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Abstract 
 

The Reduced Order Modeling Unlimited Localized Interface Simulator (ROMULIS) 
is a set of toolbox scripts in MATLAB designed to perform nonlinear transient 
integration on a system of reduced order structural models that interact with each 
other at localized interfaces. ROMULIS is meant to provide a user-friendly interface 
for applying the latest developments in numerical techniques and modeling in 
structural dynamics analysis while also giving the freedom to implement new 
technologies from forthcoming research. This report documents how to use and 
interpret the toolbox scripts. The theory behind the code is given, followed by a 
manual for interacting with the scripts to perform simulations. Lastly, a high-level 
introduction that explains how the scripts interact with each other is given for aspiring 
developers. 
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1. INTRODUCTION 

The Reduced Order Modeling Unlimited Localized Interface Simulator (ROMULIS) code is 
a set of MATLAB scripts designed to facilitate the modeling of dynamic subcomponents that 
interface with one another. The goal of ROMULIS is to model a nonlinear system that includes 
contact – whether from a frictional interface, impact event, or other localized phenomena – 
efficiently. Through the development of ROMULIS, much freedom has been given to the user to 
specify arbitrary contact models (some of which are built into ROMULIS). Additionally, the 
development of ROMULIS also allows for the use of novel and highly efficient nonlinear 
solvers. 

The development of ROMULIS was preceded by a tool for modeling jointed structures using 
discontinuous basis functions [1]. This original tool took models developed in SIERRA [2] for 
each subcomponent, assembled them into a system connected by linear springs, calculated the 
“joint modes” of the system (which are represented by discontinuous basis functions), then used 
the joint modes to augment the set of linear basis functions in order to improve convergence. In 
the original tools, joints were then modeled using the four-parameter Iwan model [3]. This tool, 
unfortunately, was neither accessible nor easily modifiable to consider different structures. Thus, 
ROMULIS was developed as a sequel to this tool to make it possible to specify new geometries, 
contact models, boundary conditions, excitations, etc. Subsequently, ROMULIS grew out of 
several concurrent efforts at Sandia National Laboratories to develop a new class of integration 
techniques [4], improved normal contact models for point-to-point modeling [5], and more 
efficient algorithms for Iwan modeling [6]. 

While ROMULIS continues to be a work in progress, the ultimate goal is that it will enable 
the complete modeling of a nonlinear system composed of multiple subcomponents. The 
intention of ROMULIS is to assemble Craig-Bampton reduced order models [7, 8] that are 
exported from a finite element package, and to assign nonlinear constitutive models governing 
how the Craig-Bampton models interact at each interface (eventually via a graphical interface). 
The current capability of ROMULIS is focused on transient analyses, though future 
developments will focus on incorporating nonlinear quasi-static solvers for model calibration, 
frequency domain solvers for steady-state solutions, and data analysis techniques to post-process 
the results from both ROMULIS and experimental measurements. 

This report documents ROMULIS version 1.01.00, compatible with SIERRA/SD release 
4.38 and later, and is comprised of three major sections. Section 2 gives the theoretical 
background for ROMULIS, and it includes the formulation of Craig-Bampton reduced order 
models, the assembly of the system, and definitions for how ROMULIS applies internal forces 
due to nonlinear constitutive models. The user manual is provided in Section 3, which covers 
only those toolbox scripts in which the user needs to manipulate in order to run a simulation. 
Lastly, Section 4 gives an introduction to ROMULIS’s major scripts to provide a developer with 
high-level knowledge of how the scripts interact with one another.  

Following these sections are appendices that inform the user of ROMULIS’s current library 
of implemented load functions and nonlinear constitutive models. The appendices are useful to 
help define loads and constitutive models on the assembled system in ROMULIS. 
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2. THEORY 

2.1. Reduced-Order Systems and Craig-Bampton Reduction 

ROMULIS includes the capability to solve transformed systems, whereby the physical 
degrees of freedom (DOF) are replaced and represented by a set of generalized coordinates. A 
common coordinate transformation technique used in structural dynamics involves model order-
reduction, where a large number of DOF are governed by a smaller set of coordinates. For 
models with a large number of DOF, it is highly recommended that the full system be reduced 
before passing it into the ROMULIS. Using reduced-order models offers a number of benefits 
such as decreased computation time for the numerical solver, reduced memory usage, and well-
sustained model fidelity depending on the method of reduction. Almost any linearly-transformed 
system will work with ROMULIS provided that the user can keep track of loads and initial 
conditions in terms of the generalized coordinates. 

To assist with the bookkeeping, ROMULIS is coded to accept Craig-Bampton reduced 
systems [7,8] . Systems that are reduced using the Craig-Bampton method allow for the 
specification of a set of physical DOF whose coordinates remain the same after the 
transformation. In this way, the same values used for the internal loads and prescribed boundary 
conditions in the physical system are also valid in the generalized coordinates with minimal 
effort in projecting those values via coordinate transformation. 

The Craig-Bampton reduction method belongs to a class of reduced-order modeling 
techniques known as component mode synthesis (CMS) [9], which transform the system using 
an assumed set of basis vectors that adequately describe possible spatial configurations of the 
physical DOF, similar to linear Eigen modes. Traditionally, CMS is used to reduce individual 
complex substructures that can then be coupled to each other at their interfaces using 
displacement compatibility equations. ROMULIS, however, uses a more generalized approach to 
coupling in that the connecting interfaces may be assigned a discrete, constitutive force model in 
addition to a constraint. With the Craig-Bampton method, the coupling of interface coordinates is 
more straightforward than other CMS techniques because the transformed interface coordinates 
are equivalent to those governing the original physical DOF on that interface before the 
transformation.  

An overview of the theory in creating a Craig-Bampton reduced model is given as follows 
based on [9]. The starting assumption is that the dynamic response of a particular substructure 
can be represented linearly using a set of equations of the form 

 ,fKuuCuM    (1) 

where M, C, and K represent the linear mass, damping, and stiffness matrices, respectively, as 
determined from finite element analysis. The vectors u , u , and u  are the displacement, 
velocity, and acceleration vectors, respectively, each containing N number of DOF, and f is the 
N-dimensional vector of applied loads.  

The Craig-Bampton method begins by partitioning system into internal DOF and boundary 
DOF (denoted by subscripts i and b, respectively) as follows, 
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In the context of the simulator, a boundary DOF refers to any DOF on which a boundary 
condition, an external force, or a coupling force is applied. All other DOF are assigned as 
internal DOF. Using these sub-partitions of the system matrices,  

 ibiiib KKψ   (3) 

is defined as the constraint mode matrix. The matrix of fixed-interface mode shapes consisting of 
Nk < N number of retained modes from the set of all possible mode shapes jφ  is ikΦ , and is 

defined by satisfying the Eigenvalue-Eigenvector problem 

   0φMK  jiijii  , (4) 

  
kNik φφφΦ 21 . (5) 

The Craig-Bampton coordinate transformation is then 
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There are two features of the coordinate transformation worth noting. First, reduction is 
achieved by removing the “higher frequency” fixed interface modes from ikΦ . Second, the 

bu  and bq  vectors, which denote the boundary DOF and constraint mode coordinates, are 

equivalent. The difference physically is that when a particular coordinate in bq  is displaced, the 

corresponding boundary DOF in bu displaces by the same amount, and, at the same time, all 

nearby physical DOF displace statically in “response” to that boundary DOF. Due to the one-to-
one equivalence of the bq  and bu  coordinates, the analyst can treat bq  as bu  to a certain extent. 

There is a limitation to this assumption when defining initial conditions, which is explored at the 
end of Section 2.2. 

Substituting Eq. (6), the system in Eq. (1) transforms to 

  ,ˆˆˆˆ fqKqCqM    (7) 

where CBCBMΨΨM Tˆ  , CBCBCΨΨC Tˆ  , CBCBKΨΨK T , and fΨf Tˆ
CB . Superscript T denotes 

the transpose operator. 

ROMULIS itself does not have the capability to create Craig-Bampton reduced models. This 
function is outsourced to Sierra/SD, a massively-parallel finite element solver for structural 
dynamics, which generates the original system matrices from a mesh and transforms them using 
a Craig-Bampton reduction algorithm [10]. The reader is directed to Section 3.1.1 for 



13 

instructions on exporting the Craig-Bampton reduced system from Sierra/SD and importing them 
into ROMULIS. Otherwise the user can upload other reduced-order systems or even full-order 
system matrices into ROMULIS provided that the user’s machine has ample memory for 
MATLAB to store matrices. In this case, the user will need to keep track of coordinate 
transformations when applying loads. Instructions on how to create a system and upload it into 
ROMULIS are given in Section 3.1.2. 

 

2.2. System Assembly 

Whether a physical system or a transformed system is uploaded, ROMULIS first assembles 
the system matrices from individual substructures into one global system for input into the 
numerical solver. The theory presented in this section follows commonly used matrix methods in 
finite element analysis for assembling the global system matrices and imposing load conditions 
[11]. 

Consider a global system that contains Ns number of substructures, the elements of which are 
denoted by superscript (s) for s = 1, 2, ⋯, Ns. Each substructure has a vector of generalized 

coordinate displacements )(sq  associated with a given mass matrix )(ˆ sM , damping matrix )(ˆ sC , 

stiffness matrix )(ˆ sK , and force vector )(ˆ sf . Since the coordinates are generalized, they can 
represent a physical system or a transformed system. Allowing matrix D to be substituted for M, 
C, or K, the global system matrices are then defined by arranging the substructure system 
matrices in block diagonals, 
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and arranging the coordinate vectors vertically, 
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such that the following global equations of motion are formed 

 .
~~~~
fpKpCpM    (10) 

To prescribe boundary conditions, the coordinates are partitioned into active coordinates and 
constrained coordinates (denoted by subscripts a and c, respectively) 
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where the coordinates cp are the known prescribed displacements and the coordinates cp  and cp  

are their first and second time derivatives, respectively. In a Craig-Bampton reduced system, the 
constrained coordinates are the subset of the boundary coordinates defined in Eq. (2). The rest of 
the coordinates are assigned as active coordinates ap  because they are the unknowns for which 

the numerical integrator solves. The force vector cf
~

 is also unknown, but not essential since only 

the top row of Eq. (11) is sufficient to determine the active coordinates. Rearranging the top row 
of Eq. (11) so that the known values lie on the right-hand side of the equation gives 

 caccaccacaaaaaaaaaa pKpCpMfpKpCpM
~~~~~~~   . (12) 

Equation (12) is the final form of the system equations of motion that ROMULIS processes 
through an adaptive, fifth-order, implicit-explicit integrator [4]. 

In a Craig-Bampton reduced system, the equivalence of the constraint mode coordinates 
)(s

bq  and the boundary DOF )(s
bu  in a substructure can mislead the analyst into incorrectly 

defining the initial conditions due to prescribed displacements. In general, it cannot be assumed 
that the active coordinates, ap  and its derivatives, are independent of any prescribed motion 

applied on the boundary DOF because the motion of the boundary DOF do influence the fixed-

interface modes, )(s
kq . This can be seen from taking a pseudo-inverse of the transformation in 

Eq. (6), 
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Even after considering that motion is prescribed on only a subset of )(s
bu , it is not guaranteed 

that the top set of rows in matrix )(s
bG are zeros so as to make )(s

kq  independent of )(s
bu . 

Therefore, when prescribing motion on )(s
bu , an initial condition must also be placed on the 

system using the transformation in Eq. (13) to get the correct starting state of )(sq  and )(sq  (and 

ap  and ap  by extension). ROMULIS calculates this initial condition automatically for Craig-

Bampton reduced systems. 

 

2.3. The Nonlinear Force Vector 

Local nonlinearities are introduced into the system by coupling the boundary DOF between 
substructures with discrete constitutive models. In Eq. (12), the constitutive models manifest as a 
vector of nonlinear forces NLf (expressed in physical coordinates) that, in addition to the vector 
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of time-varying loads extf  (also in physical coordinates), comprise the vector of generalized 

forces applied on the active coordinates, 

   uuffΨf ~,~~~ T
NLexta  , (14) 

where Ψ
~

 is a global transformation matrix formed by arranging the substructure transformation 
matrices (for example, CBΨ  from Eq. (6)) in block diagonal form. The vectors u  and u  are the 

global displacement and velocity vectors for the physical coordinates formed by arranging the 
substructure physical coordinates vertically similar to Eq. (9).  

In Craig-Bampton reduced systems, if the vector of nonlinear forces is applied on the 
boundary DOF only, then 

  

 

 

 

 

 

 



































































uuf

0

uuf

0

uuf

0

uuf

0

uuf

0

uuf

0

ΨuufΨ



















~,~

~,~

~,~

~,~

~,~

~,~

~~,~~

)(

)(

)2(

)2(

)1(

)1(

)(

)(

)2(

)2(

)1(

)1(

TT

s

s

s

s

N

bNL

N
k

bNL

k

bNL

k

N

bNL

N
i

bNL

i

bNL

i

NL , (15) 

which shows that the nonlinear force in Craig-Bampton coordinates can be expressed directly in 
terms of the physical nonlinear forces. Furthermore, since the nonlinear forces also use the 

boundary DOF as the input states, then the equivalence of the )(s
bu  and )(s

bq  vectors means that 
)(s

bq  and )(s
bq , which are subsets of p  and p , can be used directly as inputs for the nonlinear 

force functions. ROMULIS takes advantage of this two-fold, direct formulation for the nonlinear 
force in Craig-Bampton systems to reduce the computational cost. 

Each nonlinear constitutive model used to construct the NLf  vector in ROMULIS is a scalar 

force function. The function calculates the relative motion between two interfacing nodes in a 
finite element mesh, and returns a force value that must be applied equally and oppositely on the 
two nodes. Figure 1 illustrates a basic model for ensuring the correct signage for the values 
entered into NLf . 
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Figure 1: Schematic of (a) a nonlinear force model between two nodes with state 
vectors and (b) the resulting nonlinear force vectors applied on the nodes. 

Figure 1(a) shows a force function between two nodes that have translational degrees of 
freedom in the three spatial directions. The two nodes have nominal position vectors, 1x  and 2x , 
relative to a point of origin on a global coordinate axis. The two nodes undergo elastic motion 
about these nominal positions, denoted by vectors 1u  and 2u  for displacement and by vectors 1u  

and 2u  for velocity. ROMULIS defines the position of node 2 relative to node 1 as 

 1122 uxuxz  , (16) 

and the relative velocity between the two nodes is 

 12 uuz   . (17) 

Both z  and z  are used as the state variable inputs for a scalar force function,  zz ,F , which 

returns a value that fills two entries in NLf  representing each node. With the relative motion 

defined in Eqs. (16) and (17), the entries associated with node 1 are given the exact value from 
F, and the entries associated with node 2 are given the oppositely signed value. This nodal sign 
convention applies for all nonlinear functions oriented in each of the three translational and 
rotational directions. 

It is often the case that a nonlinear force function may not align with any of the three global 
coordinate directions, and thus would require a rotated frame of reference. In ROMULIS, the 

user must define two vectors, 1r  and 2r , in terms of the global coordinate basis, Î , Ĵ , and K̂ , to 

help form the rotated basis, î , ĵ , and k̂ . The vector 1r  typically locates the nominal position of 

node 2 relative to node 1 (as in 121 xxr  ), but for some nonlinear force models it is more 

intuitive to define it as the outward normal vector for a surface at node 1. The direction of 1r  

becomes the new first coordinate direction î  in the rotated frame. The vector 2r  can be any 

vector perpendicular to 1r  (often a surface-tangent direction), and it forms the second coordinate 

direction ĵ  in the rotated frame. The two input vectors, 1r  and 2r , are used to create a rotation 
transformation matrix as follows. 
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It is assumed that 1r  and 2r  are column vectors. Given that 1r  points in the same direction as 

î , it is normalized to have unit length to form the first basis vector, 

 
1

1
1ˆ

r

r
e  . (18) 

Although the input for 2r  should be orthogonal to 1r , the simulator accounts for error by 

orthonormalizing 2r  using the modified Gram-Schmidt process [9]. First, the vector projection of 

2r  onto  1ê is subtracted from 2r , 

   11222 ˆˆ eerrn  . (19) 

after which, the second basis vector is formed by normalizing 2n , 
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The cross product of 21 ee   creates the third basis vector 3e . The transformation from the 

rotated frame to the global frame is then defined as 
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where  321 ˆˆˆ eeeR   is the rotation matrix. This rotation is used to orient the global frame 

state vectors from Eqs. (16) and (17) to the rotated frame, 

 zRz Tr ,     zRz  Tr . (22) 

The rotated state vectors, rz  and rz , then become the inputs for the nonlinear force functions, 

iF , jF , and kF , in the rotated frame. The outputs from these functions are then rotated back to 

the global frame with 
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The values of the three components in gf  fill two entries each (six total) in the nonlinear force 

vector, NLf , whereby the coordinates associated with node 1 receive the exact force value, and 

those associated with node 2 are given the oppositely signed force value. 
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3. USER’S MANUAL 

In setting up and simulating a system, ROMULIS focuses on the creation of three different 
MATLAB data files: a body file, a system file, and a response file. A body file contains 
information about a single, linear substructure, specifically its linear system matrices and nodeset 
information. A system file gathers the information from one or more body files to form a 
collection of substructures in a system. The system file also includes information about the 
interactions between the substructures, the loads applied, and the type of solution sought from 
the system. After the system is put through the solver, the solution is stored in the response file. 
In ROMULIS, these three data files are created by, and subsequently supplied to, a sequence of 
MATLAB scripts included the ROMULIS toolbox. A high-level schematic of this script 
sequence is shown in Fig. 2.  

Performing a simulation with ROMULIS begins with the formation of at least one body file, 
the procedure for which is covered in Section 3.1. After one or more body files are created, they 
are passed into the SystemSetup.m script in the ROMULIS toolbox. In SystemSetup, the user 
specifies which body files to use in the system as well as the loads, interface models, and other 
conditions to apply on the system. The procedure for scripting SystemSetup is given in Section 
3.2. The output for SystemSetup is the system file, which is subsequently passed into the 
SerialExecuter.m script. As is discussed in Section 3.4, the user then specifies the numerical 
integrator parameters in SerialExecuter, and finally runs the solver. The output for 
SerialExecuter is the response file. 

CUBIT
Exodus 
Mesh

Sierra/SD
export input

Response File
Input 
File

input

Exodus 
Output

NetCDF
Output

output

UploadData.m

input input

SystemSetup.mSystem File

Body FileSerialExecuter.m

inputoutput

input

output

output

(1) (2)

(3)(4)

(5)

 
Figure 2: Flow chart of the programs used and the files accessed by the user in 
ROMULIS. The shaded boxes indicate software packages (CUBIT and Sierra/SD) or 
ROMULIS toolbox scripts (indicated by .m), and the white boxes are data files. All 
programs and files are utilized in sequence as numbered in parenthesis. 
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3.1. Creating a Body File 

A body file can be created using one of two methods. In the first method, the user creates the 
substructure geometry using a mesh generator software package, and exports the mesh to 
Sierra/SD [10] to be reduced. The toolbox script UploadData.m then reads the output files from 
Sierra/SD, and automatically generates a body file from the output. Alternatively, the user can 
create a body file manually in MATLAB by specifying the required variables appropriately. 
Section 3.1.1 gives the procedure for importing data from Sierra/SD, and the procedure for 
creating one’s own body file is given in Section 3.1.2. 

3.1.1. Importing a Sierra/SD Finite Element Model 

ROMULIS itself does not create reduced-order systems directly from a finite element mesh, 
but instead outsources this capability through Sierra/SD’s Craig-Bampton reduction algorithm. 
Sierra/SD exports the reduced system in a data file, which the simulator uses as the basis for the 
body file. An overview of Craig-Bampton reduction theory is given in Section 2.1. 

Creating a body file for a substructure that is reduced in Sierra/SD first requires the user to 
create the mesh geometry in a finite element modeling software package. The user is given free 
rein to create the geometry and mesh as desired provided that the final mesh is exported as a 
NetCDF Exodus file (extension *.e, *.exo) so that it is compatible with the solvers in Sierra/SD. 
The geometry and meshing software, CUBIT (also known as Trelis), is able to export meshes in 
Exodus format.  

In creating the mesh, the following guidelines should be followed in anticipation for writing 
the relevant sections in the Sierra/SD input file, and for setting up the system in the 
SystemSetup.m script: 

1) Try to minimize the number of elements in the finite element model. Although the 
simulator uses the reduced system for integration, it still relies on the Craig-Bampton 
transformation matrix to produce the correct initial state for prescribed boundary 
conditions. ROMULIS must store at least two instances of the entire transformation 
matrix in memory, so the size of the matrix is limited by the memory capacity of the 
user’s machine. A good approximation of the memory requirement for a finite element 
model can be calculated as 

 Memory = 2 × (# of nodes) × (6 DOF per node)  
            × (# of modes in transformation) 

    × (8 bytes per matrix entry) 

For instance, a model with 200,000 nodes that is reduced using 200 combined fixed-
interface and constraint modes requires 3.84 Gb of available memory for ROMULIS to 
store the transformation matrix. 

2) Assign all nodes of interest into nodesets. Nodes of interest include any node on which is 
applied an external load, a nonlinear force model, a prescribed boundary condition, or is 
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otherwise a response output node. In SystemSetup, the user prescribes loading conditions 
on nodesets, so every node belonging to a nodeset receives the same loading condition. 
 

3) Nonlinear force models in ROMULIS are assigned to act between two nodesets, the 
master set and the slave set. In the current version of ROMULIS, there is no practical 
difference between the master and slave set, and the user can specify either nodeset as the 
master set in SystemSetup. There are, however, strict rules on nodal definitions in each 
set. 

a. Nodes that are specified as interface nodes must have either all three translational 
DOF, or have all three translational and all three rotational DOF. 

b. If one set contains multiple nodes, then the other set must contain either one node or 
the same number of nodes. In the case where both nodesets contain an equal number 
of nodes, each node in one set must have a coincident counterpart in the other set. The 
user is not required to order the nodes in one nodeset to align with the order of the 
coincident counterpart nodes in the other nodeset; ROMULIS has an internal 
algorithm that pairs coincident nodes and their degrees of freedom. A new instance of 
the same nonlinear force model is applied between each coincident node pair, so the 
user should beware of how many nonlinear models the system will contain and how 
that will affect the convergence of the integrator. 

c. If each nodeset contains one node, then the coincidence restriction is lifted. The two 
nodes can exist in different locations in space. 

 
4) The solid elements (e.g. hexahedral and tetrahedral elements) in Sierra/SD do not have 

rotational degrees of freedom. The user should keep in mind how these undefined degrees 
of freedom may affect system definitions and adjust accordingly. 

After exporting the mesh, the next step is to create the reduced structure from the mesh by 
running a Sierra/SD input file. The user can reference the necessary sections in the Sierra/SD 
user manual [10] to define the input file, but the following keywords shown in Table 1 must be 
included to output the reduced system. 

When deciding how many fixed-interface modes to keep, a good rule to follow is to keep all 
modes associated with natural frequencies up to twice the value of the maximum frequency value 
of interest. This rule derives from the Nyquist criterion, which states that a time signal of desired 
fidelity can be constructed sufficiently using signals having a frequency corresponding to half 
the sampling period of that time signal. Current experimental measurement techniques produce 
valid response data with natural frequencies up to 4000 Hz, so it is recommended that the user 
keep modes up to a natural frequency 8000 Hz. 
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Table 1: The Sierra/SD input file keywords required for a Craig-Bampton reduction 
solution. 

Keyword Description 

SOLUTION 
  cbr 
    nmodes = 21 
END 

Invokes the Craig-Bampton reduction 
algorithm, and calculates the first 21 
(example) fixed-interface modes. 

OUTPUTS 
  displacement 
END 

Returns the fixed-interface and constraint 
mode shape vectors in the Exodus output 
file. 

CBMODEL 
  nodeset = ‘1,5,20:28’ 
  format = ‘netcdf’ 
  file = ‘ReducSys.ncf’ 
END 

Specifies the nodesets containing the 
boundary nodes, and returns the reduced 
system in the as-named NetCDF file, 
ReducSys.ncf. 

HISTORY //Optional 
  nodeset = ‘3,4’ 
    displacement 
    //do not specify  
    //coordinate keywords. 
END 

OPTIONAL: Returns the rows in the 
transformation matrix associated with the 
nodes in nodesets 3 and 4 (example). Used 
for specifying force input and response 
output nodes. 

If the input file is run successfully, Sierra/SD returns two output files: an Exodus output file 
(extension *-out.exo by default), and a NetCDF file (extension *.ncf). The Exodus output file 
contains the fixed-interface mode shapes and the constraint mode shapes that the simulator uses 
to form the Craig-Bampton transformation matrix. The reduced mass and stiffness matrices are 
stored in the NetCDF file. If the HISTORY keyword is specified in the Sierra/SD input file, then 
Sierra/SD additionally returns an Exodus history file (extension *.h), but it is not used in 
subsequent steps. 

The last step is to store the data from the two Sierra/SD output files into a MATLAB binary 
file using the UploadData.m function in the ROMULIS toolbox. UploadData requires no inputs, 
and can be called by opening the script in the MATLAB editor and running it, or by typing the 
function name in the MATLAB command window to execute it. On call, the function 
automatically requests the user to select the NetCDF file in a directory search, followed by a 
request to select the Exodus output file. It is very important to select the two files that are 
produced from the same Sierra/SD job run, and it is easy to mix up many output files found in 
the same directory. UploadData then searches the files for data relevant to the simulator, and 
stores them in a *.mat file with the same name and directory location as the NetCDF file. The 
*.mat file is the body file. 

3.1.2. Writing a Body File Manually 

Not all substructures require the detail provided by commercial finite element modelers, and 
the user may find it is more practical to define a body based on simpler elements or academic 
principles, such as a lumped-mass system. In this case, the user can create a body file directly by 
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supplying all the required variables into MATLAB and saving the data in a binary *.mat file. 
Appendix A lists the required variables with their correct names, a description of their data 
formats, and their relationship to other variables. The variables listed in Appendix A are the 
same as those sought by the UploadData.m function for the imported Sierra/SD reduced systems. 

The following guidelines should be observed when creating the required variables: 

1) Each substructure in the system can only be modeled so as to produce linear mass, 
damping, and stiffness matrices. 

2) All nonlinear models implemented in ROMULIS are of the discrete, force-constitutive 
type that couple only two nodes, or couple a node with an inertial point. 

3) All nodes that receive an applied load, a nonlinear force model, or a boundary condition, 
or are output nodes of interest, must be assigned to a nodeset. More than one node can be 
assigned to a nodeset, but beware that any loading function specified for a nodeset will 
apply for all nodes in the set. See bullet number 3 in the list in Section 3.1.1 for 
additional restrictions. 

 

3.2. Creating a System File 

The entirety of the system file is defined using only the SystemSetup.m script. The user must 
open the script in the MATLAB editor, manipulate the variables according to the procedure 
below, and finally execute the script to produce a system file. The following subsections detail 
the procedure, and are ordered by appearance of the relevant code sections within SystemSetup. 

3.2.1. Adding Substructures by Loading Body Files 

The first section in SystemSetup.m defines all the substructures that belong to the system of 
interest. The user adds the substructures to a system by specifying the name and directory 
location of all relevant body files. Near lines 17 and 18 are two variables, bodyFiles and 
bodyPaths, both of which initialize cell arrays with curly braces. The names of the body files are 
entered as string arrays in between the curly braces following the bodyFiles variable, using 
commas to separate the different body files.  

17- bodyFiles = {‘CubeModel’,’CubeModel’,’CrazySubstructure’}; 

Note that the same body file can be specified multiple times to create multiple instances of 
that substructure within the system. Also note not to include the *.mat file extension to each file 
name when typing the string array. 

The bodyPaths variable contains the cell array of strings that specify the directory where the 
body files specified in bodyFiles can be found. The directory can be reference relative to the 
current active folder in MATLAB, or starting from a top level file space, such as the C:/ or 
/home directory, as is displayed in MATLAB’s directory address bar. The order of the directory 
strings must be consistent with the order of the substructures specified in bodyFiles. 
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18- 
 
bodyPaths = {‘../SimpleShapes/’,’../SimpleShapes/’,’C://Users/Myself/ 
  Documents/MATLAB/’}; 

In the above example, the body file CubeModel can be located by moving up one directory 
level from MATLAB’s current folder, and moving into the /SimpleShapes/ directory from there. 
Similarly, the full path is supplied where the CrazySubstructure body file is found. Note that 
forward slashes separate each directory level, and each directory path must terminate with a 
forward slash. Although the user’s operating system environment may use a different character 
for separating levels, MATLAB universally recognizes the forward slash as a separator. 

After the body files and their locations are specified, the user must give a name to the system 
file that will be created. The name is entered as a string array next to the File variable near line 
20. The user is recommended to choose a name that describes the substructures in the system and 
the type of loads they receive. Adding the *.mat extension is optional. 

20- File = ‘CrazyCubeExc100N.mat’; 

At this point, the user should run only this first section (lines 1 to 48) of the SystemSetup 
script. This can be done by clicking the “Run Section” button in the Editor toolstrip, or by right-
clicking anywhere in the section and selecting “Evaluate Current Section.” MATLAB produces a 
number of figures equal to the number of substructures added to the bodyPaths variable. The 
figures plot the physical x, y, and z coordinate locations of all boundary nodes specified during 
Craig-Bampton reduction (or all physical nodes for non-Craig-Bampton systems). In addition, 
the figures display the nodeset to which those nodes belong. An example substructure figure is 
illustrated in Fig. 3. 

Near the top of each figure, the name of the substructure is displayed along with a body 
number. The body number assigned to a substructure has the same value as the substructure’s 
index location in the bodyFiles cell array. For example, the two CubeModel substructures listed 
above are named Body 1 and Body 2, while CrazySubstructure is named Body 3. The body 
number and nodeset information presented in these figures is useful for the sections that follow, 
so the user is encouraged to leave these figures open. 

This first section in the SystemSetup script may also be used to load other files whose data 
may assist when specifying loads. The commented script near lines 23 to 26 provide example 
MATLAB binary files whose data is loaded into the workspace and assigned to variables. 

25- 
26- 

inData = load(‘Chatter/SinSweep/EP_SwptSin2excite.mat’); 
w = inData.w; Xa = inData.Xa; 

In the above example, the file EP_SwptSin2excite.mat contains Fourier coefficient data that 
may be used to prescribe a periodic-type motion for certain boundary nodes. This data is stored 
in the inData structure, and then the frequency (w), and acceleration Fourier coefficient (Xa) 
vectors are retrieved and stored in separate variables for convenience when the prescribed 
boundary is defined later in the script (see Section 3.2.6). 
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Figure 3: An example substructure figure produced from the SystemSetup script. 
Boundary nodes belonging to the same nodeset are highlighted with the same colored 
marker. 

3.2.2. Applying Substructure Rigid Offsets  

The second section in SystemSetup.m allows the user to adjust the nominal coordinate 
positions for each substructure by specifying a coordinate offset value in a particular direction. 
This offset is applied to all physical nodes in the substructure regardless of whether or not they 
belong to a nodeset. These offsets should not be confused with an initial condition, which is an 
offset on the displacement or velocity degrees of freedom. Rather, the offset translates the 
substructure rigidly in space. 

The Offset variable near line 36 specifies coordinate offsets. Offset is a numeric array with 
three columns (when not empty):  

1. The first column specifies the number of the body that receives the offset as referenced 
from the substructure figure (see Section 3.2.1).  

2. The second column specifies the direction the offset is applied, with value “1” indicating 
the first coordinate direction (typically the x-translational direction), value “2” the second 
(y) direction, and value “3” the third (z) direction. As of this release, ROMULIS does not 
support offsets in rotational space. 

3. The third column specifies the value of the offset.  

Offsets may be specified for more substructures or directions by adding more rows to the Offset 
array. If no offset on any substructure is desired, the array may be left empty. 

36- 
37- 
38- 

Offset = [%Body,Direction (1=x,2=y,3=z),value]; 
          2,3,-0.67 
          3,1,4.6]; 
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In the above example, a -0.67 unit offset is applied in the third (z) coordinate direction on 
Body 2. In addition, Body 3 receives a 4.6 unit offset in the first (x) direction. 

3.2.3. Applying Linear Damping  

The third section in SystemSetup.m defines linear damping used in the unconstrained global 
system defined in Eq. (10). By default, ROMULIS uses the damping matrix provided in the body 
file1 for each substructure to construct the global damping matrix. Alternatively, users may 
change the damping matrix by assigning a value to the system.damping_type variable near line 
40 that matches any of the values in the switch-case statements near lines 41 to 48. Acceptable 
cases are as follows: 

1. For zero damping, set the damping_type variable equal to “0.” 

40- system.damping_type = 0; 

2. For modal damping, set damping_type equal to “1” and enter a numerical array of modal 
damping ratio values for the system.zetas variable. If N number of damping ratios are 
supplied, the first N modes of the unconstrained, uncoupled system are given those 
damping ratios. Therefore, the user should be careful to account for the number of rigid 
body modes present among the linearly uncoupled substructures (in effect, the modes 
produced from the Eigenvalue problem using K

~
and M

~
 from Eq. (10).  

40- 
44- 

system.damping_type = 1; 
system.zetas = [0.02,0.005,0.0012,0.0007,0.00027]; 

3. For proportional damping, enter a value of “3” for the damping_type variable, and select 
values for the mass proportion coefficient, system.alpha, and the stiffness proportion 

coefficient, system.beta. The damping matrix C
~

 is formed from the summation of 

 KMC
~~~    (24) 

where   and   are the values in system.alpha and system.beta, respectively, and M
~

 and 

K
~

 are the same mass and stiffness matrices produced for Eq. (10). 

40- 
46- 

system.damping_type = 1; 
system.alpha = 0.01; system.beta = 0.0007; 

Any other value listed for the system.damping_type variable defaults to the damping matrix 
provided in the substructure body files. 

                                                 
1 Substructures processed through Sierra/SD can have a damping matrix by specifying the DAMPING keyword in 
the Sierra/SD input file. This will create a non-zero output for the reduced damping matrix for that substructure.  
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3.2.4. Defining Initial Conditions 

Initial conditions may be defined in the fourth section of the SystemSetup script. The first 
parameter to specify is the starting time for the simulation through the param.tini variable near 
line 51.  

51- params.tini = 0; 

The starting time is typically at zero. It may, however, be useful to start at a different time if, 
for example, the present system continues from a previous simulation and consistency must be 
maintained with any previously defined time-dependent loading functions. If continuing from a 
previous simulation, specifying the correct initial condition becomes especially important. 

ROMULIS implements two different approaches to specifying initial conditions. In the first 
approach, the user specifies certain nodesets in the substructures to have non-zero initial 
conditions. Alternatively, the user supplies the full global state initial conditions either by typing 
out the full vector or by loading the vectors from a file. Both approaches have their benefits and 
pitfalls, and it may not be possible to know the correct initial condition without performing 
another simulation beforehand. 

The loading_ICs variable near line 53 controls the approach taken. Setting the value of 
loading_ICs to “0” lets the user specify the first approach, which is to give non-zero initial 
conditions to certain nodesets in the system. This executes the second section of the if-statement 
that immediately follows, where the user defines the ic_nodes variable near line 60. The 
ic_nodes variable is a numerical array containing five columns (when not empty): 

1. The first column specifies the number of the body where the nodeset of interest is found 
as referenced from the substructure figure (see Section 3.2.1).  

2. The second column specifies nodeset number whose nodes receive the initial condition. 
The nodeset number may also be referenced from the substructure figure. 

3. The third column specifies the direction the initial condition is applied. The values 1, 2, 
and 3 refer to the x, y and z translational directions, respectively, and the values 4, 5, and 
6 are, respectively, the x, y and z rotational directions. 

4. The fourth column holds the value of the velocity initial condition applied on all of the 
specified nodes. 

5. The fifth column holds the value of the displacement initial condition. 

Initial conditions may be specified for more nodesets and directions by adding additional 
rows to the ic_nodes array. If all zero-initial conditions are desired, the ic_nodes array is left 
empty. 

53- 
60- 
61- 
62- 

loading_ICs = 0; 
  ic_nodes = [%Body, Nodeset, Coord, ICv, ICx]; 
              3, 2, 1, -.04, 0 
              3, 2, 2,   .7, 1.1]; 
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In the example above, Nodeset 2 in Body 3 is given -0.04 unit velocity initial condition in the 
x direction. The exact same nodeset is additionally given a 0.7 unit velocity and a 1.1 unit 
displacement initial condition in the y direction. 

To specify initial conditions through global state vectors, set the value of the loading_ICs 
variable to “1.” This executes only the first section of the if-statement that immediately follows, 
where the user must supply the initial displacement and velocity vectors for the px0 and pv0 
variables, respectively. The vector format is a vertical numeric array. The ordering of the degrees 
of freedom in each substructure follows the ordering of columns in the substructure system 
matrices (see the cbmap variable description in Appendix A). The initial condition vectors from 
each substructure are then stacked in the global vector similarly to Eq. (9). The blocks are 
ordered by their corresponding substructure’s appearance in the bodyFiles variable. 

The drawback to specifying global initial condition vectors is that it may not be possible to 
know the initial state for all degrees of freedom. This is especially true for the fixed-interface 
modal coordinates in Craig-Bampton-reduced systems. It is more useful, however, to load in the 
displacement and velocity end state from a previous simulation, and use them as the initial 
condition for a new simulation, effectively continuing the previous simulation. 

If continuing from a previous simulation that was conducted in ROMULIS, the end state 
displacement and velocity vectors can be found in the endDisp and endVel variables, 
respectively, stored in the output response file (see Section 3.4 for more information on response 
files). The response file can be uploaded into a structure variable in SystemSetup using 
MATLAB’s load function. From there, the endDisp and endVel vectors can be retrieved from the 
structure and stored in the px0 and pv0 vectors, respectively. 

53- 
55- 
56- 
57- 

loading_ICs = 1; 
  ICdata = load(‘../SimpleShapes/CrazyCubeExc100N-1-resp.mat’); 
  px0 = ICdata.endDisp; 
  pv0 = ICdata.endVel; 

If the previous simulation stored additional state variables in the UD structure (see Section 
3.3.2), the end state for those variables should be retrieved for the present system as well. This 
can be done simply by uploading the UD structure from the response file of the previous 
simulation. Near line 58 is a commented command that stores this structure in the UD variable. 
Uncomment this line if the present system continues from a previous UD structure. Otherwise, 
leave it commented out. Be aware that this loaded UD structure will overwrite the UD structure 
that is initialized according to the specification of interface functions (Section 3.2.7), so any 
changes made to the interface functions from the previous simulation will not be represented in 
the current simulation. 

58- UD = ICdata.UD; 

3.2.5. Assigning Time-Dependent External Loads 

The user may specify any number of external loads to apply on the nodesets in the system. 
The external loads are force functions dependent on time only, and the functions are procured 
from a library of analytical equations presently implemented in ROMULIS. The user simply has 
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to associate a particular nodeset with a force function along with some parameters that define the 
shape of the function.  

Within the SystemSetup.m script, external load assignments are controlled by the f_nodes 
variable near line 68. The f_nodes variable is a cell array (open and closed with curly braces) 
where every row in the cell array defines a new load function applied on a nodeset. Each row 
consists of three columns with the following entries: 

1. The first column contains a horizontal numeric vector (open and closed with square 
brackets) filled with three integer entries. 

a. The first entry is the number of the body that holds the nodeset of interest as 
referenced from the substructure figure (see Fig. 3). 

b. The second entry is the nodeset number (also referenced from the substructure figure) 
indicating all nodes on which the forcing function is applied. 

c. The third entry specifies the coordinate direction the load is applied. The values 1, 2, 
and 3 refer to the x, y and z translational directions, respectively, and the values 4, 5, 
and 6 are, respectively, the x, y and z rotational directions. 

2. The second cell column contains an integer value that denotes the type of load function 
(e.g. sinusoid, step, haversine, etc.). A list of values and their associated function type is 
provided in Appendix B. 

3. The third cell column contains a vector array of parameter values that characterize the 
function (sinusoid amplitude and period, etc.). The number and ordering of the 
parameters depends on the function type, and this information is also provided in 
Appendix B. 

Nodes that receive more than one loading function experience the sum contribution of all the 
functions applied on those nodes. If no external loads are desired, the f_nodes cell array can be 
left empty. 

82- 
83- 
84- 

f_nodes = { %[body,nodeset,coord],FModel,[Fparams]} 
           [1,1,3],2,[-100,.001,0] 
           [2,3,1],4,[100,.025,0,.5]}; 

The example above has two different force excitations. For the first, Body 1, Nodeset 1 is 
assigned load function 2, a haversine impulse, in the z coordinate direction. The parameters for 
the haversine, according to Appendix B, are that it reaches a peak value of 100 force units in the 
negative direction, lasts duration of 0.001 time units, and starts being applied at time 0 in the 
simulation. Similarly, for the second excitation, the degree of freedom associated with Body 2, 
Nodeset 3, and direction 1 has a sine wave excitation with a magnitude of 100 force units, a 
period of 0.025 time units, and 0 time shift, but does not start the function until time 0.5 in the 
simulation. 

If the external load library lacks a desired function, the user may add additional functions by 
following the procedure in Section 3.5.1. 
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3.2.6. Prescribing Boundary Motion (Boundary Conditions) 

If the motion of particular nodes is known, the user may prescribe that motion as a form of 
excitation (or constraint). Similar to external loads, prescribing motion involves assigning time-
dependent functions to the nodes to describe their displacement, velocity, and acceleration states. 
Since each state is a time derivative (or antiderivative) of the others, knowing the function of one 
state determines the function of the others. ROMULIS includes a built-in library of analytical 
equations for the states. 

In SystemSetup, the user must assign a function to the relevant nodes, and declare the 
parameters that characterize the shape of the function in addition to the state to which the 
function applies. The variable bc_nodes manages the boundary motion prescriptions. Like 
f_nodes, bc_nodes is a cell array (open and closed with curly braces) where every row in the cell 
array prescribes a new boundary function applied on a nodeset. Each row consists of four 
columns with the following entries. 

1. The first column contains a horizontal numeric vector (open and closed with square 
brackets) filled with three integer entries. 

a. The first entry is the number of the body that holds the nodeset of interest as 
referenced from the substructure figure (see Fig. 3). 

b. The second entry is the nodeset number (also referenced from the substructure figure) 
indicating all nodes on which the forcing function is applied. 

c. The third entry specifies the coordinate direction the load is applied. The values 1, 2, 
and 3 refer to the x, y and z translational directions, respectively, and the values 4, 5, 
and 6 are, respectively, the x, y and z rotational directions. 

2. The second cell column contains an integer value that defines the motion state for which 
the function applies. Value “1” signifies position, value “2” is velocity, and “3” is 
acceleration. In practice, a haversine function prescribed for acceleration 
antidifferentiates to a very different displacement function than a haversine set for 
displacement directly. 

3. The third cell column contains another integer value that designates the type of time-
dependent boundary function (e.g. sinusoid, step, haversine, etc.). A list of values and 
their associated boundary function type is provided in Appendix C. 

4. The fourth cell column contains an array of parameter values that characterize the 
function type (sinusoid amplitude and period, etc.). The number and ordering of the 
parameters depends on the function type, and this information is also provided in 
Appendix C. Be aware that some boundary function parameter sets must be provided in 
another cell array as opposed to a numeric array. 

The user should be very careful not to prescribe more than one boundary function on the 
same degree of freedom. During simulation, the contribution from each boundary function on the 
same degree of freedom is summed, but the initial condition for that degree of freedom reflects 
only the latest defined boundary function on that degree of freedom. Consequently, there will be 
inadvertent transient effects in the first time steps of the simulation. 
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The bc_nodes cell array can be left empty if no boundary constraints are desired. 

86- 
87- 
88- 
89- 

bc_nodes = { %[body,nodeset,coord],State,BCModel,[BCparams]} 
            [1,1,3],1,0,[] 
            [2,3,1],3,0,[0,.6] 
            [3,1,3],3,4,{w,Xa,0,-.0567,.9}}; 

In the above example, the degree of freedom found on Body 1, Nodeset 1, and coordinate 3 is 
given a position boundary function. Function “0” refers to a zero function, which for position 
means that the degree of freedom is fixed. No parameters are required for a position zero 
function according to Appendix C. For the second boundary function, note that by changing the 
state to acceleration, the parameter set also changes even though the same zero function is used. 
This is because when the zero function is antidifferentiated to get velocity and displacement, the 
user must supply velocity and displacement offsets at time 0 to determine a unique solution to 
those functions. 

The third boundary function above exemplifies one that uses a cell array that contains vectors 
in its parameter set. Function “4” refers to a time signal built up from Fourier coefficients, which 
requires the user to supply vector arrays for the complex Fourier coefficients and their 
corresponding frequencies. These vectors are supplied through the w and Xa variables, which the 
user must create somewhere in the SystemSetup script before bc_nodes is declared. A good way 
to create these variables is to load a file containing the relevant data, and then pass the data to the 
appropriate cell (see the final two paragraphs of Section 3.2.1). 

The user may add more boundary functions to the ROMULIS library by following the 
procedure in Section 3.5.2. 

3.2.7. Coupling Nodes with Nonlinear Constitutive Models 

Arguably, the most complex section in the SystemSetup.m script manages the nonlinear 
elements in the simulation. All nonlinear elements are represented by discrete force-constitutive 
models that are applied between two nodesets in the system. The user designates one nodeset as 
the master, and the other nodeset as the slave. In the current version of ROMULIS, there is no 
practical difference between the master and slave designations, so the user may decide arbitrarily 
which nodeset to designate as master or slave. There are, however, strict checks in ROMULIS 
that limit the relationship between the nodes in the master set with those of the slave set. The 
rules are as follows: 

1. All nodes in each set must have either all three translational degrees of freedom, or have 
all three translational and all three rotational degrees of freedom. 

2. If one set contains multiple nodes, then the other set must contain either one node or the 
same number of nodes. In the case where both nodesets contain an equal number of 
nodes, each node in one set must have a coincident counterpart in the other set. The user 
is not required to order the nodes in one nodeset to align with the order of the coincident 
counterpart nodes in the other nodeset; ROMULIS has an internal algorithm that pairs 
coincident nodes and their degrees of freedom. 
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3. If each nodeset contains one node, then the coincidence restriction is lifted. The two 
nodes can exist in different locations in space. 

All nonlinear constitutive models currently implemented in ROMULIS are those that couple 
only one node to another. In the case that the master and slave nodesets contain multiple nodes, 
ROMULIS builds a new instance of the same constitutive model between coincident pairs. The 
constitutive models in general observe the motion (velocity and displacement or position) of the 
slave node relative to a master node, and they return a force that is applied equally and 
oppositely on the nodes. Section 2.3 further explains how the relative motion between the master 
and the slave nodes help to formulate the nonlinear force vector. 

When two nodes have been identified for coupling, all the degrees of freedom contained in 
the nodes are considered for the constitutive model. This accounts for any coordinate rotations 
that must occur to align a constitutive model in a desired direction, and it allows for coupling 
between degrees-of-freedom.  

In ROMULIS, the assignment of nonlinear elements works by associating a constitutive 
model in each of the three translational (and rotational if applicable) directions in the rotated 
frame. Since most of the nonlinear elements implemented in the library describe surface 
interaction between different substructures, the names of the rotated frame directions likewise 
relate to surface orientations. The first rotated direction (the direction to which the x axis rotates) 
is known as the “surface normal” direction, while the second and third coordinate directions (the 
rotated y and z axes) are the “first tangent” and “second tangent” directions. For nonlinear 
models applied between nodesets with multiple nodes, the user should be aware that ROMULIS 
assumes that all nodes have the same surface orientation for their nonlinear elements. 

A final general note about specifying nonlinear constitutive models is that some nonlinear 
elements require additional state variables that must be updated with each time step. Internally, 
these additional variables are all stored in a structure, called UD, which in itself contains a cell 
array called Space. Each cell in Space stores the state variables for the particular nonlinear 
element to which the cell is assigned. The UD structure is passed between the force function and 
the user-output function between each time step, so the user can, for example, construct the user-
output function to call the UD structure and keep track of the evolution of certain constitutive 
models as time progresses. 

The int_nodes variable in SystemSetup manages all nonlinear element specifications. Like 
f_nodes and bc_nodes, int_nodes is a cell array where each row designates a new nonlinear 
constitutive model, while the columns designate relevant nodesets and functions pertaining to 
that model. When supplying values into the columns, the user has two different options for 
specifying nonlinear functions. The first is the usual method of referencing a library of 
commonly used functions implemented in ROMULIS. For the second option, the user may 
create a new MATLAB function that can be passed into ROMULIS. If no nonlinear elements are 
needed, the int_nodes array can be left empty. 
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3.2.7.1. Referencing Constitutive Models from a Library of Functions 

For the first option of referencing the library of constitutive equations, the user must supply 
values for six columns in int_nodes. The rules for filling the columns are as follows: 

1. The first and second cell columns designate master nodeset and the slave nodeset, 
respectively. Each column contains a vector array with two entries.  

a. The first entry is the body number for the substructure that holds the nodeset of 
interest. The body number may be referenced from the substructure figure (see Fig. 
3). 

b. The second entry is the number assigned to the nodeset of interest. The nodeset 
number may also be referenced from the substructure figure. 

Preference is left to the user as to which node is designated the master node (keeping in 
mind that the constitutive models define motion relative to the master node). 

If the user desires to couple a node to a fixed point relative to the local frame, then that 
fixed point can be designated to either the master or the slave nodeset. This can be done 
by filling in either the first or second columns with the “0” value rather than a body-
nodeset array. When ROMULIS parses this value, it adds a fixed point to the system in 
the same location in space as the node coupled to it. Keep in mind that whether the fixed 
point is the master or the slave, the motion of the joint is still observed as slave relative to 
master. 

2. The third cell column contains a numeric array of length 3 defining the vector (using 
global x, y, and z coordinates) oriented along the surface-normal direction in the rotated 
frame from the perspective of the master node. This vector typically locates the slave 
node relative to the master node, though in some cases it is more intuitive to define the 
vector as the surface-normal direction at the location of the master node. It is not 
necessary to normalize the vector by any rule. 

3. The fourth cell column is a horizontal numeric array of length 3 defining the vector 
(using global coordinates) oriented along a surface-tangent axis in the rotated frame. This 
vector should be perpendicular to the vector defining the surface-normal direction, but 
ROMULIS subtracts any surface-normal component from the tangent vector just in case. 

4. The fifth cell column defines a numeric array with 6 entries containing integer values 
(except ‘1’) representing the force-constitutive functions to be oriented in the three 
translational and three rotational directions. The first three entries represent the surface-
normal, first tangent, and second tangent translational directions, ordered respectively. 
The fourth through sixth entries represent the rotational directions of the same ordering. 
A list of acceptable integer values and constitutive functions they represent is given in 
Appendix D.  If no constitutive function is desired for a certain direction, the 
corresponding entry may be filled with a ‘0’ value. If a node does not have rotational 
degrees of freedom, then the fourth through sixth entries are ignored.  

5. The sixth cell column contains a nested cell array of length 6. Each cell array contains a 
numeric array of parameter values associated with the functions given in the fifth cell 
column of int_nodes. The first three cells give parameter arrays for the normal, first 
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tangent, and second tangent functions, ordered respectively, and the last three cells give 
parameter arrays for the rotation functions of the same order. For each parameter array, 
the number and order of the parameters depends on the function type, and this 
information is also provided in Appendix D. If a node does not have rotational degrees of 
freedom, then the rotation parameter cells are ignored. 

77- 
78- 
79- 
80- 
81- 
82- 

int_nodes = { 
  0,[3,2],[1;1;0],[-1;1;0],[5,7,7,2,0,0], ... 
      {[100e9,.07],[.6,1e-4,300],[.6,1e-4,300],[1e6,0],[],[]}; 
  [1,11],[2,21],[.866,.5,0],[-.5,.866,0],[0,9,9,0,0,0], ...  
      {[],[9,5e4,-.7,.07],[9,5e4,-.7,.07],[],[],[]} 
}; 

The above example depicts two sets of coupled nodes. For the first set, the nodes in Body 3, 
Nodeset 2 (the slave nodeset) are each coupled to ground (the master nodeset) using a Hertz 
contact element in the normal direction, Coulomb friction elements in both tangential directions, 
and a linear spring and dashpot in the surface-normal rotation direction. The rotated frame is 
such that the global frame is rotated 45° about the positive z-axis. The Hertz contact element has 
an effective modulus of 100×109 units, and an effective radius of 0.07 units. Both of the 
Coulomb friction elements in the two tangential directions have a friction coefficient of 0.6, 
which saturates at a velocity of 10-4 units, and a normal force parameter of 300 units. The 
rotation spring is given a stiffness of 106, and the dashpot has zero damping, which effectively 
removes the dashpot from this model.  

The second set couples a master nodeset on Body 1 to a slave nodeset on Body 2. The normal 
translation direction and all rotational directions have no constitutive elements, but the two 
tangent directions hold Segalman four-parameter Iwan models in translation. The rotated frame 
is such that the global frame is rotated 30° about the positive z axis. Both of the Iwan models are 
given the same parameterization. 

The user may implement more force-constitutive functions in the ROMULIS library by 
following the procedure in Section 3.5.3. 

3.2.7.2. Supplying a User-Created Constitutive Model  

On occasion, an interface condition between two nodes cannot be captured by simply 
assigning nonlinear elements in the three coordinate directions. In this case, the user has the 
option to upload a custom force-constitutive MATLAB function. Creating a custom function 
gives the user freedom in defining the nonlinearity based on a limited set of state inputs for the 
two nodes, but the output must always be the force vectors that are applied on the two nodes. 
Section 3.3.1 contains more information on how to create a custom force constitutive function. 

To upload a user-created constitutive function, the user must modify a row in the int_nodes 
variable differently than when referencing a library function. The six cell entries in that row are 
filled in as follows. 

1. The first and second cell columns define the master node and slave node, respectively. 
These entries are filled in the exact same way as for library functions. See rules 1 and 2 
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under the Referencing Constitutive Models from a Library of Functions section for the 
details. 

2. The third and fourth cell columns are empty arrays. For library functions, the user 
provides vectors to define the surface normal and tangent directions to rotate the frame of 
reference as desired. For user-created functions, the nodal degrees of freedom that are 
passed into the function remain in the global frame, so the user must code up any 
coordinate rotations in the function as necessary.  

3. The fifth cell column contains a single, numeric ‘1’. 

4. The sixth cell column contains another cell array with two cells. 

a. The first cell entry contains a string array listing the directory where the function can 
be found. The syntax for listing the directory is the same for listing directory in the 
bodyPaths variable. 

b. The second cell entry lists the name of the function in string characters. Do not 
include the *.m extension with the function name. 

91- 
92- 
93- 

int_nodes = { 
     [2 1],[3,2],[],[],1,{‘../SimpleShapes/Funcs/’,’Lanyard’} 
  }; 

The above example couples the master node in Body 2, Nodeset 1 with the slave node in 
Body 3, Nodeset 2 using the user-created function, Lanyard. 

3.2.8. Identifying Output Degrees of Freedom 

When the numerical integrator finishes simulating the transient response for the system, 
ROMULIS saves the response only for the nodesets specified in the out_nodes variable near line 
86 (in Section 3.2.8) of SystemSetup.m. If the response at all degrees of freedom is desired, the 
out_nodes cell array is left empty. Otherwise, out_nodes is a cell array with multiple rows and 
only one column. Each row specifies a new set of output nodes of interest, and the single cell 
entry in that row contains a numeric array with three elements. 

1. The first value in the array lists the number of the body that holds the nodeset of interest. 
The body number may be referenced from the substructure figure (see Fig. 3). 

2. The second value is the number assigned to the nodeset of interest. The nodeset number 
may also be referenced from the substructure figure. 

3. The third value represents the coordinate direction of interest. The values 1, 2, and 3 refer 
to the x, y and z translational directions, respectively, and the values 4, 5, and 6 are, 
respectively, the x, y and z rotational directions. 

86- 
87- 
88- 

out_nodes = { %[body,nodeset,coord]} 
            [4,1,2] 
            [2,3,1]}; 

In the above example, the response of the degrees of freedom located on Body 4, Nodeset 1 
in the y-direction are of interest as are the x-direction degrees of freedom on Body 2, Nodeset 3. 
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3.2.9. Locating the User Output Function 

If the user has constructed an output function to supplement the IMEX integrator [4], then the 
name of the user-output function can be supplied in string characters to the UO_File{1,1} 
variable. Make sure not to include the *.m file extension with the file name. The user must then 
provide the directory where the function is located in string characters to the UO_File{1,2} 
variable. Take care to terminate the string with a forward slash character.  

91- 
92- 

UO_File{1,1} = ‘UO_Iwan4_BRBr2’; 
UO_File{1,2} = ‘UO Functions/’; 

If no output function is desired, these UO_File variables must be empty arrays.  

If continuing from a previous simulation that uses the same user output function, then the UD 
structure from the previous simulation’s response file must be uploaded to preserve any recorded 
variables. The response file and its UD structure may be loaded into SystemSetup by following 
the procedure at the end of Section 3.2.4. Beware that this loaded UD structure overwrites the 
original UD structure that would apply for a fresh simulation. Therefore, any changes made to 
the nonlinear constitutive functions from a previous simulation will not reference the correct UD 
structure for storing and updating internal state variables. 

3.2.10. Running SystemSetup 

After the user completes Sections 3.2.1 to 3.2.9, the SystemSetup.m script may finally be run. 
MATLAB takes the data provided in SystemSetup, processes it in the Initialization script, and 
stores the processed data in a system file. The system file is given the name provided in the File 
variable in Section 3.2.1, and is stored in the same directory as the first body file uploaded in the 
bodyPaths variable. The system file is ready to be uploaded into the integrator following the 
procedure in Section 3.4. 
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3.3. Creating Supplementary Functions 

3.3.1. User-Created Nonlinear Constitutive Function 

If the ROMULIS library of nonlinear constitutive models (see Appendix D) does not contain 
a desired function, or if the interaction between two nodes cannot be modeled simply by 
attaching nonlinear elements in the three directions, then the user may define a custom 
constitutive model by creating a new MATLAB function and passing it into the simulator. This 
section describes the variables that are supplied to the function in addition to those that are sent 
out. The user is directed to Section 3.2.6 for information on how to upload the new function into 
ROMULIS after it is made. 

Creating a new function in MATLAB starts with the function declaration. The user may give 
any name to the function, but it must always have eight input arguments and three output 
arguments. 

1- function [Fm,Fs,Space] = FuncName(t,um,us,vm,vs,xm,xs,Space) 

The input arguments are the variables available to the user to help construct the force-
constitutive model. They consist mainly of the motion state for the master and slave degrees of 
freedom in addition to a structure array that stores and updates variables with each time step. The 
input arguments are further detailed in Table 2. 

At times, a nonlinear constitutive model will require additional state variables (besides 
displacement and velocity) to be updated with each time step. These variables can be stored in 
the Space structure. The Space structure is a MATLAB structure array that contains the fields 
given in Table 3. 

The init field is the key to add and initialize new variables that will be used consistently in 
the function. It is used to enter an if-statement, located at the beginning of the function, where 
the user can declare more variables in the Space structure before the simulation begins. 
Additional states and other variables that are updated and passed between time steps must be 
declared in this if-statement. The if-statement is set up as follows: 

2- 
 3- 
4- 
5- 
6- 
7- 
8- 
9- 
10- 
11- 

if isfield(Space,‘init’) % Declare and initialize new variables. 
    % Remove init field to skip if-statement in later steps (required). 
    Space = rmfield(Space,‘init’); 
    % Initialize Iwan model parameters (example). 
    Space.Fs = 100;   % Slip force 
    Space.Kt = 1e5;   % Tangent stiffness 
    Space.chi = -0.7; % log slope of energy dissipation 
    Space.beta = 3;   % Ratio of slip term to power-law term 
    Space.y0 = zeros(100,1); % initialize states of 100 sliders 
end 
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Table 2: Descriptions for the input arguments required in a user-created nonlinear 
constitutive function. 

Argument Description 
t The time value at the present time step. 

um A vertical array containing the current displacement values for the degrees of 
freedom in the master nodeset. 

us A vertical array containing the current displacement values for the degrees of 
freedom in the slave nodeset. 

vm A vertical array containing the velocity values in the current time step for the 
degrees of freedom in the master node. The number and order of the degrees of 
freedom are the same as in um. 

vs A vertical array containing the velocity values in the current time step for the 
degrees of freedom in the slave node. The number and order of the degrees of 
freedom are the same as in us. 

xm A vertical array containing the resting coordinate positions for the master degrees 
of freedom. The number and order of the degrees of freedom are the same as in 
um. 

xs A vertical array containing the resting coordinate positions for the slave degrees of 
freedom. The number and order of the degrees of freedom are the same as in us. 

Space A structure array containing degree of freedom identity information. Meant to store 
additional variables that will be updated with each time step. Space must always 
be supplied as an input argument regardless of whether or not it is used in the 
function. 

Table 3: Descriptions for the fields in the Space structure array. 

Field Description 
model Contains the string ‘User-created function’. Helps the user identify the Space 

array in the UD structure. 

init A Boolean field used to invoke an if-statement to allow the user to initialize 
additional variables in the Space structure on the first time step. 

dof_map_m An N×3 numeric array where N is the number of rows in um from Table 2. Each 
row in dof_map_m identifies the body, node, and direction for the degree of 
freedom corresponding to the same row in um. Column 1 gives the body number 
(see Fig. 3), column 2 gives node number, and column three gives the direction 
number (1 = x, 2 = y, 3 = z, 4 = rx, 5 = ry, 6 = rz). Helps the user identify the 
degree of freedom associated with each row in um.  

dof_map_s An N×3 numeric array where N is the number of rows in um from Table 2. Each 
row in dof_map_s identifies the body, node, and direction for the degree of 
freedom corresponding to the same row in us. Column 1 gives the body number 
(see Fig. 3), column 2 gives node number, and column three gives the direction 
number (1 = x, 2 = y, 3 = z, 4 = rx, 5 = ry, 6 = rz). Helps the user identify the 
degree of freedom associated with each row in us. 
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Table 4: Descriptions for the output arguments required in a custom nonlinear 
constitutive function. 

Argument Description 
Fm The vector of forces applied on the master degrees of freedom. The number and 

ordering of the degrees of freedom is the same as that of um in Table 2. Some 
degrees of freedom in um may be repeated (see Space.dof_map_m). Make sure 
that the last of the repeated entries in Fm holds the correct force value. All 
repeated entries before the last can be ignored. 

Fs The vector of forces applied on the slave degrees of freedom. The number and 
ordering of the degrees of freedom is the same as that of us in Table 2. Some 
degrees of freedom in us may be repeated (see Space.dof_map_s). Make sure 
that the last of the repeated entries in Fs holds the correct force value. All 
repeated entries before the last can be ignored. 

Space Updated Space structure. This must always be supplied regardless of whether or 
not any changes were made to it. 

The three output arguments are the force vectors applied on the master degrees of freedom 
and slave degrees of freedom, as well as the updated Space structure. Typically, a nonlinear 
element applies equal and opposite reaction forces on the master and slave nodes, but the custom 
function gives the user the freedom to differ the force values to satisfy the constitutive model. 
The values of the components in both the master and slave force vectors are all added to the 
global force vector on the right-hand side of Eq. (12), so the user must keep track of which 
values are directed in the positive directions as well as in the negative directions. Table 4 
describes the output arguments in more detail. 

Given the input arguments listed in Table 2, the user has complete freedom to write the rest 
of the function so as to produce the two output force vectors listed in Table 4. In scripting this 
function, the user is expected to know the order of the degrees of freedom provided in the input 
state vectors. The dof_map_m and dof_map_s fields provided in the Space structure can assist 
with identifying these degrees of freedom. The Space structure is provided in the system file 
after successfully running the SystemSetup script. Within the system structure in the system file is 
the Int_loc field, which is a cell array containing four columns and as many rows as in the 
int_nodes array from the SystemSetup script. After locating the same row in Int_loc as the row 
the user-created function is defined in int_nodes, the fourth cell in this row contains an integer 
value. This integer references the cell index of the SpaceCells cell array found in the UD_init 
field in the system structure. This cell within SpaceCells contains the dof_map_m and dof_map_s 
associated with the user-created function. 

3.3.2. User Output Function 

The user output function is a user-supplied MATLAB function that IMEX, the numerical 
integrator, recognizes as a subroutine in its algorithm. The user output function is called in 
between time steps to perform some manner of processing on results of the just-completed time 
step. The major use of user output function in ROMULIS is to record certain variables after each 
time step, whether to be accessed for post-processing after integration, or to be fed back into the 
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integrator for the next time step. At the end of a simulation, all recorded variables are supplied to 
the response file for the user to access. 

The user may give any name to the output function, but every user output function must have 
one output argument and six input arguments as follows: 

1- function UD = MyOutputFunc(t,dt,u,v,UD,flag) 

The descriptions for each input argument are given in Table 5. 

The entire point of the user output function is to initialize and update UD, the user output 
structure. UD is a structure that can record all variables of interest to the user in addition to those 
that are normally given by the time integrator. UD is the only variable that is passed between all 
supplementary functions in IMEX, including the force function. Therefore, any variables (such 
as the internal states of a nonlinear constitutive function) that are updated and recorded in UD 
within the force function may also be accessed in the user output function. 

The UD structure contains variables that help the user process the raw displacement and 
velocity vector inputs to the user output function, and it holds data from the force constitutive 
functions implemented in the system. Table 6 gives descriptions for the fields that ROMULIS 
creates in the UD structure before starting numerical integration. 

Typically, an initialization control statement immediately follows the function declaration. In 
the initialization control statement, the user creates additional variables that are of interest and 
are typically updated as the integrator progresses though each time step. The control statement 
checks the init field in the UD structure for whether it has a value of ‘1’ (which is always the 
case on the first time step). After executing the commands in the control statement, the value of 
init is switched to ‘0’ so that subsequent time steps do not reinitialize the variables. 

2- 
3- 
4- 
5- 
6- 
7- 
8- 
9- 

if UD.init == 1 % initialize variables on the first time step. 
    UD.timevec = []; % records time. 
    UD.vvec = [];    % records velocity input to nonlinear  
                     %   constitutive function. 
    UD.Fvec = [];    % records force output from nonlinear  
                     %   constitutive function. 
    UD.init = 0; % change init so that variables aren’t reinitialized. 
end 

In the example above, three variables were initialized: a vector for recording the current time, 
a vector for recording the relative motion between the master and slave node for a nonlinear 
constitutive function to be identified later, and a vector for recording the force output from said 
nonlinear function. 
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Table 5: Descriptions for the output arguments required in a custom nonlinear 
constitutive function. 

Argument Description 
t The time value at the current time step 

dt The size of the current time step. 

u The vector of displacements for active degrees of freedom in the current time 
step. The order of the degrees of freedom is given by dofmap field in the UD 
structure (see Table 6). 

v The vector of velocities for active degrees of freedom in the current time step. The 
order of the degrees of freedom is given by dofmap field in the UD structure (see 
Table 6). 

UD The user output structure. 

flag A Boolean value set to ‘1’. 

Table 6: Descriptions of the variables found in the UD structure from a user output 
function. 

Variable Description 
init A Boolean field (value set to ‘1’). Most commonly used to enter a control 

statement at the beginning of a simulation in order to initialize variables in 
UD to be used as the integrator computes. 

dofmap A vector having three columns and the same number of rows as the 
displacement and velocity vectors that are supplied as input arguments to 
the user output function. Each row in dofmap is associated with the degree 
of freedom in the same row of the displacement and velocity vectors. The 
first column gives the body number for that degree of freedom, the second 
column gives the node number, and the third column gives the direction 
number. 

coords The vector of the nominal resting coordinate positions of all active degrees 
of freedom. The order of degrees of freedom is the same as in dofmap. 

SpaceCells An array of cells where each cell contains a structure with fields pertaining to 
a nonlinear element. The fields are exactly those of the Space structure 
described in Table 3. 
 

The SpaceCells variable in UD carries the recorded data from each interface model. 
SpaceCells is a cell array where each cell contains a structure of parameters relating to a 
particular nonlinear model. Each structure contains exactly the fields described in Table 3 for the 
Space structure, plus other fields as needed by the nonlinear function. The nonlinear functions in 
ROMULIS’s library (see Appendix D) have four additional variables added their Space structure 
as described in Table 7. 
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Table 7: Descriptions for the additional fields added to the Space structure array for each 
nonlinear constitutive element in ROMULIS’s library. 

Field Description 
param_set Contains the array of parameters that the user assigns to the particular nonlinear 

constitutive element thought the int_nodes variable in the SystemSetup script. 

u The relative displacement between the master and slave degrees of freedom as 
observed by the nonlinear constitutive element for the current time step. This 
value is left as ‘0’ for elements that do not require displacement input. 

v The relative velocity between the master and slave degrees of freedom as 
observed by the nonlinear constitutive element for the current time step. This 
value is left as ‘0’ for elements that do not require velocity input. 

F The force output from the constitutive element for the current time step. 

In the user output function, the Space structure for a desired nonlinear model may be 
retrieved by calling UD.SpaceCells{i}, where i may be substituted for the appropriate cell index 
value. Likewise, UD.SpaceCells{i} must be updated or overwritten if any changes are made to 
the fields in its Space structure (not recommended in most cases). 

10- 
11- 
12- 
13- 
14- 

UD.timevec = [UD.timevec; t]; % Add current time to time vector 
SpaceCoulomb = UD.SpaceCells{3}; % Retrieve Space structure for the  
                                 % Coulomb friction model. 
UD.vvec = [UD.vvec; SpaceCoulomb.v]; % record current velocity. 
UD.Fvec = [UD.Fvec; SpaceCoulomb.F]; % records current force output. 

The user is expected to know which Space cell indices pertain to what functions, and the 
system file can help identify the Space cells after the SystemSetup script is run successfully. 
Within the system structure in the system file is the Int_loc field, which is a cell array containing 
four columns and as many rows as in the int_nodes array from the SystemSetup script. After 
locating the same row in Int_loc as the row the user-created function is defined in int_nodes, the 
fourth cell in this row contains an array of integers. There are always six columns in this array, 
each representing the model oriented in one of the 6 directions (the 1st column is surface-normal 
translation, 2nd and 3rd columns are surface-tangent translations, 4th column is normal rotation, 5th 
and 6th are tangent rotations). Each integer in this array references the correct cell index of the 
SpaceCells array for its particular model. 

If the index array contains more than one row (i.e. multiple pairs of nodes were specified to 
have the same instance of a particular constitutive element), then an additional search can be 
made to identify the one or more pairs of nodes that are of interest. After identifying all possible 
SpaceCell indices that could pertain to the element of interest, observe those cells from the 
SpaceCells array found in the UD_init field in the system structure. Each cell contains a 
dof_map_m and dof_map_s field, which are mapping vectors for the applicable master and slave 
degrees of freedom, respectively. Each vector has three elements. The first entry contains the 
body number for the degree of freedom, the second entry is the node number, and the third entry 
is the direction number (1=normal translation, 2=tangent translation, etc.). 
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3.4. Running a Simulation 

After a system file has been created, it is ready to upload into the time integrator using the 
SerialExecuter script. With SerialExecuter, the user simply specifies all parameters to tweak the 
IMEX2 time integrator [4,12], and directs the script to the directory where the system file is 
located. Upon running the script, SerialExecuter calls upon a number of subfunctions to 
assemble the system, set up the force function, and ultimately run the integrator. After numerical 
integration is complete, SerialExecuter collects the response solution and any user output data, 
and stores them in the response file. 

Upon opening the SerialExecuter script in the MATLAB editor, the first step to complete is 
to locate a system file. Near lines 14 and 15 are the two variables filepath and inFile. The path to 
the directory locating the system file is typed as a string array in the filepath variable. Remember 
to include the forward slash, ‘/’, to terminate the path name. The name of the system file is typed 
as a string array for the inFile variable. The *.mat extension must be included after the name.  

14- 
 15- 

filepath = ‘C:/Users/user/Documents/SimpleShapes/’; 
inFile = ‘CrazyCubeExc100N.mat’;  

Next, the time period for simulation is specified. In anticipation for a case where a user may 
specify a very long simulation such that the RAM needed to store such time histories exceeds the 
capacity given to the machine, SerialExecuter was designed to divide the long simulation into 
smaller simulations that run one after another until the desired time period is completed. Each 
time segment produces its own response file, and, in this way, ROMULIS effectively pauses the 
simulation to store the time histories into the hard drive before clearing RAM to continue the 
next segment of the simulation. 

The user defines two parameters: The ending time for the entire simulation, and the time 
period per simulation segment. When the length of the entire simulation is divided by the time 
period of each segment, this gives the total number of simulation segments that SerialExecuter 
computes. The ending time for the simulation is supplied to the t_end variable near line 21, and 
the period per segment is given for the SimT variable on line 22. The simulation starting time is 
defined in SystemSetup (see Section 3.2.4), and that value is carried over to SerialExecuter. 

21- 
 22- 

t_end = 0.1; 
SimT = .02;  

In the above example, the total simulation period is 0.1 (given that the starting time is at 0). 
At 0.02 time units per segment, this simulation computes five time segments, and ultimately 
produces five response files. 

The final variables of SerialExecuter that the user can adjust are the IMEX2 time integrator 
parameters. These include specification of the minimum and maximum time step sizes, and the 
relative tolerance for convergence. These same parameters can be referenced in [4] for a similar 
algorithm, and they are repeated in Table 8. In SerialExecuter, these variables are stored directly 
in the params structure. If the user does not wish to specify a new value for a parameter, that 
parameter must be commented out. 
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Table 8: Descriptions for the IMEX time step parameters. The following variables are fields 
in the params structure. 

Field Description (default value) 
dt Initial time step size (1e-6). 

dtmin Minimum allowable step size (1e-12). 

dtmax Maximum allowable step size (1e-3). 

tol Relative tolerance for convergence (1e-3). 

output_res Resolution of the output time histories (SimT * 0.001) 

output_flag Boolean for displaying progress dots in command window (1). 

cutoff Real time to elapse before integrator quits (3e6 seconds). 

method Order of the explicit integrator (5). Possible values are 4 and 5 for IMEX2. 

The SerialExecuter script can now be run. 

Upon running SerialExecuter, the MATLAB command window will display some 
preprocessing operations and then proceed with numerical integration of the first time segment. 
If output_flag is set to ‘1’, the command window will also display a dot ‘.’ to show the progress 
of the integrator. Each dot represents the completion of 3000 time steps (the precise number is 
dependent on the parameters passed into the IMEX2 algorithm, specifically output_res). After 
150,000 time steps are completed (specifically, 50 dots), the command window will terminate 
the line of dots with the value of the latest time step completed, and then start a new line of 50 
dots.  

Assembling global system...     Done. 
Partitioning constrained DOF... Done. 
Writing Force_Func.m ...        Done. 
 
Reuploading search path to update Force_Func.m ...Done. 
 
Performing numerical integration... 
..................................................t = 0.0100108 s 
..................................................t = 0.0199989 s 
..............| 

When a simulation segment has completed integration, the command window will display 
the total real time it took to complete the simulation, and then declare that post-processing is 
complete. 

Done. Elapsed Time is 767.8143 seconds. 
Post-Processing...Done. 

When this last line appears, a response file for that segment should appear in the same 
directory where the system file is found. The response file name is the same as that of the system 
file, except that it has been appended with a ‘ –r–resp.mat’. Here, the r is a placeholder for the 
segment number. In the above example, the first response file that is produced is called 
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CrazyCubeExc100N-1-resp.mat, then CrazyCubeExc100N-2-resp.mat, and so on up to 
CrazyCubeExc100N-5-resp.mat. 

Each response file is a MATLAB binary file containing the eight variables listed in Table 9. 

Table 9: Descriptions for the variables in a response file. 

Variable Description (default value) 
time Time vector. 

Out_map A three-column mapping array where each row corresponds to an output degree 
of freedom. The first column gives the body number, the second column gives 
the node number, and the third column gives the direction number (1=x 
translation, 2=y trans, 3=z trans, 4=x rotation, 5=y rot, 6=z rot). 

Disp Displacement time histories for the output degrees of freedom. Each row 
corresponds to the degree of freedom referenced in the same row of Out_map. 

Vel Velocity time histories for the output degrees of freedom. Each row corresponds 
to the degree of freedom referenced in the same row of Out_map. 

Coord A vertical vector of the nominal coordinate position for each output degree of 
freedom. Each row corresponds to the degree of freedom referenced in the same 
row of Out_map. 

UD User output structure (see Section 3.3.2). 

endDisp The global vector of displacements for the full assembled system at the final time 
step. Useful as an initial condition in a subsequent simulation. 

endVel The global vector of velocities for the full assembled system at the final time step. 
Useful as an initial condition in a subsequent simulation. 

 

3.5. Adding Functions to the ROMULIS Library 

The user may implement new functions to supplement ROMULIS’s existing library of 
functions. This process essentially requires the user to write new lines of code into one or more 
of the toolbox subfunctions that help create the force function. However, the code for 
implementing new functions may not be intuitive to even an experienced MATLAB user, so 
some explanation is given here as to what the code is trying to accomplish. 

From a traditional MATLAB coding perspective, a function would normally be referenced 
with a function handle that is stored in a variable to be passed into the greater force function. 
Such an approach creates overhead in the MATLAB runtime such that processing power, and 
therefore time, must be dedicated to search for the handle in memory, locate the function, run the 
function, and finally return the output and clear locally-allocated memory. As this process may 
be repeated hundreds of thousands of times in a simulation, that overhead time accumulates and 
slows the simulation substantially. 

The approach that ROMULIS takes to circumvent the overhead is simply to write the 
function directly into the force function as needed. This is a concept known as 
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metaprogramming, where the ROMULIS code itself automatically writes a new script for the 
force function to be used recursively as code at a later point. Normally, MATLAB is not an ideal 
language suited to metaprogramming, but since the force function is written and updated once 
rather than thousands of times in any simulation, the practical benefits are regained.  

The tools that MATLAB provides for writing new scripts are the basic input/output file 
commands. In effect, ROMULIS writes commands as string arrays into a MATLAB m-file that 
becomes the script for the force function. Hence, in the subfunctions discussed in Sections 3.5.1 
through 3.5.3, the user writes the commands of the function as string arrays rather than actual 
executable lines.  

This metaprogramming approach has the additional benefit of writing the force function 
economically. That is, the force function contains only the commands that are absolutely 
necessary to resolve both applied and internal loads on the system. Had the force function been a 
traditional script in the line of programming, it would require a complex, convoluted assembly of 
nested control statements designed to parse through user input on loading conditions, and return 
the correct force value. This in itself creates more overhead in each iteration that the integrator 
completes. With metaprogramming, the parsing is left to the subfunctions that write the force 
function all before the integrator is ever called.  

More to the point, in addition to writing function commands as string arrays in these 
subfunctions, the user must also navigate their arrays of nested control statements, which the 
following subsections will explain. 

3.5.1. External Load Functions 

New external load functions (dependent on time only) can be implemented by adding code to 
the Load_Library function. Load_Library contains a single control statement, a switch-case 
statement (begins on line 29), which observes the integer held in the model variable. The model 
variable holds the number assigned to the load function as discussed in Section 3.2.5 and in 
Appendix B. In essence, the load number is compared to the integer described in each of the case 
statements. When a match between the case number and the load function number is found, then 
the contents of that case statement is followed. 

At present, there are six implemented cases, case 1 through case 6, which should not be 
altered in order to maintain consistency with Appendix B. A new load function is added as a 
subsequent case. As an example, a linear, ramp-up type load function is added for the sake of this 
documentation. This function is assigned load number 7, and, and, hence, is typed under a new 
case 7 in the control statement. To characterize this function, the parameters m, the slope of the 
ramp-up, and 0t , the time in the simulation that the force starts ramping up, are assigned. Then 

the output of this force function can be expressed analytically as 
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In Load_Library, this function is typed as a string array into the F_line variable. Note that 
each line of string commands terminates with a newline character (\n) so that MATLAB knows 
to begin the next set of strings on a new line in the force function.   

29- 

 
74- 
75- 
76- 
77- 
78- 
79- 

 
82- 

switch model 

     
    case 7 % linear ramp-up force 
      F_line = [ 
        ‘m = Fp{‘,ii,’}(1);\n’... % slope parameter 
        ‘t0 = Fp{‘,ii,’}(2);\n’... % time parameter 
        ‘F = m*(t-t0).*(t>t0);\n’ % Eq. (25) 
      ]; % close F_line 

     
end 

The first lines of strings in F_line are commands that retrieve the parameter values for this 
function. The parameter values for all load functions are passed into the force function through 
the Fp input argument. Fp is a cell array where each cell contains an array of parameter values as 
directly copied from the rows of f_nodes in SystemSetup (see Section 3.2.5). The variable ii in 
Load_Library contains an integer as a string that references the correct cell entry, so it is 
interjected into the Fp string declaration above.  

The integer in parenthesis following the bracketed ii references the correct entry in the 
numeric array to retrieve the parameter value. Therefore, when the parameter array is entered 
into f_nodes in SystemSetup, the array must be a vector of length at least 2, with the slope 
parameter in the first entry, and the time parameter in the second entry. If the user desires the 
supplied parameters to be vectors rather than single numbers, then the parameter array can be 
supplied as its own cell array. The integers would then be enclosed in brackets rather than in 
parenthesis. 

The last string line in F_line writes the force function itself based on Eq. (25). The value of 
the force must be assigned to the variable F. In addition, the variable t is the current time. It is 
supplied by the force function itself, so there is no need to initialize t in F_line. 

Upon closing F_line, the user will have successfully implemented a new load function. 

3.5.2. Prescribed Boundary Functions 

The Boundary_Library function in the ROMULIS toolbox holds the library of presently 
implemented functions for prescribed boundaries. There are two switch-case statements, a parent 
and child, of which the user needs to keep track. The parent switch-case (begins on line 97) 
observes the model variable, which holds the number assigned to the boundary function. The 
child-switch case examines the state variable, which holds a values of ‘1’ if the base function 
applies to displacement, ‘2’ if the base function applies to velocity, or ‘3’ if the base function 
applies to acceleration. More information on both of these number assignments is given in 
Section 3.2.7 and in Appendix C. When the Boundary_Library function is called, it matches the 
model and state numbers to user input in order to return the correct boundary function. 
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The library currently has five model cases implemented, and each model case (except case 5) 
has three state cases. All of these cases should not be altered to maintain consistency with 
Appendix C, but new boundary functions should be added as subsequent model cases after 
number 5. In the following procedure, the ramp-up function is added to the library as a 
demonstration. This function is assigned function number 6, and, hence, is typed under a new 
model case 6 in the control statement. To characterize this function, the parameters m, the slope 
of the ramp-up, and 0t , the time in the simulation that the force starts ramping up, are assigned. 

If the base function is given to displacement, x, then, after differentiating to velocity v and 
acceleration a, the three states are expressed analytically as 
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Equations (26) through (28) are typed under the state case 1. If the base function is given to 
velocity, then state case 2 is given the equations  
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Note that Eq. (29) has another parameter 0x , the initial displacement at time zero, which 

appeared as a constant after integrating the velocity function into displacement. Under state case 
3, the equations are 
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Again noting the addition of 0v , The initial velocity at time zero. 

Boundary_Library serves a dual purpose of computing state vectors from these equations in 
addition to typing them out as strings for the force function, so each state case must provide for 
both types of outputs. The displacement, velocity, and acceleration vectors are assigned to the x, 
v, and a variables, respectively, and the text output is given to the bc_line variable. Note that 
each line of string commands terminates with a newline character (\n) so that MATLAB knows 
to begin the next set of strings on a new line in the force function.   

97- 

 
362- 
363- 
364- 
365- 
366- 
367- 
368- 
369- 
370- 
371- 
372- 
373- 
374- 
375- 
376- 
377- 
378- 
379- 
380- 
381- 
382- 
383- 
384- 
385- 
386- 
387- 
388- 
389- 
390- 
391- 
392- 
393- 
394- 
395- 
396- 
397- 
398- 
399- 
400- 

switch model 

   
  case 6 % linear ramp-up motion 
    switch state % check state 
      case 1 % displacement base function 
        m = params(1);  % get slope parameter 
        t0 = params(2); % get time parameter 
        x = m*(t-t0).*(t>t0); % Eq. (26) 
        v = m*(t>t0);         % Eq. (27) 
        a = t*0;              % Eq. (28) 
        bc_line = [ 
        ‘m = BCp{‘,ii,’}(1);\n’...   % slope parameter 
        ‘t0 = BCp{‘,ii,’}(2);\n’...  % time parameter 
        ‘x = m*(t-t0).*(t>t0);\n’... % Eq. (26) 
        ‘v = m*(t>t0);\n’...         % Eq. (27) 
        ‘a = t*0;\n’];               % Eq. (28) 
      case 2 % velocity base function 
        m = params(1);  % get slope parameter 
        t0 = params(2); % get time parameter 
        x0 = params(3); % get initial displacement parameter 
        x = m/2*(t-t0).^2.*(t>t0) + x0; % Eq. (29) 
        v = m*(t-t0).*(t>t0);           % Eq. (30) 
        a = m.*(t>t0);                  % Eq. (31) 
        bc_line = [ 
        ‘m = BCp{‘,ii,’}(1);\n’...   % slope parameter 
        ‘t0 = BCp{‘,ii,’}(2);\n’...  % time parameter 
        ‘x0 = BCp{‘,ii,’}(3);\n’...  % init disp parameter 
        ‘x = m/2*(t-t0).^2.*(t>t0)+x0;\n’... % Eq. (29) 
        ‘v = m*(t-t0).*(t>t0);\n’...         % Eq. (30) 
        ‘a = m*(t>t0);\n’];                  % Eq. (31) 
      case 3 % acceleration base function 
        m = params(1);  % get slope parameter 
        t0 = params(2); % get time parameter 
        x0 = params(3); % get initial displacement parameter 
        v0 = params(4); % get initial velocity parameter 
        x = m/6*(t-t0).^3.*(t>t0)+v0*(t-t0)+x0; % Eq. (32) 
        v = m/2*(t-t0).^2.*(t>t0)+v0;           % Eq. (33) 
        a = m*(t-t0).*(t>t0);                   % Eq. (34) 
        bc_line = [ 
        ‘m = BCp{‘,ii,’}(1);\n’...   % slope parameter 
        ‘t0 = BCp{‘,ii,’}(2);\n’...  % time parameter 
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401- 
402- 
403- 
404- 
405- 
406- 

 
413- 

        ‘x0 = BCp{‘,ii,’}(3);\n’...  % init disp parameter 
        ‘v0 = BCp{‘,ii,’}(4);\n’...  % init vel parameter 
        ‘x = m/6*(t-t0).^3.*(t>t0)+v0(t-t0)+x0;\n’... % Eq. (32) 
        ‘v = m/2*(t-t0).^2.*(t>t0)+v0;\n’...          % Eq. (33) 
        ‘a = m*(t-t0).*(t>t0);\n’...                  % Eq. (34) 
  end 

     
end 

The params variable that is passed into Boundary_Library is the array of parameter values 
for the boundary function. It is the same parameter array that the user supplies in the particular 
row of bc_nodes in SystemSetup (see Section 3.2.7). 

For each state case, the first lines of strings in bc_line are commands that retrieve the 
parameter values for the relevant set of functions. The parameter values for all boundary 
functions are passed into the force function through the BCp input argument. BCp is a cell array 
where each cell contains an array of parameter values as directly copied from the rows of 
bc_nodes in SystemSetup. The variable ii in Boundary_Library contains an integer as a string 
that references the correct cell entry, so it is interjected into the BCp string declaration above.  

The integer in parenthesis following the bracketed ii references the correct entry in the 
numeric array to retrieve the parameter value. Therefore, when the parameter array is entered 
into bc_nodes in SystemSetup, the array must be a vector of length at least 2, with the slope 
parameter in the first entry, and the time parameter in the second entry. For the displacement 
state case, these only these two parameters are required. For the velocity and acceleration state 
cases, additional variables are added to the array, so the user must always be aware of what 
parameters are required for a particular model and state. If the user desires the supplied 
parameters to be vectors rather than single numbers, then the parameter array can be supplied as 
its own cell array. The integers would then be enclosed in brackets rather than in parenthesis. 

The latter string lines in bc_line write the boundary functions. The value of the displacement, 
velocity, and acceleration must be assigned to the variables x, v, and a, respectively. The variable 
t is the current time, and is supplied by the force function itself. 

The user has finished implementing a new boundary function when the bc_line text output 
and the x, v, and a vectors are created for each state case.  

3.5.3. Nonlinear Constitutive Functions 

The procedure for adding new nonlinear constitutive functions to the ROMULIS library 
spans several scripts due to their complexity. In addition, based on the restrictions that 
ROMULIS places on nodes coupled with a nonlinear model (see Section 3.2.8), this procedure 
also assumes that the new function to implement is one-dimensional; that is, it couples one 
degree of freedom to only one other. To use functions that couple more than two degrees of 
freedom, it is better to upload a user-created nonlinear function (see Section 3.3.1) since more 
freedom is given as to how those degrees of freedom can be coupled. 

As an example, this procedure implements the constitutive function, Jenkins.m, which has 
input arguments u, the relative displacement between degrees of freedom, v, the relative velocity, 
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and Space, a structure containing parameters as well as an internal state variable. Its output 
arguments are F, the force applied, and Space, which is the same input structure but with an 
updated internal state variable. As there are currently nine implemented constitutive functions in 
the library, this function is assigned function number 10. 

The first script to modify from the toolbox is InterfaceNodes. This script performs a syntax 
check on int_nodes array from SystemSetup, and it also initializes the variables in the Space 
structure (see Table 7). As is done for external loads and boundary loads, a new case statement is 
added to the switch statement that checks the function number. This switch-case statement 
begins on line 272, and it contains the nine function cases (plus a null case) described in 
Appendix D. Case 10 is added for the new Jenkins model.  

272- 

 
529- 
530- 
531- 
532- 
533- 
534- 
535- 
536- 
537- 
538- 
539- 
540- 
541- 
542- 
543- 
544- 
545- 
546- 
547- 
548- 
549- 
550- 
551- 
552- 
553- 
554- 
555- 
556- 
557- 
558- 
559- 
560- 
561- 
562- 
563- 
564- 
565- 
566- 
567- 

 

switch Int_loc{j,3}(k) 

     
    case 10 % Jenkins element 
      % Perform syntax checks first. 
      % Check that the number of nodes in slave set is equal to the 
      %   number of nodes in the master set. 
      if num_nodes_m~=num_nodes_s 
        error([‘int_nodes row ‘,num2str(j),’, direction ‘ ...  
          num2str(k),’. Jenkins element requires as many slave ‘ ... 
          ‘nodes as there are master nodes.’]); 
      end 
      % Check that the user provided three parameters to int_nodes 
      if length(Int_params{j,k})~=3 
        error([‘int_nodes row ‘,num2str(j),’, direction ‘ ...  
          num2str(k),’. Jenkins element requires 3 parameters.’]); 
      end 
      % Initialize Space structure. 
      % Grab function parameters. 
      Space.k = Int_params{j,k}(1); % spring stiffness. 
      Space.mu = Int_params{j,k}(2); % friction coefficient. 
      Space.Fn = Int_params{j,k}(2); % normal force. 
      % Initialize internal state. 
      Space.xin = 0; 
      % Add ROMULIS Space variables. 
      Space.u = 0; % displacement input to function. 
      Space.v = 0; % velocity input to function. 
      Space.F = 0; % Force output 
      for i = 1:num_space % run through each node pair in the set. 
        Nspace = Nspace + 1; % increment SpaceCells index. 
        UD_ind(i,k) = Nspace; % record index  
        % Add Space to SpaceCells 
        UD.SpaceCells{NSpace} = Space; 
        % Add connectivity maps for master and slave nodesets 
        connectivity = Int_loc{j,1}(i,:); 
        body = G2L(connectivity(1),1); 
        node_and_dof = cbmap{body}(G2L(connectivity(1),2),:); 
        UD.SpaceCells{Nspace}.dof_map_m = [body,node_and_dof]; 
        body = G2L(connectivity(2),1); 
        node_and_dof = cbmap{body}(G2L(connectivity(2),2),:); 
        UD.SpaceCells{Nspace}.dof_map_s = [body,node_and_dof]; 
      end 

     
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572- end 

Lines 530 through 542 perform syntax checks on user input. The num_nodes_m variable 
contains the number of nodes that are in the master nodeset that the user specifies for this 
function, and num_nodes_s contains the number of slave nodes. The num_space variable seen on 
line 554 contains the greater of these two values. The variable j indexes the row number from 
int_nodes where the function is specified, and k indexes the direction number. 

Lines 545 through 549 initialize the Space variables that are applicable to the nonlinear 
function itself. The function parameters are obtained from the Int_params cell array, which has 
six columns (one for each surface-oriented direction) and the same number of rows as in 
int_nodes. Each cell contains the array of parameters applicable to the model of the 
corresponding row and direction in int_nodes. 

Lines 551 through 567 are variables used within ROMULIS. These lines are required code. 

After filling the above lines for the InterfaceNodes script, the next script to manipulate is 
Write_Force_Func. Starting on line 100 is a declaration of the bols structure, which contains 
eight fields holding Boolean values. Each Boolean field corresponds with one of the currently 
implemented nonlinear function, and the value of the Boolean determines whether ROMULIS 
writes the actual constitutive function as a subfunction to the parent force function. Here, another 
arbitrarily-named Boolean field is added for the Jenkins function, with value set to zero. 

107- bols.Jenk = 0; 

Scrolling down to the very end of Write_Force_Func, an if-statement is added just before the 
fclose function that will append the nonlinear function to the parent force function when 
bols.Jenk = 1. If the user has already typed up the script in a separate function, the following 
lines are sufficient to copy the function. 

 

321- 
322- 
323- 
324- 
325- 
326- 

if bols.Jenk 
    % type the directory and function name in Ffile 
    Ffile = ’C:/Users/user/Documents/NonlinFunc/Jenkins.m’; 
    textout = typeFile(Ffile); 
    fprintf(fileID,[textout,’\n\n’]); 
end 

The final script to manipulate is InterfaceDeclaration. Here, the commands that call the 
nonlinear function are typed to the force function. As before, a switch-case statement that checks 
the function number begins on line 10. Case 10 is added for the Jenkins function. 

10- 

 
159- 
160- 
161- 
162- 
163- 

switch Model 

   
  case 10 
    bols.Jenk = 1;  
    rel_disp = 1; 
    rel_vel = 1; 
    ind = num2str(UD_ind(pairind,jj)); 
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164- 
165- 
166- 
167- 
168- 
169- 
170- 
171- 

 
175- 

    F_direc = [ 
      ’Space = UD.SpaceCells{‘,ind,’};\n’... 
      ’[f,Space] = Jenkins(ur(‘,direc,’),’,vr(‘,direc,’),Space);\n’... 
      ’Fr(‘,direc,’) = f;\n’... 
      ’UD.SpaceCells{‘,ind,’} = Space;\n’... 
      ’UD.SpaceCells{‘,ind,’}.u = ur(‘,direc,’);\n’... 
      ’UD.SpaceCells{‘,ind,’}.v = vr(‘,direc,’);\n’... 
      ’UD.SpaceCells{‘,ind,’}.F = f;\n’]; 

   
end 

Line 160 in the example above switches the value of the Jenkins function Boolean to ‘1’ so 
that Write_Force_Func appends the Jenkins function to the end of the force function. Lines 161 
and 162 change the value of two additional Boolean variables. These Boolean variables let the 
parser know to include commands that retrieve the state variables required of the nonlinear 
function. There are three such Boolean variables: rel_disp, rel_pos, and rel_vel. The rel_disp 
variable sets retrieves the relative displacement between the master and slave nodes, while 
rel_pos retrieves the relative position. The rel_vel Boolean retrieves relative velocity. By default, 
the value of these Booleans is set to zero, and if any of these state variables are required, the user 
need only change their value to ‘1’. 

The distinction between relative position and relative displacement is that relative position 
measures the difference between the two degrees of freedom in space. That is, relative position is 
relative displacement plus the nominal coordinate location in space. Mathematically, relative 
position is z in Eq. (16), whereas relative displacement is just 12 uu  . Given the nature of 
contacting interfaces, most constitutive models would require relative position over relative 
displacement. 

Line 163 retrieves the index of the SpaceCells cell associated with the nonlinear function. 
The text output is stored in the F_direc variable. Note that each line of string commands 
terminates with a newline character (\n) so that MATLAB knows to begin the next set of strings 
on a new line in the force function.   

The command in line 165, retrieves the function’s Space structure from UD structure passed 
into the force function. On line 166, the function itself is called. The inputs and outputs must be 
exactly as required by the nonlinear function submitted in the Write_Force_Func script. If 
relative displacement is required by the function, the variable ur is supplied by the force 
function. If relative position is required, the variable zr is supplied, and the variable vr is 
supplied for relative velocity. ur, zr, and vr are the rotated, relative state vectors with three 
elements representing the normal, and two tangent degrees of freedom. The direc variable holds 
the index of the correct degree of freedom required of the function. 

Line 167 updates the rotated force vector, which will be re-rotated back to the global frame, 
and line 168 updates the Space cell in UD. Lastly, Lines 169 to 171 are optional for storing the 
state inputs and force outputs for recording in the user output function (see Section 3.3.2). 

By following this procedure in its entirety, the user will have successfully implemented a 
new nonlinear constitutive model in the ROMULIS library.
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4. A DEVELOPER’S INTRODUCTION TO THE TOOLBOX SCRIPTS 

ROMULIS consists of twenty MATLAB scripts that are written to process user input 
regarding a structural system towards the ultimate goal of producing a transient response. On the 
whole, the scripts could be divided into three major task groups performed in sequence based on 
their intended order of use. 

1) System setup – scripts include but not limited to 
 UploadData.m 
 SystemSetup.m 
 Initialization.m 
 SerialExecuter.m 

2) Integrator preparation – scripts include but not limited to 
 InterfaceDynamics.m 
 Write_Force_Func.m 
 Boundary_Library.m 
 Load_Library.m 
 Interface_Library.m 
 typeFile.m 

3) Numerical integration – scripts include 
 IMEX_2a_Romulis.m 
 RKNG4.m 
 RKNG5.m 

The most important of these tasks is numerical integration, which uses a second order (in 
terms of the type of equation solved), fifth-order accurate, implicit-explicit (IMEX) adaptive 
solver to calculate the solution to the system equations of motion defined in Eq (12). The solver 
comprises three scripts: the IMEX_2a_Romulis function as the core function, and the RKNG4 
and RKNG5 functions as supporting functions.  

The IMEX_2a_Romulis function works similarly to MATLAB’s own suite of ordinary 
differential equation solvers (e.g. ode45) in that it accepts a definition of the relationship between 
state variables and their derivatives in addition to a specification of time interval and initial 
condition parameters. IMEX_2a_Romulis differs in its ability to solve a stiff, nonlinear system of 
equations more efficiently than the built-in solvers in MATLAB. The simulator calls this 
function within the InterfaceDynamics function on line 247 as follows: 

200- 
 
 

[eta,eta2,t,f_out,UD]=IMEX_2a_Romulis( 
@(t,q,qv,UD)Force_Func(t,q,qv,Mats,BC_params,F_params,Int_params,UD), 
M_aa,C_aa,K_aa,params.tini,params.simTime,params,UD_init ); 

Line 200 shows that IMEX_2a_Romulis accepts seven inputs as described in Table 10. After 
completing numerical integration, IMEX_2a_Romulis outputs the five arguments listed in Table 
11. 
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Table 10: Descriptions on the input arguments for the IMEX_2a_Romulis function. 

Argument Description 
@Force_Func A handle referencing a function that dictates all loads applied on the active 

coordinates. This function defines the entire right-hand side of Eq. (12). The 
handle defines time (t), state (q, qv), and output function data (UD) variables 
as implied arguments to the function, but the function itself requires four 
more arguments, Mats, BC_params, F_params, and Int_params, which 
define various load function vectors and parameters. 

M_aa The system mass matrix ( aaM
~

 in Eq. (12)). 

C_aa The system damping matrix ( aaC
~

 in Eq. (12)).  

K_aa The system stiffness matrix ( aaK
~

 in Eq. (12)). 

params.tini Simulation starting time. 

params.simTime Simulation ending time. 

params A structure containing variables to define the time step properties and 
supplementary functions to the IMEX integrator. 

UD_init Initialization structure for UD (see section 3.3.2 for more information). 

Table 11: Descriptions on the output arguments from the IMEX_2a_Romulis function. 

Argument Description 
eta The displacement time history solution to the system ( ap  in Eq. (12)).. 

eta2 The velocity time history solution ( ap  in Eq. (12)). 

t The time vector associated with the entries in eta and eta2.  

f_out The time history of applied loads on the system. This is the value of the 
right-hand side of Eq. (12) at each time step. 

UD A structure containing variables calculated in a user output function (see 
section 3.3.2 for more information). 

Under the objective of retrieving these output arguments, the remaining MATLAB scripts in 
the toolbox are dedicated to collecting user input on the nature of the system, and processing the 
input to write the Force_Func function and develop the M_aa, C_aa, K_aa, and params input 
arguments. While forming the system, ROMULIS creates several data files that record the inputs 
so that the user can reference the setup of the system without having to restart from the 
beginning. The flow chart in Fig. 3 illustrates the sequence of the data files and the prominent 
toolbox scripts. 
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Figure 4: Complete flow chart of the programs used and the files accessed 
throughout ROMULIS. The shaded boxes indicate software packages or ROMULIS 
toolbox scripts, and the white boxes are data files. All programs and files are utilized in 
sequence as numbered in parenthesis. 

The UploadData, SystemSetup, and SerialExecuter scripts are the only scripts in the toolbox 
with which the user interacts directly, and are detailed in Sections 3.1, 3.2, and 3.4, respectively. 
When the user runs the SystemSetup script, the loads and other inputs on the system are 
processed in the Initialization script. The Initialization script primarily maps the local body-
nodeset-direction specifications into global degrees of freedom for all loads specified by the user, 
but it also calculates the global state vectors for the initial condition. The Initialization script in 
turn calls the Boundary_Library function in order to calculate the initial state for all constrained 
degrees of freedom. 

When SerialExecuter is run, it launches the simulation by first calling on the 
InterfaceDynamics function. The main task for InterfaceDynamics is to process the data in the 
system file to produce the variables required for the IMEX integrator. It first loads each of the 
individual body files to gather the substructure matrices, and then assembles the matrices into 
global system matrices. InterfaceDynamics then partitions the global matrices into active degrees 
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of freedom (DOF) and constrained DOF, and separates the constrained DOF for boundary 
conditions. The active DOF are then input into the IMEX integrator. 

InterfaceDynamics then uses the loading and nonlinear model data provided by the user in 
SystemSetup to write a new force function input to the IMEX integrator. The force function, 
Force_Func.m, is created through metaprogramming techniques, so it contains only the 
commands that are absolutely necessary to build the force vector. This is to improve the 
efficiency of Force_Func so that it executes as quickly and saves on computational cost.  

The hub of the metaprogramming scripts is Write_Force_Func.m, to which the 
InterfaceDynamics function passes the load and nonlinear model data. Write_Force_Func 
examines the data and calls the Load_Library, Boundary_Library, Interface_Library, and 
typeFile functions to help write the force function. Each of these subfunctions contains an 
elaborate collection of nested control statements that lead to a certain text output depending on 
what load options that the user specifies for the system. The Load_Library function specializes 
in text outputs for external loads, Boundary_Library specializes in prescribed boundary motion, 
and Interface_Library focuses on the nonlinear constitutive functions. The typeFile function 
copies user-created custom constitutive functions (see Section 3.3.1) into Force_Func. When 
Write_Force_Func finishes writing a new Force_Func file, InterfaceDynamics forcibly reloads 
the MATLAB search path so that the runtime recognizes the changes made to Force_Func. 

With the force function updated and the input variables to IMEX_2a created, 
InterfaceDynamics finally runs the time integrator to retrieve the response for the active DOF. 
Then the response is transformed back to the generalized coordinates, and Boundary_Library is 
called one last time to create response vectors for the constrained coordinates. The final response 
vectors are sent back to SerialExecuter for output into a response file. 

All toolbox scripts contain documentation of their own to explain its coding process, so a 
new developer is encouraged to follow along with the commands in each script to learn how 
ROMULIS works. 
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APPENDIX A:  MATLAB VARIABLES REQUIRED IN A BODY FILE 

To qualify as a body file, the following variables must be named in a MATLAB binary file 
(extension *.mat). Each variable should contain the data type as described. Beware that the 
variables are case-sensitive. 

M 

An array of double values. The linear substructure mass matrix. 

C 

An array of double values. The substructure damping matrix. The order of the degrees of 
freedom must be consistent with M. 

K 

An array of double values. The substructure stiffness matrix. The order of the degrees of freedom 
must be consistent with M. 

cbmap 

An array of double or integer values. For Craig-Bampton reduced substructures, this array maps 
the fixed-interface mode and constraint mode coordinates to the node number and coordinate 
direction of their corresponding boundary degree of freedom. For all other systems, cbmap maps 
all degrees of freedom to their node number and coordinate direction. Each row in cbmap 
references a particular degree of freedom (or modal coordinate in Craig-Bampton systems). The 
first column lists the associated node number for each degree of freedom, and the second column 
lists its coordinate direction. The value ‘1’ refers to the x-translation direction, ‘2’ refers to the y-
translation direction, ‘3’ is z-translation, ‘4’ is x-rotation, ‘5’ is y-rotation, and ‘6’ is z-rotation. 
Note that for Craig-Bampton systems, the node number and coordinate direction are both zero 
for the fixed-interface modal coordinates. The order of the rows must be consistent with the 
order of the degrees of freedom in M, C, and K. Hence, there are as many rows in cbmap as there 
are columns in M, C, and K. 

Example: 

cbmap = [0 0; 0 0; 0 0; 
         9 1; 9 2; 9 3; 9 4; 9 5;9 6; 
         212 1; 212 2; 212 3; 
         33 1; 33 2; 33 3]; 

G 

An array of double values. For Craig-Bampton reduced systems, this is matrix )(s
bG  from Eq. 

(13). The rows are ordered to match the order of degrees of freedom in the rows of cbmap. For 
all other systems, G is the identity matrix having the same size as M. 
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OutMap 

An array of double or integer values. A column vector of node numbers associated with the 
nodes on which an external load is applied, or for which the response output is desired. If no 
input or output nodes are desired in the present substructure, then this array is left empty. 

Example: 

OutMap = [4;5]; 

OTM 

An array of double values. In a Craig-Bampton system, OTM are the rows of the Craig-Bampton 
transformation matrix ( CBΨ  in Eq. (6)) associated with the nodes listed in OutMap. Each node is 

associated with six rows drawn from the transformation matrix, one for each of the three 
translation and three rotation degrees of freedom. The rows for each node are ordered as x-
translation, y-translation, z-translation, x-rotation, y-rotation, and z-rotation, and each block of 
six rows are ordered in block rows consistent with the order of the node numbers in OutMap. 
The columns are ordered consistently with the order of degrees of freedom in the rows of cbmap. 
There must always be six rows associated with a node. If a node does not have certain degrees of 
freedom (particularly rotation for solid elements), then that row contains all zeros. For all other 
systems, each row in OTM is an array of zeros except for a one in the column associated with the 
same degree of freedom in cbmap. If OutMap is an empty array, then OTM is also an empty 
array. 

Nodes 

An array of double or integer values. A vertical vector of all node numbers used in cbmap and 
OutMap. The order of nodes is not important, but node numbers should not be repeated. 

Example: 

Nodes = [9;212;33;4;5]; 

coords 

An array of double values. Lists the x, y, and z coordinate locations of the nodes in Nodes. Each 
row in coords contains three columns. The first column gives the x coordinate location, the 
second column gives the y-coordinate location, and the third column is the z coordinate location. 
The order of the rows is consistent with the corresponding node order in Nodes.  
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NSnodes 

A one-dimensional cell array where each cell contains an array of double or integer values. Each 
cell corresponds to a unique nodeset specified for this substructure, and each cell contains a 
vertical vector of the node numbers associated with that nodeset. The order of nodes in each 
nodeset is not important, and the cells need not follow a particular order either. 

Example: 

NSnodes = {[212;33],[9],[4;5]}; 

NSnums 

An array of double or integer values. A vertical vector of numbers assigned to each nodeset. The 
order of nodeset numbers must be consistent with the order of the nodesets represented by the 
corresponding cell in NSnodes. 

Example: 

NSnums = [10;1,3]; 
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APPENDIX B: THE LIBRARY OF EXTERNAL LOAD FUNCTIONS 

 This appendix defines the external force functions currently implemented in ROMULIS. 
External loads are specified on a system by filling in the f_nodes cell array in SystemSetup 
according to the script syntax described in Section 3.2.5. Each row in f_nodes is specified as 
shown in Fig. B. The implemented function numbers and associated parameter sets are 
summarized in Table B, and detailed thereafter. 

f_nodes = {[3 7 1],2,[2.5,0.0078,0.02]}

Body 
Number

Nodeset 
Number

Direction
Function 
Number

Parameter 
Array

 
Figure B: Script syntax for the f_nodes variable with syntax labels. 

Table B: Summary of implemented external force functions. 

Function 
Number 

Function Description 
Parameter 

Array 
0 Zero Function [ ] 
1 Step (Constant) Function [A,t0] 
2 Haversine Impulse Function [A,T,t0] 
3 Sinusoid Function with Smooth Start [A,T,t0] 
4 Sinusoid Function [A,T,tϕ,t0] 
5 Step Function with Smooth Ramp-Up [A,T,t0] 
6 Sine Sweep Function (Exponential Frequency Sweep) [A,f0,c,r,t0] 

B.0. The Zero Function 

A zero external load function may be applied on a nodeset by specifying a value of ‘0,’ or 
any number not listed in Table B, as the function number in f_nodes. This applies a zero-load 
force on the specified nodes for the duration of the simulation in accordance with the time 
function, 

 0)( tf . (B-1) 

The zero function does not require a parameter set, so the parameter array may be listed as an 
empty numeric array. While not particularly effective during a simulation, the zero function is 
more useful as a placeholder function while building the f_nodes cell array. In practice, the user 
may “turn off” any of the other implemented functions for a simulation by changing the function 
number to ‘0.’ This allows the parameter array and the nodeset specification for the original 
function to be kept since ROMULIS ignores any row in f_nodes characterized with a zero 
function. 
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B.1. The Step Function 

The step function is based on the Heaviside step function where the applied load is described 
by 
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where A is the step amplitude, and 0t  is the time at which the step occurs. Function number 1 

specifies the step function in f_nodes, and its parameter set is the numeric array ],[ 0tA . The step 

function may also be used to apply a constant load on the nodes in a nodeset by setting the value 
of 0t  equal to the value for the simulation start time. 

B.2. The Haversine Impulse Function 

Function number 2 calls a haversine impulse function, which is useful for creating smooth 
impact loads. The form of the haversine impulse load is essentially a vertically-shifted cosine 
signal taken over one period of the wave. The equation ROMULIS uses is 
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with the peak force value the impulse reaches A, the time duration of the impulse T, and the time 
in the simulation where the impulse starts to build, 0t . These three values also make up the 

parameter numeric array for this function, and are ordered as ],,[ 0tTA . 

B.3. The Sinusoid Function with a Smooth Start 

The smooth-start sine wave distinguishes itself from the regular sine wave in that the first 
quarter-period of the waveform is replaced with a half-haversine. In this way, the slope of the 
force function ramps up from zero in the beginning as opposed to the slope abruptly changing as 
is done in the regular sine wave. If A is the waveform amplitude, T is the waveform period, and 

0t  is the time in the simulation at which the waveform begins, then the equations take the form 

of 
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This function may be called in f_nodes by assigning the function number 3, and specifying the 
parameter array ],,[ 0tTA . 

B.4. The Sinusoid Function 

Specifying function number 4 in f_nodes activates a sine forcing function. The sine wave 
may be characterized with the parameter array ],,,[ 0ttTA  , where A is the amplitude of the 

waveform, T is the waveform period, and t  is a time offset from zero that defines the phase lead 

for the excitation signal. The 0t  parameter defines the time in the simulator that the signal “turns 

on,” and should not be mistaken with the time that the signal starts at zero and ramps up to its 
first peak. Hence, the user should beware of activating the waveform at a point that creates a 
jump discontinuity in the forcing signal. With these parameters, the analytical form of the signal 
is 
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B.5. The Step Function with Smooth Ramp-Up 

The step function with a smooth ramp-up includes a half-haversine function that eliminates 
the jump discontinuity in the original Heaviside function. The smooth ramp up helps alleviate 
any transient effects that would otherwise occur with the discontinuity present. The time function 
for the force takes the form 
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where A is the step amplitude, T is the time allotted for the ramp-up, and 0t  is the time in the 

simulation where the ramp-up period begins. Specifying function number 5 in f_nodes calls the 
step function with a smooth ramp-up, and its parameter set is the array ],,[ 0tTA . 

B.6. The Swept Sine Function with Exponential Frequency Sweeping 

The swept sine function implemented in ROMULIS creates a forcing waveform signal with 
constant amplitude and exponentially increasing (or decreasing) frequency. Specifying function 
number 6 in f_nodes calls the following function for the force, 
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The parameter set, ordered in f_nodes as ],,,,[ 00 trcfA , contains several variables. The variable 

A is the force amplitude for the signal, 0f is the frequency at the start of the sweep, and c is the 

logarithmic base coefficient whose value depends on the units for the rate of frequency sweep 
(e.g. log(2) for octave rate, log(10)/20 for decibel rate, and 1 for exponential rate). The variable r 
is the rate of frequency sweep, which is negative for a downward frequency sweep, and 0t  is the 

time in the simulator that the sweep signal begins. 
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APPENDIX C: THE LIBRARY OF BOUNDARY MOTION FUNCTIONS 

This appendix defines the prescribed boundary functions currently implemented in 
ROMULIS. External loads are specified on a system by filling in the bc_nodes cell array in 
SystemSetup according to the script syntax described in Section 3.2.6. Each row in bc_nodes is 
specified as shown in Fig. C. The implemented function numbers and associated parameter sets 
are summarized in Table C. In the equations that follow, the variable x refers to prescribed 
displacement, v is prescribed velocity, and a is prescribed acceleration. 

bc_nodes = {[3 7 1],3,2,[22,0.06,0,0,0.0033]}

Function 
Number

Parameter 
Array

State
Body 

Number
Nodeset 
Number

Direction

 
Figure C: Script syntax for the bc_nodes variable with syntax labels. 

Table C: Summary of implemented boundary motion functions. 

Function 
Number 

Function Description State 
Parameter 

Array 

0 Zero Function 
1 [ ] 
2 [x0] 
3 [v0,x0] 

1 Haversine Impulse 
1 [A,T,t0] 
2 [A,T,t0,x0] 
3 [A,T,t0,v0,x0] 

2 Sinusoid with Smooth Start 
1 [A,T,t0] 
2 [A,T,t0,x0] 
3 [A,T,t0,v0,x0] 

3 Sinusoid 
1 [A,T,tϕ,t0] 
2 [A,T,tϕ,t0,x0] 
3 [A,T,tϕ,t0,v0,x0] 

4 Fourier Coefficients 
1 {ω,X,tend} 
2 {ω,X,x0,tend} 
3 {ω,X,v0,x0,tend} 

5 Discrete Time Input 1, 2, or 3 {t,u,v,a} 

C.0. The Zero Function 

The zero function (function number 0) for displacement applies fixed boundary conditions 
for the specified nodeset. The boundary state equations for the zero function in displacement 
(state value 1) are 
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 ,0)( tx  (C-1) 
 ,0)( tv  (C-2) 
 ,0)( ta  (C-3) 

No parameters are necessary, so the parameter array may be left empty. 

The zero function in velocity applies a constant displacement value on the specified set of 
nodes. The state equations for the velocity zero function (state value 2) are 

 ,)( 0xtx   (C-4) 

 ,0)( tv  (C-5) 
 ,0)( ta  (C-6) 

The parameter array requires only 0x , which defines a the displacement value at time zero in the 

simulation. 

The zero function in acceleration applies a constant velocity on the specified set of nodes. 
The state equations for the acceleration zero function (state value 3) are 

 ,)( 00 xtvtx   (C-7) 

 ,)( 0vtv   (C-8) 

 ,0)( ta  (C-9) 

The parameter array requires values for 0v , the velocity and time zero in the simulation, and 0x , 

the displacement at time zero. 

C.1. The Haversine Impulse Function 

A haversine impulse function (function number 1) prescribes a smooth, peak-type motion 
behavior in the form of a vertically shifted cosine wave applied over one period of the wave. In 
displacement (state value 1), the state equations are 
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The displacement state parameter array requires A, the displacement peak value, T, the impulse 
duration, and 0t , the time in the simulation when the impulse starts. 
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The velocity haversine impulse equations are 
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The parameters for the velocity haversine function are the same as those for displacement, except 
that A represents the velocity peak value, and that the displacement value, 0x , at time 0 is added 

to the array. 

The acceleration haversine impulse state equations are 
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The parameters for the acceleration haversine function are the same as those for velocity, except 
that A represents the acceleration peak value, and that the velocity value, 0v , at time 0 is added to 

the array. 

C.2. The Sinusoid Function with a Smooth Start 

The smooth-start sinusoid function (function number 2) is identical to a regular sine wave 
function, except that the first quarter-period of the first wave is replaced with a half-haversine 
function. The displacement state equations are 
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The parameter array requires A, the displacement amplitude, T, the waveform period, and 0t , the 

time in the simulation that the waveform starts. 

The velocity state equations are 
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The parameters for the velocity smooth sine function are the same as those for displacement, 
except that A represents the velocity amplitude, and that the displacement value, 0x , at t = 0 is 

added to the array. 

The acceleration state equations are 
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The parameters for the acceleration smooth sine function are the same as those for velocity, 
except that A represents the acceleration amplitude, and that the velocity, 0v , at t = 0 is added to 

the array. 

C.3. The Sinusoid Function 

Boundary motion may be prescribed to follow a sine function (function number 3). If the 
fundamental sine function is attributed to the displacement (state number 1), the state equations 
are 
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The displacement sine function parameter array includes A, the displacement amplitude, T, the 
wave period, t , the time shift for the phase offset, and 0t , the time that the signal “turns on.” 

The user should beware of jump discontinuities that occur in the displacement signal when 
setting 0t  to a time that the signal is not a zero crossing. 

Applying the sinusoid function to velocity (state number 2) invokes the equations 
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The parameters in the velocity sine function are the same as those for displacement except that A 
represents the velocity amplitude. The 0x  parameter, representing the displacement at time 0, is 

added to the parameter array. 
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The acceleration sine function (state number “3”) uses the equations  
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The parameters in the velocity sine function are the same as those for displacement except that A 
represents the velocity amplitude. The 0v  parameter, representing the velocity at time 0, is added 

to the parameter array. 

C.4. A Time Function Constructed from Fourier Coefficients 

The time histories for boundary motion may be constructed from a superposition of many 
sinusoidal functions using complex Fourier coefficients. Rather than passing in a numeric array 
of parameters, the user supplies a cell array that contains the vector of Fourier coefficients and 
their corresponding frequencies. If the Fourier coefficients option (function number 4) is selected 
for boundary displacements (state value 1), then parameter cell array to supply is  end,, tX , 

where ω is the vector of radian frequencies, X is the vector of displacement complex Fourier 
coefficients, and endt contains a single value denoting the time to “turn off” the signal. The 

displacement state equations follow the form 
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where k  and kX  represent the kth entry in their respective vectors, and i is the imaginary 

number. 

Similarly, the velocity time histories are constructed through 
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where X in this case is the vector of velocity Fourier coefficients. The parameter cell array also 
includes an additional parameter, 0x , which is the value of the displacement at time 0. 

The acceleration Fourier coefficient time histories are constructed through 
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where X in this case is the vector of acceleration Fourier coefficients. The parameter cell array 
also includes another parameter, 0v , which is the value of the velocity at time 0. 

If the user has time history data, where a waveform signal is represented in discrete time 
points, then the ω and X vectors can be created using MATLAB’s fft function. Given that the 
signal, x, consists of an even N number time points with uniform time spacing t , then ω is 
created through 

  .:1:0
21

2
N

tN 

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The term  2:1:0 N  is MATLAB syntax for a vector that starts with a value of zero, and each 

subsequent entry increments by 1 until the value N/2 is reached. The X vector may then be 
constructed with the following MATLAB commands. 

1- 
2- 

Xfft = fft(x); 
X = 2/N*Xfft(1:N/2+1); 
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Both the ω and X vectors can be passed into ROMULIS following the procedure near the end of 
Section 3.2.1. 

C.5. A Time Function Constructed from Discrete Time History Data 

The user may supply discrete time vectors describing the displacement, velocity, and 
acceleration for a set of nodes. This option is called using function number 5 and specifying the 
cell array {t,u,v,a}. The variable t is a discrete time vector, and the variables u, v, and a are the 
discrete vectors for the displacement, velocity, and acceleration, respectively whose values 
correspond to the time values in a. All vectors can be passed into ROMULIS following the 
procedure near the end of Section 3.2.1. 

For the state value, either a 1, 2, or 3 may be specified. ROMULIS uses linear interpolation 
on the time vectors to extract the state values for a particular time step. The user should take care 
that the displacement, velocity, and acceleration vectors are appropriate derivatives and 
antiderivatives of each other to avoid convergence issues while the simulation computes. 
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APPENDIX D: THE LIBRARY OF FORCE-CONSTITUTIVE FUNCTIONS 

All nonlinear consitutive functions currently implemented in ROMULIS are defined in this 
appendix. The functions are specified on a system by filling in the int_nodes cell array in 
SystemSetup according to the script syntax described in Section 3.2.7. Each row in int_nodes is 
specified as shown in Fig. D, except when passing in a user-created function. The implemented 
function numbers and associated parameter sets are summarized in Table D. Detailed 
descriptions of each function are given thereafter. 

int_nodes = { [2 6],[3 1],[1;0;1],[-1;0;1],[5,7,7,2,0,0], ...
{[100e9,.07],[.6,1e-4,300],[.6,1e-4,300],[1e6,0],[],[]} }

Master 
Body

Master 
Nodeset

Slave 
Body

Slave 
Nodeset

Normal 
Direction

Tangent 
Direction

Function 
Array

Parameter Cells
 

Figure D: Script syntax for the int_nodes variable with syntax labels. 

Table D: Summary of implemented constitutive functions. 

Function 
Number 

Description Parameter Array 

0 Null element [ ] 
1 User-created function See Section 3.2.7 
2 Discrete spring and dashpot [k,c] 
3 Penalty spring [k,L] 
4 Hyperbolic penalty spring [k,b,c,L] 
5 Hertz contact element [E,R] 

6 
Brake’s mixed elastic-plastic contact with 
strain hardening 

[E,R,Y,HB,w,ν] 

7 Coulomb friction element [μ,vs,FN] 
8 Brake’s RIPP joint element [FS,KT,χ,β,θ,KP,δP,m,Cv,vs,s] 
9 Segalman’s four-parameter Iwan element [FS,KT,χ,β] 

D.0. The Null Element 

Specifying a function number of 0 informs ROMULIS to ignore any coupling between the 
specified degrees of freedom. Null elements are useful as a placeholder function whereby the 
user may “turn off” another nonlinear element by changing the function number to “0.” This 
allows the parameter array and the nodeset specification for the original element to be kept since 
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ROMULIS ignores those arrays for a null element. Otherwise, null elements do not require any 
parameters, so the parameter array may be left as an empty numeric array. 

D.1. User-Created Force-Constitutive Function 

Refer to Section 3.3.1 for information on creating a custom, force-constitutive function in 
MATLAB. 

D.2. Discrete Spring and Dashpot 

Degrees of freedom that are coupled with function number 2 are given a discrete linear 
spring and viscous damper. The constitutive equation is defined in the linear sense where the 
reaction force F applied oppositely on both degrees of freedom is 

 F = ku + cv, (D-1) 

where u and v are the displacement and velocity, respectively, of the slave degree of freedom 
relative to the master degree of freedom. The parameter k is the spring stiffness, and the 
parameter c is the damping coefficient. Both parameters are required in the parameter array [k,c], 
and the user may turn off either the spring or the damper by setting its parameter value to zero. 

D.3. Penalty Spring 

Function number 3 adds a discrete penalty spring between two degrees of freedom. In a 
penalty model, the spring activates only when the position of the slave degree of freedom is 
negative relative to the position of the master degree of freedom plus some spring length, L. The 
force-constitutive equation is 
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for x is the absolute position of the slave degree of freedom in space relative to the absolute 
position of the master degree of freedom. The penalty spring element requires the parameter 
array [k,L], where k is the penalty stiffness of the spring. 

D.4. The Hyperbolic Penalty Spring 

The hyperbolic penalty spring element is useful for representing force-displacement curves 
whose derivative can be well-fitted with the hyperbolic tangent function, 

    1tanh
2d

d
 cxb

k

x

F
. (D-3) 

The parameter k represents the far-field stiffness, b relates to the stiffness saturation rate, and 
c is a horizontal shift. After reversing the sign of the relative position x to apply for the penalty 
regime only, and adding a spring length parameter, L, Eq. (D-3) integrates to 
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A good giveaway that a force-displacement curve follows a hyperbolic function is if the force 
curve is relatively flat near zero displacement, but then the slope gradually increases until it 
becomes virtually constant after a certain displacement. The hyperbolic penalty spring requires 
the parameter array [k,b,c,L]. 

D.5. Hertz Contact Element 

Hertz contact defines elastic impact between two spherical, metallic bodies [1]. The 
parameter set requires two variables, [E,R], which are derived parameters. The effective elastic 
modulus, E, can be calculated from the Young’s moduli, E1 and E2, and the Poisson’s ratios, ν1 
and ν2, of the two impacting materials through 
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Similarly, the effective radius of curvature, R, is derived from the radii of curvature, R1 and R2, 
of the two impacting surfaces by 
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With these two parameters, the constitutive equation for Hertz contact between spherical bodies 
is 

 








,0,0

,0,2/3
3
4


ER

F  (D-7) 

Where δ is the penetration distance between the slave degree of freedom and the master degree 
of freedom. 

D.6. Brake’s Mixed Elastic-Plastic Contact with Strain Hardening 

A more sophisticated contact model developed by Matthew Brake accounts for the energy 
lost due to plastic deformation occurring between two spherical, ductile bodies. Depending on 
the depth of penetration between the two contact points, the force applied on the points develops 
in the elastic regime until one of the two materials yields. After which, the force enters a mix of 
the elastic and plastic regimes, and accounts for strain-hardening effects. The user is directed to 
[2] for more information. 
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The required parameters for this function are [E,R,Y,HB,w,ν]. Here, E is the effective 
modulus calculated as in Eq. (D-5), and R is the effective radius of curvature calculated as in Eq. 
(D-6). The parameters Y, w, and v are the yield strength, strain hardening exponent, and 
Poisson’s ratio, respectively, for the more compliant material. The effective Brinell hardness, HB, 
is calculated from the Brinell hardness values, H1 and H2, for the two materials as 
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D.7. Coulomb Friction Element 

Function number 7 couples the master and slave degrees of freedom with a Coulomb friction 
element. The constitutive equation for the element follows a dynamic model where the transition 
region from negative force to positive force near zero relative velocity is represented with a 
smooth, continuous function (as opposed to a jump discontinuity at zero velocity) as in 
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The parameter μ is the friction coefficient, FN is the normal force applied on the element, and vsat 
is a velocity saturation parameter defining the bounds of the window around zero velocity where 
the transition from positive force to negative force begins. All three parameters, [μ,vsat,FN] are 
required of the function. 

D.8. Brake’s RIPP Joint Element 

Matthew Brake’s reduced Iwan plus pinning (RIPP) element is used to model friction 
behavior in a bolted joint. The RIPP joint is based on a closed-form, reduced solution of the Iwan 
model under the assumption that the distribution of friction sliders after load reversal is a scaled 
version of the original distribution of sliders before reversal. The model also includes pinning 
stiffness due to the presence of the bolt. The user is referred to [3] for more information on the 
formulation behind the RIPP joint element. 

The RIPP joint element requires eleven parameters, [FS,KT,χ,β,θ,KP,δP,m,Cv,vs,s]. FS is the 
joint slip force, KT is the joint tangent stiffness, χ relates to the power-law slope of energy 
dissipation in the joint, β relates to the ratio of the tangent stiffness and the stiffness just before 
the joint enters macroslip, and θ is the ratio of dynamic friction to static friction. The parameter, 
m, contains an integer that determines the type of Iwan model used for the joint; the value ‘1’ 
activates Segalman’s/Mignolet’s model [4, 5], ‘2’ activates an Iwan model with a uniform 
distribution of slider strengths, and ‘3’ activates the Iwan-Stribeck model. KP is the pinning 
stiffness, δP is the distance at which pinning engages. In the Iwan-Stribeck model, Cv is the 
viscous damping coefficient due to lubrication, vs is the velocity scaling parameter for transition, 
and s is the exponent for transition. These last three parameters can be left as zero if not using the 
Iwan-Stribeck model. 
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D.9. Segalman’s Four-Parameter Iwan Element 

The predecessor to the RIPP joint is the four-parameter Iwan model formulated by Segalman 
[4]. This Iwan model is comprised of a statistical distribution of discrete friction sliders that 
approximate a power-law energy dissipation relationship from a lap joint in the micro-slip 
regime. In ROMULIS, the Iwan element requires four parameters, [FS,KT,χ,β], where FS is the 
element’s slip force at the onset of macroslip, KT is the tangent stiffness of the joint in microslip, 
χ relates to the slope of the power-law, and β relates to the ratio of the tangent stiffness and the 
stiffness of the element just before macroslip. 
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