difficult: by definition, our understanding of a 
“novel” system cannot be based on experience with that 
system, and we must rely instead on modeling and 
analysis. Sometimes, it is tempting to reason about system 
adequacy based on a “worst case” scenario, but this is 
very often a bad idea.  Historical applications of worst-
case reasoning have had problems: either they push for 
more margin in a system than is optimal, or they miss key 
points that do not arise in consideration of the “worst” 
case. Worst-case arguments promote that which ought not 
to be done, and leave unconsidered that which ought to be 
done. 

 
For complex, high-stakes systems, risk-informed 

decision-making supported by scenario-based modeling is 
clearly the right way to go. Scenario-based modeling 
provides the ability to rank risk contributors defensibly, 

taking account of uncertainty, and then either come up 
with suitable mitigations for those risks, or a suitable 
rationale for accepting them.  

 
Applying the scenario-based risk model in an inverse 

mode has important benefits. That is, instead of 
specifying input parameter values and trying to apply the 
resulting risk result, it is useful to start with a notional 
threshold value of risk, and ask what levels of system and 
subsystem reliability need to be credited in order to 
satisfy that threshold value. In general, there will be more 
than one way to satisfy the threshold; deciding which one 
of those ways to implement is “allocation.” Then, having 
decided what to take credit for, and how much credit to 
take, it is useful to ask what needs to be done in practice 
in order to achieve these levels of reliability, and confirm 
that they are being maintained (the “implementation”). 
Finally, it is useful to consider whether all these 
implementation measures are going to be practical, and if 
not, to reconsider the allocation process. 

 
In modeling a novel system, we have no way of being 

sure that we have captured all of the important 
contributors to risk; and even for the contributors that we 
have captured, there may be very significant epistemic 
uncertainties regarding completeness, frequencies, and 
consequences. This limits our ability to assert compliance 
with probabilistic thresholds, and places a premium on 
maturing the system through testing and operation as 
quickly as possible. 
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