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conventional SQUID-based MEG

Elekta Neuromag® system

• Use superconducting quantum
interference device (SQUID)
magnetometer/gradiometer sensors.

• SQUID Sensitivity: ~2-3 fT/Hz112.

• Multi-channel "helmet" arrangement
enables millimeter spatial resolution.

• Cryogenic liquid helium apparatus
required to keep sensors at 4 Kelvin.
- High initial cost and substantial
maintenance costs.
- Large size and not portable.
- Inflexible geometry of helmet.

MEG with Atomic Magnetometers
• Atomic magnetometers (AMs) operate
above room temperature, ~150 °C.
- No cryogenic infrastructure and
inflexible Dewar walls.

• Our concept: 4-channel AM sensor
modules that are arrayed around the
head.

Advantages:
• Smaller and potentially much lower cost

systems.
• Reconfigurable arrays to accommodate

variable head size from small children to
large adults.

• Minimize sensor-to-head distance, improve signal size.

Atomic Magnetometer Array

Disadvantages:
• High sensitivity only near zero magnetic field (< 10 nT)

- Magnetic coils must be used to cancel ambient fields.
• Lower bandwidth than SQUIDs (-100 Hz)

- Operating at both high bandwidth and high sensitivity presents a
challenge.
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Scaling up to Larger Arrays

Project Goals

• 36 channel AM array, reconfigurable (position,
head size)

• Human-sized shield, cheaper/smaller installation
• Compare AM and SQUID recordings of human

subjects

Major tasks
1. Redesign, miniaturize sensor (4 cm X 4 cm area

on head)
• < 10 mHz112 sensitivity, > 100 Hz bandwidth

2. Carefully model human-sized shield
performance

3. Design/model array for minimum interference
• Modulation coil fields are seen by neighboring sensors

4. Adapt source localization codes for AM
geometry
• Brainstorm for localization and Fieldtrip for modeling

5. Construct array; source localization with
phantom

6. Auditory/somatosensory recordings on human
subjects with AM and SQUID systems
• Coregistration, source localization comparison
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Signal out

PM fiber for 795
nm and 780 nm

lasers

4-CH balanced PD

Lens

A/2: 780 nm
A/4: 795 nm

Polarizer

2nd Generation 4-Channel Magnetometer

Polarizing Beam
Splitter

A/2

Interference
filter: Pass 780 nm

Collimating
lens

Diffractive optical element

Features:
• Switch to 4 separate beams, -18 mm baseline.
• Change vapor cell composition

• Previous: 10 mm long, 600 Torr He, 30 Torr N2.
• Current: 4 mm long, 600 Torr N2.

• Minimize distance from the head to the vapor cell: 9 mm.
• Air cooling for oven housing instead of vacuum insulation.
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The 4 magnetometers are similar

• Cell: 25 x 25 x 4 mm3, 600 Torr N2
• •'°2.5 mm FWHM beam diameters
• Current sensitivity: < 10 fT/Hz1/2

over 5-100 Hz
• Bandwidth: -85 Hz
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An AM array measuring the field components
transverse to the scalp gives similar signals to
planar gradiometers measuring the radial
component of the field.

Gradiometry improves the performance
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AM Localization Performance
compared SQUID sensors

AM & SQUID sensor array localization performance

Legend:

Red: AM 36 channel arrays (noise 10 fr nns/arpt(Hz))
Green: AM n channel arrays (noise 10 fT nnslsort(Hz»
Blue: 36 chan. axial SQUID Magnetomekr (noise 4 fT rms/scpt(Hz»
Magenta: 27 ehan. planar SQUTD Grachometer (noise 4 ft rms/sqrt(Hz))

Sensor gap for SQUIDs 10 min greater than for AMs

Depth

5

45 rnm
.1111111 Tn. I

l I I I I I I I I f I I 1 I
Angle -0.25 -0.15 o 0.15 0.25 -0.25 -0.15 0 0.15 0.25-0.25 -0.15 0 0.15 0.25-0.25 -0.15 0 0.15 0.25

2015

These simulations show that the localization of
the AM array is similar to that of SQUID-based
systems covering a similar area of the head.
Only sensor noise is taken into account.

Magnetic Field Component

---

SQUID

--

While SQUIDs measure the
radial magnetic field component
(perpendicular to the scalp),
AMs measure the field
components tangential to the
scalp.

Source and Sensor Locations
Model brain sphere (r=79 mm)

AM sensor locations

(r=89, 94, 99, 109 mm)

Source dipole locations (depth=15, 25, 35, 45 mm;

elevation angle = -0.25, -0.15, 0, 0.15, 0.25 radians)

Simulations study a 3 x 3 array
of 4-channel atomic
magnetometers, looking at
source localization
performance.
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Fiber-optic coupling:
• One laser may drive multiple sensors.

Co-linear pump/probe beams:
• Compact construction.

Independent control of each beam.
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Head to vapor cell center distance: 3 cm.

Gradiometry performed with quadrant
photodiode.

• 11e2 diameter of 20 mm gives a
gradiometer baseline of -4-5 mm.

MEG Measurements with ist Generation, 4-Channel Magnetometers
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Atomic magnetometer installed in the
magnetically shielded room at the
Mind Research Network

• Conventional magnetically shielded
room has large DC and AC fields.

• Ambient DC field of -100 nT is canceled
with large cancellation coils surround
the subject.

• Coils installed on the magnetometer
provide the required field modulation
and define the sensitive axis.
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MEG Sensor: Single Channel vs Gradiometry
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Auditory Stimulation

Atomic Magnetometer

320 stimuli
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• 1000 Hz auditory stimulus applied to
both ears

• Recordings from left/right sensors
measured simultaneously

• Recordings of vertical component

• Bandpass filter: 2-55 Hz, Trials
averaged: 330

• Use a signal space projection
technique to cancel noise.

• With noise projected out, a clear M100
response is observed.

300

200

100

0
LT_
-100

-200

-100

• Comparisons of brain activity
recorded with the AM and the
Elekta-Neuromag MEG instrument
are quite favorable.

• 1000 Hz tones presented for 250
ms presented at intervals of either
0.9 s, 1.0 s, or 1.1 s. Data
averaged and filtered 1-40 Hz.

• Differences in the waveforms are
likely due to the differences in the
measurement of field components.
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