SAND2016- 10201R

Hyperelasticity 101
What is a Hyperelastic Material?

o Hyperelastic materials can experience large strains (up to 500%) and most of it if not all is
recoverable.

o For example, rubber is a hyperelastic material and its behavior is reminiscent of a viscous fluid
during its processing to shape.

o The vulcanization and/or curing of rubber type materials causes their polymer chains to
crosslink which allows the material to fully recover from elastic deformations.
Load-Extension behavior is nonlinear.
Nearly incompressible — one exception is some rubber foam materials where large volume
changes can be achieved.

Why use Hyperelastic Materials?

o Low Cost
o Flexible
o Resilient — can work in many environments (moisture, pressure, heat)

Where are Hyperelastic Materials Used?

Automotive (tires, belts, hoses, mounts)

Aerospace (remember the failed O-ring on the space shuttle?)

Biomedical/Dental Industries (artificial organs, wheelchairs, implantable surgical devices)
Packaging (Styrofoam)

O O O O O

Sports (equipment safety, shoes, helmets)
Commonly used Variables for Hyperelastic Material Models

Because hyperelastic materials can undergo large deformations while remaining elastic, their material
models depend on variables that account for large deformations. Some variables to define are:

e Deformation Gradient: the fundamental measure of deformation in continuum mechanics. It is
the second order tensor which maps line elements in the reference configuration into line
elements (consisting of the same material particles) in the current configuration. The

deformation gradient includes both deformation and rigid body rotation.
du;
Fj=6;;+ c’)_X]

e Right Cauchy-Green Deformation Tensor: physically, gives the square of local change in a line
element due to deformation. Invariants of the right Cauchy Green deformation tensor are often
used in the expressions for strain energy density functions.

Cij = FyiFy;

e Green-Lagrange Strain Tensor (sometimes referred to simply as Green Strain Tensor): represents

large strains. It contains derivatives of the displacements with respect to the original

configuration. The values therefore represent strains in material directions, similar to the
behavior of the Second Piola-Kirchhoff stress.
1
Eij =5 (Cij = 6i))

e Strain energy density function: a scalar valued function that relates the strain energy density of
a material to the deformation gradient through the right Cauchy Green deformation tensor.
Note that the strain energy density function can also be written as a function of the Left Cauchy
Green Deformation tensor or the principal stretches, but the Right Cauchy Green Deformation
tensor is used in most of the equations given in this paper. A strain energy density function is
used to define a hyperelastic material by postulating that the stress in the material can be
obtained by taking the derivative of W with respect to the strain.

W =w(C)
e Second Piola-Kirchhoff stress: measure of stress in the reference configuration. Independent of

rigid body motion and of the choice of coordinate system.

o _, W _owaaL oWl oW ol
YT %ac; “anac; “aLac, " al; aC;

Solution Steps

1. Define the strain energy density function for the hyperelastic material in terms of a deformation
variable (for this research the Right Cauchy Green Deformation Tensor)

2. Calculate the derivatives of the strain energy density function with respect to the invariants of
the deformation variable it is written as a function of

3. Calculate the derivatives of the invariants with respect to the deformation tensor

4. Plug everything into Second Piola-Kirchhoff stress

5. Convert into Cauchy stress (if desired)

Hyperelastic Constitutive Models

St. Venant-Kirchhoff Hyperelastic Material Model: the simplest hyperelastic material model, an
extension of the linear elastic material model to the nonlinear regime.

W(E) = %[tr(E)]z + utr(E?)

where A and u are the Lame constants and E is the Green Strain Tensor.

Neo-Hookean Hyperelastic Material Model: similar to Hooke's law, but can be used for predicting
the nonlinear stress-strain behavior of materials undergoing large deformations.

W(C) = w(I; —3) + D;(J — 1)?

where, 1 = %, G is the shear modulus, D; = g, K is the bulk modulus, and I; and I, are the first and

second invariants of the Right Cauchy Green deformation tensor and J is the determinant of the
deformation gradient.

Mooney-Rivlin Hyperelastic Material Model: hyperelastic material model where the strain energy
density function is a linear combination of two invariants of the right Cauchy Green deformation
tensor.

W) = —3) + (I =3) + D1(J — 1)?

where, p; = %, G is the shear modulus, E = 6(py + Wy), E is Young’s modulus, D; = g, K is the bulk

modulus, and I; and I, are the first and second invariants of the Right Cauchy Green deformation
tensor and J is the determinant of the deformation gradient.

*Note for incompressibility, J = 1, therefore incompressible Neo-Hookean and Mooney-Rivlin
material models reduce the strain energy density equations above by dropping the (J - 1) terms. Also
note that if u, = 0, a Mooney-Rivlin material model reduces to a Neo-Hookean. Although
hyperelastic materials are generally considered to be incompressible, in reality they are only nearly
incompressible and the most accurate material models will include compressibility. Also, a
compressible material model helps to avoid the numerical problems inherent in incompressible
formulations (Poisson’s ratio = 0.5).

Ogden Hyperelastic Material Model: used to describe the non-linear stress-strain behavior of
complex materials such as rubbers, polymers, and biological tissue. The Ogden strain energy density
function is written in terms of the principal stretches as:

=

N
Wi dp22) =) 22 (A + 2, + 2, - 3)

where N, 1, and a,, are material constants and 4; are the principal stretches.

*Note for N = 1 and a; = 1, the Ogden model reduces to a Neo-Hookean material and when
N =2,a; =2,and a, = —2, the Ogden model reduces to a Mooney-Rivlin material.

Yeoh Hyperelastic Material Model: uses higher order terms in I; to account for the departure from
neo-Hookean/Gaussian behavior at large stretches.

W(C) = Cro(l; = 3) + Coo(I; —3)* + C30(; — 3)?

where C;, C2p,and C3, are material constants and I; is the first invariant of the Right Cauchy Green
deformation tensor.

Limitations of Hyperelastic Material Models: Most material models allow the analyst to describe only a
subset of the structural properties of hyperelastic materials.

1. The stress strain functions in the model are stable. They do not change with repetitive loading. The
material model does not differentiate between a 1% time strain and a 100" time straining of the part
under analysis.

2. There is no provision to alter the stress strain description in the material model based on the
maximum strains experienced.

3. The stress strain function is fully reversible so that increasing strains and decreasing strains use the
same stress strain function. Loading and unloading the part under analysis is the same.

4. The models treat the material as perfectly elastic meaning that there is no provision for permanent
strain deformation. Zero stress is always zero strain.

Sources and further reading:

http://www.ewp.rpi.edu/hartford/~ernesto/S2015/FWLM/TermProject/Misulia/Altidis2005-
ANSYSUsersGroup-HyperelasticMaterials.pdf

http://www.umich.edu/~bme332/ch6constegelasticity/bme332constegelasticity.htm

http://www.brown.edu/Departments/Engineering/Courses/En221/Notes/Elasticity/Elasticity.htm

http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/NFEM.Ch08.d/NFEM.Ch08.pdf

http://sameradeeb.srv.ualberta.ca/constitutive-laws/hyperelastic-materials/

http://biomechanics.stanford.edu/me338/me338 project0l1.pdf

https://en.wikipedia.org/wiki/Strain _energy density function

https://en.wikipedia.org/wiki/Strain_energy_density_function
http://biomechanics.stanford.edu/me338/me338_project01.pdf
http://sameradeeb.srv.ualberta.ca/constitutive-laws/hyperelastic-materials/
http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/NFEM.Ch08.d/NFEM.Ch08.pdf
http://www.brown.edu/Departments/Engineering/Courses/En221/Notes/Elasticity/Elasticity.htm
http://www.umich.edu/~bme332/ch6consteqelasticity/bme332consteqelasticity.htm
http://www.ewp.rpi.edu/hartford/~ernesto/S2015/FWLM/TermProject/Misulia/Altidis2005-ANSYSUsersGroup-HyperelasticMaterials.pdf
http://www.ewp.rpi.edu/hartford/~ernesto/S2015/FWLM/TermProject/Misulia/Altidis2005-ANSYSUsersGroup-HyperelasticMaterials.pdf

Derivation of Equations for the explicit form of the final equations for reduced
order models incorporating an incompressible Mooney-Rivlin hyperelastic material model

The deformation gradient tensor F; defined in terms of the Kronecker delta §; and displacement field u;, a function of
the position vector in the reference configuration X;.

Fy = o+ 24
j
The Right Cauchy Green deformation tensor, Cj, is defined as:
Cij = FiFyj
C= (5-+%)<5 -+%>
TR Tax/\TY T ax;
duy; du; Ou; duy;

Cij = 0ubij + Oz + 0y
j

X, " X, 0%,

Using the substitution property of the Kronecker delta, where if a subscript on the Kronecker delta matches a subscript
on what it is operating on, replace the matching subscript with the other subscript and drop the Kronecker delta.
Example:

O iU = u;

iy

Yields:

C. =& +6ui+6uj du; duy,
UTTU T ax " 0xX; ' 0X,0X;

Strain energy, ¥, for incompressible Mooney-Rivlin materials (1. Nam-Ho Kim: FEA for Nonlinear Elastic Problems, 2.
University of Wisconsin: BME 615 Hyperelasticity Strain Energy Density, 3. Brown University School of Engineering:
Continuum Mechanics, 4. University of Colorado: Review of Continuum Mechanics Field Equations):

() =w —3)+u(l; —3)

Where, ; and y, are material constants (Nam-Ho Kim: FEA for Nonlinear Elastic Problems):

G
ll1=§
E=6(u +up)

Where E and G are Young’s modulus and shear modulus of the material, respectively. Also, I; and I, are the first and
second invariants, respectively, of the Right Cauchy Green deformation tensor.

Adopting a hyperelastic material model between the Right Cauchy Green deformation tensor and second Piola-Kirchhoff
stress, S, tensors gives:

oF oy alL _dval, Ay dls

S;;=2—— =2 2t 2—
UT9c,; “anac; “anac; " “ol;9C;

Note that the strain energy equation used in this derivation isn’t a function of /5, therefore the third term in the second
Piola-Kirchhoff stress goes to zero.

Also (Bonet and Wood):

oL, 9Cy _

- =&
ac; ac; Y
al dCy,; C,
2 _ 9bkbi _ 2C;;
And:
oV d
3 =5l =3+ =3 =
oV d
o =3 0 =3+l = 3)] = b,
Therefore:

oy al, o al,

=2 il
al, 9C;; + al,9C;;

ij
Sij = 211655 + 211, 2G5

Sij = 21465 + 41, Gy

S = 20,8, + Apy 8, + 2% 4 Y G du
y = Aoy TR % T 5 T ax, T ox, 0x;

With S;; as defined above, the weak formulation of the geometric (and material!) nonlinear problem is the find the
displacement field u such that:

av;
J PoVi uldX + J ﬁ(F” S]k)dX = J PoVi blOdX + J Vi tl-OdS
Qo Qo k Qo ang

A B C D

Where the assumed displacement field takes the form:

M
WD =) au@UP)
n=1

And:
v; = Ul(m)

The components of this equation are labeled A, B, C, and D for breaking up the sections:

Looking at the terms inside the integral A:

PoVill;
Yields:
(m) 0° (Qn(t) Ui(n) (X))

= poll at2

Looking at the terms inside the integral B:

5 (')u IS + 4 5 +6uj+6uk+6ulaul
Tax,)\ el T\ O oy Y 5% T %, 9%,

aulaul auiz 5 +6 A5, +6ul4 ou;
52 gy o, +ax, M0 T gy Mkt gy Mz gy

(')vl- (F S)_ (')vl-
ax, ~ U T 5x,

_ 0y ou; duy,
=3x. [6”2u16]k + 6;;4120)K + 640 55— X, + 6;j4uy = ox, + 0;:4

aul 4 duy N du; du; duy,
T ax, M29x, T ox, "2 ox, ox,

av; UL S+ 4B 4+ 4 du g duy, 4 aulaul 4o du g du; +ap du; au] c’)ulauk
aX M0 + Hi0ue + H2 o+ M o+ Mgy Gy Mgy, T e gx, T e ax ax, T 2 ax, ax,
+a u; aul aul
"2 5X, 0X; 0%,
AL + (20 +8 +4 duy, du, aul ou; du; du; duy,
H2)8ir + (211 llz) K2 X, Zc')X an HzaX 9%,
du; aul aul
+ 44,
0X; c')X X,
e 48 +4 duy, du, aul (')ul(') du; auk+4 du; du; dy,
(H “2) "2 9%, Me5x ax, T M2 ax, ax, T M2 ax, ax, ox,
= (2w + 4112)

c’)Xk
duy, du; oy du; (')u] du; duy du; du; dy,

+8 +4 +4 oy Ly gy, L
“Z)ax Ma g, M2y, ax, T M2 9x, ax, T M2 ax, ax, T 2 9%, ax, ax,

*What if i,i instead of k,k? symmetric?
Substituting in the assumed displacement field and v; and noting that the subscript on g and the superscript on U must
match each other and be different letters for multiplying terms, finally yields:

=2y +4
2w H2) X

(m)

+

(n) (n) (n) (»)
(2, +8 Z)ffqn(t)Ui (0 | 4, 20OV 94Oy (X) 99,V (X)

aX an H2 c')Xl- 2 aXl. an
4 4, 2mOUP O 0GOUTE) 04 (OUPX) 24, OV 0
0X; 0Xy Hz 0X; ax;
+ap 3q;(OUS (X) 3¢, (OUT (X) 0, UL (X)
2

aX; aX; X,

20 + dyiy)
= (21 Hz) 9X,
aX (Zug + 8uz)qn —— aX oG —p— aX o qn —p— aX dp aX o qn —p— aX dp an
aU(m) aU(n) aU(P) aU(m) aU(n) aU(p)

4 4
ey gy oy, T M2 x, T ox, P ox,
H2 axk s aX n aX v axk

1. Termsonsingle g:

= 2 8
qn| 2pg + llz) an U2 an 6X

2. Termson double gg:

. aU(m) aU(n) aU(p)+4 aU(m) aU(n) aU(P)+4 aU(m) aU(n) aU(p)
"27ax, T Tax; Tax, T M2 Tax, T Tax; Tax, T M2 Tax, T Tax; TP ax,

. an(m) aUl(n) aUl(p) N an(m) an(n) aU],(P) N an(m) an(n) U IEp)
- Wi\ Tax T Tox, 0X, | 90X, 0X; 0X, @ 0X; 0X, 0X

. an(m) aUl(n) aUl(p) N aU],(P) an(n) an(m) N U IEp) an(m) an(n)
- e\ Ty T Tox, ox, | 90X, 0X; 0X, . 0X, 0X, 0X

3. Termon triple gqq:

H2 axk s aX n aX v axk

= He2dsandy 5y ax, ax, ax;8

Looking at the terms inside the integral C:

pov;b}

Substituting:

v; = Ui(m)

Yields:
= poU™ b}
Looking at the terms inside the integral D:
vt

Substituting:

v = Ul.(m)
Yields:

- umel

Finally, combining all bolded equations yields Equation (14):

. . 1 2 3
M;jq; + Dyjq; + Ki(,- 'q; + K'(jl)CI]'CIl + Ki(jk)pq]'%% =F

L

an — J ,00 Ul(m) Ul(n) dX
Q

(1) au™ gy™ au™ gu™

Ko = | (2n1 +8pp) — L+ 4y, —1 k_ax
" Qo ! 2 an an 2 an aXl-

(@ J " P Ui(m) aUl(n) 9 Ul(p) .\ an(P) P Ui(n) an(m) .\ aU}Ep) an(m) an(n) "
mnp 0 2 an aXl an an aX] an aX] an aX]

9 Ul(m) 9 Ui(S) 0 Ul(n) 0 Ul(p)

3)
K =4 dx
msnp = *H2 Jﬂo X, 0X;, 0X; 0Xy

Fi=| (poUi™b? — (2pg + 4pp) —2)dX + J ul™t? ds
Q 0Xy, ont
0 0

Note D;;q; has been added to match Mignolet’s Equation (14). Look to his explanation.

Derivation of Equations in M.P. Mignolet, C. Soize,
Comput. Methods Appl. Mech. Engrg. 197 (2008) 3951-3963

Equation numbers referenced are from the paper.

The deformation gradient tensor F; defined in terms of the Kronecker delta §; and displacement field u;, a function of
the position vector in the reference configuration X;.

Equation (1):
aui

%

Fij = 6” +
Green strain tensor, Ej;, Equation (2):
1
Eij = 5 (FiiFie; — 01))

1 auk auk
Eij:i 6ki+ﬁ 5kj+ﬁ _6ij
L]

auk auk auk
ax; " X, X,

1 auk
Eij =3\ Okidkj + Okj 55 + Ok
l

Using the substitution property of the Kronecker delta, where if a subscript on the Kronecker delta matches a subscript
on what it is operating on, replace the matching subscript with the other subscript and drop the Kronecker delta.
Example:

6l-ju]- =U;

Therefore,

P +6uj+6ui+6uk6uk
U2\ Tax, " ax; ax;0x; Y

1(0u; Ou; Ouy duy
Eij = - + o + —
2\0X; 0X; 0X;0X;

Adopting a linear elastic model between the Green strain and second Piola-Kirchhoff stress, S;, tensors yields Equation

(8):

Sij = CijiEr

g —1C <6ul+6uk c’)uraur)
T Uk \gx, T aX, ' 90X, 0X,

Equation (12) with A, B, C, and D labels for breaking up the sections:

av;
Jﬂ PoVi uldX + Jﬂ ﬁ(F” S]k)dX = Jﬂ PoVi blOdX + L Vi tl-OdS

0 0 k 0 Q(t)

A B C D

Looking at the terms inside the integral A:

PoVill;

Substituting assumed displacement field Equation (13):

M
WD =) au@UP 0
n=1

And:
v = Ul(m)
Yields:
_ i P@@U00)
Po i atz
= poU{™ Uiy
Looking at the terms inside the integral B:
av; 1 dv; du; du, OJu; OJu, du,
—(F::8,)==——||6:; +—) C; (—)
axk(ySk) 20X, [(b +ax,-> Tkw \ 9x, +6XW + aX, 0X,,
1oy c (c’)uw N duy; 4 ou, c’)ur) du; (c’)uw N duy; N ou, c’)ur)
T 20X, | UM \ax, T ax,, ' ax,0x,/) " ax; ™ \ax, ~ ax, = 9X,0X,
_ 1oy (c’)uw N duy; N u, c’)ur) du; (c’)uw N duy; N u, c’)ur)
T 20X, | ™ \ax, " oax, ' ox,0x,/) ox; 7\ox, ' ox, X, X,

Substituting assumed displacement field Equation (13):

M
WD =) au@UP)
n=1

And:
v = Ul(m)

And noting that the subscript on g and the superscript on U must match each other and be different letters for
multiplying terms, finally yields:

_10u™ L (06u(OUP) | 0020V X) | 04OV () a5 (OU;” ()
2 0x, | " X, ax,, ax, 2%,
L 24:0UF®) - (9g,0U"K) | 0au DU) | 930U (X) 005 (V" (X)
0X; kdw 20X, X, 0X, aX,,
_toy™ ouy” oy v au.
= 27K, iktw | dn ax, qn X, qn ax, dp X,

.\ Ul . U™ .\ au™ .\ au™ U
qs an jklw qn aXl qn aXW qn aXl Qp aXW

_10u™ c aui” 1ou™
- 2 an ikiwQn c')X,

— C;
2 an ikiwdn c’)XW

au™ 10U c au™ ou®
> iiwn —55 4
20X, Hwino5x, TP oax,,

1ou™ aul® au® 1ouf™ oul® au™
+5 s 5y Giiwd 5 q Cikiwn —5—
2 30X, Coax; ™I ax, T2 ax, C oax; MM ooax,
tou™ au® : au™ au
> s v Cirwdn—y—4
2 X, © oax; Wi oax, P oax,
1. Termsonsingle g:
1oU™ auiP 1oul™ aut™
w
—— Ciklen Py - Ciklen v
2 09X, X, 2 09Xy 9X,,
1aul.(m)c aud 1aul.(m)c au™
"\2 ax, W ooax, 2 ax, ™ ax,
tou™ aut™ 1eu™ oy
=an| 55y Cikwt aX > X Ciklw—aX
k w k w
Using Equation (9):
Cikwt = Cikiw
Yields:
tou™ au™ 1eu™ eyt
=qn|5 Citaw 5 Citow 55—
2 90Xy X, 2 0X, 9X,,
_ (ouf™ c U
=d(qn an iklw aXW
Finally, substituting w=p to match Equation 16:
_, (ou™ au™
=dqn an iklp aXp
2. Termson double gg:
1ou™ au™ au® 190 Ul aul® 1oul™ oul® au™
5 v Ciklw dn) += qs Cjklw dn Py qs Cjklw n—F7yv
2 90Xy ax, P ax, 2 90X, ' 09X, X, 2 ax, ° ax; 9X,,
1 au}m)c au™ au® L au™ au® c aul” U™ au® c au™
— 2\ Tax, i oy, ax,, | 2%\ Tax, ax;, UM Tox, | ax, ox, '™ ox,
substituting s=p
1 au}m)c au™ au® L1 aul.(m)aui(”)c auim aul.(m)aui(”)c au™
~ 2\ Tax, v oy, ax,,)T 2T\ Tax, Tax;, UKW Tax, T ax, o0Xx, U™ ax,

Using rules from CIVE 662 HW1 #3:

uiU]’S]’ka = WkSk]'U]'ui
And using transpose rule of a fourth-order tensor:
T
(Aiji) = Awuij

Yields:

1 au}m)c au™ ou® L c’)UV(V”)C au putm™ +aul(")c auP put™
~ 2%\ Tx, v oy, ax,,)T 2T\ Tax, "Mk Tax. ax, | oX, K Tax; ax,

Finally, some algebraic manipulations to match the indices in equations given by Mignolet.

Combine terms on g,q,:

1 au}m)c au™ ou® .\ c’)UV(V”)C au® aut™ +aul(")c au put™
~ 20\ Tx, kW Tox, ax,, | aX, ™K Tax, oX, | 0X, k78X, 0X

Switch n, m and p in second term (dummy indices, therefore switching doesn’t affect the summation):

1 au}m)c au™ ou® .\ aUV(V”)C aut™ aut™ +aul(")c au put™
~ 20\ Tx, kW Tox, ax,, | ax, ™K Tox; oX, | 0X, ™k8X; 0X,

Using Equation (9) on second term:
Ciwjk = Cwijk

Switch indices on all terms to match Cy, (just switching letters, not order):

1 aug’")c au™ gu® +au§")c au™ gu™ +au§")c au® gu™
— 2\ Tax, “UKTax, Tax, T ax;, UKTax, ax, ' ox; UM ax, ax,

3. Termon triple gqq:

tou™ au® : au™ au
2 ox, ox; JkwinTax, g%,

1 au}m)aui@c aui™ ou®
~ 28T Tax, Tax; M Tax, ox,,

1 au}m)aui@c aui™ ou®
~ 2B Tx " 9%, UV Tax, X,

Using Equation (9):
Crjiw = Ciraw

1 aug’")aul@c au™ au?
— 28T Ty " ax, VM Tax, ax,,

Looking at the terms inside the integral C:

pov;b}

Substituting:

v; = Ui(m)

Yields:
= poU™ b}
Looking at the terms inside the integral D:
vt

Substituting:

v = Ul.(m)
Yields:

- umel

Finally, combining all bolded equations yields Equation (14):

L

. . 1 2 3
M;jq; + Dyjq; + Ki(,- 'q; + K'(jl)CI]'CIl + Ki(jk)pq]'%% =F

where

an — J ,00 Ul(m) Ui(n) dX

Qo

dX

1 _ J 0 Ui(m) C. aUz(n)
0, X P ax,

1
2 — — —
Kr(nr)lp = E [Kr%mp + K;?mn + Kr%pm]

dX

(m) OPI)
@ _J ou;™ C. ou,"™ ou,?
0, 0X; U ax, ax,

0

dX

1 J au}m)aui@c aut™ au®

" 2)y, 0X; 09X, UM ox, ox,

i = poUy "bidX+ | Uyt ds
Q a

t
0 Q0

Note D;;q; has been added to match Mignolet’s Equation (14). Look to his explanation.

ov;
f poviilidX+f —’(Fi,»sjk)dx=f povib?dX+J. v; t2ds
Qo Qo Xy Q9 .

3
2

aui
Sij = CijiaEir | | Fy=0y+5x

rxneon s Kirsten’s Summer at Sandia

ac; “anac; “alac; ' "9l ac;

. . 1 2 3
Mijdy + Dyyd; + Ky + K a0 + Ko ayq1a, = Fy

Run Time Comparison

Kirsten Peterson
Sandia National Laboratories

Sandia Presented at 1556 Group Meeting on July 20, 2016.

National
Laboratories

Exceptional
service

in the

U.S. DEPARTMENT OF I YA =g

ENERGY /M VA ™A

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
l"ll terest Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

national

My Background) .

= Graduated high school: Plato, MO
May 2008

= B.S. Civil Engineering: Embry Riddle Aeronautical University
May 2012

= M.S. Civil Engineering: Colorado State University
May 2014

= Thesis: The Mechanics of Plastic-Aluminum Composite I-Beams
= Ph.D. Civil Engineering: Colorado State University
2017

= Dissertation: Discrete Element Model of Damaged Soil Particles and
Post-Fire Ground Treatments for Protection of Critical Transportation
Structures

2

Summer Work Overview) i,

= MEX Files

= |ntroduction
= Run time comparisons for linear viscoelastic reduced order models
(ROMs)
= Derive equations for ROMs incorporating material
nonlinearity
= Show Mignolet et. al. findings for linear elastic material

= Derive ROM equations for hyperelastic material models
= Mooney-Rivlin model

= Neo-Hookean model

: . sgtnigi:a
MEX Files Introduction) Yoo

= What are they?

= Dynamically linked subroutines that the MATLAB interpreter loads and
executes

= MEX files allow you to call your own C, C++, or Fortran
subroutines from the MATLAB command line and .m scripts
as if they were built-in functions

= Why are they useful?

= Repurpose functions or subroutines you already have written to be
used from Matlab

= Use a better tool for computationally expensive Matlab functions

= Tutorial for MEX files written in C++
= Get from Kevin or Rob if you’re interested (or from me by August 4th)

4

Runtime Results — 32 DOF system @&z

Run Time Comparison

—@8— Matlab Original

—&— MEX File

Run Time (seconds)

0.1 0.15 0.2 0.25 03 0.35 0.4
tspan (seconds)

Runtime Results cont...) e,

Time Comparison

8000
7000
6000
5000

4000
—&— Matlab Original

—&— MEX

Run Time (seconds)

3000

2000

1000

0 200 400 600 800 1000 1200 1400 1600
of DOF

Run Time (seconds)

Runtime Results cont...

Time Comparison

600

500

400

300

200

100

Sandia
m National
Laboratories

15%

—&— Matlab Original
—@— MEX

of DOF

Show Mignolet et. al. findings for @&,
linear elastic material

= Deformation Gradient
aui

Fij = 61’]’ + B_XJ
" Green Strain Tensor

1
Eij = 5 (Fifij = 0ij)

= 2nd pigla-Kirchhoff Stress

Sij = CijrEr

i

Weak formulation

dv;
f Po?V; u,_dX + f — (FU Sjk)dX = f Po?V;i bLOdX + J- VU; tLOdS
QO Q 0X Q d

0 0 k 0 0f

Assumed displacement field

M
(X0 =) au®UM X
n=1

Weighting function

Vi = Ul(m)

Sandia
National _
Laboratories

= “After some algebraic manipulations” i) N

Laboratories

. . 1 2 3
Myjij; + Dyd; + K a; + K5 a0 + Koy 050190 = Fi

an — J‘ pO Ul(m) Ul(n) d X
Q

0

mn — q an iklp 6Xp

1
2 — — —
K?E*uip = E [Kr%mp + Kg‘mn + Kr%pm]

(m) (n) 5@
~ @) ZJ- ou;™ ou,™ ou,” Iy
Q

—t _C.
ox; Yoax, ox

dX

10 ou™au® auMau®
=5 f Cikiw
o 0X; 9X, T ax, ax,

i =f PoUi(m)b,? dX+f Ui(m)tlp ds
Qo 00§ 10

Derive ROM equations for i
hyperelastic material models

. _ o _, 0% _ 0oL ovolL 0¥l
m - ij = = ETA al.
2" Piola-Kirchhoff Stress ~ Si; ac; “aLac; T “aLac; | “al;aC;

= Strain Energy (Mooney-Rivlin) () = m(l —3) +p(I — 3)

= Right Cauchy Green Deformation Tensor Cij = FuFy
= With: 5, 0k

S
ac;; oc; Y

= Yijelds:
aui auj aul aul
Sij = 2|J_16ij +4-|J_2 511 + an +6Xi +6Xi an

11
-

Sandia
au™ gy au™ gy i) Natona

0X, 0X;, 0X, ' 09X, 0K, 0X. ' 0X; 0X. 0X

> au™ au™ au® aU au™ au™ au® au™ gu™
K = L dX
Q

1
2 — — —
VS, K2 =[R2, + RZnn + K2y

(m) OPID
—2) :f ou;™ c ou."™ au,”
o 0%, Y oax, ax

0

f au™ au® au™ ou®
o 0X, 0X; 0X; 0X,

dX

1 au™au® au™eul
= f Cikiw
o, 0X; 0X, M ax, "ax,

12
-

Sandia
m National
Laboratories

Last couple weeks

= Formalize Mooney-Rivlin and Neo-Hookean derivations

= Publication rough draft
= MEX file in Fortran

QUESTIONS?

14

MEX Files in Matlab Tutorial

This tutorial describes how to write MEX files in C++ coding language, compile them,
and call them from the Matlab command line and/or a .m script. This tutorial borrows
some explanations from online Matlab documentation found here:

http://www.mathworks.com/help/matlab/matlab external/introducing-mex-files.html

http://www.mathworks.com/help/matlab/matlab external/standalone-example.html

What are MEX files?

These programs, called binary MEX files, are dynamically linked subroutines that the
MATLAB interpreter loads and executes.

Why use MEX files?

MEX files allow you to call your own C, C++, or Fortran subroutines from the MATLAB
command line and .m scripts as if they were built-in functions.

How to write a MEX file in C++

This section will describe how to create a C++ source MEX file. Text highlighted in
yellow is required text in the code and text highlighted in 88 will need to be edited by
the user.

1. Add desired header section:

2. Add the C++ header file, mex.h, containing the MATLAB API function
declarations:

#include "mex.h"

3. Create Gateway Routine: Every C++ program has a main() function. MATLAB
uses the gateway routine, mexFunction, as the entry point to the function. Add
the following mexFunction code:

/* The gateway function */
void mexFunction(int nlhs, mxArray *plhs]],
int nrhs, const mxArray *prhsl[])

{

with the mexFunction parameters described here:

http://www.mathworks.com/help/matlab/matlab_external/standalone-example.html
http://www.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html

Parameter Description

nlhs Number of output (left-side) arguments, or the size of the plhs array.
plhs Array of output arguments.

nrhs Number of input (right-side) arguments, or the size of the prhs array.
prhs Array of input arguments.

4. Declare variables for computational routine:

5. Verify MEX File Input and Output Parameters:

if(nrhs !~ EGHIRBE) {

mexErrMsgTxt("Incorrect number of inputs!");

-

if(nihs |~ GHOUBEES) {

mexErrMsgTxt("Incorrect number of outputs!");

-

Note: there are other verifications you can perform, such as verifying the inputs
are of correct type (scalar, double, row vector, etc.). However, the code syntax
isn’t included here. It can easily be found online.

6. Read the input data:

To read a scalar input, use the mxGetScalar function:

IRPENVEREBIENERE = mxGetScalar(prhs[0]);

Use the mxGetPr function to point to the input matrix data:

IRBUIVERSBISNERE ~ mxGetPr(prhs[1]);

Continue using mxGetScalar and mxGetPr until all input data has been read in:
IRBUIVEREBIENERE ~ mxGetlll(prhs(2));
IRBUVERSBISNERIE = mxGetSEalEl (prhs(3]);
IRBURVEREBISNERE - mxGeti(prhs(4));
IRBUVEREBISNERE - mxGetli(prhs(5));
IRBURVERSBISNERE - mx G S (o rhsSe);

etc...

7. Assign variables to the outputs:

[* create the output matrices */

plhs[0] = mxCreateDoubleMatrix(iiCSICOISHNXREAE);
plhs[1] = mxCreateDoubleMatrix(iiONSIICOISIXIREAN);
plhs[2] = mxCreateDoubleMatrix(iiCNSIICOISIKREAN);
plhs[EiGHl] = mxCreateDoubleMatrix(iCSICOISITRIRERY);

etc...

/* get a pointer to the real data in the output matrices */
= mxGetPr(plhs[0]);
= mxGetPr(plhs[1]);
= mxGetPr(plhs[2]);

= mxGetPr(plhs[CicHE));

etc...

8. Code your MEX file. This is the longest step of writing your MEX file. Write your
C++ code here, or make a call to a function you already have written.

9. Close Gateway Function Routine:
} /I End Mex gateway routine

10.Save the MEX file!

How to compile a MEX file

Now that the MEX file is written and saved, it is ready to be compiled. Compile the MEX
file from the Matlab command window with:

mex NIEXGISHERE. C

If everything is correct in the MEX file Matlab will tell you that it completed successfully.

For example:

=» mex romviscosB.C
Building with 'gcc'.

MEX completed successfully.
=

How to call a MEX file

MEX files can be called from either the Matlab command window or a .m script. To call
a MEX file, use the name of the file, without the file extension:

Other useful functions:

mxGetN
Use the mxGetN function to get the size of an input matrix:

WEHSBISNERE ~ mxGetN(prhs(il]);

Call to a Matlab function from MEX file

/* Define needed variables for mexCallMATLAB "icliabilcnament */
const char *[iGHEBIEHEme; //(NOTE: do not put .m extension here)
mxArray *prhs2(NDEIONRPUS|, *o!hs 2 [NEFBSTOIOUIHNS

/I Define inputs

prhs2[0] = mxCreateDoubleMatrix(iiCISICOISHNXREAE);

prhs2[1] = mxCreateDoubleMatrix (iCNSICOISHNRREAN)
prhs2[EiGHl] = mxCreateDoubleMatrix(iiONSICOISITIIREAN)

/I Assign inputs

IRBUNVERSBIBNERE - mxGetPr(prhs2(0]);

IRBUNVERSBIBNERE - mxGetPr(prhs2(1]);

IRBURVEFEBISNEIRE ~ mxGetPr(prhs2(EigH)):

/I Call matlab .m file from MEX file

mexCallMATLAB (NURBSIOIONBNE. o!hs2, NURBSIOHRBNE. orhs2, "Malabilehame ');
/I Assign outputs

OUPUNEREBIENERE = (double *)mxGetPr(plhs2[0]);

OUPIVEREBENERE = (double *)mxGetPr(plhs2[1]);

OUPUNEREBIENERE = (double *)mxGetPr(plhs2[EicHl);

Note to Users

Depending on your local Matlab account settings and compiler, it may be necessary for
you to run MEX files only from Matlab on your blade account. If you get the following
error when trying to compile your MEX file:

>> mex MEXfilename.C

Warning: Xcode appears to be installed, but it has not been configured. Run "osascript -e 'do
shell script "xcode-select -switch

/Applications/Xcode.app" with administrator privileges
administrator of this computer to complete this action.

to configure Xcode. You must be an

Error using mex

No supported compiler or SDK was found. For options,
visit http://www.mathworks.com/support/compilers/R2014b/maci64.html.

Then you don’t have the required compiler on your computer and you need to connect
to your blade account.

Debugging

MEX files don’t print to Matlab’s command window live (as the calculations are being
made). Instead, everything that gets printed to the screen in the MEX file code is stored
and printed to Matlab’s command window after the MEX file sends the results back to
Matlab. Therefore, if the MEX file crashes and causes a segmentation fault in Matlab, it
can be difficult to pinpoint exactly what line in the code is causing the crash. The
following lines of code will allow you to create an output file and write to it even if the
MEX file crashes and you haven't closed the output file yet.

Near beginning of code:

/I Create output file

FILE “figig = fopen(‘BUDUIMICHamENRl "\); //w is for write only
Where you want to see if it's crashing:

/I Write to output file

fprintf(HElg, “Your code is doing great and made it to this line. \n”);

fflush(HEHE);

Make sure the “fflush” command is written directly after your “fprintf” command, because
“fflush” pushes the printed text to the output file from the buffer. If the code crashes
before “fflush” then anything written since the last “fflush” won'’t be in the output file and
it will be harder to track down the problem.

http://www.mathworks.com/support/compilers/R2014b/maci64.html

Number of time steps

Initial time

3.3 - 3.5 seconds

Run Time (seconds)

25

20

[Eny
w

=
o

Matlab original|Mex w/ .m call|Mex w/ C++ caljromviscoSBts.C

tspan |run time (s) run time (s) run time (s) run time (s) (tskip=1)

20000| U.1 5.4 4.3 2.4 2.4
30000 0.15 .0 5.0 3.7 3.4
40000' 0.2 10.6 15.4 4.6 4.6
50000 0.25 15.1 15.5 o.1 5.8
60000' 0.5 15.6 25.5 /.3 6.8
70000' 0.35 15.5 32.5 5.0 8.1
suuuul U0 ZT.2 1.7 T0.T 9.5

0.5 12.4
*viscolnt C++ ce *viscolnt and t_ext C++ calls
Run Time Comparison
0.1 0.15 0.2 0.25 0.3 0.35

tspan (seconds)

Mex w/ new storage (romviscoSBts.C)

Mex calling to C++ f_ext once before time stepping

run time (s) (tskip=100)

no difference compared to Mex w/ C++ call

0.4

2.3
3.6
5.1

Matlab Original

MEX File

45

40

35

30

25

20

Run Time (seconds)

15

10

0.1 0.15 0.2

2.6

0.2

Call f_ext.m once before entering mex file Viscolnt hard coded

*Changes initial time to 8.3 seconds for tsp code file: romviscolnt.C
2.3 2.9

4.6 4.9

Run Time Comparison

—@— Matlab original
—8— Mex w/.m call
—®— Mex w/ C++ call
Call f_ext.m once before entering mex file
—@— Viscolnt hard coded

—®— Mex w/ new storage (romviscoSBts.C)

(€]

0.3 0.35 0.4 0.45 0.5

tspan (seconds)

Matlab original|Matlab w/ changes|Matlab w/ changes Mex w/ .m call
of time steps tspan [run time (s) tskip = 100 tskip = 200 run time (s) |
25000 0.025 910 800 903
50000 0.05 1927 1788 *wasn't always hitting peaks
100000' 0.1 3835 3559
150000' 0.15 o851 5350
63.90833333 4.594166667
Initial time

N/A - Rob sent me reduced matrices

Run Time (seconds)

7000

6000

5000

4000

3000

2000

1000

0.02

0.04 0.06

Run Time (

0.08

tspan (seconds)

romviscoSBtsts.C (tskip=100)JromviscoSBts.C (tskip=100)jMex w/ C++ call

run time (s) run time (s) run time (s) J
1367.

6541

I

Comparison

—@— Matlab original
Mex w/ C++ call

—®— Matlab w/ changes

atlab origina 'Viatlab W/ central_diT_Visco_KIp| romviScoSBEst
DOF dt cost_pre run time (s] cost_pre run time (s] cost_pre
32 5.00E-06 5.4
32 1.00E-06 11.05 28.2 9.4 28.2 8.9
200 1.00E-06 105.31 155.2 101.0
200 3.00E-06 104.57 53.7 104.9 53.3
200 5.00E-06
300 1.00E-06 132.51 271.4 133.6
400 1.00E-06 128.76 411.1 128.0
450 1.00E-06 108.39 480.7 294.7
500 1.00E-06 125.66 559.7 122.1
500 3.00E-06 127.02 187.7
1000 1.00E-06 217.45 1/66.2 214.6 1820.5 205.6
1501 1.00E-0b 394.65 3596.7 384.5
8000
7000
tspan = 0.1
6000
5000
S
c
8
&
o 4000
£
'_
c
=}
o
3000
2000
1000

200

600

500

400

300

(spuodas) swi| uny

200

100

100

50

5.C (LSKIp=100) TOMVISCOSBLS.C (tSKIP=100]
run time (s) cost_pre run time (s)
11.9 9.7999 12.1787 57%
110.8 102.0058 110.9478 29%
203.6 134.6604 202.2792 25%
318.6 130.1851 329.5607 20%
389.9 113.8297 400.2096 17%
458.0 122.4663 473.7717 15%
71877 715.1870 7197.200
71173 389.6928 5980.300
Time Comparison
400 600 800 1000 1200

of DOF

1400

1600

Matlab Original
—@— MEX

Time Comparison

150

200

250 300
of DOF

350

400

450

500

—@— Matlab Original
—8— MEX

romviscoC.C Instructions
Introduction

romviscoC.C is a MEX file written in C++ coding language. It is a computational function
used to integrate a reduced order model using the explicit central difference method.
Comments throughout the code describe where the calculations come from (relative to
central_diff_visco.m).

Compile MEX file

To compile romviscoC.C, type the following command in the Matlab command window:

>» Mex romviscoC.C

Building with 'gcoc'.

MEX completed successfully.

The same message shown above should be written in the command window if this step
is completed successfully. The MEX file cannot be run until it is successfully compiled.

Run MEX file

To run romviscoC.C, the following line (with user’s variable names) is written in the .m
script:

[time,q,qd]=romviscoC(invM_red,K_red,tspan,dt,q0,qd0,Kvg_red,Kvk_red,fshear,taushe
ar,F_red,mag,omega,fbulk,taubulk,tskip);

with Inputs (Ndof=number of degrees of freedom, NProny=number of Prony terms):

e invM_red = inverse of the reduced mass matrix (Ndof x Ndof)
e K red = reduced K matrix (Ndof x Ndof)

e tspan = (1 x 2) row vector with beginning time and end time (example: [0.0,0.1])
e dt = time increment for each time step (scalar)

e 0 = initial displacements (Ndof x 1)

e qdO = initial velocities (Ndof x 1)

e Kvg_red = reduced shear K matrix (Ndof x Ndof)

e Kvk _red = reduced bulk K matrix (Ndof x Ndof)

e fshear = Prony pre-factors for shear (NProny x 1)

e taushear = time constants for shear (NProny x 1)

e F_red = reduced force shape (Ndof x 1)

e mag = external force magnitude (scalar)

e omega = frequency of haversine function (scalar)

e fbulk = Prony pre-factors for bulk (NProny x 1)

e taubulk = time constants for bulk (NProny x 1)

o tskip = tells MEX file how often to save output variables (will save every “tskip”th
value) — when tskip=1, values every time step are saved

and Outputs (nts=number of time steps):

e time = row vector of time values (1 x nts/tskip)

e (g = matrix of displacements for every degree of freedom at every saved time step
(nts/tskip x Ndof)

e qd = matrix of velocities for every degree of freedom at every saved time step
(nts/tskip x Ndof)

Options

romviscoC.C is written with several options imbedded within the code. The user must
comment/uncomment accordingly (instructions in code) when implementing a certain
option.

e Force subfunction options: the user has the option to call f_ext.C every time step,
f_once.C once inside MEX file before starting time stepping, f_extOnce.m once
before entering the MEX file, or f_ext.m every time step (from MEX file back to
Matlab).

o Defaultis calling f_ext.C every time step.

e Output format options: the user has the option either write results to pointers
directly sent back to Matlab or to write outputs to .txt files for later post-
processing.

o Default is writing to pointers that are directly sent back to Matlab.

e Output accelerations option: gdd can also be output from the MEX file.

o Default is that accelerations are NOT output.

Time Saving Results and MEX File Limitations

e Run time is linear as you increase the total time span (as expected)

Run Time Comparison

e MEXfile is no longer efficient after 500 degrees of freedom

Time Comparison

xxxxxx

xxxxxxx

e Time savings below 500 degrees of freedom:

Time Comparison

15%
17%
20% - g //
N ///
P
H /
2% _
//'/' ——
29% o

57%

