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Abstract

In the context of text-based analysis workflows, we propose that an effective analytic 
tool facilitates triage by a) enabling users to identify and set aside irrelevant content 
(i.e., reduce the complexity of information in a dataset) and b) develop a working 
mental model of which items are most relevant to the question at hand.  This LDRD 
funded research developed a dataset that is enabling this team to evaluate propose 
normalized compression distance (NCD) as a task, user, and context-insensitive 
measure of categorization outcomes (Shannon entropy is reduced as order is 
imposed).  Effective analytics tools help people impose order, reducing complexity in 
measurable ways.     Our concept and research was documented in a paper accepted 
to the ACM conference Beyond Time and Error: Novel Methods in Information 
Visualization Evaluation, part of the IEEE VisWeek Conference, Baltimore, MD, 
October 16-21, 2016.     The paper is included as an appendix to this report. 



4

ACKNOWLEDGMENTS

We are grateful to the Sandia LDRD program, and particularly the Exploratory Express program, for 
funding our quick-turnaround project and enabling us to publish a paper that we have long 
contemplated.   



5

 
1.  INTRODUCTION 

Consider the many tools claiming to help analysts find valuable information in very large datasets: 
Palantir, SAS TextMiner, IBM LanguageWare, and others.  The core of any analytical tool is the ability 
to select smaller subsets of that data that share things in common/ How do I know if one of these 
analysis/visualization tools is “better” than another for analytic workflows at enabling a person to distill 
data?  Informatics researchers have focused on “insight” as a key outcome measure for comparing the 
goodness of analytic software – but what counts as an “insight,” and how to measure those events, is an 
open question and not general.  Most measures are subjective and/or tied to context. This makes it very 
difficult to compare across different tools and problems. This isn’t satisfactory.  We need a robust, 
quantitative, context-independent metric that indicates how well an analytic tool promotes human 
performance.  That metric should be based in a theory of human-information interaction that aligns with 
known principles of human perception and cognition.  We have a candidate metric that meets these 
criteria:  complexity reduction, measured using algorithms such as normalized compression distance 
(NCD). 

This report briefly describes how we developed a dataset that is enabling us to examine NCD and other 
information theoretic measures as process metrics to assess whether a visual analytics tool is enabling 
the user to impose order on otherwise unwieldy text datasets.  

2. PROBLEM STATEMENT 
Information Visualization and Visual Analytics (InfoVis/VA) comprise the interdisciplinary science, 
engineering, and design of using computer hardware and software to augment the perceptual and 
cognitive experience of discovery, understanding, and insight.  The idea that visualization of data and 
information promotes insight has inspired an entire generation of computer scientists to develop 
visualizations and interactive visual analytics aimed at helping humans discover, learn, explain, and 
make decisions with data.  However, ‘insight’ is a notoriously difficult event to measure, which makes it 
difficult to implement in the applied context of evaluating a software tool.

In its place, we propose process metrics that enable researchers to examine the degree to which a system 
enables people to reduce the amount of information they are dealing with, so they can focus their 
attention on the items that are germane to the topic at hand.   These process metrics recognize that all 
analysis workflows begin with information collection and categorization, or “triage,” which reduces the 
complexity of large information sources while enabling users to build a mental model of content in 
relation to a question of interest.    In the context of text-based analysis workflows, we propose that an 
effective analytic tool facilitates triage by a) enabling users to identify and set aside irrelevant content 
(i.e., reduce the complexity of information in a dataset) and b) develop a working mental model of 
which items are most relevant to the question at hand. Effective analytics tools help people impose 
order, reducing complexity in measurable ways.

One such metric is normalized compression distance (NCD), as a task, user, and context-insensitive 
measure of categorization outcomes.  NCD is a feature- and parameter-free way of evaluating the 
similarity of two or more information objects [53].  The simplicity and generalizability of such 
compression-based measures lend them to a wide range of applications, and we are intrigued by the idea 
of using them as a process measure of information interaction in visual analytic systems.  
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2. RESEARCH ACTIVITY
 

In summer 2016, the Exploratory Express program in Sandia National Laboratories LDRD office 
provided $60K in funding for our team to develop a dataset that would enable us to study NCD and 
similar information-theoretic measures for assessing the  impact of automated support in data and 
information categorization tasks. 

We proposed and executed a counterbalanced, between-subjects data collection activity in which 18 
research participants drawn from the Sandia National Laboratories’ professional population used one of 
three tools to a) categorize a diverse set of documents and b) use a subset of the documents to examine a 
real-world intelligence problem, namely the involvement of Russian assassins in the polonium poisoning 
of Russian oligarch-turned-dissident Alexander Litvenenko in London (November 2006).   We provided 
participants with an electronic set of 370 documents, ranging from dense journal articles, to government 
reports, to articles from popular news magazines. Articles directly related to Litvenenko murder 
comprised approximately 20% of the total dataset.    

The Sandia Human Studies Board approved our proposed data collection activity in July 2016. We 
recruited participants through an advertisement in the Sandia Daily News.  Participants were accepted 
on a first-come basis and randomly assigned to one of three different workflows, or conditions.  Two of 
the conditions use the Sandia National Laboratories’ Citrus document analysis platform, while a third 
“control” condition requires participants to perform the task using the Windows filing system.  

Participants spent a total of four hours over two days in this activity.  On the first day of the activity, we 
trained all participants in basic use of the Durian tool in the Sandia Citrus text analysis platform.  We 
then randomly assigned participants to one of the two Citrus conditions (both of which used different 
functionalities in Durian), or to the Windows file system condition.  We then told the participants to 
review and sort as many of the documents as possible into topical categories, using whatever 
categorization scheme they deemed appropriate.  We gave participants 90 minutes to complete the 
categorization activity.  Once the time was up, each participant filled out the NASA Task Load Index 
(NASA TLX), a widely used tool for eliciting the subjective experience of workload.  

On the second day of the activity, participants were given two hours to use the same dataset to answer a 
set of questions about the Alexander Litvinenko murder.  We asked them to create a document folder or 
“bin” containing the items they used to respond to the questions.  We also requested that they create a 
separate bin containing items they would recommend for understanding the impact of the Litvinenko 
murder on relations between the Russian government and its European and American counterparts.   At 
the two hour time mark we stopped work and requested the participants to fill out a second copy of the 
NASA TLX.  

3. OUTCOMES

This LDRD investment enabled us to assemble a unique experimental dataset that we can use to evaluate 
our ideas about compression and other distance measures as process metrics for evaluating automated 
support for text analysis tools and workflows.  We also wrote a position paper that included a summary 
of our then-ongoing study for submission to the ACM Beyond Time and Error: Novel Methods in 
Information Visualization Evaluation (BeLIV) conference, held as part of the IEEE VIsWeek/VAST 
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Conference (Baltimore, MD, October 16-21, 2016).  The paper was accepted in the first round of 
reviews after minor revisions and will be presented at the conference. 

We are continuing to analyze the data collected in FY16 and will be compiling our findings in a journal-
quality publication.    We expect the data to show that people can successfully sort documents into 
semantically coherent sets, and that our selected compression metric should indicate greater within-
category similarity compared with the dataset treated as a single category.   At the same time, we expect 
that between-category similarity to fall as people create “patches” of semantically related information; 
i.e., as they add structure to the unstructured mess of information that they began with.   We also expect 
that automated support for categorization will facilitate users’ efforts to impose structure on the chaos 
we give them.  Specifically, when using Citrus, we expect research participants will organize documents 
into categories more quickly and efficiently, with greater reductions in NCD compared to performance 
of the same task using the Windows file system on a computer desktop. 

We will be completing data collection and analyzing the resulting data in the summer and fall of 2016.  
Our follow-on publication will document our experience applying compression distance measures to 
assess how these computer-mediated interaction models facilitate the reduction of complexity in a 
realistic analytic workflow.  

Please see Appendix A for the ACM BeLIV paper, which details the principles and ideas that generated 
this research and a complete bibliography.
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4.  APPENDIX A

McNamara, L.A., Bauer, T.L., Haass, M.J., Matzen, L.E. 2016 “Information Theoretic Measures for 
Visual Analytics: The Silver Ticket?”  BELIV '16, October 24 2016, Baltimore, MD, USA DOI: 
http://dx.doi.org/10.1145/2993901.2993920

http://dx.doi.org/10.1145/2993901.2993920
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ABSTRACT
  In this paper, we argue that information theoretic measures may 
provide a robust, broadly applicable, repeatable metric to assess 
how a system enables people to reduce high-dimensional data into 
topically relevant subsets of information.  Explosive growth in 
electronic data necessitates the development of systems that 
balance automation with human cognitive engagement to facilitate 
pattern discovery, analysis and characterization, variously 
described as "cognitive augmentation" or "insight generation."  
However, operationalizing the concept of insight in any 
measurable way remains a difficult challenge for visualization 
researchers.   The "golden ticket" of insight evaluation would be a 
precise, generalizable, repeatable, and ecologically valid metric 
that indicates the relative utility of a system in heightening 
cognitive performance or facilitating insights.  Unfortunately, the 
golden ticket does not yet exist. In its place, we are exploring 
information theoretic measures derived from Shannon’s ideas 
about information and entropy as a starting point for precise, 
repeatable, and generalizable approaches for evaluating analytic 
tools.  We are specifically concerned with needle-in-haystack 
workflows that require interactive search, classification, and 
reduction of very large heterogeneous datasets into manageable, 
task-relevant subsets of information.  We assert that systems aimed 
at facilitating pattern discovery, characterization and analysis – i.e., 
"insight" - must afford an efficient means of sorting the needles 
from the chaff; and simple compressibility measures provide a way 
of tracking changes in information content as people shape 
meaning from data.

CCS Concepts
• Human Centered Computing➝Empirical Studies in 
HCI   • Human Centered Computing➝User Models 
Keywords Visual Analytics; Evaluation; Human-
Information Interaction; Complexity Reduction; Metrics.

1. INTRODUCTION
“The purpose of visualization is insight, not pictures” [11].  This 
declaration has inspired an entire generation of computer scientists 
to develop visualizations and interactive visual analytics aimed at 
helping humans discover, learn, explain, and make decisions with 
data. 
Information Visualization and Visual Analytics (InfoVis/VA) 
comprise the interdisciplinary science, engineering, and design of 
using computer hardware and software to augment the perceptual 
and cognitive experience of discovery, understanding, and insight 
[8, 21, 48].  In an era of unprecedented data fecundity, insight is 
exactly what we need, as we collectively try to figure out what all 
this data stuff can tell us about ourselves and the world around us.   
Stored in electronic bits, our masses of data require the mediating 
power of computational hardware and software if we are to glean 
any meaning from what we are creating.  Vision is the dominant 
human sense and is an obvious channel for engaging data and 
information.  Elegant, engaging visualizations and interactive 
visual environments that facilitate human perception and cognition 
are critical if we are to realize – even democratize – the 
opportunity to gain knowledge from data.
Like many of our counterparts in informatics, visualization, and 
visual analytics, we would love to deploy software environments 
that facilitate insight through an enjoyable interactive experience.  
Like them, we have struggled to operationalize the concept of 
insight in our work.  What does it mean to design for insight? What 
perceptual and cognitive processes are involved, and how can we 
design tools that augment those?  How can we evaluate whether 
our prototypes are meeting insight-related design goals? What is 
insight, really?  

2. MOTIVATION AND OVERVIEW
The authors are an organizational anthropologist, a cognitive 
neuroscientist, a cognitive/ computer scientist and a physicist who 
are part of a larger Human Analytics research function at Sandia 
National Laboratories. Human Analytics is really about “analytics 
for humans.” We are interlocutors in the world of national security 
informatics, moving back and forth between analyst-users and 
researcher-developers. Our methodological toolbox includes 
everything from ethnographic observation to cognitive task 
analysis to controlled experimental studies that use gaze tracking 
to document visual search strategies.  Our projects have brought us 
into contact with a wide range of user communities, including 
imagery analysts, nuclear weapons engineers, network security 
analysts, and all-source intelligence analysts across the United 
States’ federal government.  In this paper, we refer to these 
communities collectively as “analysts.” 

©2016 Association for Computing Machinery. ACM acknowledges that 
this contribution was authored or co-authored by an employee, 
contractor or affiliate of the United States government. As such, the 
United States Government retains a nonexclusive, royalty-free right to 
publish or reproduce this article, or to allow others to do so, for 
Government purposes only.

BELIV '16, October 24 2016, Baltimore, MD, USA
© 2016 ACM. ISBN 978-1-4503-4818-8/16/10…$15.00
DOI: http://dx.doi.org/10.1145/2993901.2993920
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Our raison d’etre is providing empirical data on human-
information interactions in the analytic communites we engage; to 
inform the design, development and evaluation of new algorithms, 
software, and visual workflows for analysts. This entails close 
partnerships with remote sensing scientists, computer scientists, 
mathematicians and software engineers. In this paper, we 
collectively refer to these colleagues as “developers.” 
Developers want to create tools that are usable, useful, and 
ultimately adoptable.  When they are successful, their algorithms, 
software and workflows can help analysts make sense of patterns, 
anomalies, and signatures that might otherwise be difficult to 
discern.  This goal is important as analysts face increasingly 
unwieldy collections of electronic data and information (practically 
speaking, unwieldy means more electronic data than analysts can 
manage with conventional desktop applications).   

In reflecting on our experiences for this paper, we realized that 
the idea of insight has not played a salient role in our team’s 
approach to analytic workflows.  When conversing with our 
InfoVis/VA colleagues, we often talk about systems to help 
identify complicated geospatial and/or temporal patterns, to detect 
anomalies and characterize signatures, or to identify critical 
sections of text for addressing a key intelligenc question.  All such 
events arguably constitute “insights” in the domains we work with.  

In reality, however, the biggest challenge for analysts is not 
detecting a signature or putting together information to gain 
knowledge – they are quite good at that.  What they really need are 
efficient, dependable ways to clear away irrelevant data and 
information, so they can focus their attentional resources on the 
messages that matter.  As any analyst will attest, efficiently 
discovering and characterizing signatures depends on one’s ability 
to quickly and efficiently eliminate irrelevant information. 

2.1 From Insight to Complexity 
Reduction

In this paper, we discuss why we believe that complexity reduction 
is critical for the visual analytics systems that InfoVis/VA 
researchers are pursuing.  Our ideas are informed by our 
interactions with analysts, coupled with our ongoing 
interdisciplinary discussions about exploring ways to evaluate 
analytic systems and measure complexity reduction in dynamic 
data environments [4, 16, 19].   
In regards to visualization and visual analytics, the idea of user-
directed complexity reduction is hardly new. Consider, for 
example, Shneiderman’s famous mantra: overview, zoom and 
filter, details-on-demand  [47]. Each of these design principles can 
be framed as a means for accomplishing user-driven complexity 
reduction.  It follows that process measures that focus on the 
intermediate outcome of complexity reduction may provide a 
quantitative indicator that an analyst is narrowing their input deck 
to items they deem relevant.  
Moreover, making complexity reduction an explicit requirement 
for visual analytics has some intriguing implications for design and 
evaluation: First, we assert that complexity reduction is a 
necessary condition for people to experience the happy event of 
insight. It is probably not sufficient.  However, we sincerely doubt 
that visualization tools that fail to afford complexity reduction will 
effectively facilitate the sensory, perceptual, and cognitive work 
associated with insight.    
Second, in terms of design studies, emphasizing complexity 
reduction suggests looking for sources of complexity and 
examining native strategies for managing it.  It also suggests that 
visual analytics will be more effective in supporting analytic work 
to the extent that technologies enable user-driven complexity 
reduction. In doing so, it provides both an overarching common 

goal toward which analytical tools can strive along with 
quantitative, straightforward, a comparable ways to measure their 
success.
 Third, emphasizing complexity reduction as a design goal opens 
the door to computationally tractable metrics for evaluating how 
well visual analytic systems support this requirement.  In 
particular, information theoretic metrics (many of which derive 
from Claude Shannon’s ideas; see [22]),  can be used to determine 
how well a system enables users to reduce complexity (and, by 
extension, enrich an information patch; see [40]). Broadly 
speaking, information theoretic measures (for example, normalized 
information compression distance; see [53]), may provide a source 
of unobtrusive, parsimonious, quantitative, generalizable metrics 
for evaluating how well a visualization workflow helps people 
manage information complexity, and facilitates the happy event of 
insight [11].

2.2 Topical Overview
This paper begins by discussing the concept of insight, both in 

Infovis/VA and cognitive psychology.  We then discuss how 
InfoVis/VA researchers have addressed the fuzziness of insight by 
focusing on the empirically documented, concrete processes of 
information foraging and sensemaking.   Such processes can be 
understood in terms of information theoretic measures.  We 
provide some examples, both factual and fantastic, of ways in 
which humans experience perceptual and cognitive overload when 
dealing with undifferentiated information spaces.    We emphasize 
that the class of measures we are proposing are not the “golden 
ticket” of insight evaluation (to borrow a metaphor from Roald 
Dahl’s Willy Wonka).  However, we do believe they may provide 
a “silver ticket” for tracking the nitty gritty of human-information 
interaction as people are working toward discovery and insight. 

3. YOU KNOW IT WHEN YOU HAVE 
ONE
Insight is an intuitively elegant design goal, but it is difficult to 
operationalize practically in system design and evaluation. Key 
issues include defining what constitutes an insight, how to measure 
it, and valid evaluation models that express insight in relation to 
specific actions and processes supported by visualization systems. 

3.1 What is Insight? 
InfoVis/VA researchers have not arrived on practical definition of 
insight for their field, though this is neither for lack of thought, 
enthusiasm nor effort; for example [36, 39, 43, 45, 49].   Certain 
qualities pertaining to insight have been proposed.  North, for 
example, suggests that insights are complex, deep, qualitative, 
unexpected, relevant. In his model, the more strongly any insight 
expresses such qualities, the more significant it is likely to be [36].   
Similarly, Shneiderman and Plaisant relate insight to discovery, 
which they describe as an individualistic, unpredictable event that 
occurs in the context of engaging data and information [49]. Chang 
et al. suggest that the visualization community is actually working 
with two different definitions of insight: one that pertains to a 
moment of enlightenment, the other to an advance in knowledge-
building [13].
Cognitive psychologists have been studying the problem for 
decades and have yet to arrive at a consensus definition of 
“insight.”  Decades’ worth of research has examined what defines 
insight, how it differs from other cognitive events, the relationship 
between meaning and insight, conditions that give rise to insight, 
the mental processes of insight; and, more recently, areas of the 
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brain implicated in meaning-making and insight events  [5, 7, 8, 9, 
38, 44, 51].   The topic remains an active, even cacophonous area 
of research activity, and we mean that in an entirely positive way. 
The literature is diverse, creative, lively, even intense – which is 
not surprising considering how fundamental insight is to the 
human experience.  
The approaches to insight most germane to InfoVis/VA stem from 
research on expertise, tacit knowledge, and decision-making (see 
discussions in  [17, 31, 40, 51]).  Experimental and observational 
studies examine how individuals approach poorly constrained 
problems: situations that are ambiguous, unpredictable, open-
ended, and/or dynamic, and for which effective intervention is not 
easily discerned.  This literature tends to view insight as a re-
framing of the problem leading to a strategy for an acceptable 
solution. 
Although we commonly associate insight with the excitement of an 
“a-HA!” moment, an individual’s perspectives and understandings 
can also shift more subtly over time as the brain consolidates new 
information and evolves its frameworks [51]. Insight events may 
feel spontaneous, but research indicates that they tend to occur 
only when certain conditions have been met.  First, the individual 
must be motivated to address a problem that challenges existing 
mental models. The problem cannot be overly constrained, lest the 
solution be obvious. Pre-existing information and experiential 
knowledge support initial problem framing, but poorly-defined 
problems often force the individual to articulate, examine, and 
question taken-for-granted or latent mental models. The individual 
is likely to seek additional information that addresses perceived 
gaps in the mental model.  Some of this information will be 
integrated into established semantic frameworks, some will be 
discarded. As the semantic frameworks evolve, so does the 
subjective framing of the problem as new conceptual relations are 
formed. At some point, a new perspective crystalizes, opening the 
door to a strategy for addressing the problem [32, 51].
This process of organizing, consolidating, updating, and then re-
appying our mental models is how we establish stable meaning 
from lived experience.  The human brain has evolved to impose 
order on the continuous chaos of sensory input, which is inherently 
meaningless if we cannot parse signals from the sea of noise [5].  
We are reminded of a scene in the book Mind Wide Open,  in 
which science writer Steven Johnson recounts his experience as a 
test subject in an fMRI study examining brain activity associated 
with cognition, problem solving, and insight.  Part of the 
experiment uses a stimulus set consisting of a black-and-white 
checkerboard, followed by an image consisting of randomly 
scattered black dots on a white background.  Joy Hirsch, the 
researcher who is demonstrating fMRI to Johnson, explains how 
participants respond to both: “When you have noise (the field of 
random dots), the whole brain seems to light up trying to make 
sense of it,” she tells him.  In contrast, when the field of random 
dots disappears and is replaced by the checkerboard, brain activity 
localizes to a few key areas, including the prefrontal cortex.  “The 
checkerboard is reassuring,” she says.   Randomness engages our 
brain to a degree that Johnson admires:  “There was something 
lovely in that image: the brain, faced with apparent chaos, leaning 
on all of its resources looking for some hope of order in the mix” 
(179-182 in [28]).  It seems our brains are continuously reaching 
for order, even when order is objectively impossible.   
Yet actually measuring insight events remains a difficult challenge.  
Psychologists have traditionally relied on observational studies to 
capture behavioural manifestations of insight, such as pattern 
recognition and strategic problem-solving. For example, 
experimenter might document how research participants move 
chess pieces in a game, if they solve a puzzle, or if participants 

report learning something new or changing a problem-solving 
strategy.  
More recently, cognitive neuroscientists have started examining 
the physiological and neural correlates of insight events [32, 44].  
Much of this work relies on non-invasive sensing, such as MEG, 
EEG or fMRI, all of which provide evidence of brain activity with 
varying degrees of spatiotemporal accuracy and precision.   New 
nmeasurement technologies are facilitating entirely new 
understandings about how our brains create meaning from the 
chaos of experience. This is very exciting for cognitive 
neuroscientists, but rather frustrating for those of us who would 
like a straightforward way to assess insight events among study 
participants.  

3.2 Insight Evaluation in Visual Analytics
In visual analytics, the problem of evaluating insight has generated 
a quite impressive body of literature that examines how well 
visualizations and analytic workflows achieve their goals.   
Over the past two decades, researchers in InfoVis/VA have pulled 
creatively from cognitive psychology and other disciplines, 
including anthropology, design, human-computer interaction, to 
develop a vis-oriented perspective on technologies of insight.  The 
result is a rich literature of design and evaluation frameworks that 
address every facet of visually-oriented analytic systems, from the 
nitty-gritty of algorithmic scalability all the way to interactive 
workflows, user experience, and ecological fit (for example [35, 
36, 46]).  Visualization practitioners may pick from a rich array of 
quantitative, and mixed-method approaches for evaluating 
visualization tools, with designs ranging from controlled laboratory 
experiments to in-situ longitudinal observation [12, 34].  
Many of the community’s frameworks emphasize insight as a 
desired outcome in their studies. Insight-focused evaluations have 
tended to rely solutions to problems or the subjective reporting of 
an insight event – not dissimilar to the way cognitive psychologists 
have approached the problem.  Field study narratives can be quite 
rich in detailing how visualization supports interactive discovery, 
learning, and information synthesis [3].  For example, InfoVis/VA 
researchers have looked to qualitative field study approaches, such 
as Pair Analytics or the Multidimensional In-depth Long Term 
Case Study (MILCS) as a way of  capturing insight events [3, 49].   
These usually entail researchers collecting both structured and 
unstructured qualitative data to capture goals, strategies, and tasks 
in a workflow; users participate by providing details about the 
occurrence and qualities of insight events [37, 45].  The MILCS 
approach is holistic and participatory, and is perhaps most 
informative when users are highly motivated to record their 
experiences with a visualization tool.  These subjective user 
accounts are integrated with the researcher’s observational findings 
and available quantitative data (e.g., log files).  Insight events are 
captured through self-report and may include details about the 
insight, such as its semantic content, novelty, or depth.   

3.3 Evaluating Processes and Outcomes
In her thoughtful tour of InfoVis/VA evaluation methodology, 
Carpendale describes the characteristics of an optimal evaluation 
metric:  it should be generalizable, precise, and ecologically valid 
[12]. To Carpendale’s criteria, we would add that it should be 
unobtrusive and uncomplicated to deploy.  In addition, it is 
important to differentiate between process and outcome metrics. 
The former pertain to the how of a task, while the latter pertain to 
the what of a task, such as a measurable change on one’s state-of-
knowledge [18].   In relation to analytic reasoning and insight, 
process metrics speak to the behaviours and actions involved in 
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generating insights, while outcome metrics tell us something about 
the event of insight, perhaps even how well that insight accords 
with the real world (ground truth).   
Insight-related outcome metrics that maximize Carpendale’s 
criteria set are particularly tricky.  One outcome metric is whether 
or not the user arrived at a correct judgment or conclusion, which 
is only measurable if ground truth exists for the problem at hand.   
Visualization demonstrations, contests and user studies that 
incorporate ground truth measures usually rely on synthetic and/or 
training data for which outcomes are well-characterized (for 
example [29, 30]).  This is less feasible for problems that lack 
ground truth, which unfortunately describes the majority of real-
world analysis activity that visualization tools support.  
To borrow from Roald Dahl’s Willy Wonka, outcome metrics that 
meet Carpendale’s criteria are the “golden ticket” of insight 
evaluation.  Judging the correctness of an insight will always be 
difficult without ground truth.   However, in principle, detecting 
the event of insight during analytic work should be possible, 
assuming we have an adequate model of the relevant perceptual 
and cognitive processes in the context of visual interaction with 
electronic information [21, 23, 24, 13]. Such a measurement 
framework might be rooted in a theory of insight that incorporates 
emerging findings from cognitive neuroscience [32].  It would 
probably also require neuroscientific data collection systems 
capable of recording insight-related brain activity as users perform 
tasks with a visualization tool.  Neither exists yet, so we will have 
to wait for other research communities to catch up with the 
knowledge goals of the InfoVis/VA community.  Perhaps in a few 
decades, we will have our golden ticket: a metric (probably a suite 
of metrics) for insight that is generalizable, precise, ecologically 
valid, unobtrusive, safe, and robust to variations across tasks, 
individuals, and work ecologies.    
In the meantime, however, developing process measures for 
interactive visual analytic workflows may be a more tractable 
challenge.  This brings us to the topic of human-information 
interaction and theories of information foraging and sensemaking, 
which describe the processes through which we reduce complexity 
and establish order in data and information. 

3.4 Sensemaking, Foraging, and 
“Insight”

Given the difficulties associated with defining and measuring 
insight, it is perhaps no surprise that InfoVis/VA researchers have 
also examined the processes and activities that are likely to enable 
insight [25, 33].  Amar and Stasko, for example, identified ten 
analytic primitives that underlie exploratory query activities in 
visual analytic workflows, positing that visual analytic systems 
should support these primitives to enable higher-order problem 
solving [1, 2].  Chang et al. suggest that visual analytics might 
aspire to expanding a user’s knowledge base, thereby increasing 
the probability of a spontaneous insight [13].  Munzner and 
colleagues have focused attention on the challenges to analytic 
system validity and proposed a design framework to articulate and 
manage such challenges [35, 46].  

Sensemaking theory has also provided a rich source of guidance 
for interactive system design [21].  Sensemaking may refer to any 
of several distinct research traditions in organizational theory, 
decision science, cognitive psychology, and information science 
[17, 31, 52]. Despite being rooted in different academic 
disciplines, these literature generally agree that sensemaking is a 
fundamental sociocognitive process through which individuals 
establish orderly models of the world from what is sensed and 
perceived. 

3.4.1 Sensemaking and Foraging
Within the InfoVis/VA literature, Pirolli and Card’s 

representation-construction model is the dominant model of 
sensemaking [15, 40, 41].   Derived from empirical observations of 
intelligence analysts, this model provides explicit guidance for 
developing systems to facilitate exploratory human-information –a 
process that supports what Stuart Card has described as 
“knowledge crystallization” [10].     

A distinguishing theme in Pirolli and Card’s sensemaking 
model is the integration of their ideas about information foraging, 
which draws upon behavioural ecology to model information 
search as an adaptive strategy that trends toward optimal 
efficiency.  In any information space, relevant sources are 
unevenly and probabilistically distributed. As human 
“informavores” learn to navigate an information space, they 
become increasingly efficient identifying the relevant sources; i.e., 
they spend less time navigating between information patches and 
more time harvesting within the patches that are more likely to 
contain valuable resources.  

Foraging theories tell us that effective information systems 
should enable users to a) quickly learn the contours of an 
information space and b) associate the contours of that space with 
the task at hand.   Moreover, a well-designed system will also 
enable informavores to create their own patches of semantically 
desirable resources that support completion of the task.   Doing so 
minimizes the need for global search, freeing limited attentional 
resources for the cognitive work of assimilating and integrating 
new knowledge [9, 40, 42, 51].  This latter activity is what Pirolli, 
Card, Russell and others describe as “sensemaking.”  

3.4.2 Sensemaking in InfoVis/VA Design
Ideas about information foraging and sensemaking have moved 

outside of psychology and informatics and are widely accepted as a 
basis for the design of analytic systems.  In the analytic 
communities we work with, sensemaking is understood as process 
through which analysts attend to selected sources, integrating 
percepts and concepts into existing representational schemas to 
establish a plausible, evidence-appropriate explanatory narrative 
for events [41, 42].    Information foraging and sensemaking 
theories also underpin a great deal of InfoVis/VA work, informing 
design guidance (see for example [26, 27]) and working 
technologies for both individual and collaborative workflows ([6, 
30, 50]). 

Sensemaking design guidance tends to emphasize the positive 
interaction elements of a visualization tool. By “positive” we mean 
those affordances thought to promote perceptual and cognitive 
engagement with data and information.  However, another tack for 
framing the design question is to ask, “What conditions undermine 
effective sensemaking?”  Flipping the problem on its head opens 
the door to evaluating analytic workflows in terms of how 
effectively they mitigate against certain specified conditions, as 
opposed to promoting others.   
This is somewhat analogous to Munzner’s ideas about threats to 
validity.  Her nested model asserts that visualizations will fail 
when developers get the problem, abstraction, idiom and/or 
algorithms wrong.  Getting these right many not be sufficient for 
realizing a useful, usable, adoptable system, all are necessary to 
this end [35].   Similarly, visual analytic workflows should not 
only promote conditions associated with effective problem-
solving; they should explicitly minimize conditions that undermine 
it.  To this end, we might consider the kinds of human-information 
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interaction processes that undermine our native sensemaking 
abilities, so we can design against those conditions. 

3.5 When Sensemaking Fails
Although sensemaking comes naturally to most of us, it is not 
failure-proof; there are conditions under which we are more or less 
effective in putting our experience into order. Pirolli and Card’s 
sensemaking models derive from empirical descriptions of analytic 
workflows, and so they do not address sensemaking failure; nor is 
it an explicit topic in InfoVis/VA literature.  However, it is worth 
identifying the attention to the conditions under which 
sensemaking becomes more difficult.  
Organization theorist Karl Weick has devoted much of his career 
to understand the conditions under which sensemaking fails.   
When our experience of events does not conform to the semantic 
structures that have served us in the past, and/or when the flow of 
sensory and perceptual input overwhelms our ability to put it into 
order, we lose track of what makes sense.  By definition, 
unpredictable events challenge our mental models; under 
conditions of high information throughput, our experiential 
knowledge may not enable us to navigate an unmanageable wave 
of unexpected sensory inputs. We can adjust and repair our models 
if we have time and space to do so. But when circumstances do not 
give us time to create and test new mental models, tragedy can 
ensue - as Weick’s studies of the Tenerife airline disaster and the 
Mann Gulch fire illustrate so poignantly [52]. 
Weick’s studies of sensemaking failure focus on human 
communication and decision-making in life-and-death situations.  
Computer scientists and interaction designers rarely have to 
consider life-and-death risk when designing their systems.  But 
Weick’s observations drive home a key point: Under conditions of 
high cognitive and emotional load, ambiguity, and rapidly shifting 
patterns, the subjective experience of disorder undermines 
sensemaking.  
By extension, if analytic technologies are to minimize 
sensemaking failures, we should pay attention to the conditions 
that stress human perception and cognition.  Among other things, 
visual analytic systems should enable users to  manage volume and 
variability in data.  This is particularly true for the open-ended, 
cognitively challenging, exploratory work of data analysis, 
synthesis, and discovery that so many VA researchers seek to 
support. 

4. INFORMATION, ENTROPY, AND REDUCING 
COMPLEXITY

To summarize our ideas thus far, we assert that unmanageable 
amounts of data and information overwhelm our native 
sensemaking abilities; by extension, insight is impossible when 
meaningful, recognizable signals are lost in disorder.  If we are to 
design systems that enable effective perceptual and cognitive 
engagement, we should emphasize features that empower people to 
reduce unmanageability, according to the contextual and subjective 
requirements of the work being performed.   Happily, this design 
principle lends itself to evaluation through the application of 
information theoretic measures, such as entropy and 
compressibility, that may indicate how effectively a given analytic 
system enables users to impose sensible order [14].  This brings us 
to Claude Shannon’s ideas about information and entropy. 

4.1 A Short Introduction to Shannon 
Entropy
Shannon information, uncertainty, and entropy are intricately 
related concepts and notoriously tricky to grasp and explain in 
written English (or any language, for that matter).  A full treatment 
of Shannon’s ideas is well beyond the scope of this paper 
(although Chen et. Al. [14] write about information theory in 
visual analytics; also see James Gleick’s very entertaining and 
accessible history of information theory [22]). However, a 
vernacular discussion of Shannon entropy may be helpful in 
understanding why we consider complexity reduction as a critical 
function of visual analytics technologies. 

 One can think of entropy as a probabilistic way of estimating 
what we can learn about an entire set, if we can only examine one 
element from that set.  In other words, how well does a randomly 
selected element represent all items in the set?  

Mathematically, Shannon entropy expresses the predictability 
of any variable X as:

where px expresses probability that X is in state x, b is the base of 
the logarithm, and p log2 p is zero when p= 0.   The precise unit of 
measurement depends on the base of the logarithm. For example, if 
base two is used, the unit is “bits,” while a base ten system gives us 
“Hartleys,” named for another of information theory’s early 
pioneers. 
Shannon’s entropy equation enables quantification of variability in 
a system. Higher variability means less predictable content; 
because there is more information, there is more entropy.   This is 
the key point, because most people do not think of “entropy” as 
informative in the conventional sense.  However, remember that 
Shannon quite explicitly excluded meaning from his formulation of 
information, as it was not conducive to the engineering problem he 
was trying to solve [4].  Instead, entropy reflects the complexity of 
the vocabulary required to encode a stream of messages from some 
system.  
This is an engineering problem, not a semantic one.   Systems that 
require more bits to represent their messages contain a greater 
volume of information; are therefore more difficult to compress; 
and by extension, entail higher entropy. Put simply, the more 
information we are dealing with, the more difficult it becomes to 
characterize the entire content of a set using any single element 
drawn from that set. 
For example, consider a weather sensor that only indicates whether 
it is currently raining. This sensor displays “raining” if there is 
rain, and “not raining” if there is no rain.  Furthermore, let us say 
that it is raining 50% of the time (in other words, the sensor it not 
in the authors’ home state of New Mexico).  If we look at the 
sensor, we have a 50% chance of capturing the system in either 
state.  Zero indicates that it is not raining and a one tells us that it 
is, so the entropy of our weather system is one bit. The answer to 
the question of whether it is raining or not takes one bit.
However, let us assume we are in a place where it never rains; i.e., 
you can be certain that it is not raining.  In this case, our rain 
sensor is providing no additional knowledge, because it never rains 
in this place. In other words, it takes zero bits of information to 
encode the answer to the question; the state of the system is 
entirely predictable. 

H(X) =  - px logb px
(1)
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A more interesting case occurs when rainfall is more variable -  
let’s say one can expect rain 25% of the time.  Responding to the 
question, “Is it raining?” requires something less than one bit of 
information. This is a bit of a strange concept, because we tend not 
to think of information in fractional bits. Arithmetically, however, 
the representation is quite straightforward and provides a 
mathematical foundation for tracking changes in the predictability 
of content based on a single message (sample) from the set.

4.2 The Tedium of Yes-No Questions
Another useful metaphor for thinking about Shannon entropy is the 
yes/no game of twenty questions:  How many yes/no questions 
must be posed and answered to determine the state x for variable 
X?   Simple systems require very few yes/no questions, as in the 
weather system described above: “Is it raining?  No.”  Case closed.  

As information, entropy and therefore complexity increase, 
however, more yes/no questions are required to determine the 
system state.  Consider a weather station that measures barometric 
pressure, temperature, precipitation, etc., in a geographic area with 
very unstable weather conditions. One (very bad) way of 
interrogating the system is asking a series of yes/no questions to 
determine the state of all parameters of interest: “Is barometric 
pressure below 50 millibars? Yes?  Is it above 30 millibars?  No?” 
Etcetera.  
Although unrealistic, this example helps with thinking through the 
implications of Shannon entropy for the perceptual and cognitive 
work of sensemaking.  Serial questions are an inefficient, tiring 
way of figuring out the state of a system; and the more noise we 
encounter, the more questions we have to ask, and the more tiring 
the task.    

4.3 The Worst Analysis Workflow in the 
World

Here is another hypothetical example: consider a group of all-
source analysts tasked with producing a detailed report on the 
history, current production capabilities, and international 
expansion plans for Willy Wonka’s candy factory.  Our analysts 
have access to the International Confectionary Data Portal (ICDP), 
a repository containing over eight million documents pertaining to 
confectionary industries around the world.  The analysts know that 
only a small number of available documents will be useful in 
compiling their report, so they get to work winnowing down the 
dataset to the items they need.  In Pirolli and Card’s terminology, 
they must forage for resources before they can use them in 
assessing Willy Wonka’s industrial capacity.   

Now, imagine for a moment that the ICDP lacks any support 
for user queries. Instead, the interface forces analysts into an item-
by-item evaluation: it retrieves an abstract at random and asks the 
analyst, “Is this item related to Willy Wonka?” If the answer is no, 
the item goes into the “Junk” category.  If the answer is yes, the 
item is put in the “Wonka” category.   Over time, the analysts 
evolve the Wonka category into enriched information patch 
comprising a selection items pertaining to Willy Wonka.  
Assuming the analysts are judging document content correctly, the 
entropy of that patch is gradually falling relative to the entire 
ICDP, even as the number of items in the patch increases, because 
the items are in some way related to Willy Wonka.  

However, the analysis group experiences high employee 
turnover because the work is so tedious; while the government 
customer is frustrated by the delays in receiving the analysis she 
has requested. Finally, the lead intelligence analyst decides she’s 
had enough and writes a script to perform Boolean searches against 

the database.  This is nothing short of revolutionary: a sorting task 
that seemed endless can now be performed with one simple 
operation.  Morale improves as the analysts use the new tool to 
winnow the ICDP database to fewer than one thousand relevant 
items. In less than a week, the group has assembled convincing 
evidence that Willy Wonka is actually verging on bankruptcy and 
is unlikely to declare a monopolistic chocolate empire anytime 
soon. 

We included this counterfactual fantasy to illustrate the 
importance of automation in enabling a user to cultivate and enrich 
a patch of information using whatever semantics she deems 
appropriate for the problem. When automated tools are not 
available, people will use whatever is at hand to sort, winnow, and 
texturize information, structuring it according to experiential 
knowledge and subjective understanding of the task. 

4.4 Enriching Patches, Reducing 
Complexity

In 2009, we were involved in a Sandia project to develop an 
document categorization and visualization tool for all-source 
intelligence analysts.  To inform prototype development and 
evaluation, we designed a task analysis activity with all-source 
intelligence analysts to capture variations in their strategies for 
managing text document collections.  We used paper copies of 
intelligence reports in this study so that we could watch analytic 
selection strategies in action.    

As one might expect, which reports a particular analyst found 
“useful” depended how that analyst interpreted the problem, her 
experience working in the intelligence community, her familiarity 
with the type of reporting that we provided, and her self-reported 
background knowledge for the mock analysis problem we 
presented. That said, all but one analyst began the task by 
skimming each document and identifying the less-relevant items.  
Once this reporting chaff was set aside, the analyst settled into the 
task of putting the remaining wheat into semantically meaningful 
categories.  The number of sorting iterations, the final number of 
categories, which documents were grouped together, and the 
semantic labels assigned to categories differed among individuals. 
However, every analyst created some form of a “junk” pile to 
corral items they deemed irrelevant for their analysis (with the 
exception of one analyst, who told us he would rely on his domain 
knowledge rather than use the reports we provided).  

This kind of categorization is probably familiar to all of us.  
Categorization is the antidote to entropy: as we concentrate 
semantically related information into patches, we enhance our 
ability to predict the content we will encounter as we engage a 
patch.  Categorization also mitigates perceptual and cognitive load, 
particularly in relation to working memory. When we put items 
into subjectively meaningful, thematically consistent categories, 
we are expressing a cognitive model of semantic connections both 
within and across categories.  This reduces the load associated with 
remembering random items.  Adding patchiness to an information 
space helps people avoid the tiresome task of repeatedly 
interrogating elements to determine knowledge relevance.  It is 
akin to transforming the random collections of dots into a tidy 
checkerboard. 

Interestingly, in one of their early essays on information 
foraging and sensemaking, Pirolli and Card get tantalizingly close 
to information theoretic models of human interaction with data.   
They describe experts’ heuristics for setting noise thresholds, 
asserting that experience makes experts more efficient at filtering 
noise to focus on relevant signals. Their foraging loop describes 
enriching an information space in terms of narrowing the set of 
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items selected for review [41].  As counterintuitive as it may seem, 
enriching an information patch necessarily entails the reduction of 
complexity, because patches concentrate like items into 
meaningful categories.   Another way to think about this is to say 
we enrich information patches by increasing predictability: One 
glance at the document on top of that pile on your desk tells you 
what sits underneath, so you can decide whether that particular 
topic merits your attention at that time.  Making content 
predictable facilitates sensemaking by freeing our attentional 
resources from the burden of identifying and classifying items, so 
we can engage the complex work of interpretation.   

5. FROM PRINCIPLE TO APPLICATION: 
COMPLEXITY REDUCTION IN SYSTEM 
EALUATION

We are not the first to suggest that visual analytics and 
visualizations can be framed in terms of information theoretic 
principles. As Chen points out, information foraging theory is 
highly consonant with Shannon’s theories of information, entropy, 
and uncertainty; measures of Shannon entropy and Komolgorov 
complexity can be used to indicate heterogeneity, uncertainty, 
thematic saliency, and shifts in the semantic content of an 
information stream [14].   

It is rather surprising, however, that information theoretic 
frameworks are not more explicit in the InfoVis/VA literature.  For 
one thing, complexity reduction is a major  design requirement in 
visual analytics: of course information visualizations and visual 
analytics systems should enable users to boil down information to 
the most relevant attributes, parameters, and content.   In fact, most 
InfoVis/VA design guidance can be interpreted to support user-
driven complexity reduction in one way or another.    

Going forward, we suggest that our colleagues consider how 
emphasizing complexity reduction as an explicit design goal can 
facilitate evaluation methodologies that emphasize process 
measures associated with effective sensemaking:

Design.  When working with user communities to understand 
their workflows, it makes sense to pay attention to the strategies, 
heuristics, and representations that people use to get rid of 
irrelevant information.  Paying attention to these native strategies 
and heuristics might prove very useful in developing automated 
techniques that enable people to efficiently ringfence irrelevant 
information.  After all, getting rid of junk can be a quite desirable 
attribute of a visual analytics tool; we are thinking here of the 
ForceSPIRE users who were surprised and gratified to find that 
Endert et. Al.’s semantic interaction models resulted in the right 
items being relegated to the junk pile [20]. 

Evaluation.  Information theoretic measures are probably not 
the golden ticket for measuring insights.  However, if one accepts 
the principle that complexity reduction is a necessary element in 
the sensemaking processes that support insight, then it makes sense 
for us to evaluate visualizations and analytic workflows in terms of 
how well they enable people to reduce complexity. The 
subjectivity and idiosyncrasy of analytic workflows is one of the 
major barriers to developing generalizable, precise, and 
ecologically valid indicators to evaluate the goodness of a visual 
analytics workflow.  However, everyone needs to get rid of the 
items that are irrelevant to a problem.  Meanwhile, information 
theoretic measures are generalizable across users, problems, and 
visual analytic workflows, precisely because such are explicitly not 
about semantics or meaning (thank you, Claude Shannon).  

5.1 Is There a ‘There,’ There?
Recognizing the importance of empirically testing one’s ideas 

(or, as we say in the United States, eating one’s own dog food), we 
are currently developing a dataset that will help us characterize the 
performance of information theoretic measures in analytic 
processes.   In summer 2016, we are running an experimental study 
in which we present participants with a hypothetical intelligence 
analysis question and a rather obnoxious pile of references. 

The information theoretic measure we have selected for testing 
is a normalized information compression distance (abbreviated as 
NCD), which is a feature- and parameter-free way of evaluating 
the similarity of two or more information objects [53].  The 
simplicity and generalizability of such compression-based 
measures lend them to a wide range of applications, and we are 
intrigued by the idea of using them as a process measure of 
information interaction in visual analytic systems.  Specifically, we 
suggest that an effective visual analytic interaction model should 
enable people to sort data and information into categories of 
semantically similar items.  The emergence of within-category 
semantic coherence should be expressible as a change in 
compression distance, both within categories and across the 
document set as a whole.

To evaluate this idea, we  have designed a counterbalanced, 
between-subjects experiment involving 15-18 research participants 
drawn from the Sandia National Laboratories’ professional 
population.  Volunteers will be asked to assess evidence supporting 
the British government’s assertion that Russian assassins used 
polonium to kill Alexander Litvenenko in London, November 
2006.  They will work with a set of 370 documents, ranging from 
dense journal articles, to government reports, to articles from 
popular news magazines.  A small number of the documents are 
directly relevant to the challenge questions; many are tangentially 
related but do not contain the information required to assess the 
challenge questions; and a plurality have nothing to do with the 
topic (distractors).  To perform the task, particpants will be 
randomly assigned to one of three different workflows, or 
conditions.  Two of the conditions use the Sandia National 
Laboratories’ Citrus document analysis platform, while a third 
“control” condition requires participants to perform the task using 
the Windows filing system. 

We hypothesize that research participants across all 
experimental conditions will arrange the documents in a manner 
that increases within-category similarity; at the same time, we 
expect between-category similarity to fall as people create 
“patches” of semantically related information.  We also expect that 
automated support for categorization will facilitate users’ efforts to 
impose structure on the chaos we give them.  Specifically, when 
using Citrus, we expect research participants will organize 
documents into categories more quickly and efficiently, with 
greater reductions in NCD compared to performance of the same 
task using the Windows file system on a computer desktop. 

For each experimental condition, we will collect both process 
and outcome measures.

 Process measures:  Total number of sorting iterations, 
time per iteration, subjective workload (measured using 
the NASA Task Load Index, or TLX; see nasatlx.com) at 
the end of the work session; and a normalized 
compression distance measure applied to the categories 
at the end of each sorting iteration. 

 Outcome measures:  End-of-task NASA-TLX,  time-on-
task, NCD per category created;  difference between 
starting and ending   categories, and the number of 
correct answers to challenge questions about the 
Litvinenko event. 
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We will be completing data collection and analyzing the resulting 
data in the summer and fall of 2016.  Our follow-on publication 
will document our experience applying compression distance 
measures to assess how these computer-mediated interaction 
models facilitate the reduction of complexity in a realistic analytic 
workflow.
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