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Abstract

In the context of text-based analysis workflows, we propose that an effective analytic
tool facilitates triage by a) enabling users to identify and set aside irrelevant content
(i.e., reduce the complexity of information in a dataset) and b) develop a working
mental model of which items are most relevant to the question at hand. This LDRD
funded research developed a dataset that is enabling this team to evaluate propose
normalized compression distance (NCD) as a task, user, and context-insensitive
measure of categorization outcomes (Shannon entropy is reduced as order is
imposed). Effective analytics tools help people impose order, reducing complexity in
measurable ways.  Qur concept and research was documented in a paper accepted
to the ACM conference Beyond Time and Error: Novel Methods in Information
Visualization Evaluation, part of the IEEE VisWeek Conference, Baltimore, MD,
October 16-21,2016.  The paper is included as an appendix to this report.
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1. INTRODUCTION

Consider the many tools claiming to help analysts find valuable information in very large datasets:
Palantir, SAS TextMiner, IBM LanguageWare, and others. The core of any analytical tool is the ability
to select smaller subsets of that data that share things in common/ How do I know if one of these
analysis/visualization tools is “better” than another for analytic workflows at enabling a person to distill
data? Informatics researchers have focused on “insight” as a key outcome measure for comparing the
goodness of analytic software — but what counts as an “insight,” and how to measure those events, is an
open question and not general. Most measures are subjective and/or tied to context. This makes it very
difficult to compare across different tools and problems. This isn’t satisfactory. We need a robust,
quantitative, context-independent metric that indicates how well an analytic tool promotes human
performance. That metric should be based in a theory of human-information interaction that aligns with
known principles of human perception and cognition. We have a candidate metric that meets these

criteria: complexity reduction, measured using algorithms such as normalized compression distance
(NCD).

This report briefly describes how we developed a dataset that is enabling us to examine NCD and other
information theoretic measures as process metrics to assess whether a visual analytics tool is enabling
the user to impose order on otherwise unwieldy text datasets.

2. PROBLEM STATEMENT

Information Visualization and Visual Analytics (InfoVis/VA) comprise the interdisciplinary science,
engineering, and design of using computer hardware and software to augment the perceptual and
cognitive experience of discovery, understanding, and insight. The idea that visualization of data and
information promotes insight has inspired an entire generation of computer scientists to develop
visualizations and interactive visual analytics aimed at helping humans discover, learn, explain, and
make decisions with data. However, ‘insight’ is a notoriously difficult event to measure, which makes it
difficult to implement in the applied context of evaluating a software tool.

In its place, we propose process metrics that enable researchers to examine the degree to which a system
enables people to reduce the amount of information they are dealing with, so they can focus their
attention on the items that are germane to the topic at hand. These process metrics recognize that all
analysis workflows begin with information collection and categorization, or “triage,” which reduces the
complexity of large information sources while enabling users to build a mental model of content in
relation to a question of interest. In the context of text-based analysis workflows, we propose that an
effective analytic tool facilitates triage by a) enabling users to identify and set aside irrelevant content
(i.e., reduce the complexity of information in a dataset) and b) develop a working mental model of
which items are most relevant to the question at hand. Effective analytics tools help people impose
order, reducing complexity in measurable ways.

One such metric is normalized compression distance (NCD), as a task, user, and context-insensitive
measure of categorization outcomes. NCD is a feature- and parameter-free way of evaluating the
similarity of two or more information objects [53]. The simplicity and generalizability of such
compression-based measures lend them to a wide range of applications, and we are intrigued by the idea
of using them as a process measure of information interaction in visual analytic systems.



2. RESEARCH ACTIVITY

In summer 2016, the Exploratory Express program in Sandia National Laboratories LDRD office
provided $60K in funding for our team to develop a dataset that would enable us to study NCD and
similar information-theoretic measures for assessing the impact of automated support in data and
information categorization tasks.

We proposed and executed a counterbalanced, between-subjects data collection activity in which 18
research participants drawn from the Sandia National Laboratories’ professional population used one of
three tools to a) categorize a diverse set of documents and b) use a subset of the documents to examine a
real-world intelligence problem, namely the involvement of Russian assassins in the polonium poisoning
of Russian oligarch-turned-dissident Alexander Litvenenko in London (November 2006). We provided
participants with an electronic set of 370 documents, ranging from dense journal articles, to government
reports, to articles from popular news magazines. Articles directly related to Litvenenko murder
comprised approximately 20% of the total dataset.

The Sandia Human Studies Board approved our proposed data collection activity in July 2016. We
recruited participants through an advertisement in the Sandia Daily News. Participants were accepted
on a first-come basis and randomly assigned to one of three different workflows, or conditions. Two of
the conditions use the Sandia National Laboratories’ Citrus document analysis platform, while a third
“control” condition requires participants to perform the task using the Windows filing system.

Participants spent a total of four hours over two days in this activity. On the first day of the activity, we
trained all participants in basic use of the Durian tool in the Sandia Citrus text analysis platform. We
then randomly assigned participants to one of the two Citrus conditions (both of which used different
functionalities in Durian), or to the Windows file system condition. We then told the participants to
review and sort as many of the documents as possible into topical categories, using whatever
categorization scheme they deemed appropriate. We gave participants 90 minutes to complete the
categorization activity. Once the time was up, each participant filled out the NASA Task Load Index
(NASA TLX), a widely used tool for eliciting the subjective experience of workload.

On the second day of the activity, participants were given two hours to use the same dataset to answer a
set of questions about the Alexander Litvinenko murder. We asked them to create a document folder or
“bin” containing the items they used to respond to the questions. We also requested that they create a
separate bin containing items they would recommend for understanding the impact of the Litvinenko
murder on relations between the Russian government and its European and American counterparts. At
the two hour time mark we stopped work and requested the participants to fill out a second copy of the
NASA TLX.

3. OUTCOMES

This LDRD investment enabled us to assemble a unique experimental dataset that we can use to evaluate
our ideas about compression and other distance measures as process metrics for evaluating automated
support for text analysis tools and workflows. We also wrote a position paper that included a summary
of our then-ongoing study for submission to the ACM Beyond Time and Error: Novel Methods in
Information Visualization Evaluation (BeLIV) conference, held as part of the IEEE VIsWeek/VAST



Conference (Baltimore, MD, October 16-21, 2016). The paper was accepted in the first round of
reviews after minor revisions and will be presented at the conference.

We are continuing to analyze the data collected in FY 16 and will be compiling our findings in a journal-
quality publication. We expect the data to show that people can successfully sort documents into
semantically coherent sets, and that our selected compression metric should indicate greater within-
category similarity compared with the dataset treated as a single category. At the same time, we expect
that between-category similarity to fall as people create “patches” of semantically related information;
i.e., as they add structure to the unstructured mess of information that they began with. We also expect
that automated support for categorization will facilitate users’ efforts to impose structure on the chaos
we give them. Specifically, when using Citrus, we expect research participants will organize documents
into categories more quickly and efficiently, with greater reductions in NCD compared to performance
of the same task using the Windows file system on a computer desktop.

We will be completing data collection and analyzing the resulting data in the summer and fall of 2016.
Our follow-on publication will document our experience applying compression distance measures to
assess how these computer-mediated interaction models facilitate the reduction of complexity in a
realistic analytic workflow.

Please see Appendix A for the ACM BeLIV paper, which details the principles and ideas that generated
this research and a complete bibliography.



4. APPENDIX A

McNamara, L.A., Bauer, T.L., Haass, M.J., Matzen, L.E. 2016 “Information Theoretic Measures for
Visual Analytics: The Silver Ticket?” BELIV '16, October 24 2016, Baltimore, MD, USA DOI:
http://dx.doi.org/10.1145/2993901.2993920
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ABSTRACT

In this paper, we argue that information theoretic measures may
provide a robust, broadly applicable, repeatable metric to assess
how a system enables people to reduce high-dimensional data into
topically relevant subsets of information. Explosive growth in
electronic data necessitates the development of systems that
balance automation with human cognitive engagement to facilitate
pattern discovery, analysis and characterization, variously
described as "cognitive augmentation" or "insight generation."
However, operationalizing the concept of insight in any
measurable way remains a difficult challenge for visualization
researchers. The "golden ticket" of insight evaluation would be a
precise, generalizable, repeatable, and ecologically valid metric
that indicates the relative utility of a system in heightening
cognitive performance or facilitating insights. Unfortunately, the
golden ticket does not yet exist. In its place, we are exploring
information theoretic measures derived from Shannon’s ideas
about information and entropy as a starting point for precise,
repeatable, and generalizable approaches for evaluating analytic
tools. We are specifically concerned with needle-in-haystack
workflows that require interactive search, classification, and
reduction of very large heterogeneous datasets into manageable,
task-relevant subsets of information. We assert that systems aimed
at facilitating pattern discovery, characterization and analysis —i.e.,
"insight" - must afford an efficient means of sorting the needles
from the chaff; and simple compressibility measures provide a way
of tracking changes in information content as people shape
meaning from data.
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1. INTRODUCTION

“The purpose of visualization is insight, not pictures” [11]. This
declaration has inspired an entire generation of computer scientists
to develop visualizations and interactive visual analytics aimed at
helping humans discover, learn, explain, and make decisions with
data.

Information Visualization and Visual Analytics (InfoVis/VA)
comprise the interdisciplinary science, engineering, and design of
using computer hardware and software to augment the perceptual
and cognitive experience of discovery, understanding, and insight
[8, 21, 48]. In an era of unprecedented data fecundity, insight is
exactly what we need, as we collectively try to figure out what all
this data stuff can tell us about ourselves and the world around us.
Stored in electronic bits, our masses of data require the mediating
power of computational hardware and software if we are to glean
any meaning from what we are creating. Vision is the dominant
human sense and is an obvious channel for engaging data and
information.  Elegant, engaging visualizations and interactive
visual environments that facilitate human perception and cognition
are critical if we are to realize — even democratize — the
opportunity to gain knowledge from data.

Like many of our counterparts in informatics, visualization, and
visual analytics, we would love to deploy software environments
that facilitate insight through an enjoyable interactive experience.
Like them, we have struggled to operationalize the concept of
insight in our work. What does it mean to design for insight? What
perceptual and cognitive processes are involved, and how can we
design tools that augment those? How can we evaluate whether
our prototypes are meeting insight-related design goals? What is
insight, really?

2. MOTIVATION AND OVERVIEW

The authors are an organizational anthropologist, a cognitive
neuroscientist, a cognitive/ computer scientist and a physicist who
are part of a larger Human Analytics research function at Sandia
National Laboratories. Human Analytics is really about “analytics
for humans.” We are interlocutors in the world of national security
informatics, moving back and forth between analyst-users and
researcher-developers. Our methodological toolbox includes
everything from ethnographic observation to cognitive task
analysis to controlled experimental studies that use gaze tracking
to document visual search strategies. Our projects have brought us
into contact with a wide range of user communities, including
imagery analysts, nuclear weapons engineers, network security
analysts, and all-source intelligence analysts across the United
States’ federal government. In this paper, we refer to these
communities collectively as “analysts.”
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Our raison d’etre is providing empirical data on human-
information interactions in the analytic communites we engage; to
inform the design, development and evaluation of new algorithms,
software, and visual workflows for analysts. This entails close
partnerships with remote sensing scientists, computer scientists,
mathematicians and software engineers. In this paper, we
collectively refer to these colleagues as “developers.”

Developers want to create tools that are usable, useful, and
ultimately adoptable. When they are successful, their algorithms,
software and workflows can help analysts make sense of patterns,
anomalies, and signatures that might otherwise be difficult to
discern. This goal is important as analysts face increasingly
unwieldy collections of electronic data and information (practically
speaking, unwieldy means more electronic data than analysts can
manage with conventional desktop applications).

In reflecting on our experiences for this paper, we realized that
the idea of insight has not played a salient role in our team’s
approach to analytic workflows. When conversing with our
InfoVis/VA colleagues, we often talk about systems to help
identify complicated geospatial and/or temporal patterns, to detect
anomalies and characterize signatures, or to identify critical
sections of text for addressing a key intelligenc question. All such
events arguably constitute “insights” in the domains we work with.

In reality, however, the biggest challenge for analysts is not
detecting a signature or putting together information to gain
knowledge — they are quite good at that. What they really need are
efficient, dependable ways to clear away irrelevant data and
information, so they can focus their attentional resources on the
messages that matter. As any analyst will attest, efficiently
discovering and characterizing signatures depends on one’s ability
to quickly and efficiently eliminate irrelevant information.

2.1 From Insight to Complexity
Reduction

In this paper, we discuss why we believe that complexity reduction
is critical for the visual analytics systems that InfoVis/VA
researchers are pursuing. Our ideas are informed by our
interactions  with  analysts, coupled with our ongoing
interdisciplinary discussions about exploring ways to evaluate
analytic systems and measure complexity reduction in dynamic
data environments [4, 16, 19].

In regards to visualization and visual analytics, the idea of user-
directed complexity reduction is hardly new. Consider, for
example, Shneiderman’s famous mantra: overview, zoom and
filter, details-on-demand [47]. Each of these design principles can
be framed as a means for accomplishing user-driven complexity
reduction. It follows that process measures that focus on the
intermediate outcome of complexity reduction may provide a
quantitative indicator that an analyst is narrowing their input deck
to items they deem relevant.

Moreover, making complexity reduction an explicit requirement
for visual analytics has some intriguing implications for design and
evaluation: First, we assert that complexity reduction is a
necessary condition for people to experience the happy event of
insight. It is probably not sufficient. However, we sincerely doubt
that visualization tools that fail to afford complexity reduction will
effectively facilitate the sensory, perceptual, and cognitive work
associated with insight.

Second, in terms of design studies, emphasizing complexity
reduction suggests looking for sources of complexity and
examining native strategies for managing it. It also suggests that
visual analytics will be more effective in supporting analytic work
to the extent that technologies enable user-driven complexity
reduction. In doing so, it provides both an overarching common
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goal toward which analytical tools can strive along with
quantitative, straightforward, a comparable ways to measure their
success.

Third, emphasizing complexity reduction as a design goal opens
the door to computationally tractable metrics for evaluating how
well visual analytic systems support this requirement. In
particular, information theoretic metrics (many of which derive
from Claude Shannon’s ideas; see [22]), can be used to determine
how well a system enables users to reduce complexity (and, by
extension, enrich an information patch; see [40]). Broadly
speaking, information theoretic measures (for example, normalized
information compression distance; see [53]), may provide a source
of unobtrusive, parsimonious, quantitative, generalizable metrics
for evaluating how well a visualization workflow helps people
manage information complexity, and facilitates the happy event of
insight [11].

2.2 Topical Overview

This paper begins by discussing the concept of insight, both in
Infovis/VA and cognitive psychology. We then discuss how
InfoVis/VA researchers have addressed the fuzziness of insight by
focusing on the empirically documented, concrete processes of
information foraging and sensemaking.  Such processes can be
understood in terms of information theoretic measures. We
provide some examples, both factual and fantastic, of ways in
which humans experience perceptual and cognitive overload when
dealing with undifferentiated information spaces. ~We emphasize
that the class of measures we are proposing are not the “golden
ticket” of insight evaluation (to borrow a metaphor from Roald
Dahl’s Willy Wonka). However, we do believe they may provide
a “silver ticket” for tracking the nitty gritty of human-information
interaction as people are working toward discovery and insight.

3. YOU KNOW IT WHEN YOU HAVE
ONE

Insight is an intuitively elegant design goal, but it is difficult to
operationalize practically in system design and evaluation. Key
issues include defining what constitutes an insight, how to measure
it, and valid evaluation models that express insight in relation to
specific actions and processes supported by visualization systems.

3.1 What is Insight?

InfoVis/VA researchers have not arrived on practical definition of
insight for their field, though this is neither for lack of thought,
enthusiasm nor effort; for example [36, 39, 43, 45, 49]. Certain
qualities pertaining to insight have been proposed. North, for
example, suggests that insights are complex, deep, qualitative,
unexpected, relevant. In his model, the more strongly any insight
expresses such qualities, the more significant it is likely to be [36].
Similarly, Shneiderman and Plaisant relate insight to discovery,
which they describe as an individualistic, unpredictable event that
occurs in the context of engaging data and information [49]. Chang
et al. suggest that the visualization community is actually working
with two different definitions of insight: one that pertains to a
moment of enlightenment, the other to an advance in knowledge-
building [13].

Cognitive psychologists have been studying the problem for
decades and have yet to arrive at a consensus definition of
“insight.” Decades’ worth of research has examined what defines
insight, how it differs from other cognitive events, the relationship
between meaning and insight, conditions that give rise to insight,
the mental processes of insight; and, more recently, areas of the



brain implicated in meaning-making and insight events [5, 7, 8, 9,
38, 44, 51]. The topic remains an active, even cacophonous area
of research activity, and we mean that in an entirely positive way.
The literature is diverse, creative, lively, even intense — which is
not surprising considering how fundamental insight is to the
human experience.

The approaches to insight most germane to InfoVis/VA stem from
research on expertise, tacit knowledge, and decision-making (see
discussions in [17, 31, 40, 51]). Experimental and observational
studies examine how individuals approach poorly constrained
problems: situations that are ambiguous, unpredictable, open-
ended, and/or dynamic, and for which effective intervention is not
easily discerned. This literature tends to view insight as a re-
framing of the problem leading to a strategy for an acceptable
solution.

Although we commonly associate insight with the excitement of an
“a-HA!” moment, an individual’s perspectives and understandings
can also shift more subtly over time as the brain consolidates new
information and evolves its frameworks [51]. Insight events may
feel spontaneous, but research indicates that they tend to occur
only when certain conditions have been met. First, the individual
must be motivated to address a problem that challenges existing
mental models. The problem cannot be overly constrained, lest the
solution be obvious. Pre-existing information and experiential
knowledge support initial problem framing, but poorly-defined
problems often force the individual to articulate, examine, and
question taken-for-granted or latent mental models. The individual
is likely to seek additional information that addresses perceived
gaps in the mental model. Some of this information will be
integrated into established semantic frameworks, some will be
discarded. As the semantic frameworks evolve, so does the
subjective framing of the problem as new conceptual relations are
formed. At some point, a new perspective crystalizes, opening the
door to a strategy for addressing the problem [32, 51].

This process of organizing, consolidating, updating, and then re-
appying our mental models is how we establish stable meaning
from lived experience. The human brain has evolved to impose
order on the continuous chaos of sensory input, which is inherently
meaningless if we cannot parse signals from the sea of noise [5].
We are reminded of a scene in the book Mind Wide Open, in
which science writer Steven Johnson recounts his experience as a
test subject in an fMRI study examining brain activity associated
with cognition, problem solving, and insight. Part of the
experiment uses a stimulus set consisting of a black-and-white
checkerboard, followed by an image consisting of randomly
scattered black dots on a white background. Joy Hirsch, the
researcher who is demonstrating fMRI to Johnson, explains how
participants respond to both: “When you have noise (the field of
random dots), the whole brain seems to light up trying to make
sense of it,” she tells him. In contrast, when the field of random
dots disappears and is replaced by the checkerboard, brain activity
localizes to a few key areas, including the prefrontal cortex. “The
checkerboard is reassuring,” she says. Randomness engages our
brain to a degree that Johnson admires: “There was something
lovely in that image: the brain, faced with apparent chaos, leaning
on all of its resources looking for some hope of order in the mix”
(179-182 in [28]). It seems our brains are continuously reaching
for order, even when order is objectively impossible.

Yet actually measuring insight events remains a difficult challenge.
Psychologists have traditionally relied on observational studies to
capture behavioural manifestations of insight, such as pattern
recognition and strategic problem-solving. For example,
experimenter might document how research participants move
chess pieces in a game, if they solve a puzzle, or if participants
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report learning something new or changing a problem-solving
strategy.

More recently, cognitive neuroscientists have started examining
the physiological and neural correlates of insight events [32, 44].
Much of this work relies on non-invasive sensing, such as MEG,
EEG or fMRI, all of which provide evidence of brain activity with
varying degrees of spatiotemporal accuracy and precision. New
nmeasurement technologies are facilitating entirely new
understandings about how our brains create meaning from the
chaos of experience. This is very exciting for cognitive
neuroscientists, but rather frustrating for those of us who would
like a straightforward way to assess insight events among study
participants.

3.2 Insight Evaluation in Visual Analytics

In visual analytics, the problem of evaluating insight has generated
a quite impressive body of literature that examines how well
visualizations and analytic workflows achieve their goals.

Over the past two decades, researchers in InfoVis/VA have pulled
creatively from cognitive psychology and other disciplines,
including anthropology, design, human-computer interaction, to
develop a vis-oriented perspective on technologies of insight. The
result is a rich literature of design and evaluation frameworks that
address every facet of visually-oriented analytic systems, from the
nitty-gritty of algorithmic scalability all the way to interactive
workflows, user experience, and ecological fit (for example [35,
36, 46]). Visualization practitioners may pick from a rich array of
quantitative, and mixed-method approaches for evaluating
visualization tools, with designs ranging from controlled laboratory
experiments to in-situ longitudinal observation [12, 34].

Many of the community’s frameworks emphasize insight as a
desired outcome in their studies. Insight-focused evaluations have
tended to rely solutions to problems or the subjective reporting of
an insight event — not dissimilar to the way cognitive psychologists
have approached the problem. Field study narratives can be quite
rich in detailing how visualization supports interactive discovery,
learning, and information synthesis [3]. For example, InfoVis/VA
researchers have looked to qualitative field study approaches, such
as Pair Analytics or the Multidimensional In-depth Long Term
Case Study (MILCS) as a way of capturing insight events [3, 49].
These usually entail researchers collecting both structured and
unstructured qualitative data to capture goals, strategies, and tasks
in a workflow; users participate by providing details about the
occurrence and qualities of insight events [37, 45]. The MILCS
approach is holistic and participatory, and is perhaps most
informative when users are highly motivated to record their
experiences with a visualization tool. These subjective user
accounts are integrated with the researcher’s observational findings
and available quantitative data (e.g., log files). Insight events are
captured through self-report and may include details about the
insight, such as its semantic content, novelty, or depth.

3.3 Evaluating Processes and Outcomes

In her thoughtful tour of InfoVis/VA evaluation methodology,
Carpendale describes the characteristics of an optimal evaluation
metric: it should be generalizable, precise, and ecologically valid
[12]. To Carpendale’s criteria, we would add that it should be
unobtrusive and uncomplicated to deploy. In addition, it is
important to differentiate between process and outcome metrics.
The former pertain to the how of a task, while the latter pertain to
the what of a task, such as a measurable change on one’s state-of-
knowledge [18]. In relation to analytic reasoning and insight,
process metrics speak to the behaviours and actions involved in



generating insights, while outcome metrics tell us something about
the event of insight, perhaps even how well that insight accords
with the real world (ground truth).

Insight-related outcome metrics that maximize Carpendale’s
criteria set are particularly tricky. One outcome metric is whether
or not the user arrived at a correct judgment or conclusion, which
is only measurable if ground truth exists for the problem at hand.
Visualization demonstrations, contests and user studies that
incorporate ground truth measures usually rely on synthetic and/or
training data for which outcomes are well-characterized (for
example [29, 30]). This is less feasible for problems that lack
ground truth, which unfortunately describes the majority of real-
world analysis activity that visualization tools support.

To borrow from Roald Dahl’s Willy Wonka, outcome metrics that
meet Carpendale’s criteria are the “golden ticket” of insight
evaluation. Judging the correctness of an insight will always be
difficult without ground truth. However, in principle, detecting
the event of insight during analytic work should be possible,
assuming we have an adequate model of the relevant perceptual
and cognitive processes in the context of visual interaction with
electronic information [21, 23, 24, 13]. Such a measurement
framework might be rooted in a theory of insight that incorporates
emerging findings from cognitive neuroscience [32]. It would
probably also require neuroscientific data collection systems
capable of recording insight-related brain activity as users perform
tasks with a visualization tool. Neither exists yet, so we will have
to wait for other research communities to catch up with the
knowledge goals of the InfoVis/VA community. Perhaps in a few
decades, we will have our golden ticket: a metric (probably a suite
of metrics) for insight that is generalizable, precise, ecologically
valid, unobtrusive, safe, and robust to variations across tasks,
individuals, and work ecologies.

In the meantime, however, developing process measures for
interactive visual analytic workflows may be a more tractable
challenge. This brings us to the topic of human-information
interaction and theories of information foraging and sensemaking,
which describe the processes through which we reduce complexity
and establish order in data and information.

3.4 Sensemaking, Foraging, and
“Insight”

Given the difficulties associated with defining and measuring
insight, it is perhaps no surprise that InfoVis/VA researchers have
also examined the processes and activities that are likely to enable
insight [25, 33]. Amar and Stasko, for example, identified ten
analytic primitives that underlie exploratory query activities in
visual analytic workflows, positing that visual analytic systems
should support these primitives to enable higher-order problem
solving [1, 2]. Chang et al. suggest that visual analytics might
aspire to expanding a user’s knowledge base, thereby increasing
the probability of a spontaneous insight [13]. Munzner and
colleagues have focused attention on the challenges to analytic
system validity and proposed a design framework to articulate and
manage such challenges [35, 46].

Sensemaking theory has also provided a rich source of guidance
for interactive system design [21]. Sensemaking may refer to any
of several distinct research traditions in organizational theory,
decision science, cognitive psychology, and information science
[17, 31, 52]. Despite being rooted in different academic
disciplines, these literature generally agree that sensemaking is a
fundamental sociocognitive process through which individuals
establish orderly models of the world from what is sensed and
perceived.
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3.4.1 Sensemaking and Foraging

Within the InfoVis/VA literature, Pirolli and Card’s
representation-construction model is the dominant model of
sensemaking [15, 40, 41]. Derived from empirical observations of
intelligence analysts, this model provides explicit guidance for
developing systems to facilitate exploratory human-information —a
process that supports what Stuart Card has described as
“knowledge crystallization” [10].

A distinguishing theme in Pirolli and Card’s sensemaking
model is the integration of their ideas about information foraging,
which draws upon behavioural ecology to model information
search as an adaptive strategy that trends toward optimal
efficiency. In any information space, relevant sources are
unevenly and probabilistically  distributed. As  human
“informavores” learn to navigate an information space, they
become increasingly efficient identifying the relevant sources; i.e.,
they spend less time navigating between information patches and
more time harvesting within the patches that are more likely to
contain valuable resources.

Foraging theories tell us that effective information systems
should enable users to a) quickly learn the contours of an
information space and b) associate the contours of that space with
the task at hand. Moreover, a well-designed system will also
enable informavores to create their own patches of semantically
desirable resources that support completion of the task. Doing so
minimizes the need for global search, freeing limited attentional
resources for the cognitive work of assimilating and integrating
new knowledge [9, 40, 42, 51]. This latter activity is what Pirolli,
Card, Russell and others describe as “sensemaking.”

3.4.2 Sensemaking in InfoVis/VA Design

Ideas about information foraging and sensemaking have moved
outside of psychology and informatics and are widely accepted as a
basis for the design of analytic systems. In the analytic
communities we work with, sensemaking is understood as process
through which analysts attend to selected sources, integrating
percepts and concepts into existing representational schemas to
establish a plausible, evidence-appropriate explanatory narrative
for events [41, 42]. Information foraging and sensemaking
theories also underpin a great deal of InfoVis/VA work, informing
design guidance (see for example [26, 27]) and working
technologies for both individual and collaborative workflows ([6,
30, 507).

Sensemaking design guidance tends to emphasize the positive
interaction elements of a visualization tool. By “positive” we mean
those affordances thought to promote perceptual and cognitive
engagement with data and information. However, another tack for
framing the design question is to ask, “What conditions undermine
effective sensemaking?” Flipping the problem on its head opens
the door to evaluating analytic workflows in terms of how
effectively they mitigate against certain specified conditions, as
opposed to promoting others.

This is somewhat analogous to Munzner’s ideas about threats to
validity. Her nested model asserts that visualizations will fail
when developers get the problem, abstraction, idiom and/or
algorithms wrong. Getting these right many not be sufficient for
realizing a useful, usable, adoptable system, all are necessary to
this end [35]. Similarly, visual analytic workflows should not
only promote conditions associated with effective problem-
solving; they should explicitly minimize conditions that undermine
it. To this end, we might consider the kinds of human-information



interaction processes that undermine our native sensemaking
abilities, so we can design against those conditions.

3.5 When Sensemaking Fails

Although sensemaking comes naturally to most of us, it is not
failure-proof; there are conditions under which we are more or less
effective in putting our experience into order. Pirolli and Card’s
sensemaking models derive from empirical descriptions of analytic
workflows, and so they do not address sensemaking failure; nor is
it an explicit topic in InfoVis/VA literature. However, it is worth
identifying the attention to the conditions under which
sensemaking becomes more difficult.

Organization theorist Karl Weick has devoted much of his career
to understand the conditions under which sensemaking fails.
When our experience of events does not conform to the semantic
structures that have served us in the past, and/or when the flow of
sensory and perceptual input overwhelms our ability to put it into
order, we lose track of what makes sense. By definition,
unpredictable events challenge our mental models; under
conditions of high information throughput, our experiential
knowledge may not enable us to navigate an unmanageable wave
of unexpected sensory inputs. We can adjust and repair our models
if we have time and space to do so. But when circumstances do not
give us time to create and test new mental models, tragedy can
ensue - as Weick’s studies of the Tenerife airline disaster and the
Mann Gulch fire illustrate so poignantly [52].

Weick’s studies of sensemaking failure focus on human
communication and decision-making in life-and-death situations.
Computer scientists and interaction designers rarely have to
consider life-and-death risk when designing their systems. But

Weick’s observations drive home a key point: Under conditions of

high cognitive and emotional load, ambiguity, and rapidly shifting
patterns, the subjective experience of disorder undermines
sensemaking.

By extension, if analytic technologies are to minimize
sensemaking failures, we should pay attention to the conditions
that stress human perception and cognition. Among other things,
visual analytic systems should enable users to manage volume and
variability in data. This is particularly true for the open-ended,
cognitively challenging, exploratory work of data analysis,
synthesis, and discovery that so many VA researchers seek to
support.

4. INFORMATION, ENTROPY, AND REDUCING
COMPLEXITY

To summarize our ideas thus far, we assert that unmanageable
amounts of data and information overwhelm our native
sensemaking abilities; by extension, insight is impossible when
meaningful, recognizable signals are lost in disorder. If we are to
design systems that enable effective perceptual and cognitive
engagement, we should emphasize features that empower people to
reduce unmanageability, according to the contextual and subjective
requirements of the work being performed. Happily, this design
principle lends itself to evaluation through the application of
information  theoretic measures, such as entropy and
compressibility, that may indicate how effectively a given analytic
system enables users to impose sensible order [14]. This brings us
to Claude Shannon’s ideas about information and entropy.
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4.1 A Short Introduction to Shannon
Entropy

Shannon information, uncertainty, and entropy are intricately
related concepts and notoriously tricky to grasp and explain in
written English (or any language, for that matter). A full treatment
of Shannon’s ideas is well beyond the scope of this paper
(although Chen et. Al. [14] write about information theory in
visual analytics; also see James Gleick’s very entertaining and
accessible history of information theory [22]). However, a
vernacular discussion of Shannon entropy may be helpful in
understanding why we consider complexity reduction as a critical
function of visual analytics technologies.

One can think of entropy as a probabilistic way of estimating
what we can learn about an entire set, if we can only examine one
element from that set. In other words, how well does a randomly
selected element represent all items in the set?

Mathematically, Shannon entropy expresses the predictability
of any variable X as:

H(X) = =2 pylogs px (D)

where p, expresses probability that X is in state x, b is the base of
the logarithm, and p log; p is zero when p= 0. The precise unit of
measurement depends on the base of the logarithm. For example, if
base two is used, the unit is “bits,” while a base ten system gives us
“Hartleys,” named for another of information theory’s early
pioneers.

Shannon’s entropy equation enables quantification of variability in
a system. Higher variability means less predictable content;
because there is more information, there is more entropy. This is
the key point, because most people do not think of “entropy” as
informative in the conventional sense. However, remember that
Shannon quite explicitly excluded meaning from his formulation of
information, as it was not conducive to the engineering problem he
was trying to solve [4]. Instead, entropy reflects the complexity of
the vocabulary required to encode a stream of messages from some
system.

This is an engineering problem, not a semantic one. Systems that
require more bits to represent their messages contain a greater
volume of information; are therefore more difficult to compress;
and by extension, entail higher entropy. Put simply, the more
information we are dealing with, the more difficult it becomes to
characterize the entire content of a set using any single element
drawn from that set.

For example, consider a weather sensor that only indicates whether
it is currently raining. This sensor displays “raining” if there is
rain, and “not raining” if there is no rain. Furthermore, let us say
that it is raining 50% of the time (in other words, the sensor it not
in the authors’ home state of New Mexico). If we look at the
sensor, we have a 50% chance of capturing the system in either
state. Zero indicates that it is not raining and a one tells us that it
is, so the entropy of our weather system is one bit. The answer to
the question of whether it is raining or not takes one bit.

However, let us assume we are in a place where it never rains; i.e.,
you can be certain that it is not raining. In this case, our rain
sensor is providing no additional knowledge, because it never rains
in this place. In other words, it takes zero bits of information to
encode the answer to the question; the state of the system is
entirely predictable.



A more interesting case occurs when rainfall is more variable -
let’s say one can expect rain 25% of the time. Responding to the
question, “Is it raining?” requires something less than one bit of
information. This is a bit of a strange concept, because we tend not
to think of information in fractional bits. Arithmetically, however,
the representation is quite straightforward and provides a
mathematical foundation for tracking changes in the predictability
of content based on a single message (sample) from the set.

4.2 The Tedium of Yes-No Questions

Another useful metaphor for thinking about Shannon entropy is the
yes/no game of twenty questions: How many yes/no questions
must be posed and answered to determine the state x for variable
X? Simple systems require very few yes/no questions, as in the
weather system described above: “Is it raining? No.” Case closed.
As information, entropy and therefore complexity increase,
however, more yes/no questions are required to determine the
system state. Consider a weather station that measures barometric
pressure, temperature, precipitation, etc., in a geographic area with
very unstable weather conditions. One (very bad) way of
interrogating the system is asking a series of yes/no questions to
determine the state of all parameters of interest: “Is barometric
pressure below 50 millibars? Yes? Is it above 30 millibars? No?”
Etcetera.
Although unrealistic, this example helps with thinking through the
implications of Shannon entropy for the perceptual and cognitive
work of sensemaking. Serial questions are an inefficient, tiring
way of figuring out the state of a system; and the more noise we
encounter, the more questions we have to ask, and the more tiring
the task.

4.3
World

Here is another hypothetical example: consider a group of all-
source analysts tasked with producing a detailed report on the
history, current production capabilities, and international
expansion plans for Willy Wonka’s candy factory. Our analysts
have access to the International Confectionary Data Portal (ICDP),
a repository containing over eight million documents pertaining to
confectionary industries around the world. The analysts know that
only a small number of available documents will be useful in
compiling their report, so they get to work winnowing down the
dataset to the items they need. In Pirolli and Card’s terminology,
they must forage for resources before they can use them in
assessing Willy Wonka’s industrial capacity.

Now, imagine for a moment that the ICDP lacks any support
for user queries. Instead, the interface forces analysts into an item-
by-item evaluation: it retrieves an abstract at random and asks the
analyst, “Is this item related to Willy Wonka?”” If the answer is no,
the item goes into the “Junk” category. If the answer is yes, the
item is put in the “Wonka” category. Over time, the analysts
evolve the Wonka category into enriched information patch
comprising a selection items pertaining to Willy Wonka.
Assuming the analysts are judging document content correctly, the
entropy of that patch is gradually falling relative to the entire
ICDP, even as the number of items in the patch increases, because
the items are in some way related to Willy Wonka.

However, the analysis group experiences high employee
turnover because the work is so tedious; while the government
customer is frustrated by the delays in receiving the analysis she
has requested. Finally, the lead intelligence analyst decides she’s
had enough and writes a script to perform Boolean searches against
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the database. This is nothing short of revolutionary: a sorting task
that seemed endless can now be performed with one simple
operation. Morale improves as the analysts use the new tool to
winnow the ICDP database to fewer than one thousand relevant
items. In less than a week, the group has assembled convincing
evidence that Willy Wonka is actually verging on bankruptcy and
is unlikely to declare a monopolistic chocolate empire anytime
soomn.

We included this counterfactual fantasy to illustrate the
importance of automation in enabling a user to cultivate and enrich
a patch of information using whatever semantics she deems
appropriate for the problem. When automated tools are not
available, people will use whatever is at hand to sort, winnow, and
texturize information, structuring it according to experiential
knowledge and subjective understanding of the task.

4.4 Enriching Patches, Reducing
Complexity

In 2009, we were involved in a Sandia project to develop an
document categorization and visualization tool for all-source
intelligence analysts. To inform prototype development and
evaluation, we designed a task analysis activity with all-source
intelligence analysts to capture variations in their strategies for
managing text document collections. We used paper copies of
intelligence reports in this study so that we could watch analytic
selection strategies in action.

As one might expect, which reports a particular analyst found
“useful” depended how that analyst interpreted the problem, her
experience working in the intelligence community, her familiarity
with the type of reporting that we provided, and her self-reported
background knowledge for the mock analysis problem we
presented. That said, all but one analyst began the task by
skimming each document and identifying the less-relevant items.
Once this reporting chaff was set aside, the analyst settled into the
task of putting the remaining wheat into semantically meaningful
categories. The number of sorting iterations, the final number of
categories, which documents were grouped together, and the
semantic labels assigned to categories differed among individuals.
However, every analyst created some form of a “junk” pile to
corral items they deemed irrelevant for their analysis (with the
exception of one analyst, who told us he would rely on his domain
knowledge rather than use the reports we provided).

This kind of categorization is probably familiar to all of us.
Categorization is the antidote to entropy: as we concentrate
semantically related information into patches, we enhance our
ability to predict the content we will encounter as we engage a
patch. Categorization also mitigates perceptual and cognitive load,
particularly in relation to working memory. When we put items
into subjectively meaningful, thematically consistent categories,
we are expressing a cognitive model of semantic connections both
within and across categories. This reduces the load associated with
remembering random items. Adding patchiness to an information
space helps people avoid the tiresome task of repeatedly
interrogating elements to determine knowledge relevance. It is
akin to transforming the random collections of dots into a tidy
checkerboard.

Interestingly, in one of their early essays on information
foraging and sensemaking, Pirolli and Card get tantalizingly close
to information theoretic models of human interaction with data.
They describe experts’ heuristics for setting noise thresholds,
asserting that experience makes experts more efficient at filtering
noise to focus on relevant signals. Their foraging loop describes
enriching an information space in terms of narrowing the set of



items selected for review [41]. As counterintuitive as it may seem,
enriching an information patch necessarily entails the reduction of
complexity, because patches concentrate like items into
meaningful categories. Another way to think about this is to say
we enrich information patches by increasing predictability: One
glance at the document on top of that pile on your desk tells you
what sits underneath, so you can decide whether that particular
topic merits your attention at that time. Making content
predictable facilitates sensemaking by freeing our attentional
resources from the burden of identifying and classifying items, so
we can engage the complex work of interpretation.

5. FROM PRINCIPLE TO APPLICATION:
COMPLEXITY REDUCTION IN SYSTEM
EALUATION

We are not the first to suggest that visual analytics and
visualizations can be framed in terms of information theoretic
principles. As Chen points out, information foraging theory is
highly consonant with Shannon’s theories of information, entropy,
and uncertainty; measures of Shannon entropy and Komolgorov
complexity can be used to indicate heterogeneity, uncertainty,
thematic saliency, and shifts in the semantic content of an
information stream [14].

It is rather surprising, however, that information theoretic
frameworks are not more explicit in the InfoVis/VA literature. For
one thing, complexity reduction is a major design requirement in
visual analytics: of course information visualizations and visual
analytics systems should enable users to boil down information to
the most relevant attributes, parameters, and content. In fact, most
InfoVis/VA design guidance can be interpreted to support user-
driven complexity reduction in one way or another.

Going forward, we suggest that our colleagues consider how
emphasizing complexity reduction as an explicit design goal can
facilitate evaluation methodologies that emphasize process
measures associated with effective sensemaking:

Design. When working with user communities to understand
their workflows, it makes sense to pay attention to the strategies,
heuristics, and representations that people use to get rid of
irrelevant information. Paying attention to these native strategies
and heuristics might prove very useful in developing automated
techniques that enable people to efficiently ringfence irrelevant
information. After all, getting rid of junk can be a quite desirable
attribute of a visual analytics tool; we are thinking here of the
ForceSPIRE users who were surprised and gratified to find that
Endert et. Al.’s semantic interaction models resulted in the right
items being relegated to the junk pile [20].

Evaluation. Information theoretic measures are probably not
the golden ticket for measuring insights. However, if one accepts
the principle that complexity reduction is a necessary element in
the sensemaking processes that support insight, then it makes sense
for us to evaluate visualizations and analytic workflows in terms of
how well they enable people to reduce complexity. The
subjectivity and idiosyncrasy of analytic workflows is one of the
major barriers to developing generalizable, precise, and
ecologically valid indicators to evaluate the goodness of a visual
analytics workflow. However, everyone needs to get rid of the
items that are irrelevant to a problem. Meanwhile, information
theoretic measures are generalizable across users, problems, and
visual analytic workflows, precisely because such are explicitly not
about semantics or meaning (thank you, Claude Shannon).
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5.1 Is There a ‘There,” There?

Recognizing the importance of empirically testing one’s ideas
(or, as we say in the United States, eating one’s own dog food), we
are currently developing a dataset that will help us characterize the
performance of information theoretic measures in analytic
processes. In summer 2016, we are running an experimental study
in which we present participants with a hypothetical intelligence
analysis question and a rather obnoxious pile of references.

The information theoretic measure we have selected for testing
is a normalized information compression distance (abbreviated as
NCD), which is a feature- and parameter-free way of evaluating
the similarity of two or more information objects [53]. The
simplicity and generalizability of such compression-based
measures lend them to a wide range of applications, and we are
intrigued by the idea of using them as a process measure of
information interaction in visual analytic systems. Specifically, we
suggest that an effective visual analytic interaction model should
enable people to sort data and information into categories of
semantically similar items. The emergence of within-category
semantic coherence should be expressible as a change in
compression distance, both within categories and across the
document set as a whole.

To evaluate this idea, we have designed a counterbalanced,
between-subjects experiment involving 15-18 research participants
drawn from the Sandia National Laboratories’ professional
population. Volunteers will be asked to assess evidence supporting
the British government’s assertion that Russian assassins used
polonium to kill Alexander Litvenenko in London, November
2006. They will work with a set of 370 documents, ranging from
dense journal articles, to government reports, to articles from
popular news magazines. A small number of the documents are
directly relevant to the challenge questions; many are tangentially
related but do not contain the information required to assess the
challenge questions; and a plurality have nothing to do with the
topic (distractors). To perform the task, particpants will be
randomly assigned to one of three different workflows, or
conditions. Two of the conditions use the Sandia National
Laboratories’ Citrus document analysis platform, while a third
“control” condition requires participants to perform the task using
the Windows filing system.

We hypothesize that research participants across all
experimental conditions will arrange the documents in a manner
that increases within-category similarity; at the same time, we
expect between-category similarity to fall as people create
“patches” of semantically related information. We also expect that
automated support for categorization will facilitate users’ efforts to
impose structure on the chaos we give them. Specifically, when
using Citrus, we expect research participants will organize
documents into categories more quickly and efficiently, with
greater reductions in NCD compared to performance of the same
task using the Windows file system on a computer desktop.

For each experimental condition, we will collect both process
and outcome measures.

= Process measures: Total number of sorting iterations,
time per iteration, subjective workload (measured using
the NASA Task Load Index, or TLX; see nasatlx.com) at
the end of the work session; and a normalized
compression distance measure applied to the categories
at the end of each sorting iteration.

= Qutcome measures: End-of-task NASA-TLX, time-on-
task, NCD per category created; difference between
starting and ending  categories, and the number of
correct answers to challenge questions about the
Litvinenko event.



We will be completing data collection and analyzing the resulting
data in the summer and fall of 2016. Our follow-on publication
will document our experience applying compression distance
measures to assess how these computer-mediated interaction
models facilitate the reduction of complexity in a realistic analytic
workflow.
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