SANDIA REPORT

SAND2016-9964
Unlimited Release
Printed September 20, 2016

Sierra Toolkit Manual Version 4.42
Sierra Toolkit Development Team

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2016-9964
Unlimited Release
Printed September 20, 2016

Sierra Toolkit Manual Version 4.42

Sierra Toolkit Development Team

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185

Abstract

This report provides documentation for the SIERRA Toolkit (STK) modules. STK modules are
intended to provide infrastructure that assists the development of computational engineering soft-
ware such as finite-element analysis applications. STK includes modules for unstructured-mesh
data structures, reading/writing mesh files, geometric proximity search, and various utilities. This
document contains a chapter for each module, and each chapter contains overview descriptions and
usage examples. Usage examples are primarily code listings which are generated from working
test programs that are included in the STK code-base. A goal of this approach is to ensure that the
usage examples will not fall out of date.

This page intentionally left blank.

Contents

1 STK Mesh 17
1.1 STKMeshTermsot e e e e e e 17
LIT EBntity . .o 18

L1.1.2 0 CONNECHIVILY . ..ottt ettt e e e e et e e e 18

L.1.3 Topology . .ot e 18

L14 Part .o 19

LIS Field ..o 19

L.1.6 Selectorot 19

L.17 Bucket 20

I.1.8 GhoStINGottt 20

1.1.9 MetaDataand BulkData 20
1.1.10 Creating a STK Mesh from an Exodusfile 22

L2 Parallel 22
1.2.1 Shared e 23

1.2.2 Ghostedo 23

123 AUTA. oo e 23
1.2.3.1 How to use automatically generatedaura 23

1.3 STK Parallel Mesh Consistency Rules 24
1.3.1 How to enable mesh diagnostics to enforce parallel meshrules.......... 25

1.3.2 How to enforce Parallel MeshRule 1 26

1.3.3 Parallel APL e 26

1.4

1.5

1.6

STK Mesh Selector e 28
1.4.1 Howtouseselectorsot 29
STK Mesh Parts e e 30
1.5.1 Part Identifiers and Attributes 31
1.5.2 Induced Part Membership, 32
1.5.3 Howtouse ghostparts 33
Mesh Modificationot e 35
161 OVEIVIEW . oottt e e e e e e e 35
1.6.2 Public Modification Capability 36
1.6.2.1 Add/Delete Entitieso, 36
1.6.2.2 Getting Unused Globally Unique Identifiers 37
1.6.2.3 Creating Nodes that are Shared by Multiple Processors. 38
1.6.2.4 Change Entity Part Membership.......................... 41
1.6.2.5 Change Connectivityvuuunr e, 41
1.6.2.6 Change Entity Ownership............. 42
1.6.2.7 Change Ghosting.t 42
1.6.3 Mesh Modification Examples 42
1.6.3.1 Resolving Sharing Of Exodus Sidesets - Special Case 44
1.6.4 Unsafe Operationsuutit it n ettt 46
1.6.5 Automatic modification operations in modification_end() 47
1.6.6 How to use generate_new_entities()ovvve e nnennnennn.. 47
1.6.7 Howtocreatefacesot 49
1.6.8 How to create both edges and faces 49
1.6.9 How to create faces on only selected elements 50
1.6.10 Creating faces with layered shells 51
1.6.11 Creating faces between hexes, on shells, and on shells between hexes. 52

6

1.6.12 Howtoskinamesh 54

1.6.13 How to create internal block boundaries of amesh 55
1.6.14 How to destroy elementsinlist.............. i, 56
1.7 STK Mesh usage exampleso 56
1.7.1 How toiterate over nodesc.uiuiuinintnnnenenenn... 56
1.7.2 How to traverse CONNECtiVityc.uiueirennenrennennennnn.. 58
1.7.3 How tochecksideequivalency 60
1.7.4 Understanding node ordering of edges and faces 60
1.7.5 How to sort entities into an arbitrary order 61
2 STK Topology 63
2.1 STKTopology API e 63
2.1.1 Howtosetand gettopology, 64
2.1.2 STKtopology ranks 64
2.1.3 Compile-time STK topology information 66
2.1.4 STK topology forthe Particle oo, 66
2.1.5 STK topology for the high order Beam............................. 67
2.1.6 STK topology for the high order triangular Shell 68
2.1.7 STK topology for the linear Hexahedral 69
2.1.8 STK topology equivalent method 71
2.1.9 STK topology’s is_positive_polaritymethod 72
2.1.10 STK topology’s lexicographical_smallest_ permutation
method 72
2.1.11 STK topology’s lexicographical smallest permutation
preserve polaritymethod.......... 73
2.1.12 STK Topology’s sub_topology methods 74
2.1.13 STK Topology’s sides methods 75

7

2.1.14 STK topology for a SuperElement 75
2.2 Mapping of Sierra topologies. ottt 76
3 STK Fields 81
3.1 Example STK fieldsusaget 81
4 STKIO 87
4.1 STKIO:usageexamplesttt 87
4.1.1 Reading mesh datatocreatea STKMesh............ 87
4.1.1.1 Face creation for input sidesets. 88
4.1.2 Reading mesh data to create a STK Mesh allowing StkMeshloBroker to
GO OUL Of SCOPE .« v vttt ettt e e e e 94
4.1.3 Reading mesh data to create a STK Mesh, delaying field allocations. 95
4.1.4 Outputting STK Mesh 96
4.1.5 Outputting results data froma STKMesh 96
4.1.6 Outputting a field with an alternative name to aresults file 97
4.1.7 Outputting both results and restart data froma STK Mesh.............. 98
4.1.8 Writing multi-state fields to results outputfile 99
4.1.9 Writing multiple outputfiles 100
4.1.10 Outputting nodal variables on a subset of thenodes 101
4.1.11 Get number of time steps from adatabase 102
4.1.12 Reading sequenced fields from a database 103
4.1.13 Reading initial conditions from a field on a mesh database 103
4.1.14 Reading initial conditions from a field on a mesh database — apply to a
specified subsetof meshparts 104
4.1.15 Reading initial conditions from a field on a mesh database — only read once 107
4.1.16 Reading initial conditions from a mesh database field at a specified

database time oot 109

4.1.17 Reading field data from a mesh database — interpolating between database
TS . ettt et e e e e e e e e 110
4.1.18 Combining restart and interpolation of fielddata 111

4.1.19 Interpolating field data from a mesh database with only a single database
18101 112

4.1.20 Interpolating field data from a mesh database when time is outside database
time interval 113

4.1.21 Error condition — reading initial conditions from a field that does not exist
onameshdatabase i 115
4.1.22 Interpolation of fields on database with negative times 116
4.1.23 Interpolation of fields on database with non-monotonically increasing times 117
4.1.24 Arbitrary analysis time to database time mapping during field input 118
4.1.25 Error condition — specifying interpolation for an integer field 120
4.1.26 Working with element attributes 121
4.1.27 Create an output mesh with a subset of the mesh parts................. 122
4.1.28 Writing and reading global variables 123
4.1.29 Writing and reading global parameters 124
4.1.30 Writing global variables automatically 126
4.1.31 Heartbeat outputttt e e 126
4.1.31.1 Change output preCisioneueueenenenenn .. 128
4.1.31.2 Change field separator 129
4.1.32 Miscellaneous capabilitiesc.iitiititnnnenn.n. 129

4.1.32.1 Add contents of a file and/or strings to the information records
ofadatabase 129
4.1.32.2 Tell database to overwrite steps instead of adding new steps 130
S STK Search 133
5.1 STK Search: usageexamples. 133

5.1.1 Using Boost R-tree bounding volume search

5.1.2 Searchmethod options,

6 STK Util
6.1 Using the Diagnostic TIMersttt
6.2 Communicating with other MPI processors.
6.3 Usingthe STK Scheduler.
6.4 Parameters — type-safe named storage of any variable type

6.5 Filename substitution

Bibliography

Index

10

135
135
139
141
144

147

150

152

Listings

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

Example of creating an STK Mesh using an Exodus file 22
Example of how to control automatically generated aura 23
Example of how to enable mesh diagnostics 25
Example of how to enforce Parallel MeshRule 1 26
Example of communicating field data from owned to all shared and ghosted enti-

15 TP 26
Example of parallel_sum e 27
Example showing parallel use of comm_mesh_counts 27
Example showing parallel use of comm_mesh_counts with min/max counts 28

Example of how to use Selectors to avoid getting caught by the "Nothing" selector 29

Example of how to use Ghost Parts to select aura ghosts and custom ghosts 33
Example showing how to use destroy_elements_of_topology 37
Example showing how to use generate_new_ids 37
Example showing creation of sharednodes 38
Example showing creation of independent shared nodes (without connectivity) ... 39
Example showing that the marking for independent nodes will be removed after

connectivities are attached L e 40
Example showing an element being ghosted. 43
Example of changing processor ownership of anelement 44
Example of internal sideset which results in twofaces 45
Example of how to generate multiple new entities and subsequently set topologies

and nodal relations.t t 48

Example of how to create all element faces 49

11

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.30

1.31

1.32

1.33

1.34

2.1

22

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

Example of how to create all element edges and faces 49
Example of how to create faces on only selected elements 50

Example showing that faces are created correctly when layered shells are present 51

Example of how many faces get constructed by CreateFaces between two hexes. . 52
Example of how many faces get constructed by CreateFaces on a shell. 52
Example of how many faces get constructed by CreateFaces between hexes and

aninternal shell. 53
Example of how to create all the exposed boundary sides 54
Example of how to create all the interior block boundary sides 55
Example of how to destroy elementsinalist 56
Example of iterating over nodesttt 56
Example of how to traverse connectivity via accessors on BulkData and via acces-

sorson Bucket 58
Example of how to check side equivalency. 60
Understanding edge and face ordering i, 60
Example showing how to sort entities by descending identifier. 61
Example of setting/getting topology 64
Example showing mapping of STK topologies toranks 64
Example using compile-time STK topology information 66
Example showing STK topology for a zero-dimensional element 66
Example of STK topology for a one-dimensional element 67
Example of STK topology for a two-dimensional element 68
Example of STK topology for a three-dimensional element 69
Example using of an equivalent method 71
Example using i s_positive_polarityouuiiiiiiininennn. 72
Example using lexicographical_smallest_permutation 72

12

2.11

2.12

2.13

2.14

2.15

2.16

3.1

3.2

33

3.4

3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

Example using
lexicographical_smallest_permutation_preserve_polarity . 73
Example using of sub_topology ...ttt e 74
Example for understanding sides in STK topology 75
Example using a SuperElement with STK topology 75
Example for understanding various Sierra topologies 76

Mapping of shards::CellTopologies to stk::topologies provided by
stk::mesh::get_cell_topology()« 78
Examples of constant-size whole-mesh fieldusage 81
Example of incorrect vector field declaration 82
Examples of how to getfieldsbyname 83
Examples of using fields that are variable-size and defined on only a subset of the

MESh .o 83
Examples of multi-state field usage i 84
Reading mesh data to createa STKmesh 87
Face creation during IO for one sideset between hexes 89
Face creation during IO for shells between hexes with sidesets 91
Reading mesh data to create a STK mesh using setbulkdata 94
Reading mesh data to create a STK mesh; delay field allocation 95
Writinga STK Mesh e 96
Writing calculated field data to a results database 96
Outputting a field with an alternative name 97
Write results and restart e 98
Writing multi-state field to results output 99
Writing multiple output files 100

Using a nodeset variable to output nodal fields defined on only a subset of the mesh 101

L NUM tIME STEPS .« « v v vt ettt e e e e et e et e et e et e 102

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

431

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

Reading sequenced fields i 103

Reading initial condition data from a mesh database 104
Reading initial condition data from a mesh database 104
Reading initial condition data from a mesh database 105
Reading initial condition data from a mesh database 106
Reading initial condition data from a mesh database one timeonly 108
Reading initial condition data from a mesh database at a specified time 109
Linearly interpolating field data from a mesh database 110
Combining restart and field interpolation 111
Linearly interpolating field data from a mesh database with only a single step ... 113

Linearly interpolating field data when the time is outside the database time interval 114

Specifying initial conditions from a non-existent field 115
Specifying initial conditions from a non-existent field 116
Interpolating fields on a database with negative times 116
Interpolating fields on a database with non-monotonically increasing times 117
Arbitrary analysis time to database time mapping during field input 119
Error condition — specifying interpolation of an integer field 120
Working with element attributes 121
Creating output mesh containing a subset of the mesh parts 122
Writing and reading a global variable 123
Writing and reading parameters as global variables 124
Automatically writing parameters as global variables 126
Writing global variables to a Heartbeatfile 127

Writing global variables to a Heartbeat file in CSV format with extended precision 128
Writing global variables to a Heartbeat file with a user-specified field separator .. 129

Adding the contents of a file to the information records of an output database 129

14

4.40 Overwriting time steps instead of adding new steps to a database 130

5.1 Using the bounding volume search with the Boost R-tree method 133
5.2 Searchmethod Optionsttt e e 134
6.1 Diagnostic TIMETrsSttt e e e 135
6.2 Diagnostic Timersin Parallel 137
6.3 Example showing how to communicate with other processors 139
6.4 Example showing how to communicate an arbitrary amount of data with other
PIOCESSOTS . v e vt e et e et e et e e e e e e e e e e et e e e e e e e 140
6.5 Usingthescheduler 141
6.6 Parameters: Data for use in the following examples 144
6.7 Parameters: Defining 145
6.8 Parameters: Accessing values 145
6.9 Parameters: Dealing witherrors 146
6.10 Parameters: Storing unsupported types 147
6.11 Filename substitution capability i 149

15

This page intentionally left blank.

Chapter 1

STK Mesh

At a high level, the Sierra Toolkit (STK) modules support the engineering science application
developer by helping to characterize an unstructured mesh (such as is needed for a Finite Element
or Finite Volume mesh) and provide capabilities to support full end-to-end simulations.

Currently, STK is composed of several modules:

STK Mesh

STK Search

STK Transfer*

STK Rebalance*

STK 10

STK Util

*STK Transfer and STK Rebalance will not be discussed in this document.

In the first section of this document, we will introduce STK Mesh terminology and concepts,
with the largest effort being towards documenting code usage by using up-to-date examples (that
are also in the code repository). This section provides definitions and descriptions of basic STK
Mesh terms. Throughout, we use the Exodus [1] mesh format for illustration purposes, and it is
recommended that STK Mesh clients be familiar with Exodus.

1.1 STK Mesh Terms

A Mesh is a collection of entities, parts, fields, and field data. The STK Mesh API separates these
collections into MetaData and BulkData.

Each of these terms is defined below.

17

1.1.1 Entity

Entity is a general term for the following types (listed in ascending ‘rank’ order): node, edge, face,
element, and constraint. Rank is an enumerated type that describes and orders the different kinds
of entities.

1.1.2 Connectivity

In a finite element discretization, entities are connected to other entities. Examples include:
element-to-node connectivity (the nodes connected to a given element), node-to-element connec-
tivity (the elements connected to a given node), and face-to-element connectivity (the elements
connected to a given face). A connection from a higher-rank entity to a lower-rank entity is re-
ferred to as a downward relation. When a downward relation is declared (e.g., between an element
and a node), STK Mesh, by default, creates the corresponding upward relation (e.g., from the node
to the element). Table 1.1 shows the default connectivity of a fully-connected mesh. The term
fully-connected means that the client code has established all downward relations. The term fixed
means that the number of relations is defined by topology; the number of node-relations for a hex-8
element is 8. The term dynamic means that the number of relations is unknown until individual
relations have been established. For example, an element may have 0, 1, or more faces depending
on whether it is on an external boundary. STK mesh provides functions for creating all edges or
faces (see Sections 1.6.7 and 1.6.8). It should be noted that STK Mesh does not support connec-
tivity between entities of the same rank. As an additional note, the term relations and connectivity
are used interchangeably in this document.

Table 1.1: Default connectivity of a fully-connected mesh

From-entity | To Node To Edge To Face To Element
Node - dynamic dynamic dynamic
Edge fixed - dynamic dynamic
Face fixed dynamic - dynamic

Element fixed dynamic dynamic -

1.1.3 Topology

Topology provides an entity’s finite element description. This includes several attributes such as
the number and type of lower-rank entities that can exist in that entity’s downward relations. For
example, an element with hex8 topology must have 8 nodes and may have up to a maximum of 6
quad4 faces and 12 line2 edges. Quad4, line2, and nodes are also examples of topologies. Topol-
ogy also defines what permutations in downward connectivity are permissible. Unlike downward
connectivity, upward connectivity is determined at run-time and does not imply restrictions on
permutations. See chapter 2 for more detail about the STK Topology component and examples of
using the API.

18

Note that in STK Mesh, entities with entity-rank higher than element-rank generally don’t have an
associated topology.

1.1.4 Part

Fart is a general term for a subset of entities in a mesh. Parts are a grouping mechanism used to
operate on subsets of the mesh (see Section 1.1.6). STK Mesh automatically creates four parts at
startup: the universal part, the locally-owned part, the globally-shared part, and the aura part.
These parts are important to the basic understanding of ghosting (see Section 1.1.8). For meshes
read from Exodus files, additional Exodus parts are created (blocks, sidesets, and nodesets). Each
entity in the mesh must be a member of one or more parts.

Parts exist for the life of the STK Mesh; parts cannot be deleted without deleting the mesh. STK
Mesh provides methods which allow client code to explicitly change the user-defined part mem-
bership of an entity.

See Section 1.5 for more details on mesh parts.

1.1.5 Field

Fields are data associated with mesh entities. Examples include coordinates, velocity, displace-
ment, and temperature. A field in STK Mesh can hold any data type (e.g., double or int) and any
number of scalars per entity (e.g., nodal velocity field has three doubles per node if the spatial
dimension is 3). A field can be allocated (defined) on the whole mesh (e.g., all nodes) or on a Part
(subset) of the mesh (nodes of a sideset). For example, a material property can be defined on a
specified element block.

1.1.6 Selector

Selectors are used to select entities that belong to a specified expression of parts. Here are some
examples:
e Select all elements that are in either block-1 or block-2 or both. (A set-union expression.)

e Select all nodes that are connected to elements in both block-1 and block-2. (A set-
intersection expression.)

e Select all nodes that are locally-owned but not connected to a rigid-body part. (A set-
difference expression.)

e Select all nodes that have a specified field allocated. Since field allocation is specified in
terms of parts, we allow selectors to be created based on fields.

19

The selector system is explained further in Section 1.4.

1.1.7 Bucket

STK Mesh organizes entities into buckets: the entities in a bucket all have the same rank and topol-
ogy, and they are all members of the same parts. Additionally, the entities in a bucket correspond
to contiguously-allocated blocks of memory in the associated field-data values.

There are two primary reasons for grouping entities into buckets. Firstly, the Selector system
(see section 1.4) allows for the traversal of the mesh in arbitrary user-defined subsets, and these
subsets exist as combinations of buckets. Secondly, the performance of mesh-modification (see
section 1.6) is improved by only moving bucket-sized sections of allocated memory (e.g., when
adding/deleting entities) rather than re-allocating and sliding the memory for the whole mesh.

No entity is ever in more than one bucket at any given time. This grouping is performed internally
by STK Mesh; client code has no explicit control over which entities reside in which buckets. If
an entity’s part membership is changed, it is automatically moved to a different bucket.

1.1.8 Ghosting

Ghosting in STK Mesh provides a way to perform operations that involve entities that are nei-
ther locally-owned nor shared on the current processor. STK Mesh automatically provides a one-
element thick ghost layer around each processor, referred to as the aura and is shown in Figures 1.1
and 1.2. Formally, the aura is defined as a ghosting of the upward-relations for shared entities. In
other words, if the aura is on, then shared entities have the same upward-relations on each shar-
ing processor. In addition, STK Mesh client code can also request arbitrary ghosting of entities,
referred to as custom ghosting.

1.1.9 MetaData and BulkData

The MetaData component of a STK Mesh contains the definitions of its parts, the definitions
of its fields, and definitions of relationships among its parts and fields. For example, a subset
relationship can be declared between two parts, and a field definition can be limited to specific
parts. The BulkData component of a STK Mesh contains entities, entity ownership and ghosting
information, connectivity data, and field data. For efficiency, the BulkData API enables data access
via buckets, in addition to data access via entity and rank.

A mesh’s MetaData holds a database definition (a schema), and a mesh’s BulkData holds the con-
tent of that database. MetaData is replicated (duplicated) on all processors; BulkData is distributed
across processors with each processor having a separate subset of the data, subject to sharing and
ghosting.

20

i
|
:
|
[700] '
|
|
|

I E—

TTTTTTTTo e

U

fpooocoooos o

e | o]

procaonnos I

E {110] E

__________ 6

Proc 0 ’ Proc 1
Ghosted " Locally Owned W Locally Owned & Shared W Shared

Figure 1.1: Aura ghosting per MPI process

Proc O 5 Proc 1

Ghosted " Locally Owned W Locally Owned & Shared M Shared

Figure 1.2: Final auras

This design requires object construction of MetaData and BulkData to be staged. The spatial
dimension of a mesh is usually specified in the call to the MetaData constructor, which also pro-
vides a valid default initialization. The BulkData constructor requires a MetaData object as an
argument. A BulkData object cannot be modified (e.g., entities added) before its MetaData object
has been initialized and then committed using the MetaData: :commit () member function

21

(for example, see Listing 2.1). Once a MetaData object has been committed, it cannot be changed.
Therefore, fields must be put on parts prior to MetaData commit. Non-topology parts can still
be declared after commit, but they will have limited uses because subset relationships cannot be
changed. For clarity, it is recommended that MetaData commit is called prior to BulkData con-
struction. If new is used to create a BulkData object, then that instance must be deleted before its
MetaData object (used to construct it) is destroyed.

The STK Mesh usage examples below and in Section 1.7 illustrate common uses of the MetaData
and BulkData APIs.

1.1.10 Creating a STK Mesh from an Exodus file

Listing 1.1 shows how to create and populate a STK Mesh using the STK IO module, which is
described in Chapter 4. We provide this example for those who want to quickly get started using
an STK Mesh given an Exodus file. This particular example shows STK IO populating the STK
Mesh from a generated-in-memory mesh, but the “filename” is all that would need to change, to
instead read data from an Exodus file. Further examples will show various uses of the STK Mesh.

Listing 1.1: Example of creating an STK Mesh using an Exodus file

«/..[..Jcode/stk/stk_mesh/testsForDocumentation/createStkMesh.cpp

49 TEST (StkMeshHowTo, UseStkIO)
50 |

51 MPI_Comm communicator = MPI_COMM_WORLD;

52 if (stk::parallel _machine_size (communicator) == 1)

53 {

54 stk::mesh: :MetaData meta;

55 stk::mesh::BulkData bulk (meta, communicator);

56

57 stk::i0::StkMeshIoBroker meshReader;

58 meshReader.set_bulk_data (bulk);

59 meshReader.add_mesh_database ("generated:8x8x8", stk::io::READ_MESH) ;

60 meshReader.create_input_mesh () ;

61 meshReader.add_all_mesh_fields_as_input_fields();

62 meshReader.populate_bulk_data();

63

64 unsigned numElems = stk::mesh::count_selected_entities (meta.universal_part (),
bulk.buckets (stk::topology::ELEM_RANK)) ;

65 EXPECT_EQ(512u, numElems) ;

After these steps, the STK Mesh objects now contain all the data from the Exodus file (e.g., Fields,
Parts, Entities).

1.2 Parallel

STK Mesh maintains a parallel consistent mesh across many MPI processes or subdomains. Most
of the parallel capabilities revolve around communicating information, like field data, for entities

22

on the boundaries of these subdomains. Entities that are communicated between subdomains are
either shared or ghosted.

1.2.1 Shared

Entities that are shared among processors are downward connected from a locally-owned entity,
usually an element. For example, if the side of a hex8 is on a subdomain boundary, the 4 nodes
that touch the boundary are considered shared. If there also exists a face on that side of the hex,
the face would also be shared.

Shared entities have fully symmetric communication information stored on all processors that share
the entity. In other words, every processor that has a shared entity knows about every other pro-
cessor that shares the entity.

1.2.2 Ghosted

Ghosted entities are communicated between subdomains regardless of the connections from
locally-owned entities. This is different from shared entities which are defined by downward con-
nection from locally-owned entities.

Ghosted entities only have communication information about the owner stored on the processor
that the entities are ghosted to. This means that a given processor’s BulkData has information
about the processor the ghost came from but not any other processors that the entity may have
been ghosted to.

1.2.3 Aura

The aura is a special ghosting that automatically sends one layer of ghosted elements on the sub-
domain boundaries to the processors that share those boundaries, as seen in Figures 1.1 and 1.2.
The aura can be turned off when the mesh is initially created. See Section 1.2.3.1 for example
usage.

1.2.3.1 How to use automatically generated aura

This section describes how to control whether or not a one-layer ghosting of elements is automati-
cally generated around each processor’s mesh.

Listing 1.2: Example of how to control automatically generated aura

.J..[..Jcode/stk/stk_doc_tests/stk_mesh/howToUseAura.cpp

48 void expectNumElementsInAura (stk::mesh::BulkData::AutomaticAuraOption autoAuraOption,

23

unsigned numExpectedElementsInAura)

51 MPI_Comm communicator = MPI_COMM_WORLD;

52 if (stk::parallel_machine_size (communicator) == 2)

53 {

54 stk::mesh::MetaData meta;

55 stk::mesh::BulkData bulk (meta, communicator, autoAuraOption);

56 stk::unit_test_util::fill_mesh_using_stk_io("generated:1x1x2", bulk);
57

58 EXPECT_EQ (numExpectedElementsInAura,

60 }
61}

stk::mesh::count_selected_entities (meta.aura_part (),

bulk.buckets (stk::topology: :ELEMENT_RANK))) ;

62 TEST (StkMeshHowTo, useNoAura)

63 |

64 expectNumElementsInAura (stk::mesh::BulkData: :NO_AUTO_AURA, O0);

65 '}

66 TEST (StkMeshHowTo, useAutomaticGeneratedAura)

67 |

68 expectNumElementsInAura (stk: :mesh::BulkData::AUTO_AURA, 1);

69 }

70 TEST (StkMeshHowTo, useAuraDefaultBehavior)

{

1
72 MPI_Comm communicator = MPI_COMM_WORLD;

if (stk::parallel_machine_size (communicator) == 2)
74 {
75 stk::mesh: :MetaData meta;
76 stk::mesh::BulkData bulk (meta, communicator);
77 stk::unit_test_util::fill_mesh_using_stk_io("generated:1x1x2", bulk);
78
79 EXPECT_EQ (lu, stk::mesh::count_selected_entities (meta.aura_part (),

80 }
81}

bulk.buckets (stk::topology: :ELEMENT_RANK)));

1.3 STK Parallel Mesh Consistency Rules

STK Mesh is used by many engineering disciplines such as structural dynamics, solid mechanics,
thermal/fluid mechanics, and mesh refinement. Since the mesh is being used by different applica-
tions, we must ensure that the mesh is consistent. A consistent mesh will always follow certain
rules/guidelines regardless of the application using it. This has a disadvantage in that flexibility to
tune/adjust the mesh for a specific application’s needs is reduced, but it also allows easier coupling
between applications and helps reuse of algorithms that use STK Mesh because of these rules.

Much of the work in STK Mesh, during modification cycles, is towards creating a consistent mesh
especially in parallel. The following are some of the ideas behind a parallel consistent mesh:

e For entities with the same identifier (EntityKey), then for all the processors that have the

entity

— the owner is the same

— the application-defined parts that the entity is a member of, are the same

24

— every entity has the same downward relations on all processors
— every entity has the same upward relations on all processors (only if the aura is active)
e For aura’ed/shared entities
— owner of entity knows with which processors the entity is shared with and/or aura’ed
to
— sharer (not owner) of entity knows which other processors share the entity

— processor with aura’ed entity knows the owner of the entity

At first glance, these rules might seem trivial. The STK Mesh API prevents the ability to change
mesh to get it into an inconsistent state at the end of a modification cycle. This concept has proven
to be powerful in that it allows coupling of codes and reuse of algorithms across applications.

1.3.1 How to enable mesh diagnostics to enforce parallel mesh rules

STK Mesh now provides a means by which an application may enable internal mesh diagnostics
to ensure that the mesh is consistent with the three Parallel Mesh Rules (PMR). These rules may
be summarized as:

e Rule 1: Coincident and partially coincident elements must be owned by the same processor
(no split coincident elements)

e Rule 2: Each global id shall be owned by one and only one processor (no duplicate ids)

e Rule 3: Processor that owns a side also owns at least one element to which it is connected.

(each side needs an element i.e no solo faces)

Enabling mesh diagnostics creates a
per-processor file named “mesh_diagnostics_failures_<proc_id>.txt” which contains the listing
of all errors. This example demonstrates first creating a mesh with a sideset and then checking that
there are no solo faces with attached elements that are remotely owned (PMR-3).

Listing 1.3: Example of how to enable mesh diagnostics

.J../../code/stk/stk_mesh/testsForDocumentation/howToEnableMeshDiagnostics.cpp

43 TEST (StkMeshHowTo, EnableMeshDiagnostics)
44 |

45 stk::mesh::MetaData meta;

46 stk::mesh::BulkData bulkData (meta, MPI_COMM_WORLD) ;

47 stk::unit_test_util::fill _mesh_using_stk_io("generated:4x4x4|sideset:xX", bulkData);
48

49 bulkData.enable_mesh_diagnostic_rule (stk::mesh::RULE_3);

50 EXPECT_EQ (Ou, bulkData.get_mesh_diagnostic_error_count());

51}

25

1.3.2 How to enforce Parallel Mesh Rule 1

STK Mesh now provides a means by which an application may enforce Parallel Mesh Rule 1
(PMR-1) to ensure that coincident and partially-coincident elements must be owned by the same
processor (no split coincident elements).

Listing 1.4: Example of how to enforce Parallel Mesh Rule 1

./..[l../code/components/penso/doc_tests/howToFixPMR1 Violation.cpp

43 TEST (StkMeshHowTo, FixPMR1Violation)

44 |

45 stk::mesh::MetaData meta;

46 stk::mesh::BulkData bulkData (meta, MPI_COMM_WORLD) ;

47 stk::unit_test_util::fill_mesh_using_stk_io("generated:4x4x4|sideset:xX", bulkData);

48

49 stk::mesh::EntityIdProcMap elementAndDestProc;

50 EXPECT_NO_THROW (elementAndDestProc =
penso::make_mesh_consistent_with_parallel_mesh_rulel (bulkData)) ;

51 EXPECT_TRUE (elementAndDestProc.size ()==0u); // no elements were migrated

1.3.3 Parallel API

This section discusses a few API functions for applications using the parallel capabilities of STK
Mesh.

The following code example shows how to communicate field data from owned to all shared and
ghosted entities, overwriting any local modifications.

Listing 1.5: Example of communicating field data from owned to all shared and ghosted entities

./..[../code/stk/stk_mesh/testsForDocumentation/communicateFieldData.cpp

59 TEST_F (ParallelHowTo, communicateFieldDataForSharedAndAura)

60 {
61 autos field =
get_meta () .declare_field<stk::mesh::Field<double>> (stk::topology: :NODE_RANK,
"temperature") ;
62
63 double initialvalue = 25.0;
64 stk::mesh::put_field on_entire_mesh _with_initial_value(field, &initialValue);
65
66 setup_mesh ("generated:8x8x8", stk::mesh::BulkData::AUTO_AURA);
67
68 const stk::mesh::BucketVector& notOwnedBuckets =
get_bulk () .get_buckets (stk::topology: :NODE_RANK,
69
!get_meta() .locally_owned_part());
70
71 for (const stk::mesh::Bucket xbucket : notOwnedBuckets)
72 for (stk::mesh::Entity node : xbucket)
73 *stk::mesh::field _data(field, node) = -1.2345;
74
75 stk::mesh::communicate_field_data (get_bulk (), {&field});
76
77 for (const stk::mesh::Bucket xbucket : notOwnedBuckets)
78 for(stk::mesh::Entity node : xbucket)
79 EXPECT_EQ(initialValue, =xstk::mesh::field_data(field, node));

26

80}

The parallel_sum, parallel_min, and parallel_max functions operate on shared entities.

Listing 1.6: Example of parallel_sum

./..[../code/stk/stk_mesh/testsForDocumentation/communicateFieldData.cpp

84 void expect_field_has_value (const stk::mesh::BucketVector& buckets,

85 const stk::mesh::Field<double> &field,
86 double value)

87 {

88 for (const stk::mesh::Bucket xbucket : buckets)

89 for (stk::mesh::Entity node : xbucket)

90 EXPECT_EQ (value, #*stk::mesh::field_data(field, node));

91 }
92
93 TEST_F (ParallelHowTo, computeParallelSum)

94 {

95 autos& field =
get_meta () .declare_field<stk::mesh::Field<double>> (stk::topology: :NODE_RANK,
"temperature") ;

96

97 double initialvValue = 25.0;

98 stk::mesh::put_field on_entire _mesh with_initial_value(field, &initialValue);

99

100 setup_mesh ("generated:8x8x8", stk::mesh::BulkData::AUTO_AURA) ;

101

102 const stk::mesh::BucketVector& shared = get_bulk().get_buckets (stk::topology::NODE_RANK,

103

get_meta () .globally_shared_part());
104 const stk::mesh::BucketVector& notShared =

get_bulk () .get_buckets (stk::topology: :NODE_RANK,
105

lget_meta () .globally_shared_part());

106 expect_field has_value (shared, field, initialValue);

107 expect_field_has_value (notShared, field, initialValue);
108

109 stk::mesh::parallel_sum(get_bulk (), {&field});

110

111 expect_field _has_value (shared, field, 2xinitialValue);
112 expect_field_has_value (notShared, field, initialValue);
13}

The comm_mesh_counts function is shown in Listings 1.7-1.8. The purpose of this function is
to count the number of entities of each entity rank across all processors.

Listing 1.7: Example showing parallel use of comm_mesh_counts

... Jcode/stk/stk_doc_tests/stk_mesh/UnitTestCommMeshCounts.cpp

75 TEST (CommMeshCounts, Parallel)

76 {

77 stk::ParallelMachine communicator = MPI_COMM_WORLD;

78 int numprocs = stk::parallel_machine_size (communicator);

79

80 const std::string generatedMeshSpec = getGeneratedMeshString (10,20, 2+numprocs) ;
81 unitTestUtils: :exampleMeshes: :StkMeshCreator stkMesh (generatedMeshSpec, communicator);
82

83 std::vector<size_t> comm_mesh_counts;

84 stk::mesh::comm_mesh_counts (xstkMesh.getBulkData (), comm_mesh_counts);

85

86 size_t goldNumElements = 10x20%2%numprocs;

87 EXPECT_EQ (goldNumElements, comm_mesh_counts[stk::topology::ELEMENT_RANK]) ;

27

88}

Listing 1.8: Example showing parallel use of comm_mesh_counts with min/max counts

.J.[..Jcode/stk/stk_doc_tests/stk_mesh/UnitTestCommMeshCounts.cpp

90 TEST (CommMeshCountsWithStats, Parallel)

91 {

92 stk::ParallelMachine communicator = MPI_COMM_WORLD;

93 int numprocs = stk::parallel_machine_size (communicator);

94

95 const std::string generatedMeshSpec = getGeneratedMeshString (10,20, 2+numprocs) ;

96 unitTestUtils: :exampleMeshes: :StkMeshCreator stkMesh (generatedMeshSpec, communicator);

97

98 std::vector<size_t> comm_mesh_counts;

99 std::vector<size_t> min_counts;

100 std::vector<size_t> max_counts;

101

102 stk::mesh::comm_mesh_counts (xstkMesh.getBulkData (), comm_mesh_counts, min_counts,
max_counts) ;

103

104 size_t goldNumElements = 10%x20%2xnumprocs;

105 EXPECT_EQ (goldNumElements, comm_mesh_counts[stk::topology::ELEMENT_RANK]) ;

106

107 size_t goldMinNumElements = 10%x20%2;

108 EXPECT_EQ (goldMinNumElements, min_counts|[stk::topology: :ELEMENT_RANK]) ;

109

110 size_t goldMaxNumElements = goldMinNumElements;

111 EXPECT_EQ (goldMaxNumElements, max_counts[stk::topology: :ELEMENT_RANK]) ;
12}

1.4 STK Mesh Selector

A selector is a set-logical expression that can include intersections, unions, and complements. The
default-constructed selector is empty and therefore selects nothing. See Section 1.4.1 for examples.

A selector is typically used with get _buckets () for a given entity rank to get a list of buckets
satisfying that selector. get_buckets () evaluates the selector on each bucket of the specified
rank. When the expression evaluation gets down to a part, the selector must determine if that
part is listed as one of the part intersections in the bucket. The worst-case cost of evaluating
get_buckets () is

o (N number buckets) x 0 (N number selector terms) x 0 (N number bucket parts) (1 . 1)

where Nyumber buckers 15 the number of buckets of the Entity rank that was passed
into get_buckets (), Numberselectorterms 15 the length of the selector expression, and
Nyumber bucket pars 18 the average number of parts that each bucket represents.

Since STK Mesh internally caches the results of calls to get _buckets (), selector performance
often does not have a large impact on overall application runtime. Selectors are implemented to
allow optimization from short-circuiting logic, to allow a positive result from a union to ignore the
rest of the expression, as well as a negative result from an intersection. If selectors are constructed

28

to take advantage of this type of early termination, the middle term in equation (1.1) is less ex-
pensive in practice. For example, if partA strictly contains partB, then the selector expression
(partA | partB) will tend to select more efficiently than (partB | partA) because, in
the first case, once it is known that a bucket is selected for partAa, that bucket does not need to be
checked against partB.

1.4.1 How to use selectors

These examples demonstrate creating and printing Selectors, as well as performing set intersec-
tion operations. The second example also demonstrates retrieving the buckets associated with a
Selector.

Listing 1.9: Example of how to use Selectors to avoid getting caught by the ''Nothing'' selector

./../../code/stk/stk_mesh/testsForDocumentation/howToUseSelectors.cpp

50 TEST (StkMeshHowTo, betterUnderstandSelectorConstruction)
514

52 MPI_Comm communicator = MPI_COMM_WORLD;

53 if (stk::parallel_machine_size (communicator) != 1) { return; }

54 stk::i0::StkMeshIoBroker stkMeshIoBroker (communicator);

55 const std::string generatedMeshSpecification = "generated:1x1x1"; // syntax creates a
1x1x1l cube

56 stkMeshIoBroker.add_mesh_database (generatedMeshSpecification, stk::io::READ_MESH) ;

57 stkMeshIoBroker.create_input_mesh () ;

58 stkMeshIoBroker.populate_bulk_data();

59

60 stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

61

62 stk::mesh::Selector nothingSelector_byDefaultConstruction;

63 size_t expectingZeroBuckets = 0;

64 EXPECT_EQ (expectingZeroBuckets, stkMeshBulkData.get_buckets (stk::topology: :NODE_RANK,

nothingSelector_byDefaultConstruction) .size());
65

66 std::ostringstream readableSelectorDescription;

67 readableSelectorDescription << nothingSelector_byDefaultConstruction;

68 EXPECT_STREQ ("NOTHING", readableSelectorDescription.str().c_str());

69

70 stk::mesh::Selector allSelector (!nothingSelector_byDefaultConstruction);

71 size_t numberOfAllNodeBuckets = stkMeshBulkData.buckets (stk::topology: :NODE_RANK) .size();
72 EXPECT_EQ (numberOfAllNodeBuckets, stkMeshBulkData.get_buckets (stk::topology: :NODE_RANK,

allSelector) .size());
73}
74
75 TEST (StkMeshHowTo, makeSureYouAreNotIntersectingNothingSelector)
76 |

77 MPI_Comm communicator = MPI_COMM_WORLD;

78 if (stk::parallel_machine_size (communicator) != 1) { return; }

79 stk::1i0::StkMeshIoBroker stkMeshIoBroker (communicator);

80 // syntax creates faces for surface on the positive: ’'x-side’, ’'y-side’, and ’z-side’

81 // of a 1x1xl cube, these parts are given the names: ’surface_1l’, ’surface_2’, and
"surface_3’

82 // automagically when it is created [create_input_mesh ()]

83 const std::string generatedMeshSpecification = "generated:1xlxl|sideset:XYZ";

84 stkMeshIoBroker.add_mesh_database (generatedMeshSpecification, stk::io::READ_MESH) ;

85 stkMeshIoBroker.create_input_mesh();

86 stkMeshIoBroker.populate_bulk_data();

87

88 stk::mesh::MetaData &stkMeshMetaData = stkMeshIoBroker.meta_data();

89 stk::mesh::Part xsurfacelPart = stkMeshMetaData.get_part ("surface_1");

90 stk::mesh::Part xsurface2Part = stkMeshMetaData.get_part ("surface_2");

29

91 stk::mesh::Part xsurface3Part = stkMeshMetaData.get_part ("surface_3");

92 stk::mesh::PartVector allSurfaces;

93 allSurfaces.push_back (surfacelPart);
94 allSurfaces.push_back (surface2Part);
95 allSurfaces.push_back (surface3Part);

97 stk::mesh::Selector selectorIntersectingNothing;

98 for (size_t surfaceIndex = 0; surfacelIndex < allSurfaces.size(); ++surfacelndex)

99 {

100 stk::mesh::Part &surfacePart = *(allSurfaces[surfacelndex]);

)1 stk::mesh::Selector surfaceSelector (surfacePart);

2 selectorIntersectingNothing &= surfacePart;

103 }

)4 size_t expectedNumberOfBucketsWhenIntersectingNothing = 0;

)5 stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

106 stk::mesh::BucketVector selectedBuckets =
stkMeshBulkData.get_buckets (stk::topology: :NODE_RANK,
selectorIntersectingNothing) ;

107 EXPECT_EQ (expectedNumberOfBucketsWhenIntersectingNothing, selectedBuckets.size());

109 stk::mesh::Selector preferredBoundaryNodesSelector =
stk::mesh::selectIntersection(allSurfaces);

110 size_t expectedNumberOfNodeBucketsWhenIntersectingAllSurfaces = 1;

111 selectedBuckets = stkMeshBulkData.get_buckets (stk::topology: :NODE_RANK,
preferredBoundaryNodesSelector) ;

112 EXPECT_EQ (expectedNumberOfNodeBucketsiWhenIntersectingAllSurfaces, selectedBuckets.size());

113}

1.5 STK Mesh Parts

A mesh part is a subset of entities of the mesh, and may be used to reflect the physics modeled,
discretization methodology, solution algorithm, meshing artifacts, or other application specific
requirements.

STK Mesh automatically defines several parts during initialization, demonstrated here based on
the serial Exodus mesh and its parallel decomposition previously shown in Figures ?? and ??,
respectively. The universal part includes every entity on the current MPI process (Figure 1.3).
The locally-owned part contains all the entities owned by the current MPI process (Figure 1.4).
The globally-shared part contains all the entities on the current MPI process that are shared with
another MPI process, whether locally-owned or not. Figures 1.5 and 1.6 illustrate the globally
shared part. An entity may be in both the locally-owned and globally-shared parts. By default, a
shared entity is owned by the lowest-numbered sharing MPI process, though client code is allowed
to change entity ownership. Part declarations and part membership are consistent across processor
ranks; part membership for a given entity is maintained on the owning rank. The aura part contains
all the entities which are ghosted due to aura. An additional part is kept up-to-date for each custom
ghosting and examples of usage are in Section 1.5.3.

30

(78) (68) (68) (58)

[100] [200]

(28) (38) (38) (48)
Proc 0 Proc 1
W Identifier

Figure 1.3: Parallel-decomposed STK Mesh. This figure depicts the universal parts on each pro-
cess.

(78) ©8) (58)

[100] [200]

(28) 38) (48)

Proc 0 . Proc1l

M [dentifier

Figure 1.4: Locally-owned parts. Nodes 38 and 68 are owned by process 1 and are not in process
2’s locally-owned part.

1.5.1 Part Identifiers and Attributes

A mesh part has an unique text name identifier, specified by the application that creates the part.
This identifier is intended to support text input and output by the application, e.g., parsing, logging,
and error reporting. The text name is not intended for referencing a mesh part within application
computations. As reliance on text-based references will lead to text-based searches within the
application’s computations, resulting in unnecessarily degraded performance.

A mesh part also has a unique non-negative integer identifier, its part ordinal, that is internally
generated by the mesh MetaData. Part ordinals are intended to support fast referencing and order-
ing of mesh parts. The part ordinal is also intended to support efficient communication of mesh
part information among distributed memory processes.

An application, for example, may specify a mesh part for an element block (a collection of ele-

ments); in descriptions of part behavior, we use the following notation:

Party = mesh part identified by A (1.2)
Part{4 = mesh part intended for mesh entities of rank J and identified by A '

31

M (dentifier

Figure 1.5: Globally-shared parts. Nodes 38 and 68 appear in both process’s globally-shared part.

Shared

M |dentifier

Figure 1.6: Entities in the globally-shared part from each process.

Note that all processors have the same part list. Hence, parts must be created synchronously across
all processors to avoid part lists becoming different on any processor.

1.5.2 Induced Part Membership

An application can explicitly insert a mesh entity into a mesh part or explicitly remove a mesh
entity from a part. A mesh entity’s membership in a part may also be induced through its connec-
tivity to a higher rank mesh entity. Thus, a mesh entity may be an explicit member or an induced
member of a mesh part.

For example, a node will have induced membership in an element block (mesh part) when that
node has connectivity from an element that is in that part. Therefore, the nodes of all the elements
in the element block will be in that part due to induced part membership. This enables client code
to select and iterate over the nodes of the elements in the element block directly and uniquely,
rather than through element connectivity. In general, the explicit part membership of a given entity
automatically induces the same part membership onto any lower-ranking entities that are connected
to 1t.

When a mesh part has a specified entity rank (Parz;") then only mesh entities of the same entity rank
J may be explicitly added as members to that mesh part. If a mesh entity is an explicit member of
such a mesh part, entity’ € Parl{x, and that mesh entity (entity’) is the from-entity of a connectivity,

32

then the to-entity of that connectivity is an induced member of that mesh part. More formally,

Given a connectivity (entityy, , entityk ,x) : J>K and
entity!, € Parrlg via explicit membership (1.3)

then entityf € Parrf" via induced membership.

Note that induced-part memberships are added (or removed) whenever a connectivity is declared
(or deleted). As a result, declaring or deleting a connectivity can cause an entity to move to a
different bucket.

Induced membership only occurs in the presence of a mesh entity connectivity. This means that
induced membership is not transitive. For example, if a mesh has both element-to-face and face-
to-edge connectivities, but does not have element-to-edge connectivities, then the edges in the
element’s closure (via element-to-face-to-edge) are not induced members.

1.5.3 How to use ghost parts

These examples demonstrate how to use the ghost parts to select those entities that are ghosted due
to aura or custom ghosting.

Listing 1.10: Example of how to use Ghost Parts to select aura ghosts and custom ghosts

.J.[.Jcode/stk/stk_doc_tests/stk_mesh/UnitTestGhostParts.cpp

66 TEST (UnitTestGhostParts, Aura)

67 {

68 stk::ParallelMachine communicator = MPI_COMM_WORLD;
69

70 int numProcs = stk::parallel machine_size (communicator) ;

71 if (numProcs != 2) {

72 return;

73 }

74

75 stk::io0::StkMeshIoBroker stkMeshIoBroker (communicator);

76 const std::string generatedMeshSpecification = "generated:1x1x3";

77 stkMeshIoBroker.add_mesh_database (generatedMeshSpecification, stk::io::READ_MESH) ;
78 stkMeshIoBroker.create_input_mesh();

79 stkMeshIoBroker.populate_bulk_data();

8(

81 stk::mesh: :MetaData &stkMeshMetaData stkMeshIoBroker.meta_data();
82 stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();
83

84 std::cerr<<"about to get aura_part..."<<std::endl;

85 stk::mesh::Part& aura_part = stkMeshMetaData.aura_part();

86 std::cerr<<"...got aura part with name="<<aura_part.name ()<<std::endl;
87 stk::mesh::Selector aura_selector = aura_part;

88

89 stk::mesh::Ghosting& aura_ghosting = stkMeshBulkData.aura_ghosting();

90 EXPECT_EQ (aura_part.mesh_meta_data_ordinal (),
stkMeshBulkData.ghosting_part (aura_ghosting) .mesh_meta_data_ordinal());

91

92 stk::mesh::Selector not_owned_nor_shared = (!stkMeshMetaData.locally_owned_part()) &
(!stkMeshMetaData.globally_shared_part());

93

94 const stk::mesh::BucketVector& not_owned_nor_shared_node_buckets =
stkMeshBulkData.get_buckets (stk::topology: :NODE_RANK, not_owned_nor_shared);

33

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141
142
143
144
145
146

size_t expected_num_not_owned_nor_shared_node_buckets = 1;
EXPECT_EQ (expected_num_not_owned_nor_shared_node_buckets,
not_owned_nor_shared_node_buckets.size());

const stk::mesh::BucketVector& aura_node_buckets =

stkMeshBulkData.get_buckets (stk

::topology: :NODE_RANK, aura_selector);

EXPECT_EQ (not_owned_nor_shared_node_buckets.size (), aura_node_buckets.size());
const size_t expected_num_ghost_nodes = 4;

size_t counted_nodes = 0;

size_t counted_aura_nodes = 0;

for(size_t 1=0; i<not_owned_nor_shared_node_buckets.size(); ++1i)

{

counted_nodes += not_owned_nor_shared_:

node_buckets([i]->size();

counted_aura_nodes += aura_node_buckets[i]->size();

}

EXPECT_EQ (expected_num_ghost_nodes, counted_nodes) ;
EXPECT_EQ (expected_num_ghost_nodes, counted_aura_nodes) ;

TEST (UnitTestGhostParts, Customl)

{

stk::ParallelMachine communicator = MPI_COMM_WORLD;

int numProcs =
if (numProcs != 2) {
return;

stk::parallel_machine_size (communicator);

stk::io::StkMeshIoBroker stkMeshIoBroker (communicator);
const std::string generatedMeshSpecification = "generated:1x1x4";
stkMeshIoBroker.add_mesh_database (generatedMeshSpecification, stk::io::READ_MESH);

stkMeshIoBroker.create_input_mesh () ;
stkMeshIoBroker.populate_bulk_data();

stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

int myProc = stkMeshBulkData.parallel_rank();

int otherProc = (myProc == 0) ? 1 : 0;

stkMeshBulkData.modification_begin();

stk::mesh::Ghosting& custom_ghosting = stkMeshBulkData.create_ghosting ("CustomGhostingl")

std::vector<stk::mesh::EntityProc> elems_to_ghost;

const stk::mesh::BucketVector& elem_buckets =
stkMeshBulkData.buckets (stk::topology: :ELEM_RANK) ;
for(size_t 1i=0; i<elem_buckets.size(); ++1i) {

const stk::mesh::Bucket& bucket = xelem_buckets[i];
for (size_t 3=0; Jj<bucket.size(); ++3j) {
if (stkMeshBulkData.parallel_owner_rank (bucket[]j]) == myProc) {

elems_to_ghost.push_back (std: :make_pair (bucket[]j], otherProc));

stkMeshBulkData.change_ghosting (custom_ghosting, elems_to_ghost);

stkMeshBulkData.modification_end();

//now each processor should have 2 elements that were received as ghosts of elements from

the other proc.

const size_t expected_num_elems_for_custom ghosting = 2;

stk::mesh::Part& custom_ghost_part = stkMeshBulkData.ghosting_part (custom_ghosting);

stk::mesh::Selector custom_ghost_selector

= custom_ghost_part;

34

’

159
160 const stk::mesh::BucketVector& custom_ghost_elem_buckets =
stkMeshBulkData.get_buckets (stk::topology::ELEM_RANK, custom_ghost_selector);
161 size_t counted_elements = 0;
162 for(size_t 1=0; i<custom_ghost_elem_buckets.size(); ++1i) {
163 counted_elements += custom_ghost_elem_buckets[i]->size();
164 }
165
166 EXPECT_EQ (expected_num_elems_for_custom_ghosting, counted_elements);
167 }

1.6 Mesh Modification

1.6.1 Overview

The following types of mesh modifications are available in STK Mesh:

e Add/delete entities
e Change entities’ part membership
e Change connectivity

Change processors’ entity ownership

Change ghosting

A STK Mesh can be modified only within the context of a modification cycle. A modification cycle
begins with a call to BulkData: :modification_begin () and ends when the next call to
BulkData::modification_end () returns. This latter function does a pre-determined set
of checks on mesh status and performs MPI communication to ensure a globally-consistent state.

Modification cycles should not be nested; BulkData: :modification_end () terminates all
“enclosing” modification cycles. If the application inadvertently nests modification cycles, errors
are likely to be thrown.

Application code between a BulkData: :modification_begin () call and the follow-
ing BulkData: :modification_end () call can use STK Mesh modification functions that
cause the BulkData to become parallel inconsistent. That is, mesh information on different pro-
cessor ranks can disagree. After each modification cycle, a STK mesh is guaranteed to be parallel-
consistent. Failures during mesh modification are not recoverable.

The first time BulkData: :modification_begin () is called, the mesh MetaData is verified
to have been committed and to be parallel-consistent (and the MetaData is committed at that time if
it hasn’t already been committed). The function returns t rue if the mesh successfully transitions
from the guaranteed parallel-consistent state to the MODIFIABLE state, and £alse if it is already
in this state.

35

BulkData::modification_end () performs parallel synchronization of local mesh modi-
fications since the mesh entered the MODIFIABLE state and transitions the mesh back to a guar-
anteed parallel-consistent state. BulkData: :modification_end () returns true if it suc-
ceeds and false if itis already in the guaranteed parallel-consistent state. If modification resolu-
tion errors occur then a parallel-consistent exception will be thrown.

Because a modification cycle incurs multiple rounds of communication and traversal over large
portions of the mesh, even a modification cycle with a single modification incurs significant cost.
From a performance standpoint it is advantageous to group mesh modifications into as few modi-
fication cycles as possible.

To alleviate the expense of a general modification cycle, other single-purpose API have been in-
troduced, such as for the creation of faces, that take into account knowledge of what has been
modified to improve the performance of a modification cycle. These should be considered before
coding a general modification, especially if it is in a performance-critical part of the code.

Note that MetaData changes (declaring parts and fields) are not part of the mesh modification API
since it’s illegal to change MetaData after the MetaData object has been committed.

1.6.2 Public Modification Capability

In this section we describe the modification operations intended to be called from ap-
plication code. As noted above, these functions can only be called between calls to
BulkData: :modification_begin () and BulkData::modification_end(). We
also describe the modification operations that STK Mesh automatically performs internally as a
result of an application explicitly calling a modification function. Understanding what modifica-
tions can occur automatically is particularly important for code reliability. We note that certain
modification types are applicable only in distributed STK Mesh applications.

1.6.2.1 Add/Delete Entities

The BulkData: :declare_entity () function can be used to add an entity to a STK mesh
and assign its entity rank and global identifier. BulkData: :generate_new_entities ()
can be used to create multiple entities of specified entity ranks and have unique global identifiers
automatically assigned. When entities of EDGE_RANK, FACE_RANK, or ELEMENT_RANK
are created by application code, they must be assigned a topology and have their nodal connectiv-
ities set before BulkData: :modification_end () is called. See section 1.6.6.

BulkData: :destroy_entity () deletes an entity from a STK Mesh. All upward relations
must be deleted before an entity can be destroyed, as a safety measure to ensure that the user is
explicitly aware of any possible inconsistent mesh states that they are creating (e.g. an element
that is missing one or more nodes). Downward relations are deleted automatically.

36

Adding or deleting an entity can result in automatic changes to part membership, ownership, con-
nectivity, ghosting, and sharing. Changes in part membership(s) can also result in changes to
bucket structure. Any local modifications to an entity will cause ghosted copies of that entity to be
deleted from other processor ranks. The ghosts will be automatically regenerated if they are part
of the aura.

Unless an entity is deleted, it stays valid before, during, and after a modification cycle.

Listing 1.11: Example showing optimized destruction of all elements of a specified topology

.J../..Jcode/stk/stk_doc_tests/stk_mesh/howToDestroyElementsOfTopology.cpp

| #include <gtest/gtest.h>

> #include <stk_mesh/base/BulkData.hpp>

3 #include <stk_mesh/base/GetEntities.hpp>

4 #include <stk_mesh/base/MetaData.hpp>

5 #include <stk_topology/topology.hpp>

6 #include <stk_unit_test_utils/ioUtils.hpp>

7 namespace

8 {

9 TEST (StkMeshHowTo, DestroyElementsOfTopology)

10 {

11 stk::mesh::MetaData metaData;

12 stk::mesh::BulkData bulkData (metaData, MPI_COMM_WORLD) ;

13 stk::unit_test_util::fill mesh using stk_io("generated:1x1x4", bulkData);

14 EXPECT_GT (stk::mesh::count_selected_entities (metaData.universal_part(),
bulkData.buckets (stk::topology::ELEM_RANK)), Ou);

15 bulkData.destroy_elements_of_topology (stk::topology::HEX_ 8);

16 EXPECT_EQ (Ou, stk::mesh::count_selected_entities (metaData.universal_part (),

bulkData.buckets (stk::topology::ELEM_RANK)));

1.6.2.2 Getting Unused Globally Unique Identifiers

Code Listing 1.12 shows, by example, how to get globally unique identifiers. The API requires that
a stk topology rank be specified. The ids are then returned in the vector argument. These ids are
unused when this call is made. Hence, care must be taken if these ids are kept on the application
side (client side) and not used until later. This is a collective call (all processors must call this
function). Note, this API is offered in addition to the generate_new_entities () method.
The key difference is that the generate_new_ids () method only obtains identifiers per rank,
and entities are not automatically created.

Listing 1.12: Example showing how to use generate_new_ids

... [ecode/stk/stk_doc_tests/stk_mesh/howToUseGenerateNewlds.cpp

76 TEST (StkMeshHowTo, use_generate_new_ids)

77 |

78 MPI_Comm communicator = MPI_COMM_WORLD;

79

80 int num_procs = -1;

81 MPI_Comm_size (communicator, &num_procs);

82 std::ostringstream os;

83 os << "generated:1xlx" << num_procs;

84 const std::string generatedMeshSpecification = os.str();
85

86 stk::i0::StkMeshIoBroker stkMeshIoBroker (communicator);

37

87 stkMeshIoBroker.add _mesh_database (generatedMeshSpecification, stk::io::READ_MESH) ;
88 stkMeshIoBroker.create_input_mesh () ;

89 stkMeshIoBroker.populate_bulk_datal();

90

91 stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

92

93 // Given a mesh, request 10 unique node ids

94

95 std::vector<stk::mesh::EntityId> requestedIds;

96 unsigned numRequested = 10;

97

98 stkMeshBulkData.generate_new_ids (stk::topology: :NODE_RANK, numRequested, requestedIds);
99

100 test_that_ids_are_unique (stkMeshBulkData, stk::topology::NODE_RANK, requestedIds);

101}

1.6.2.3 Creating Nodes that are Shared by Multiple Processors

When a node entity is created that is intended to be shared by multiple processors (i.e.,
it will be connected to locally-owned entities on multiple MPI processors), the method
BulkData: :add_node_sharing () must be used to inform STK Mesh that the node is
shared and which other processors share it. The add_node_sharing () method must be called
symmetrically, meaning that for a given shared node, each sharing processor must inform STK
Mesh about all the other sharing processors during the same modification cycle. The code listing
1.13 demonstrates the use of add_node_sharing () when creating shared nodes.

Listing 1.13: Example showing creation of shared nodes

.J.[.Jcode/stk/stk_doc_tests/stk_mesh/createSharedNodes.cpp

73 TEST (stkMeshHowTo, createSharedNodes)

74 4

75 const unsigned spatialDimension = 2;

76 stk::mesh::MetaData metaData (spatialDimension, stk::mesh::entity_rank_names());

77 stk::mesh::Part &triPart = metaData.declare_part_with_topology ("tri_part",
stk::topology: :TRIANGLE_3_2D);

78 metaData.commit () ;

79

80 stk::mesh::BulkData bulkData (metaData, MPI_COMM_WORLD) ;

81 if (bulkData.parallel_size() == 2)

82 {

83 bulkData.modification_begin();

84

85 const unsigned nodesPerElem = 3;

86 stk::mesh::EntityIdVector elemIds = {1, 2};//one elemId for each proc

87 std::vector<stk::mesh::EntityIdVector> elemNodeIds = { {1, 3, 2}, {4, 2, 3} };

88 const int myproc = bulkData.parallel_rank();

89

90 stk::mesh::Entity elem = bulkData.declare_entity (stk::topology::ELEM_RANK,
elemIds [myproc], triPart);

91 stk::mesh::EntityVector elemNodes (nodesPerElem) ;

92 elemNodes[0] = bulkData.declare_entity (stk::topology: :NODE_RANK,
elemNodeIds [myproc] [0]);

93 elemNodes[1l] = bulkData.declare_entity(stk::topology: :NODE_RANK,
elemNodeIds [myproc] [1]);

94 elemNodes[2] = bulkData.declare_entity(stk::topology: :NODE_RANK,
elemNodeIds [myproc] [2]);

95

96 bulkData.declare_relation(elem, elemNodes[0], 0);

97 bulkData.declare_relation(elem, elemNodes[1l], 1);

38

98 bulkData.declare_relation(elem, elemNodes([2], 2);
99
100 int otherproc = testUtils::get_other_ proc (myproc);

101 bulkData.add_node_sharing(elemNodes[1], otherproc);
102 bulkData.add_node_sharing(elemNodes[2], otherproc);
103
104 bulkData.modification_end();
105
106 const size_t expectedTotalNumNodes = 4;
107 verify_global_node_count (expectedTotalNumNodes, bulkData);
108 }
109 }

@ i@

(1) (4)
SN
Proc O Proc 1

M Local Identifier M Shared Nodes

Figure 1.7: Creation of shared nodes for code listing 1.13

STK Mesh also supports the creation of independent shared nodes (nodes without connectiv-
ity) for use in p-refinement. In this case, additional nodes are created for higher order ele-
ments and these are maintained without explicit connectivity information in STK Mesh. Some
of these nodes need to be shared across processor boundaries. This capability is to support the
exploration of p-refinement. Currently, this capability cannot predict which nodes are attached
to which elements when change_entity_owner () is called and therefore rebalance opera-
tions will likely not work as anticipated. This additional feature of add_node_sharing () is
only enabled when the nodes are initially created. The code listing 1.14 demonstrates the use of
add_node_sharing () to create independent shared nodes.

Listing 1.14: Example showing creation of independent shared nodes

.. [code/stk/stk_doc_tests/stk_mesh/createSharedNodes.cpp

113 TEST (stkMeshHowTo, createIndependentSharedNodes)

114 {

115 const unsigned spatialDimension = 2;

116 stk::mesh::MetaData metaData (spatialDimension, stk::mesh::entity_rank_names());

117 metaData.commit () ;

118

119 stk::mesh::BulkData bulkData (metaData, MPI_COMM_WORLD) ;

120 if (bulkData.parallel_size() == 2)

121 {

122 bulkData.modification_begin();

123

124 const unsigned nodesPerProc = 3;

125 std::vector<stk::mesh::EntityIdVector> nodelIds = { {1, 3, 2}, {4, 2, 3} };

126 const int myproc = bulkData.parallel_rank();

127 stk::mesh::EntityVector nodes (nodesPerProc);

128 nodes[0] = bulkData.declare_entity (stk::topology::NODE_RANK, nodelds[myproc][0]);
129 nodes[1l] = bulkData.declare_entity(stk::topology::NODE_RANK, nodeIds[myproc][1l]);
130 nodes[2] = bulkData.declare_entity (stk::topology::NODE_RANK, nodelds[myproc][2]);

39

131
132 int otherproc = testUtils::get_other_proc (myproc);

133 bulkData.add_node_sharing(nodes[1l], otherproc);
134 bulkData.add_node_sharing (nodes[2], otherproc);
135
136 bulkData.modification_end();
137
138 const size_t expectedTotalNumNodes = 4;
139 verify_global_node_count (expectedTotalNumNodes, bulkData);
140 }
141 }
@ i@
o o
(1) (4)
° H o
o o
3) i 3
Proc O Proc 1

M Local Identifier M Shared Nodes

Figure 1.8: creation of independent shared nodes for code listing 1.14

This special marking to allow unconnected nodes to be shared will be removed if relations are
attached to the node. The example 1.15 is a demonstration of this feature.

Listing 1.15: Example showing independent shared nodes becoming

dependent../../../code/stk/stk_doc_tests/stk_mesh/createSharedNodes.cpp

145 TEST (stkMeshHowTo, createIndependentSharedNodesThenAddDependence)

146 {

147 const unsigned spatialDimension = 2;

148 stk::mesh::MetaData metaData (spatialDimension, stk::mesh::entity_rank_names());

149 stk::mesh::Part &triPart = metaData.declare_part_with_topology ("triPart",
stk::topology: :TRIANGLE_3_2D);

150 metaData.commit () ;

151

152 stk::mesh::BulkData bulkData (metaData, MPI_COMM_WORLD) ;

153 if (bulkData.parallel_size() == 2)

154 {

155 bulkData.modification_begin();

156

157 const unsigned nodesPerProc = 3;

158 std: :vector<stk::mesh::EntityIdVector> nodelds = { {1, 3, 2}, {4, 2, 3}};

159 const int myproc = bulkData.parallel_rank();

160

161 stk::mesh::EntityVector nodes (nodesPerProc);

162 nodes[0] = bulkData.declare_entity (stk::topology::NODE_RANK, nodelds[myproc][0]);

163 nodes[1l] = bulkData.declare_entity(stk::topology::NODE_RANK, nodeIds[myproc][1l]);

164 nodes[2] = bulkData.declare_entity (stk::topology::NODE_RANK, nodelds[myproc][2]);

165

166 int otherproc = testUtils::get_other_proc (myproc);

167 bulkData.add_node_sharing(nodes[1l], otherproc);

168 bulkData.add_node_sharing(nodes[2], otherproc);

169

170 const size_t expectedNumNodesPriorToModEnd = 6;

171 verify_global_node_count (expectedNumNodesPriorToModEnd, bulkData);

172

173 bulkData.modification_end();

40

174

175 const size_t expectedNumNodesAfterModEnd = 4; // nodes 2 and 3 are shared
176 verify_global_node_count (expectedNumNodesAfterModEnd, bulkData);

177

178 const unsigned elemsPerProc = 1;

179 stk::mesh::EntityId elemIds[] [elemsPerProc] = { {1}, {2}};

180

181 bulkData.modification_begin();

182 stk::mesh::Entity elem = bulkData.declare_entity(stk::topology::ELEMENT_RANK,
elemIds [myproc] [0], triPart);

183 bulkData.declare_relation(elem, nodes[0], 0);

184 bulkData.declare_relation(elem, nodes[1l], 1);

185 bulkData.declare_relation(elem, nodes([2], 2);

186 EXPECT_NO_THROW (bulkData.modification_end());

187

188 bulkData.modification_begin();

189 bulkData.destroy_entity (elem);

190 bulkData.modification_end() ;

191

192 if (myproc == 0)

193 verify nodes_2_and_3_are_no_longer_shared(bulkData, nodes);
194

195 else // myproc == 1

196 verify_nodes_2_and_3_are_removed (bulkData, nodes);

197 }

198 }

1.6.2.4 Change Entity Part Membership

BulkData: :change_entity_parts () changes which parts an entity belongs to.

Changes in part membership can result in changes to “induced” part membership. (See Section
1.5.2.) Changes in part membership typically cause entities to move to different buckets.

1.6.2.5 Change Connectivity

BulkData::declare_relation|() adds connectivity between two
entities. destroy_relation () removes connectivity between two entities. Relations must
be destroyed from the point of view of the higher-ranked entity toward the lower-ranked entity,
although the relation in the other direction will also be removed automatically.

Changes in connectivity can result in changes to induced part membership. (See Section 1.5.2).
Changes in connectivity can also result in changes in sharing and automatic ghosting during
modification_end (). By causing changes in part membership(s), changes in connectivity
can also result in changes to bucket structure.

41

1.6.2.6 Change Entity Ownership

In a parallel mesh, it can be necessary to change what processor rank owns an entity. The typical
case is when there is a change to parallel decomposition.

The change_entity_owner method is used for this and is called with a vector of pairs that
specify entities and destination processors. It must be called on all processes even if the input
vector is empty on some processors.

Changes in ownership can cause changes in ghosting and sharing, which are changes to part
membership. By causing changes in part membership(s), changes in ownership can also result
in changes to bucket structure.

1.6.2.7 Change Ghosting

Aura ghosting is maintained automatically by STK Mesh, but can be optionally disabled. STK al-
lows for application-specificed custom ghosting, through the functions change_ghosting(),
create_ghosting (), destroy_ghosting(), and destroy_all_ghosting().
Each of these functions must be called parallel-synchronously.

The method change_ghosting () is used to add entities to be ghosted, or remove entities from
a current ghosting. The input to the method includes a vector of pairs of entities and destination
processors on which the entities are to be ghosted. To be added to a ghosting in this way, an entity
must be locally-owned on the current processor, and must not already be shared by the destination
processor. It is permissible for an entity to be in multiple different custom ghostings at the same
time.

Any modification, directly applied or automatically called, to an entity in a ghosting will au-
tomatically cause that ghosting to be invalidated. For the aura ghosting, entities will be au-
tomatically regenerated during the next modification_end () call. For custom ghost-
ing, it is not as well-defined what should happen to modified entities. It is possible for
an entity in a ghosting to be invalidated without all of that ghosting being invalidated.
stk::mesh::BulkData::is_valid(entity) can be used to determine whether a ghost
entity has been invalidated.

1.6.3 Mesh Modification Examples

Listing 1.16 shows how an element on processor 0 in the mesh depicted in Figure 1.9 is ghosted
to processor 1. Note that Element 1 is connected to Node 1. This test shows how a user can use
the identifier of the element, i.e. 1, to get an entity, and ghost it to another processor. This test
also shows that Node 1 is automatically ghosted to processor 1 because it is a downward-relation
of Element 1. In general, when an entity is ghosted, its downward-connected entities come along
with it, but upward-connected entities don’t.

42

11l 121 : [3] 14]

Proc O : Proc 1
Figure 1.9: Mesh Used in Listings 1.16-1.17

Listing 1.16: Example showing an element being ghosted.

.J.J..[code/stk/stk_doc_tests/stk_mesh/customGhosting.cpp

95 TEST (StkMeshHowTo, customGhostElem)

9% {

97 MPI_Comm communicator = MPI_COMM_WORLD;

98 if (stk::parallel_machine_size (communicator) == 2)

99 {

100 stk::mesh::MetaData metaData;

101 stk::mesh::BulkData bulkData (metaData, communicator);

102 stk::unit_test_util::fill mesh_using_stk_io("generated:1x1x4", bulkData);

103

104 stk::mesh::EntityId id = 1;

105 stk::mesh::Entity eleml = bulkData.get_entity(stk::topology::ELEM_RANK, id);

106 stk::mesh::Entity nodel = bulkData.get_entity (stk::topology::NODE_RANK, id);

107 verify_that_eleml_and _nodel_are_only_valid_on_pO (bulkData, eleml, nodel);

108

109 bulkData.modification_begin();

110 stk::mesh::Ghosting& ghosting = bulkData.create_ghosting("custom ghost for elem 1");

111 std::vector<std::pair<stk::mesh::Entity, int> > elemProcPairs;

112 if (bulkData.parallel_rank() == 0)

113 elemProcPairs.push_back (std: :make_pair (eleml,
get_other_proc (bulkData.parallel_rank())));

114 bulkData.change_ghosting (ghosting, elemProcPairs);

115 bulkData.modification_end() ;

116

117 verify_that_eleml_and_downward_connected_entities_are_ghosted_from pO_to_pl (bulkData,
id);

118 }

19 }

120
121 TEST (StkMeshHowTo, addElementToGhostingUsingSpecializedModificationForPerformance)
122 {

123 MPI_Comm communicator = MPI_COMM_WORLD;
124 if (stk::parallel_machine_size (communicator) == 2)
125 {
126 stk::mesh: :MetaData meta;
127 stk::mesh::BulkData bulk (meta, communicator);
128 stk::unit_test_util::fill_mesh_using_stk_io("generated:1x1x4", bulk);
129
130 stk::mesh::EntityId elementId = 1;
131 stk::mesh::Entity eleml = bulk.get_entity(stk::topology::ELEM_RANK, elementId);
132 verify_eleml_is_valid_only_on_pO (bulk, eleml);
133
134 bulk.modification_begin();
135 stk::mesh::Ghosting& ghosting = bulk.create_ghosting("my custom ghosting");
136 bulk.modification_end();
137
138 stk::mesh::EntityProcVec entityProcPairs;
139 if (bulk.parallel_rank () == 0)
140 entityProcPairs.push_back (stk::mesh::EntityProc (eleml,
get_other_proc (bulk.parallel_rank())));

141

43

142 bulk.batch_add_to_ghosting(ghosting, entityProcPairs);
143

144 verify_eleml_is_valid_on_both_procs (bulk, elementId);
145 }

146 '}

Listing 1.17 shows how an entity can be moved, or stated alternatively, how to change an
owner of an entity. Note that the change_entity_owner () method must be called by
all processors, and must not be enclosed within calls to modification_begin () and
modification_end () since itis a self-contained modification cycle.

Listing 1.17: Example of changing processor ownership of an element

.J.[.Jeode/stk/stk_doc_tests/stk_mesh/changeEntityOwner.cpp

66 TEST (StkMeshHowTo, changeEntityOwner)
67 {

68 MPI_Comm communicator = MPI_COMM_WORLD;

69 if (stk::parallel_machine_size (communicator) == 2)

70 {

71 stk::mesh: :MetaData metaData;

72 stk::mesh::BulkData bulkData (metaData, communicator);

73 stk::unit_test_util::fill_mesh_using_stk_io("generated:1x1x4", bulkData);

74

75 stk::mesh::EntityId elem2Id = 2;

76 stk::mesh::Entity elem2 = bulkData.get_entity(stk::topology::ELEM_RANK, elem2Id);

77 verify_elem_is_owned_on_pO_and_valid_as_aura_on_pl (bulkData, elem2);

78

79 std::vector<std::pair<stk::mesh::Entity, int> > elemProcPairs;

80 if (bulkData.parallel_rank() == 0)

81 elemProcPairs.push_back (std::make_pair (elem2,
testUtils::get_other_proc (bulkData.parallel_rank())));

82

83 bulkData.change_entity_owner (elemProcPairs);

84

85 verify_elem_is_now_owned_on_pl (bulkData, elem2Id);

86 }

87 }

1.6.3.1 Resolving Sharing Of Exodus Sidesets - Special Case

Figure 1.10 shows a case of an interior Exodus sideset where two sides exist initially across a
processor boundary. Nodes (1, 5, 8, 4) represent the face on the left (red) element on processor
0, and the nodes (1, 4, 8, 5) represent the face on the right (green) element on processor 1. The
algorithm for determining if these two faces are the same shared face will consider the following
two conditions:

1. The nodes on both face entities are the same or a valid permutation of each other

2. The identifiers of both face entities are the same

A boolean flag exists on BulkData, that if set to true, will require that two entities are the same if
both conditions, (1) and (2), must be true for the entity to be marked as shared.

44

When reading an Exodus file and populating a STK Mesh, the current setting is that both conditions
must be true for the mesh entities to be marked as the same. However, after the mesh has been read
in, only condition (1) is used to resolve sharing of entities across parallel boundaries.

If the user desires one behavior
over another, the set_use_entity_ids_for_resolving_sharing () function can be
used before calling modification_end () during a mesh modification cycle. This behavior
is undergoing changes so that the face entities created are consistently connected to elements. As
such, the option discussed here is marked to be deprecated.

Code listing 1.18 shows two tests. The first test shows the option that can be used for resolving
sharing. The second test case reads the mesh in Figure 1.10 and tests that there are two faces.

Figure 1.10: Mesh Used in Listing 1.18

Listing 1.18: Example of internal sideset which results in two faces

.J./../code/stk/stk_integration_tests/stk_mesh_doc/IntegrationTestBulkData.cpp

80 TEST (BulkData_test, use_entity_ids_for_resolving_sharing)
81 {

82 MPI_Comm communicator = MPI_COMM_WORLD;

83

84 const int spatialDim = 3;

85 stk::mesh::MetaData stkMeshMetaData (spatialDim);

45

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124

125
126
127
128
129
130
131

132

}

stk::unit_test_util::BulkDataTester stkMeshBulkData (stkMeshMetaData, communicator);

if (stkMeshBulkData.parallel _size () == 2)
{

std::string exodusFileName = unitTestUtils::getOption("-i", "mesh.exo");

{

stk::io::StkMeshIoBroker exodusFileReader (communicator);
exodusFileReader.set_bulk_data (stkMeshBulkData) ;
exodusFileReader.add_mesh_database (exodusFileName, stk::io::READ_MESH);
exodusFileReader.create_input_mesh () ;
exodusFileReader.populate_bulk_datal();

}

stkMeshBulkData.set_use_entity_ids_for_resolving_sharing (false);
EXPECT_FALSE (stkMeshBulkData.use_entity_ids_for_resolving_sharing());

stkMeshBulkData.set_use_entity_ids_for_resolving_sharing (true);
EXPECT_TRUE (stkMeshBulkData.use_entity_ids_for_resolving_sharing());

TEST (BulkData_test, testTwoDimProblemForSharingOfDifferentEdgesWithSameNodesFourProc)

{

MPI_Comm communicator = MPI_COMM_WORLD;

const int spatialDim = 2;

stk::mesh::MetaData stkMeshMetaData (spatialDim);
stk::unit_test_util::BulkDataTester stkMeshBulkData (stkMeshMetaData, communicator);

if (stkMeshBulkData.parallel_size() == 4)
{

std::string exodusFileName = unitTestUtils::getOption("-i", "mesh.exo");

{

stk::i0::StkMeshIoBroker exodusFileReader (communicator);
exodusFileReader.set_bulk_data (stkMeshBulkData) ;
exodusFileReader.add_mesh_database (exodusFileName, stk::io::READ_MESH) ;
exodusFileReader.create_input_mesh () ;
// With in populate_bulk_data, the option
set_use_entity_ids_for_resolving_sharing is set to true
exodusFileReader.populate_bulk_datal();

}

std: :vector<size_t> globalCounts;
stk::mesh::comm_mesh_counts (stkMeshBulkData, globalCounts);
EXPECT_EQ(15u, globalCounts[stk::topology::EDGE_RANK]) ;

1.6.4 Unsafe operations

There are a number of operations that are inherently unsafe to perform when the mesh is in the
middle of a modification cycle. Exceptions will be thrown if the user tries to perform these opera-
tions during modification in a debug build, but not in a release build since the error checking is too

expensive.

The mesh_index of an entity (which is a pairing of the entity’s bucket and the entity’s offset into
that bucket) can be automatically changed by STK Mesh during a modification cycle. Thus, a
mesh_index cannot be assumed to be valid during a modifcation cycle or be the same before and

46

after it. A change in the membership of one or more buckets implies a change in the mesh index
of one or more entities, and vice versa.

Although field data can be accessed during a modification cycle, parallel field operations (e.g.,
parallel sum) must be avoided during a modification cycle because the status of parallel sharing is
not guaranteed to be globally consistent until after BulkData: :modification_end().

Mesh modification should generally not be done while looping over buckets. The problem is that
mesh modification can cause entities to move from one bucket to another, which can invalidate the
iteration over a particular bucket. Any loop that makes the assumption of Bucket stability, either
the existence/order of a Bucket or the order of entities within the bucket, is not safe if the loop does
mesh modification. Some errors that can result will be checked in debug, but never in release. If
you must iterate the mesh and do mesh modification during the iteration, use an entity loop, not a
bucket loop.

1.6.5 Automatic modification operations in modification_end()

When the client code is finished with all direct calls to any of the modifications in Section 1.6.2, it
must call modification_end () to close the modification cycle.

BulkData::modification_end () automatically performs several types of modifications
to the mesh to bring it into a parallel consistent state. These include

Synchronizing entity membership in parts for shared entities.

Refreshing the ghost layer around shared entities (referred to as the aura).

Updating ghost entities in the aura that have changed part membership.

Sorting buckets’ entities for a well-defined ordering.
Resolve side creation on the subdomain boundaries.

It is important to note that modification_end () used to automatically determine the sharing
of nodes that had been created with the same global identifier on multiple MPI processors. It no
longer does this, and client code is now required to inform STK Mesh of node sharing information.
See section 1.6.2.3 for more details.

Since the sharing of entities is only changed automatically by STK Mesh internally, that function-
ality is not available through the STK Mesh API.

1.6.6 How to use generate_new_entities()

This example (Listing 1.19) shows how to use BulkData: :generate_new_entities|()
to create new entities. After the entities are created, the ELEMENT RANK entities are each as-
signed a topology and their nodal relations are set before BulkData: :modification_end()
is called. FACE_RANK and EDGE_RANK entities have the same requirement, but none

47

are included in this example. The example also illustrates that it is incorrect to call
BulkData: :modification_end () if the requirement is not met.

Listing 1.19: Example of how to generate multiple new entities and subsequently set topologies and nodal

relations ../../../code/stk/stk_mesh/testsForDocumentation/generateNewEntities.cpp

68 TEST (stkMeshHowTo, generateNewEntities)

69 {

70 const unsigned spatialDimension = 3;

71

72 stk::mesh::MetaData metaData (spatialDimension, stk::mesh::entity_rank_names());

73 stk::mesh::Part &tetPart = metaData.declare_part_with_topology ("tetElementPart",
stk::topology::TET_4);

74 stk::mesh::Part &hexPart = metaData.declare_part_with_topology ("hexElementPart",
stk::topology: :HEX_8);

75 metaData.commit () ;

76

77 // Parts vectors handy for setting topology later.

78 std::vector<stk::mesh::Part *> add_tetPart(l);

79 add_tetPart[0] = &tetPart;
80 std::vector<stk::mesh::Part *> add_hexPart (1l);
81 add_hexPart [0] = &hexPart;

82
83 stk::mesh::BulkData mesh (metaData, MPI_COMM_WORLD) ;
84 mesh.modification_begin();

85

86 std::vector<size_t> requests (metaData.entity_rank_count (), 0);
87 const size_t num_nodes_requested = 12;

88 const size_t num_elems_requested = 2;

89 requests[stk::topology: :NODE_RANK] = num_nodes_requested;

90 requests[stk::topology: :ELEMENT_RANK] = num_elems_requested;
91 std::vector<stk::mesh::Entity> requested_entities;

92

93 mesh.generate_new_entities (requests, requested_entities);

94

95 // Set topologies of new entities with rank > stk::topology::NODE_RANK.

96 stk::mesh::Entity eleml = requested_entities[num_nodes_requested];
97 mesh.change_entity_parts(eleml, add_tetPart);
98 stk::mesh::Entity elem2 = requested_entities[num_nodes_requested + 11];

99 mesh.change_entity_parts(elem2, add_hexPart);
100

101 // Set downward relations of entities with rank > stk::topology::NODE_RANK
102 unsigned node_i = 0;

103 for (unsigned node_ord = 0 ; node_ord < 4; ++node_ord, ++node_i)

104 {

105 mesh.declare_relation(eleml , requested_entities[node_i] , node_ord);
106 }

107 for (unsigned node_ord = 0 ; node_ord < 8; ++node_ord, ++node_i)

108 {

109 mesh.declare_relation(elem2 , requested_entities[node_i] , node_ord);
110 }

111 mesh.modification_end();

112

113 check_connectivities_for_stkMeshHowTo_generateNewEntities (mesh, eleml, elem2,
requested_entities);

114

115 // Not setting topologies of new entities with rank > stk::topology::NODE_RANK causes throw

116 mesh.modification_begin();

117 std::vector<stk::mesh::Entity> more_requested_entities;

118 mesh.generate_new_entities (requests, more_requested_entities);

119 #ifdef NDEBUG

120 mesh.modification_end();

121 #else

122 EXPECT_THROW (mesh.modification_end(), std::logic_error);

123 #endif

124}

48

1.6.7 How to create faces

STK Mesh provides functions for creating all edges or faces for an existing mesh. This example
demonstrates first creating a mesh of hex elements with nodes, (generated by STK 10), then uses
the create_faces () function to create all faces in the mesh.

Listing 1.20: Example of how to create all element faces

.J.[..Jcode/stk/stk_mesh/testsForDocumentation/createFacesHex.cpp

49 TEST (StkMeshHowTo, CreateFacesHex)
50 {

51 //

52 // INITIALIZATION

53 MPI_Comm communicator = MPI_COMM_WORLD;

54 if (stk::parallel_machine_size (communicator) != 1) { return; }
55 stk::io0::StkMeshIoBroker stkIo(communicator);

56

57 const std::string generatedFileName = "generated:8x8x8";

58 stkIo.add_mesh_database (generatedFileName, stk::io::READ_MESH);
59 stkIo.create_input_mesh();

60 stkIo.populate_bulk_data();

61

62 //

63 //+ EXAMPLE

64 //+ Create the faces..

65 stk::mesh::create_faces (stkIo.bulk_data());

66

67 //

68 // VERIFICATION

69 stk::mesh::Selector allEntities = stkIo.meta_data() .universal_part();
70 std::vector<unsigned> entityCounts;

71 stk::mesh::count_entities(allEntities, stkIo.bulk _data(), entityCounts);
72 EXPECT_EQ(512u, entityCounts[stk::topology::ELEMENT_RANK]) ;

73 EXPECT_EQ(1728u, entityCounts[stk::topology::FACE_RANK]) ;

74

75 // Edges are not generated, only faces.

76 EXPECT_EQ (Ou, entityCounts[stk::topology: :EDGE_RANK]) ;

77 }

1.6.8 How to create both edges and faces

This example demonstrates create all edges as well as faces for a hex-element mesh. Note that
these functions only create relations to elements and nodes, so the faces will not have relations to
the edges when both create_edges () and create_faces () are called.

Listing 1.21: Example of how to create all element edges and faces

.J..[../code/stk/stk_mesh/testsForDocumentation/createFacesEdgesHex.cpp

61 TEST (StkMeshHowTo, CreateFacesEdgesHex)

62 {

63 //

64 // INITIALIZATION

65 MPI_Comm communicator = MPI_COMM_WORLD;

66 if (stk::parallel_machine_size (communicator) != 1) { return; }
67 stk::io::StkMeshIoBroker stkIo(communicator);

68

69 const std::string generatedFileName = "generated:8x8x8";

70 stkIo.add_mesh_database (generatedFileName, stk::io::READ_MESH);

49

71 stkIo.create_input_mesh();

72 stkIo.populate_bulk_data();

73

74 //

75 //+ EXAMPLE

76 //+ Create the faces..

77 stk::mesh::create_faces (stkIo.bulk_data());

78

79 //+ Create the edges..

80 stk::mesh::create_edges (stkIo.bulk_data());

81

82 //

83 // VERIFICATION

84 stk::mesh::Selector allEntities = stkIo.meta_data() .universal_part();

85 std::vector<unsigned> entityCounts;

86 stk::mesh::count_entities (allEntities, stkIo.bulk_data(), entityCounts);

87 EXPECT_EQ(512u, entityCounts[stk::topology::ELEMENT_RANK]) ;

88 EXPECT_EQ(1728u, entityCounts[stk::topology::FACE_RANK]) ;

89 EXPECT_EQ(1944u, entityCounts[stk::topology::EDGE_RANK]) ;

90 // MAKE SURE FACES ARE HOOKED TO EDGES

91 // this should happen if create_faces is called before create_edges

92 stk::mesh: :BucketVector const & face_buckets =
stkIo.bulk_data() .buckets (stk::topology: :FACE_RANK) ;

93 for (size_t bucket_count=0, bucket_end=face_buckets.size(); bucket_count < bucket_end;
++bucket_count) {

94 stk::mesh::Bucket & bucket = xface_buckets|[bucket_count];

95 const unsigned num_expected_edges = bucket.topology () .num_edges|();

96 EXPECT_EQ (4u, num_expected_edges) ;

97 for (size_t face_count=0, face_end=bucket.size(); face_count < face_end; ++face_count) {

98 stk::mesh::Entity face = bucket[face_count];

99 EXPECT_EQ (num_expected_edges, stkIo.bulk_data() .num_edges (face));

100 }

101 }

102 }

1.6.9 How to create faces on only selected elements

This example demonstrates creating faces for a subset of the mesh elements defined by a Selector.
Note that the “generated-mesh” syntax specifies that the initial mesh contains not only hex elements
but also shell elements on all 6 sides.

Listing 1.22: Example of how to create faces on only selected elements

./.[..Jcode/stk/stk_mesh/testsForDocumentation/createSelectedFaces.cpp

52 TEST (StkMeshHowTo, CreateSelectedFacesHex)
53 {

54 //

55 // INITIALIZATION

56 MPI_Comm communicator = MPI_COMM_WORLD;

57 if (stk::parallel_machine_size (communicator) != 1) { return; }

58 stk::io::StkMeshIoBroker stkIo(communicator);

59

60 // Generate a mesh containing 1 hex part and 6 shell parts

61 const std::string generatedFileName = "generated:8x8x8|shell:xyzXYZ";
62 stkIo.add_mesh_database (generatedFileName, stk::io::READ_MESH);

63 stkIo.create_input_mesh();

64 stkIo.populate_bulk_data();

65 const stk::mesh::PartVector &all_parts = stkIo.meta_data().get_mesh_parts();
66

67 //

68 //+ EXAMPLE

50

69 //+ Create a selector containing just the shell parts.

70 stk::mesh::Selector shell_subset;

71 for (size_t i=0; 1 < all_parts.size(); i++) {

72 const stk::mesh::Part xpart = all_parts([i];

73 stk::topology topo = part->topology();

74 if (topo == stk::topology::SHELL_QUAD_4) {

75 shell_subset |= x*part;

76 }

77 }

78

79 //+ Create the faces on just the selected shell parts.

80 stk::mesh::create_faces (stkIo.bulk_data(), shell_subset);

81

82 //

83 // VERIFICATION

84 stk::mesh::Selector allEntities = stkIo.meta_data() .universal _part();
85 std::vector<unsigned> entityCounts;

86 stk::mesh::count_entities (allEntities, stkIo.bulk_data(), entityCounts);
87 EXPECT_EQ(896u, entityCounts[stk::topology::ELEMENT_RANK]) ;
88 EXPECT_EQ(768u, entityCounts[stk::topology::FACE_RANK]) ;

89

90 // Edges are not generated, only faces.

91 EXPECT_EQ (0u, entityCounts[stk::topology: :EDGE_RANK]) ;

93

1.6.10 Creating faces with layered shells

This example shows how many faces will be created when there are layered shells present.

Listing 1.23: Example showing that faces are created correctly when layered shells are present

./.J..[code/stk/stk_mesh/testsForDocumentation/CreateFacesLayeredShellsHex.cpp

49 TEST (StkMeshHowTo, CreateFacesLayeredShellsHex)

50 {

51 //

52 // INITIALIZATION

53 MPI_Comm communicator = MPI_COMM_WORLD;

54 if (stk::parallel_machine_size (communicator) != 1) { return; }

55 stk::io::StkMeshIoBroker stkIo(communicator);

56

57 // Generate a mesh containing 1 hex part and 12 shell parts

58 // Shells are layered 2 deep.

59 const std::string generatedFileName = "generated:8x8x8|shell:xxyyzzXYZXYZ";
60 stkIo.add_mesh_database (generatedFileName, stk::io::READ_MESH);

61 stkIo.create_input_mesh();

62 stkIo.populate_bulk_data();

63

64 //

65 //+ EXAMPLE

66 //+ Create the faces

67 stk::mesh::create_faces (stkIo.bulk_data());

68

69 //

70 // VERIFICATION

71 stk::mesh::Selector allEntities = stkIo.meta_data() .universal _part();
72 std::vector<unsigned> entityCounts;

73 stk::mesh::count_entities (allEntities, stkIo.bulk_data(), entityCounts);
74 EXPECT_EQ(1280u, entityCounts[stk::topology::ELEMENT_RANK]) ;

75 //+ The shell faces are the same as the boundary hex faces

76 EXPECT_EQ(2112u, entityCounts[stk::topology::FACE_RANK]) ;

51

78 // Edges are not generated, only faces.

79 EXPECT_EQ (0u, entityCounts[stk::topology: :EDGE_RANK]) ;
80 }

81

1.6.11 Creating faces between hexes, on shells, and on shells between hexes

This example shows how many faces are created on interior faces between hexes and shells.

Listing 1.24: Example of how many faces get constructed by CreateFaces between two hexes.

./..[..[code/stk/stk_mesh/testsForDocumentation/CreateFacesHexesShells.cpp

52 TEST (StkMeshHowTo, CreateFacesTwoHexes)
53 {

54 if (stk::parallel_machine_size (MPI_COMM_WORLD) == 1) {

55 /] e

56 /7| | I

57 // |HEX1|HEX2|

58 /7 I I

59 /] —mmm——————=

60 stk::i0::StkMeshIoBroker stkMeshIoBroker (MPI_COMM_WORLD) ;

61 stkMeshIoBroker.add_mesh_database ("AA.e", stk::io::READ_MESH);

62 stkMeshIoBroker.create_input_mesh () ;

63 stkMeshIoBroker.populate_bulk_data();

64 stk::mesh::BulkData &mesh = stkMeshIoBroker.bulk_data();

65

66 stk::mesh::create_faces (mesh);

67

68 /] === F -

69 /7 A \

70 // |HEX1|<-C->|HEX2 | Also external faces!

71 /] [\

72 /] —mmm !

73

74 unsigned first_bucket = 0;

75 unsigned first_element_in_bucket = 0;

76 stk::mesh::Entity first_element =
(*mesh.buckets (stk::topology: :ELEMENT_RANK) [first_bucket]) [first_element_in_bucket];

77 stk::mesh::Entity internal_face = mesh.begin_faces (first_element) [5];

78

79 unsigned num_elements_connected_to_single_face = 2;

80 EXPECT_EQ (num_elements_connected_to_single_face, mesh.num_elements (internal_face));

81

82 unsigned num_expected_external_faces = 10u;

83 unsigned num_expected_internal_faces = lu;

84 unsigned num_expected_faces = num_expected_external_faces +
num_expected_internal_ faces;

85 stk::mesh::Selector all_entities = mesh.mesh_meta_data () .universal_part();

86 std::vector<unsigned> entity_counts;

87 stk::mesh::count_entities(all_entities, mesh, entity_counts);

88 EXPECT_EQ (num_expected_faces, entity_counts[stk::topology::FACE_RANK]);

89 }

90 }

Listing 1.25: Example of how many faces get constructed by CreateFaces on a shell.

.J.[..Jcode/stk/stk_mesh/testsForDocumentation/CreateFacesHexesShells.cpp

94 TEST (StkMeshHowTo, CreateFacesSingleShell)
95 {
96 if (stk::parallel_machine_size (MPI_COMM_WORLD) == 1) {

52

97 // S
98 // H
99 // E
100 // L
101 // L
102 stk::io::StkMeshIoBroker stkMeshIoBroker (MPI_COMM_WORLD) ;
103 stkMeshIoBroker.add_mesh_database ("e.e", stk::io::READ_MESH);
104 stkMeshIoBroker.create_input_mesh();
105 stkMeshIoBroker.populate_bulk_data();
106 stk::mesh::BulkData &mesh = stkMeshIoBroker.bulk_data();
107
108 stk::mesh::create_faces (mesh);
109
110 // F S F
111 // A H A
112 // C->E<-C
113 // E L E
114 // 1 L 2
115
116 unsigned first_bucket = 0;
117 unsigned first_element_in_bucket = 0;
118 stk::mesh::Entity first_element =
(*mesh.buckets (stk::topology: :ELEMENT_RANK) [first_bucket]) [first_element_in_bucket];
119 stk::mesh::Entity face_one = mesh.begin_faces (first_element) [0];
120 unsigned num_elements_connected_to_face_one = 1;
121 EXPECT_EQ (num_elements_connected_to_face_one, mesh.num_elements (face_one));
122
123 stk::mesh::Entity face_two = mesh.begin_faces (first_element) [1];
124 unsigned num_elements_connected_to_face_two = 1;
125 EXPECT_EQ (num_elements_connected_to_face_two, mesh.num_elements (face_two));
126
127 EXPECT_NE (face_one, face_two);
128
129 unsigned num_expected_faces = 2u;
130 stk::mesh::Selector all_entities = mesh.mesh_meta_data() .universal_part();
131 std::vector<unsigned> entity_counts;
132 stk::mesh::count_entities(all_entities, mesh, entity_counts);
133 EXPECT_EQ (num_expected_faces, entity_counts[stk::topology::FACE_RANK]);
134 }

135}

Listing 1.26: Example of how many faces get constructed by CreateFaces between hexes and an internal

shell. ../../../code/stk/stk_mesh/testsForDocumentation/CreateFacesHexesShells.cpp

139 TEST (StkMeshHowTo, CreateFacesTwoHexesInternalShell)

140 {

141 if (stk::parallel_machine_size (MPI_COMM_WORLD) == 1) {

142 /] e S—————=

143 /] |HI |

144 // |HEX1|E|HEX2|

145 /] L] I

146 /] = L

147 stk::io::StkMeshIoBroker stkMeshIoBroker (MPI_COMM_WORLD) ;
148 stkMeshIoBroker.add_mesh_database ("AeA.e", stk::io0::READ_MESH);
149 stkMeshIoBroker.create_input_mesh () ;

150 stkMeshIoBroker.populate_bulk_data();

151 stk::mesh::BulkData &mesh = stkMeshIoBroker.bulk_data();
152

153 stk::mesh::create_faces (mesh);

154

155 /] —mmm F S F ————-

156 /7 | A H A |

157 // |HEX1|<-C—>E<-C->|HEX2| Also external faces!

158 /7 | E L E | |

159 // === 1 L 2 —-——-

160

53

161 unsigned first_bucket = 0;

162 unsigned first_element_in_bucket = 0;
163 stk::mesh::Entity first_element =
(+#mesh.buckets (stk::topology: :ELEMENT_RANK) [first_bucket]) [first_element_in_bucket];
164 stk::mesh::Entity internal_face_one = mesh.begin_faces (first_element) [5];
165 unsigned num_elements_connected_to_face_one = 2;
166 EXPECT_EQ (num_elements_connected_to_face_one, mesh.num_elements (internal_face_one));
167
168 unsigned second_element_in_bucket = 1;
169 stk::mesh::Entity second_element =
(#mesh.buckets (stk::topology: :ELEMENT_RANK) [first_bucket]) [second_element_in_bucket];
170 stk::mesh::Entity internal_face_two = mesh.begin_faces (second_element) [4];
171 unsigned num_elements_connected_to_face_two = 2;
172 EXPECT_EQ (num_elements_connected_to_face_two, mesh.num_elements (internal_face_two));
173
174 EXPECT_NE (internal_face_one, internal_face_two);
175
176 unsigned num_expected_external_faces = 10u;
177 unsigned num_expected_internal_faces = 2u;
178 unsigned num_expected_faces = num_expected_external_faces +
num_expected_internal_ faces;
179 stk::mesh::Selector all_entities = mesh.mesh_meta_data () .universal_part();
180 std::vector<unsigned> entity_counts;
181 stk::mesh::count_entities(all_entities, mesh, entity_counts);
182 EXPECT_EQ (num_expected_faces, entity_counts[stk::topology::FACE_RANK]);
183 }
184 }

1.6.12 How to skin a mesh

STK Mesh provides functions for skinning an existing mesh and creating appropriate boundary
sides. This example demonstrates first creating a mesh of one hex element with nodes, (generated
by STK 10), then uses the the create_exposed_boundary_sides () function to skin the
mesh.

Listing 1.27: Example of how to create all the exposed boundary sides

.J../../code/stk/stk_mesh/testsForDocumentation/howToSkinMesh.cpp

50 TEST (StkMeshHowTo, SkinExposedHex)
514

52 //

53 // INITIALIZATION

54 MPI_Comm communicator = MPI_COMM_WORLD;

55 if (stk::parallel_machine_size (communicator) != 1) { return; }
56 stk::io::StkMeshIoBroker stkIo(communicator);

57

58 const std::string generatedFileName = "generated:1x1x1l";

59 stkIo.add_mesh_database (generatedFileName, stk::io::READ_MESH);
60 stkIo.create_input_mesh();

61 stkIo.populate_bulk_data();

62

63 //

64 //+ EXAMPLE

65 //+ Skin the mesh and create the exposed boundary sides..

66 stk::mesh::MetaData &metaData = stkIo.meta_datal();

67 stk::mesh::BulkData &bulkData = stkIo.bulk_dataf();

68 stk::mesh::Selector allEntities = metaData.universal_part();

69 stk::mesh::Part &skinPart = metaData.declare_part ("skin", metaData.side_rank());
70 stk::io::put_io_part_attribute (skinPart);

54

72 stk::mesh::create_exposed_block_boundary_sides (bulkData, allEntities, {&skinPart});
73

74 //

75 // VERIFICATION

76 EXPECT_TRUE (stk: :mesh: :check_exposed_block _boundary_sides (bulkData, allEntities,
skinPart));

77 stk::mesh::Selector skin(skinPart & metaData.locally_owned_part());

78 unsigned numSkinnedSides = stk::mesh::count_selected_entities (skin,
bulkData.buckets (metaData.side_rank()));

79 EXPECT_EQ (6u, numSkinnedSides) << "in part " << skinPart.name();

80 }

1.6.13 How to create internal block boundaries of a mesh

STK Mesh also provides functions for creating the interior block boundary sides of an exist-
ing mesh. This example demonstrates first creating a mesh of two hex element with nodes,
(generated by STK IO), creation of an IOPart into which element 2 is moved, followed by
create_interior_block_boundary_sides () function to skin the mesh interior.

Listing 1.28: Example of how to create all the interior block boundary sides

.J../../code/stk/stk_mesh/testsForDocumentation/howToSkinMesh.cpp

84 TEST (StkMeshHowTo, SkinInteriorHex)

85 {

86 //

87 // INITIALIZATION

88 MPI_Comm communicator = MPI_COMM_WORLD;

89 if (stk::parallel_machine_size (communicator) != 1) { return; }

90 stk::io::StkMeshIoBroker stkIo(communicator);

91

92 const std::string generatedFileName = "generated:1x1lx2";

93 stkIo.add_mesh_database (generatedFileName, stk::io::READ_MESH);

94 stkIo.create_input_mesh();

95 stkIo.populate_bulk_data();

96

97 //

98 //+ EXAMPLE

99 //+ Skin the mesh and create the exposed boundary sides..

100 stk::mesh::MetaData &metaData = stkIo.meta_datal();

101 stk::mesh::BulkData &bulkData = stkIo.bulk_data();

102 stk::mesh::Selector allEntities = metaData.universal_part();

103 stk::mesh::Part &skinPart = metaData.declare_part ("skin", metaData.side_rank());

104 stk::io::put_io_part_attribute (skinPart);

105

106 stk::mesh::Entity elem2 = bulkData.get_entity (stk::topology::ELEM_RANK, 2u);

107 stk::mesh::Part xblock_1 = metaData.get_part ("block_1");

108

109 bulkData.modification_begin();

110 stk::mesh::Part &block_2 = metaData.declare_part ("block_2", stk::topology::ELEM_RANK) ;

111 stk::io::put_io_part_attribute (block_2);

112 bulkData.change_entity_parts(elem2, {&block_2}, {block_1});

113 bulkData.modification_end() ;

114

115 stk::mesh::create_interior_block_boundary_sides (bulkData, allEntities, {&skinPart});

116

117 //

118 // VERIFICATION

119 EXPECT_TRUE (stk::mesh::check_interior_block_boundary_sides (bulkData, allEntities,
skinPart));

120 stk::mesh::Selector skin(skinPart & metaData.locally_owned_part());

55

121 unsigned numSkinnedSides = stk::mesh::count_selected_entities (skin,
bulkData.buckets (metaData.side_rank()));

122 EXPECT_EQ (1u, numSkinnedSides) << "in part " << skinPart.name();

123}

1.6.14 How to destroy elements in list

STK Mesh now provides a means by which an application may destroy all the elements in a list as
well as the downward connected entities in order to ensure that there are no orphaned nodes/faces.

Listing 1.29: Example of how to destroy elements in a list

.J../../code/stk/stk_mesh/testsForDocumentation/howToDestroyElementsInList.cpp

1l TEST (StkMeshHowTo, DestroyElementsInList)

12 {

13 stk::mesh::MetaData metaData;

14 stk::mesh::BulkData bulkData (metaData, MPI_COMM_WORLD) ;

15 stk::unit_test_util::fill mesh using stk_io("generated:1x1x4", bulkData);

16 EXPECT_GT (stk::mesh::count_selected_entities (metaData.universal_part (),
bulkData.buckets (stk::topology::ELEM_RANK)), 0Ou);

17 stk::mesh::EntityVector
elementsToDestroy{bulkData.get_entity(stk::topology::ELEMENT_RANK,1) };

18 stk::mesh::destroy_elements (bulkData, elementsToDestroy);

19

20 stk::mesh::EntityVector orphanedNodes {

21 bulkData.get_entity (stk::topology::NODE_RANK,1),

22 bulkData.get_entity (stk::topology::NODE_RANK, 2),

23 bulkData.get_entity (stk::topology::NODE_RANK, 3),

24 bulkData.get_entity (stk::topology: :NODE_RANK, 4)

25 }i

26

27 for (stk::mesh::Entity node : orphanedNodes)

28 EXPECT_FALSE (bulkData.is_valid (node));

29 '}

1.7 STK Mesh usage examples

This section gives examples of how to access and manipulate a STK Mesh. The examples attempt
to give demonstrations of several common tasks that an application developer may want to perform
using STK Mesh.

1.7.1 How to iterate over nodes

This example shows how to select the nodes for a subset of the mesh (a surface part), then iterate
over those nodes and access the values of a temperature field associated with the nodes.

Listing 1.30: Example of iterating over nodes

./..[../code/stk/stk_mesh/testsForDocumentation/howTolterateEntities.cpp

56

55 TEST (StkMeshHowTo, iterateSidesetNodesMostEfficientlyForFieldDataAccess)
56 {

57 MPI_Comm communicator = MPI_COMM_WORLD;

58 if (stk::parallel_machine_size (communicator) != 1) { return; }

59 stk::io::StkMeshIoBroker stkMeshIoBroker (communicator);

60 // syntax creates faces for the surface on the positive ’'x-side’ of the 2x2x2 cube,
61 // this part is given the name ’surface_1’ when it is created [create_input_mesh()]
62 const std::string generatedMeshSpecification = "generated:2x2x2|sideset:X";

63 stkMeshIoBroker.add_mesh_database (generatedMeshSpecification, stk::io::READ_MESH) ;
64 stkMeshIoBroker.create_input_mesh();

65

66 stk::mesh::MetaData &stkMeshMetaData = stkMeshIoBroker.meta_data();

67 stk::mesh::Field<double> &temperatureField =

stkMeshMetaData.declare_field<stk::mesh::Field<double>
> (stk::topology: :NODE_RANK, "temperature");

68 stk::mesh::put_field on_entire_mesh (temperatureField);

69 stkMeshIoBroker.populate_bulk_data();

70

71 stk::mesh::Part &boundaryConditionPart = xstkMeshMetaData.get_part ("surface_1");
72 stk::mesh::Selector boundaryNodesSelector (boundaryConditionPart) ;

73

74 stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

75 const stk::mesh::BucketVector &boundaryNodeBuckets =

stkMeshBulkData.get_buckets (stk::topology: :NODE_RANK, boundaryNodesSelector);
76

71 double prescribedTemperatureValue = 2.0;

78 std::set<stk::mesh::EntityId> boundaryNodelds;

79 for (size_t bucketIndex = 0; bucketIndex < boundaryNodeBuckets.size(); ++bucketIndex)
80 {

81 stk::mesh: :Bucket &nodeBucket = xboundaryNodeBuckets[bucketIndex];

82 double xtemperatureValues = stk::mesh::field data (temperatureField, nodeBucket);
83 for (size_t nodeIndex = 0; nodelIndex < nodeBucket.size(); ++nodelndex)

84 {

85 stk::mesh::Entity node = nodeBucket [nodeIndex];

86 boundaryNodelIds.insert (stkMeshBulkData.identifier (node));

87 temperatureValues [nodeIndex] = prescribedTemperatureValue;

88 }

89 }

9

91 testUtils::testTemperatureFieldSetCorrectly (temperatureField, prescribedTemperatureValue,

boundaryNodelIds) ;
92 }
93
4 TEST (StkMeshHowTo, iterateSidesetNodesWithFieldDataAccess)
95 {

96 MPI_Comm communicator = MPI_COMM_WORLD;

97 if (stk::parallel_machine_size (communicator) != 1) { return; }

98 stk::io0::StkMeshIoBroker stkMeshIoBroker (communicator);

99 // syntax creates faces for the surface on the positive ’'x-side’ of the 2x2x2 cube,
100 // this part is given the name ’surface_1’ when it is created [create_input_mesh()]
101 const std::string generatedMeshSpecification = "generated:2x2x2|sideset:X";

102 stkMeshIoBroker.add_mesh_database (generatedMeshSpecification, stk::io::READ_MESH) ;

103 stkMeshIoBroker.create_input_mesh () ;
104
105 stk::mesh::MetaData &stkMeshMetaData = stkMeshIoBroker.meta_data();
106 stk::mesh::Field<double> &temperatureField =
stkMeshMetaData.declare_field<stk::mesh::Field<double>
> (stk::topology::NODE_RANK, "temperature");
107 stk::mesh::put_field _on_entire_mesh (temperatureField);
108 stkMeshIoBroker.populate_bulk_data();
109
110 stk::mesh::Part &boundaryConditionPart = *stkMeshMetaData.get_part ("surface_1");
111 stk::mesh::Selector boundaryNodesSelector (boundaryConditionPart) ;
112
113 stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();
114
115 stk::mesh::EntityVector nodes;

57

116 stk::mesh::get_selected_entities (boundaryNodesSelector,
stkMeshBulkData.buckets (stk::topology: :NODE_RANK), nodes);
117

118 double prescribedTemperatureValue = 2.0;

119 std::set<stk::mesh::EntityId> boundaryNodeIds;

120

121 for (size_t nodeIndex = 0; nodelIndex < nodes.size(); ++nodelndex)

122 {

123 boundaryNodeIds.insert (stkMeshBulkData.identifier (nodes[nodelIndex]));

124 double xtemperatureValues = stk::mesh::field_data (temperatureField, nodes[nodelIndex]);
125 *temperatureValues = prescribedTemperatureValue;

126 }

127

128 testUtils::testTemperatureFieldSetCorrectly (temperatureField, prescribedTemperatureValue,

boundaryNodeIds) ;
129 }

1.7.2 How to traverse connectivity

stk::mesh: :BulkData provides member functions for accessing connectivity data by entity
and rank. The implementations of these BulkData methods must first look up the bucket for
the given entity and rank and the entity’s index in that bucket. When iterating through the entities
in a given bucket, it is therefore more efficient to access this connectivity data through a second
connectivity API that STK Mesh provides on the Bucket.

Listing 1.31: Example of how to traverse connectivity via accessors on BulkData and via accessors on

Bucket ../../../code/stk/stk_mesh/testsForDocumentation/howTolterateConnectivity.cpp

54 TEST (StkMeshHowTo, iterateConnectivityThroughBulkData)
55 {

56 MPI_Comm communicator = MPI_COMM_WORLD;

57 if (stk::parallel _machine_size (communicator) != 1) { return; }

58 stk::io::StkMeshIoBroker stkMeshIoBroker (communicator);

59 // Generate a mesh of hexes with a sideset

60 const std::string generatedMeshSpecification = "generated:2x2x2|sideset:X";

61 stkMeshIoBroker.add mesh_database (generatedMeshSpecification, stk::io::READ_MESH) ;
62 stkMeshIoBroker.create_input_mesh () ;

63 stkMeshIoBroker.populate_bulk_datal();

64

65 stk::mesh::MetaData &stkMeshMetaData = stkMeshIoBroker.meta_data();

66 stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

67 const stk::mesh::BucketVector &elementBuckets =

68 stkMeshBulkData.buckets (stk::topology: :ELEMENT_RANK) ;

69

70 typedef stk::mesh::Field<double, stk::mesh::Cartesian> CoordinatesField_t;

71 CoordinatesField_t const & coord_field =

72 rdynamic_cast<CoordinatesField_t const x> (stkMeshMetaData.coordinate_field());
73

74 const unsigned nodesPerHex = 8§;

75 const unsigned spatialDim = 3;

76 unsigned count = 0;

77 double elementNodeCoords[nodesPerHex] [spatialDim];

78 for (size_t bucketIndex = 0; bucketIndex < elementBuckets.size(); ++bucketIndex)
79 {

80 stk::mesh::Bucket &elemBucket = xelementBuckets[bucketIndex];

81 for (size_t elemIndex = 0; elemIndex < elemBucket.size(); ++elemIndex)

82 {

83 stk::mesh::Entity elem = elemBucket[elemIndex];

84 unsigned numNodes = stkMeshBulkData.num_nodes (elem) ;

85 EXPECT_EQ (numNodes, nodesPerHex) ;

58

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

stk::mesh::Entity constx nodes = stkMeshBulkData.begin_ nodes (elem) ;

for (unsigned inode = 0; inode < numNodes; ++inode)

{
double *coords = stk::mesh::field_data(coord_field, nodes[inode]);
elementNodeCoords[inode] [0] = coords[0];

]
elementNodeCoords|[inode] [1] = coords[1l];
elementNodeCoords[inode] [2] = coords[2];
EXPECT_NE (elementNodeCoords[inode] [0], std::numeric_limits<double>
EXPECT_NE (elementNodeCoords [inode] [1], std::numeric_limits<double>
EXPECT_NE (elementNodeCoords [inode] [2], std::numeric_limits<double>
++count;

}
EXPECT_GE (count, 1u);

TEST (StkMeshHowTo, iterateConnectivityThroughBuckets)

{

MPI_Comm communicator = MPI_COMM_WORLD;

if (stk::parallel_machine_size (communicator) != 1) { return; }
stk::i0::StkMeshIoBroker stkMeshIoBroker (communicator);

// Generate a mesh of hexes with a sideset

const std::string generatedMeshSpecification = "generated:2x2x2|sideset:X";

cimax());
ctmax());
cimax());

stkMeshIoBroker.add_mesh_database (generatedMeshSpecification, stk::io::READ_MESH) ;

stkMeshIoBroker.create_input_mesh();
stkMeshIoBroker.populate_bulk_data();

stk::mesh::MetaData &stkMeshMetaData = stkMeshIoBroker.meta_data();

stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

const stk::mesh::BucketVector &elementBuckets =
stkMeshBulkData.buckets (stk::topology: :ELEMENT_RANK) ;

typedef stk::mesh::Field<double, stk::mesh::Cartesian> CoordinatesField_t;
CoordinatesField_t const & coord_field =

xdynamic_ cast<CoordinatesField_t const x> (stkMeshMetaData.coordinate_field());

const unsigned nodesPerHex = 8;

const unsigned spatialDim = 3;

unsigned count = 0;

double elementNodeCoords[nodesPerHex] [spatialDim];

for (size_t bucketIndex = 0; bucketIndex < elementBuckets.size(); ++bucketIndex)

{
stk::mesh: :Bucket &elemBucket = xelementBuckets[bucketIndex];
for (size_t elemIndex = 0; elemIndex < elemBucket.size(); ++elemIndex)
{
unsigned numNodes = elemBucket.num_nodes (elemIndex) ;
EXPECT_EQ (numNodes, nodesPerHex);
stk::mesh::Entity constx nodes = elemBucket.begin_nodes (elemIndex) ;
for (unsigned inode = 0; inode < numNodes; ++inode)
{
double xcoords = stk::mesh::field_data(coord_field, nodes[inode]);
elementNodeCoords[inode] [0] = coords[0];
elementNodeCoords|[inode] [1] = coords[1l];
elementNodeCoords[inode] [2] = coords[2];
EXPECT_NE (elementNodeCoords [inode] [0], std::numeric_limits<double>
EXPECT_NE (elementNodeCoords [inode] [1], std::numeric_limits<double>

EXPECT_NE (elementNodeCoords [inode] [2], std::numeric_limits<double>:

++count;

}
EXPECT_GE (count, 1u);

cimax());
ctmax());
rmax());

59

1.7.3 How to check side equivalency

Listing 1.32: Example of how to check side equivalency

.J.[..Jcode/stk/stk_mesh/testsForDocumentation/howToUseEquivalent.cpp

19 TEST_F (MeshWithSide, whenCheckingSideEquivalency_returnsCorrectPermutation)
20 |

21 if (stk::parallel_machine_size(get_comm()) == 1) {

22 setup_mesh ("generated:1x1x4|sideset:x", stk::mesh::BulkData::NO_AUTO_AURA);

23 stk::mesh::Entity eleml = get_bulk() .get_entity(stk::topology::ELEM_RANK, 1);

24 ASSERT_EQ (1u, get_bulk () .num_faces(eleml));

25 const stk::mesh::Entity side = xget_bulk () .begin_faces (eleml);

26 const stk::mesh::Permutation perm = xget_bulk () .begin_face_permutations (eleml);

27 const stk::mesh::ConnectivityOrdinal ordinal = xget_bulk() .begin_face_ordinals(eleml);

28 const stk::mesh::Entityx sideNodes = get_bulk () .begin_nodes (side);

29

30 std::pair<bool,unsigned> equivAndPermutation = stk::mesh::side_equivalent (get_bulk(),
eleml, ordinal, sideNodes);

31 EXPECT_TRUE (equivAndPermutation.first);

32 EXPECT_EQ (perm, static_cast<stk::mesh::Permutation> (equivAndPermutation.second)) ;

33

34 EXPECT_TRUE (stk::mesh::is_side_equivalent (get_bulk (), eleml, ordinal, sideNodes));

35

36 stk::mesh: :EquivAndPositive result =

stk::mesh::is_side_equivalent_and_positive (get_bulk(), eleml, ordinal,
sideNodes) ;

37 EXPECT_TRUE (result.is_equiv);

38 EXPECT_TRUE (result.is_positive);
39 }

40 '}

1.7.4 Understanding node ordering of edges and faces

Listing 1.33 shows the difference between node orderings when using the STK Mesh
create_edges () and create_faces () functions versus STK Topology. Listing 2.10 has
more information regarding the lexicographical smallest permutation which is used to change the
ordering for the two cases.

Listing 1.33: Understanding edge and face ordering

./../../code/stk/stk_mesh/testsForDocumentation/createFacesEdgesHex.cpp

216 //

217 //+ EXAMPLE

218 //+ Create the faces..

219 stk::mesh::create_faces (bulkData);

220

221 unsigned goldValuesForHexFaceNodesFromStkTopology[6][4] = {

222 {1, 2, 6, 5}, {2, 3, 7, 6}, {3, 4, 8, 7}, {1, 5, 8, 4}, {1, 4, 3, 2}, {5 6, 7, 8} };

223

224 // Lexicographical smallest permutation per face leads from topology ordering (above) for
face to ordering below

225

226 unsigned goldValuesForHexFaceNodesFromCreateFaces[6][4] = {

227 {1, 2, 6, 5}y, {2, 3, 7, 6}, {3, 4, 8, 7}, {1, 4, 8, 5}, {1, 2, 3, 4}, {5, 6, 7, 8} };

228

229 //+ Create the edges..

230 stk::mesh::create_edges (bulkData) ;

231

232 unsigned goldValuesHexEdgeNodesFromStkTopology[12][2] = {

233 {1, 2}, {2, 3}, {3, 4}, {4, 1}, {5, 6}, {6, 7}, {7, 8}, {8, 5}, {1, 5}, {2, 6}, {3, 7},

{4, 8} };

60

234

235 // Lexicographical smallest permutation per edge leads from topology ordering (above) for
edge to ordering below

236

237 unsigned goldValuesHexEdgeNodesFromCreateEdges[12][2] = {
238 {1, 23y, {2, 3}, {3, 4}, {1, 4}, {5, 6}, {6, 7}, {7, 8}, {5, 8}, {1, 5}, {2, 6}, {3, 7},
{4, 8} };

239
240

1.7.5 How to sort entities into an arbitrary order

One possible use case for this is to try and improve cache hit rate when visiting the nodes of an
element.

Listing 1.34: Example showing how to sort entities by descending identifier.

.J..l../code/stk/stk_mesh/testsForDocumentation/howToSortEntities.cpp

#include "gtest/gtest.h"

1

2 #include <stk_mesh/base/BulkData.hpp>

3 #include <stk_unit_test_utils/MeshFixture.hpp>

4

5 namespace {

6

7 class EntityReverseSorter : public stk::mesh::EntitySorterBase

8 |

9 public:

10 virtual void sort (stk::mesh::BulkData &bulk, stk::mesh::EntityVector& entityVector) const

11 {

12 std::sort (entityVector.begin(), entityVector.end(),

13 [&bulk] (stk::mesh::Entity a, stk::mesh::Entity b) { return
bulk.identifier (a) > bulk.identifier(b); 1});

14 }

15 };

17 class HowToSortEntities : public stk::unit_test_util::MeshFixture
18 {
19 protected:

20 void sort_and_check ()

21 {

22 if (stk::parallel_machine_size (get_comm()) == 1)

23 {

24 setup_mesh ("generated:1x1x4", stk::mesh::BulkData::AUTO_AURA);
25 get_bulk () .sort_entities (EntityReverseSorter());

26 expect_entities_in_reverse_order();

27 }

28 }

29 void expect_entities_in_reverse_order ()

30 {

31 const stk::mesh::BucketVector buckets = get_bulk () .buckets (stk::topology::NODE_RANK) ;
32 ASSERT_EQ (1u, buckets.size());

33 expect_bucket_in_reverse_order (xbuckets[0]);

34 }

35 void expect_bucket_in_reverse_order (const stk::mesh::Bucket &bucket)
36 {

37 ASSERT_EQ (20u, bucket.size());

38 for(size_t i=1; i<bucket.size(); i++)

39 EXPECT_GT (get_bulk () .identifier (bucket[i-1]), get_bulk().identifier (bucket[i]));
40 }

41 };
42 TEST_F (HowToSortEntities, example_reverse)

61

43
44
45
46
47

sort_and_check () ;

62

Chapter 2

STK Topology

As stated in the introductory chapter, Topology provides an entity’s finite element description and
this includes a number of attributes such as the number and type of lower-rank entities that can
exist in that entity’s downward connectivity (e.g., the number of faces that an element topology
can have, the ordering of nodes attached to particular faces, etc.).

A primary goal of stk_topology is to provide fast traversal of sub-topologies, such as the edges
of an element or the nodes of a face, etc. stk_topology uses value semantics (e.g., no pointers
to singletons) and can be used on GPUs as well as CPUs. stk_topology provides compile-time
access to topology information, as well as run-time. (See Section 2.1.3, Listing 2.3).

2.1 STK Topology API

This section contains several code listings that attempt to aid in the understanding of the stk topol-
ogy APL

Note the following details of the API:

e num_nodes () vs num_vertices (): For linear topologies, the number of nodes equals
the number of vertices. For higher order topologies, “nodes” include those located at the
corners as well as those located at mide-sides and/or mid-edges; but “vertices” are only
those nodes located at the corners.

e is_shell (): Thisis a helper to distinguish between “structural” elements (such as shells
and beams), and “continuum” elements.

e Permutations (num_permutations () vsnum_positive_permutations ()): Dif-
ferent orderings of a topology’s nodes may appear in certain contexts. Positive vs negative
refers to whether a given node ordering represents a different direction “normal” for that
topology. Note also that this isn’t a true mathematical permutation since not all possible
“permutations” of the nodes are even valid; these permutations are essentially node traver-
sals with the same sequence but different starting points.

e base (): For topologies with polynomial order higher than linear, “base()” provides the
corresponding linear topology.

63

e is_superelement (), create_superelement_topology (): Super-elements
are used for reduced-order modeling in certain application formulations.

2.1.1 How to set and get topology

This example shows how to attach topology to entities (if entities are created “in line” rather than
being created by STK I0). Essentially, topology is attached to entities by declaring the entities
to be members of a Part that has the desired topology. The example also shows how to retrieve
topology from the mesh. More detailed information about STK Topology is provided in Chapter 2.

Listing 2.1: Example of setting/getting topology

./../../code/stk/stk_mesh/testsForDocumentation/setAndGetTopology.cpp

61 TEST (stkMeshHowTo, setAndGetTopology)

62 {

63 const unsigned spatialDimension = 3;

64 stk::mesh::MetaData metaData (spatialDimension, stk::mesh::entity_rank_names());

65 stk::mesh::Part &tetPart = metaData.declare_part_with_topology("tet part",
stk::topology::TET_4);

66

67 stk::mesh::Part &hexPart = metaData.declare_part ("existing part with currently unknown
topology");

68 // . . . then later assigned

69 stk::mesh::set_topology (hexPart, stk::topology::HEX_ 8);

70

71 metaData.commit () ;

72 stk::mesh::BulkData bulkData (metaData, MPI_COMM_WORLD) ;

73

74 bulkData.modification_begin();

75 stk::mesh::EntityId elemlId = 1, elem2Id = 2;

76 stk::mesh::Entity eleml = bulkData.declare_entity(stk::topology::ELEMENT_RANK, elemlId,
tetPart);

77 stk::mesh::Entity elem2 = bulkData.declare_entity(stk::topology::ELEMENT_RANK, elem2Id,
hexPart) ;

78 declare_element_nodes (bulkData, eleml, elem2);

79 bulkData.modification_end();

8(

81 stk::topology eleml_topology = bulkData.bucket (eleml) .topology () ;

82 stk::topology elem2_topology = bulkData.bucket (elem2) .topology () ;

83

84 EXPECT_EQ (stk::topology::TET_4, eleml_topology);

85 EXPECT_EQ (stk::topology::HEX_8, elem2_topology);

86 }

2.1.2 STK topology ranks

Listing 2.2 demonstrates the link between various STK topologies and their ranks.

Listing 2.2: Example showing mapping of STK topologies to ranks

./../../[code/stk/stk_topology/tests_for_documentation/map_stk_topologies_to_ranks.cpp

41 TEST (stk_topology_how_to, map_topologies_to_ranks)

42 |
43 stk::topology topology = stk::topology::INVALID_TOPOLOGY;
44 EXPECT_EQ (stk::topology: :INVALID_RANK, topology.rank());

64

66

69

85

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111

112

std::vector<stk::topology> node_rank_topologies;
node_rank_topologies.push_back (stk::topology: :NODE) ;

std::vector<stk::topology> edge_rank_topologies;
edge_rank_topologies.push_back (stk::topology::LINE_2);
edge_rank_topologies.push_back (stk::topology::LINE_3);

std::vector<stk::topology> face_rank_topologies;

face_rank_topologies
face_rank_topologies
face_rank_topologies
face_rank_topologies
face_rank_topologies
face_rank_topologies
face_rank_topologies
face_rank_topologies
face_rank_topologies
face_rank_topologies
face_rank_topologies
face_rank_topologies

.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:

:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:

:TRI_3);
:TRIANGLE_3);
:TRI_4);
:TRIANGLE_4);
:TRI_6);
:TRIANGLE_6) ;
:QUAD_4) ;
:QUADRILATERAL_A4) ;
:QUAD_38) ;
:QUADRILATERAL_S8) ;
:QUAD_9) ;
:QUADRILATERAL_9) ;

std::vector<stk::topology> element
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:

element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies

element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies

element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies

element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies

element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies

element_rank_topologies

.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:

.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:

.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:

.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:

.push_back (stk:

:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:

:topology:
:topology:
:topology:
:topology:
:topology:
:topology:

:topology:
:topology:
:topology:
:topology:
:topology:
:topology:

:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:

:topology:

65

_rank_topologies;
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:

:PARTICLE) ;
:LINE_2_1D);
:LINE_3_1D)
:BEAM_2) ;
:BEAM_3) ;
:SHELL_LINE_2);
:SHELL_LINE_3);

’

:TRI_3_2D);
:TRIANGLE_3_2D) ;
:TRI_4_2D);
:TRIANGLE_4_2D) ;
:TRI_6_2D);
:TRIANGLE_6_2D) ;
:QUAD_4_2D);
:QUADRILATERAL_4_2D);
:QUAD_8_2D);
:QUADRILATERAL_8_2D) ;
:QUAD_9_2D);
:QUADRILATERAL_9_2D);

:SHELL_TRI_3);
:SHELL_TRIANGLE_3) ;
:SHELL_TRI_4);
:SHELL_TRIANGLE_4) ;
:SHELL_TRI_6) ;
: SHELL_TRIANGLE_S) ;

:SHELL_QUAD_4) ;
:SHELL_QUADRILATERAL_4) ;
:SHELL_QUAD_S8) ;
:SHELL_QUADRILATERAL_8) ;
:SHELL_QUAD_9) ;
:SHELL_QUADRILATERAL_9) ;

:TET_4);
: TETRAHEDRON_4) ;
:TET_8);
: TETRAHEDRON_8) ;
:TET_10);
:TETRAHEDRON_10) ;
:TET_11);
:TETRAHEDRON_11) ;

:PYRAMID_S5);

113 element_rank_topologies

.push_back (stk:

:topology:

:PYRAMID_13);

114 element_rank_topologies.push_back (stk::topology::PYRAMID_14);

115 element_rank_topologies.push_back (stk::topology: :WEDGE_6) ;

116 element_rank_topologies.push_back (stk::topology: :WEDGE_15);

117 element_rank_topologies.push_back (stk::topology::WEDGE_18);

118 element_rank_topologies.push_back (stk::topology: :QUADRILATERAL_9_2D);
119 element_rank_topologies.push_back (stk::topology: :QUADRILATERAL_9_2D);
120

121 element_rank_topologies.push_back (stk::topology: :HEX_8);

122 element_rank_topologies.push_back (stk::topology: :HEXAHEDRON_38) ;

123 element_rank_topologies.push_back (stk::topology::HEX_20);

124 element_rank_topologies.push_back (stk::topology: :HEXAHEDRON_20) ;

125 element_rank_topologies.push_back (stk::topology::HEX_ 27);

126 element_rank_topologies.push_back (stk::topology: :HEXAHEDRON_27);

127

128 unsigned num_nodes_in_super_element = 10;

129 element_rank_topologies.

130 push_back (stk::create_superelement_topology (num_nodes_in_super_element));

2.1.3 Compile-time STK topology information

Listing 2.3 demonstrates how to access compile-time topology information. In this example,
compiletime_num_nodes is a variable that is assigned a constant, compile-time value.
compiletime_hex8 is atype of struct, and num_nodes is a static const member whose
value is defined at compile-time. It thus can be used to allocate space on the stack instead
of on the heap. Other compile-time topology attributes are defined by the members of the
topology: :topology_type structin the file stk_topology/topology_type.tcc.

Listing 2.3: Example using compile-time STK topology information

.J.[../code/stk/stk_topology/tests_for_documentation/runtime_vs_compiletime_topology.cpp

39 TEST (stk_topology_how_to, runtime_vs_compiletime_topology)

40 |

41 stk::topology runtime_hex8 = stk::topology::HEX_8;

42

43 typedef stk::topology::topology_type<stk::topology::HEX_ 8> compiletime_hex8;
44

45 const unsigned compiletime_num_nodes = compiletime_hex8::num_nodes;

46

47 EXPECT_EQ(runtime_hex8.num_nodes (), compiletime_num_nodes);

48

49 //declare a static array with length given by compile-time num-nodes

50 double compile_time_sized_array[compiletime_num_nodes];

51 EXPECT_EQ (sizeof (compile_time_sized_array), sizeof (double)*compiletime_num_nodes) ;

52

2.1.4 STK topology for the Particle

Listing 2.4 demonstrates the API for a Particle element.

Listing 2.4: Example showing STK topology for a zero-dimensional element

./..[../code/stk/stk_topology/tests_for_documentation/element_topologies.cpp

66

41 TEST (stk_topology_understanding,

42
43
44
45
46
47
48
49

63

{

stk::topology sphere =

zero_dim_eleme

stk::topology: :PARTI

EXPECT_TRUE (sphere.is_valid());
EXPECT_FALSE (sphere.has_homogeneous_faces ()) ;
EXPECT_FALSE (sphere.is_shell());

EXPECT_TRUE (sphere.
EXPECT_TRUE (sphere.
EXPECT_TRUE (sphere.
EXPECT_TRUE (sphere.
EXPECT_TRUE (sphere.

EXPECT_EQ (sphere.

EXPECT_EQ (sphere.
EXPECT_EQ (sphere.
EXPECT_EQ (sphere.
EXPECT_EQ (sphere.
EXPECT_EQ (sphere.
EXPECT_EQ (sphere.
EXPECT_EQ (sphere.

rank () != stk::topology:
rank () != stk::topology:
rank () != stk::topology:
rank () != stk::topology:
rank () == stk::topology:

side_rank (),

dimension(),1lu);
num_nodes (), 1u) ;
num_vertices (), 1u);
num_edges (), 0u) ;
num_faces (), 0u) ;

num_sides (), 0u);
num_permutations (), lu);

nt)

CLE;

:NODE_RANK) ;
:EDGE_RANK) ;
:FACE_RANK) ;
:CONSTRAINT_RANK) ;
:ELEMENT_RANK) ;

stk::topology::INVALID_RANK) ;

64 EXPECT_EQ (sphere.num_positive_permutations(),1lu);

65

66 EXPECT_FALSE (sphere.defined_on_spatial_dimension(0));
67

68 EXPECT_TRUE (sphere.defined_on_spatial_dimension (1)) ;
69 EXPECT_TRUE (sphere.defined_on_spatial_dimension (2));
70 EXPECT_TRUE (sphere.defined_on_spatial dimension(3));
71

72 EXPECT_EQ (sphere.base (), stk::topology: :PARTICLE) ;

73}

2.1.5 STK topology for the high order Beam

Listing 2.5 demonstrates the API for a higher order Beam element.

Listing 2.5: Example of STK topology for a one-dimensional element

./.[../code/stk/stk_topology/tests_for_documentation/element_topologies.cpp

157 TEST (stk_topology_understanding,
158 {
159
160

one_dim_higher_order_element)

stk::topology secondOrderBeam = stk::topology::BEAM_3;

161 EXPECT_TRUE (secondOrderBeam.is_valid());

162 EXPECT_FALSE (secondOrderBeam.has_homogeneous_faces());

163 EXPECT_FALSE (secondOrderBeam.is_shell ());

164

165 EXPECT_TRUE (secondOrderBeam.rank () != stk::topology::NODE_RANK) ;

166 EXPECT_TRUE (secondOrderBeam.rank () != stk::topology::EDGE_RANK) ;

167 EXPECT_TRUE (secondOrderBeam.rank () != stk::topology::FACE_RANK);

168 EXPECT_TRUE (secondOrderBeam.rank () != stk::topology::CONSTRAINT_RANK) ;
169 EXPECT_TRUE (secondOrderBeam.rank () == stk::topology::ELEMENT_RANK) ;
170

171 EXPECT_TRUE (secondOrderBeam.side_rank () == stk::topology::EDGE_RANK) ;
172

173 EXPECT_EQ (2u, secondOrderBeam.dimension());

174 EXPECT_EQ (3u, secondOrderBeam.num_nodes());

175 EXPECT_EQ (2u, secondOrderBeam.num_vertices());

176 EXPECT_EQ (1u, secondOrderBeam.num_edges());

177

67

178 EXPECT_EQ (Ou, secondOrderBeam.num_faces());

179 EXPECT_EQ (1lu, secondOrderBeam.num_positive_permutations());

180 EXPECT_EQ (2u, secondOrderBeam.num_permutations());

181

182 EXPECT_FALSE (secondOrderBeam.defined_on_spatial_dimension(0));

183 EXPECT_FALSE (secondOrderBeam.defined_on_spatial_dimension(1l));

184

185 EXPECT_TRUE (secondOrderBeam.defined_on_spatial_dimension(2));

186 EXPECT_TRUE (secondOrderBeam.defined_on_spatial_dimension(3));

187

188 EXPECT_TRUE (secondOrderBeam.base () == stk::topology::BEAM_2);

189

190 unsigned beamNodes[3] = { 10, 20, 14 }; // 10 #*——————- ke * 20

191 // 14

192 {

193 unsigned expectedNodeOffsets[3] = { 0, 1, 2 };

194 //unit-test checking utility:

195 checkNodeOrderingAndOffsetsForEdges (secondOrderBeam, beamNodes, expectedNodeOffsets);

196 }

197

198 {

199 unsigned expectedNodeOffsets[6] = {

200 o, 1, 2,

201 1, 0, 2

202 Y

203

204 //unit-test checking utility:

205 checkNodeOrderingAndOffsetsForPermutations (secondOrderBeam, beamNodes,
expectedNodeOffsets);

206 }

207 '}

2.1.6 STK topology for the high order triangular Shell

Listing 2.6 demonstrates the API for a higher order triangular shell element.

Listing 2.6: Example of STK topology for a two-dimensional element

.J[..J..[code/stk/stk_topology/tests_for_documentation/element_topologies.cpp

210 TEST (stk_topology_understanding, two_dim_higher order_element)
211 {

212 stk::topology secondOrderTriShell = stk::topology::SHELL_TRIANGLE_6;

213 EXPECT_TRUE (secondOrderTriShell == stk::topology::SHELL_TRI_6) ;

214

215 EXPECT_TRUE (secondOrderTriShell.is_valid());

216 EXPECT_TRUE (secondOrderTriShell.has_homogeneous_faces());

217 EXPECT_TRUE (secondOrderTriShell.is_shell());

218

219 EXPECT_TRUE (secondOrderTriShell.rank () != stk::topology::NODE_RANK) ;

220 EXPECT_TRUE (secondOrderTriShell.rank () != stk::topology::EDGE_RANK) ;

221 EXPECT_TRUE (secondOrderTriShell.rank () != stk::topology::FACE_RANK) ;

222 EXPECT_TRUE (secondOrderTriShell.rank () != stk::topology::CONSTRAINT_RANK) ;
223 EXPECT_TRUE (secondOrderTriShell.rank () == stk::topology::ELEMENT_RANK) ;
224

225 EXPECT_TRUE (secondOrderTriShell.side_rank () == stk::topology::FACE_RANK) ;
226

227 EXPECT_EQ (3u, secondOrderTriShell.dimension());

228 EXPECT_EQ (6u, secondOrderTriShell.num_nodes());

229 EXPECT_EQ (3u, secondOrderTriShell.num_vertices());

230 EXPECT_EQ (3u, secondOrderTriShell.num_edges());

231 EXPECT_EQ (2u, secondOrderTriShell.num_faces());

232

68

233 // permutations are the number of ways the number of vertices can be permuted

234 EXPECT_EQ (6u, secondOrderTriShell.num_permutations());

235 // positive permutations are ones that the normal is maintained

236 EXPECT_EQ (3u, secondOrderTriShell.num_positive_permutations());

237

238 EXPECT_FALSE (secondOrderTriShell.defined_on_spatial_dimension(0));

239 EXPECT_FALSE (secondOrderTriShell.defined_on_spatial_dimension(1l));

240 EXPECT_FALSE (secondOrderTriShell.defined_on_spatial_dimension(2));

241

242 EXPECT_TRUE (secondOrderTriShell.defined_on_spatial_dimension(3));

243

244 EXPECT_TRUE (secondOrderTriShell.base () == stk::topology::SHELL_TRI_3);

245 EXPECT_TRUE (secondOrderTriShell.base () == stk::topology::SHELL_TRIANGLE_3) ;

246

247 unsigned shellNodes[6] = { 10, 11, 12, 100, 101, 102 }; // first 3 are vertex nodes
(picture?)

248

249 {

250 unsigned goldValuesEdgeOffsets[9] = {

251 o, 1, 3,

252 1, 2, 4,

253 2, 0, 5

254 Y

255

256 //unit-test checking utility:

257 checkNodeOrderingAndOffsetsForEdges (secondOrderTriShell, shellNodes,

goldValuesEdgeOffsets);
258 }
259

260 {

261 unsigned goldValuesFaceNodeOffsets[12] = {

262 o, 1, 2, 3, 4, 5,

263 0, 2, 1, 5, 4, 3

264 Y

265

266 //unit-test checking utility:

267 checkNodeOrderingAndOffsetsForFaces (secondOrderTriShell, shellNodes,
goldValuesFaceNodeOffsets);

268 }

269

270 {

271 unsigned goldvValueOffsetsPerm[36] = {

272 o, 1, 2, 3, 4, 5,

273 2, 0, 1, 5, 3, 4,

274 1, 2, 0, 4, 5, 3,

275 0, 2, 1, 5, 4, 3,

276 2, 1, 0, 4, 3, 5,

277 i, 0, 2, 3, 5, 4

278 Y

279

280 //unit-test checking utility:

281 checkNodeOrderingAndOffsetsForPermutations (secondOrderTriShell, shellNodes,
goldValueOffsetsPerm) ;

282 }

283 }

2.1.7 STK topology for the linear Hexahedral

Listing 2.7 demonstrates the API for a linear Hexahedral element.

Listing 2.7: Example of STK topology for a three-dimensional element

./..[../code/stk/stk_topology/tests_for_documentation/element_topologies.cpp

69

287 TEST (stk_topology_understanding, three_dim_linear_element)
288 {

289 stk::topology hex8 = stk::topology::HEX_ 8;

290 EXPECT_TRUE (hex8 == stk::topology::HEXAHEDRON_S8) ;

291

292 EXPECT_TRUE (hex8.is_valid());

293 EXPECT_TRUE (hex8.has_homogeneous_faces ());

294 EXPECT_FALSE (hex8.is_shell());

295

296 EXPECT_TRUE (hex8.rank () != stk::topology::NODE_RANK) ;

297 EXPECT_TRUE (hex8.rank () != stk::topology::EDGE_RANK) ;

298 EXPECT_TRUE (hex8.rank () != stk::topology::FACE_RANK);

299 EXPECT_TRUE (hex8.rank () != stk::topology::CONSTRAINT_RANK) ;
300 EXPECT_TRUE (hex8.rank () == stk::topology::ELEMENT_RANK) ;

301

302 EXPECT_TRUE (hex8.side_rank () == stk::topology::FACE_RANK) ;
303

304 EXPECT_EQ (3u, hex8.dimension());

305 EXPECT_EQ (8u, hex8.num_nodes());

306 EXPECT_EQ (8u, hex8.num_vertices());

307 EXPECT_EQ (12u, hex8.num_edges());

308 EXPECT_EQ (6u, hex8.num_faces());

309

310 if (stk::topology::topology_type<stk::topology::HEX_ 8>::num_permutations > 1) {
311 // permutations are the number of ways the number of vertices can be permuted
312 EXPECT_EQ (24u, hex8.num_permutations());

313 // positive permutations are ones that the normal is maintained
314 EXPECT_EQ (24u, hex8.num_positive_permutations());

315 }

316

317 EXPECT_FALSE (hex8.defined_on_spatial_dimension (0)) ;

318 EXPECT_FALSE (hex8.defined_on_spatial_dimension(1l));

319 EXPECT_FALSE (hex8.defined_on_spatial_dimension(2));

320

321 EXPECT_TRUE (hex8.defined_on_spatial_dimension(3));

322

323 EXPECT_TRUE (hex8.base () == stk::topology::HEX_38);

324

325 unsigned hex8Nodes[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };

326

327 {

328 stk::topology goldEdgeTopology = stk::topology::LINE_2;
329 EXPECT_EQ (goldEdgeTopology, hex8.edge_topology());

330

331 unsigned goldNumNodesPerEdge = 2;

332 ASSERT_EQ (goldNumNodesPerEdge, hex8.edge_topology () .num_nodes());
333 unsigned goldValuesEdgeOffsets[24] = {

334 0, 1,

335 1, 2,

336 2, 3,

337 3, 0,

338 4, 5,

339 5, 6,

340 6, 7,

341 7, 4,

342 0, 4,

343 1, 5,

344 2, 6,

345 3, 7

346 Y

347

348 //unit-test checking utility:

349 checkNodeOrderingAndOffsetsForEdges (hex8, hex8Nodes, goldValuesEdgeOffsets);
350 }

351

352 {

353 stk::topology goldFaceTopology stk::topology::QUAD_4;

354 unsigned goldNumNodesPerFace = 4;

70

355
356

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374}

for (unsigned faceIndex=0; faceIndex<hex8.num_faces ();faceIndex++)
{

EXPECT_EQ (goldFaceTopology, hex8.face_topology(faceIndex));

ASSERT_EQ (goldNumNodesPerFace, hex8.face_topology (faceIndex) .num_nodes());
}

unsigned goldValuesFaceOffsets[24] = {
4 1[5/ 4/

’ ’ ’ ’

’ ’ ’

2, 6
3, 7
4,7,
3, 2
5, 6

’
’

’ ’ ’ ’

S O o NP O
~NF Wwo »

’ ’ ’

}i

//unit-test checking utility:
checkNodeOrderingAndOffsetsForFaces (hex8, hex8Nodes, goldValuesFaceOffsets);

2.1.8 STK topology equivalent method

Listing 2.8 demonstrates the API for checking, given the nodes of topology, if two entities are
equivalent. The support for HEX_S, etc., only includes positive node-permutations, since there is
no current need for negative permutations.

Listing 2.8: Example using of an equivalent method

.J.[..Jcode/stk/stk_topology/tests_for_documentation/equivalent.cpp

41 TEST (stk_topology_understanding, equivalent_elements)

|
43
44
45
46
47
48
49
50
51
52

53

std::pair<bool, unsigned> areElementsEquivalent;

if (stk::topology::topology_type<stk::topology::HEX_8>::num_permutations > 1) {
unsigned hex1[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
unsigned hex2([(8] = { 4, 7, 6, 5, 0, 3, 2, 1 };
unsigned hex3[8] {4, 5, 6, 7, 0, 1, 2, 3 };

stk::topology hex8 = stk::topology::HEX_ 8;
areElementsEquivalent = hex8.equivalent (hexl, hex2);
EXPECT_TRUE (areElementsEquivalent.first);

areElementsEquivalent = hex8.equivalent (hexl, hex3);
EXPECT_FALSE (areElementsEquivalent.first);

unsigned triangle_1[3] = {0, 1, 2};
unsigned triangle_2([3] = {0, 2, 1};

stk::topology triangular_shell = stk::topology::SHELL_TRIANGLE_3;
areElementsEquivalent = triangular_shell.equivalent (triangle_1, triangle_2);
EXPECT_TRUE (areElementsEquivalent.first);

unsigned permutation_index = areElementsEquivalent.second;
unsigned goldvValue = 3;

71

72 EXPECT_EQ (goldValue, permutation_index); // From previous unit test, this is the 4th
permutation

73 }

74

75}

2.1.9 STK topology’s is_positive_polarity method

Listing 2.9: Example using is_positive_polarity

.J..[..Jcode/stk/stk_topology/tests_for_documentation/how_to_use_stk_topology.cpp

240 TEST (stk_topology_how_to, check_for_positive_polarity)

241 {

242 stk::topology quad4Topology = stk::topology::QUAD_4;
243

244 ASSERT_EQ (8u, quad4Topology.num_permutations());

245 ASSERT_EQ (4u, quad4Topology.num_positive_permutations());
246

247 EXPECT_TRUE (quad4Topology.is_positive_polarity (0));
248 EXPECT_TRUE (quad4Topology.is_positive_polarity(1l));
249 EXPECT_TRUE (quad4Topology.is_positive_polarity(2));
250 EXPECT_TRUE (quad4Topology.is_positive_polarity(3));
251 EXPECT_TRUE (!quad4Topology.is_positive_polarity(4));
252 EXPECT_TRUE (! quad4Topology.is_positive_polarity(5));
253 EXPECT_TRUE (!quad4Topology.is_positive_polarity(6));
254 EXPECT_TRUE (!quad4Topology.is_positive_polarity (7)) ;
255 '}

2.1.10 STK topology’s lexicographical_smallest_permutation
method

Listing 2.10 demonstrates the API for obtaining the smallest lexicographical permutation index.
The support for HEX_S, etc., only includes positive node-permutations.

Listing 2.10: Example using lexicographical smallest permutation

.J../../code/stk/stk_topology/tests_for_documentation/how_to_use_stk_topology.cpp

56 TEST (stk_topology_understanding, lexicographical_smallest_permutation)

57 {

58 {

59 unsigned triangle_node_ids[3] = {10, 8, 12};

60

61 stk::topology triangular_shell = stk::topology::SHELL_TRIANGLE_3;

62

63 unsigned gold_triangle_permutations[18]= {

64 10, 8, 12,

65 12, 10, 8,

66 8, 12, 10, // lexicographical smallest permutation by node ids if considering
only positive permutations

67 10, 12, 8,

68 12, 8, 10,

69 8, 10, 12 // lexicographical smallest permutation by node ids if considering
all permutations

70 Y

71

72 verifyPermutationsForTriangle (triangular_shell, triangle_node_ids,

gold_triangle_permutations);

72

73

74 bool usePositivePermutationsOnly = false;

75 unsigned permutation_index =
triangular_shell.lexicographical_smallest_permutation (triangle_node_ids,
usePositivePermutationsOnly) ;

76 unsigned gold_lexicographical_smallest_permutation_index = 5;

77 // driven by vertices, NOT mid-edge nodes

78 EXPECT_EQ (gold_lexicographical_smallest_permutation_index, permutation_index);
79

80 usePositivePermutationsOnly = true;

81 permutation_index =

triangular_shell.lexicographical_smallest_permutation (triangle_node_ids,
usePositivePermutationsOnly) ;

82 gold_lexicographical_smallest_permutation_index = 2;
83 // driven by vertices, NOT mid-edge nodes
84 EXPECT_EQ (gold_lexicographical_smallest_permutation_index, permutation_index);

85 }
86}

2.1.11 STK topology’s lexicographical smallest permutation
preserve polarity method

Listing 2.11 demonstrates the API for obtaining the smallest lexicographical permutation index
that matches the polarity of the input permutation

Listing 2.11: Example using lexicographical_smallest_permutation_preserve_polarity

.J.J../[code/stk/stk_topology/tests_for_documentation/how_to_use_stk_topology.cpp

90 TEST (stk_topology_understanding, lexicographical_smallest_permutation_preserve_polarity)
91 {

92 {

93 stk::topology triangular_shell = stk::topology::SHELL_TRIANGLE_3;

94 unsigned shell_node_ids[3] = {10, 8, 12};

95 {

96 unsigned triangle_node_ids[3] = {12, 10, 8};

97

98 unsigned permutation_index =
triangular_shell.lexicographical_smallest_permutation_preserve_polarity (triangle_node_ids,
shell_node_ids);

99 unsigned expected_positive_permutation = 2;

100

101 EXPECT_EQ (expected_positive_permutation, permutation_index);

102 EXPECT_LT (expected_positive_permutation,
triangular_shell.num_positive_permutations());

103 }

104 {

105 unsigned triangle_node_ids[3] = {12, 8, 10};

106

107 unsigned permutation_index =
triangular_shell.lexicographical_smallest_permutation_preserve_polarity(triangle_node_ids,
shell_node_ids);

108 unsigned expected_negative_permutation = 5;

109

110 EXPECT_EQ (expected_negative_permutation, permutation_index);

111 EXPECT_GE (expected_negative_permutation,
triangular_shell.num_positive_permutations());

112 }

113 }

114 }

115

73

116 TEST (stk_topology_understanding, quad_lexicographical_smallest_permutation_preserve_polarity)
117 {
118 {

119 stk::topology quad_shell = stk::topology::SHELL_QUAD_4;
120 unsigned shell_node_ids([4] = {1, 2, 3, 4};

121 {

122 unsigned quad_node_ids[4] = {1, 2, 3, 4};

123

124 unsigned permutation_index =

quad_shell.lexicographical_smallest_permutation_preserve_polarity (quad_node_ids,
shell_node_ids);

125 unsigned expected_positive_permutation = 0;

126

127 EXPECT_EQ (expected_positive_permutation, permutation_index);

128 EXPECT_LT (expected_positive_permutation, quad_shell.num _positive_permutations());
129 }

130

131 {

132 unsigned quad_node_ids[4] = {1, 4, 3, 2};

133

134 unsigned permutation_index =

quad_shell.lexicographical_smallest_permutation_preserve_polarity (quad_node_ids,
shell node_ids);

135 unsigned expected_negative_permutation = 4;

136

137 EXPECT_EQ (expected_negative_permutation, permutation_index);

138 EXPECT_GE (expected_negative_permutation, quad_shell.num_positive_permutations());
139 }

140

141 {

142 unsigned quad_node_ids[4] = {4, 2, 3, 1};

143

144 unsigned permutation_index =

quad_shell.lexicographical_smallest_permutation_preserve_polarity (quad_node_ids,
shell_node_ids);

145 unsigned expected_invalid_permutation = 8;

146

147 EXPECT_EQ (expected_invalid_permutation, permutation_index);

148 EXPECT_EQ (expected_invalid_permutation, quad_shell.num_permutations());
149 }

150 }

151}

2.1.12 STK Topology’s sub_topology methods

Listing 2.12 demonstrates the API for obtaining information about a topology’s sub-topologies
(sub-topologies define downward-connected entities; e.g., the face-rank sub-topology of HEX_20
is QUAD_8.).

Listing 2.12: Example using of sub_topology

.J.J..[code/stk/stk_topology/tests_for_documentation/how_to_use_stk_topology.cpp

155 TEST (stk_topology_understanding, sub_topology)
156 {

157 stk::topology hex20 = stk::topology::HEX_ 20;
158 unsigned hex20Nodes[20] = {

159 o, 1, 2, 3,

160 4, 5, 6, 7,

161 8, 9, 10, 11,

162 12, 13, 14, 15,

163 16, 17, 18, 19

74

164 }i
165

166 unsigned numFaces = hex20.num_sub_topology (stk::topology: :FACE_RANK) ;

167 EXPECT_EQ (6u, numFaces) ;

168

169 unsigned facelIndex=2;

170 stk::topology top = hex20.sub_topology (stk::topology::FACE_RANK, facelndex);
171 EXPECT_EQ (stk::topology: :QUADRILATERAL_8, top);

172

173 unsigned nodeldsFace[8];

174 hex20.sub_topology_nodes (hex20Nodes, stk::topology::FACE_RANK, faceIndex, nodelIdsFace);
175

176 unsigned goldIdsFace(8] = { 2, 3, 7, 6, 10, 15, 18, 14 };

177 for (unsigned i=0;i<hex20.face_topology (faceIndex) .num_nodes ();i++)

178 {

179 EXPECT_EQ (goldIdsFace[i], nodeIdsFace[il]);

180 }

181 }

2.1.13 STK Topology’s sides methods

Listing 2.13 demonstrates the API for understanding sides in STK topologies. Note that for some
topologies, sides differs in meaning from the Exodus [1] standard. For example, the number of
sides on a shell-4 in Exodus is 6 (two faces, 4 edges) while the SHELL_QUAD_4 in stk_topology
only counts the faces as sides, i.e., num_sides () returns 2.

Listing 2.13: Example for understanding sides in STK topology

.J.J..[code/stk/stk_topology/tests_for_documentation/how_to_use_stk_topology.cpp

184 TEST (stk_topology_understanding, sides)
185 {

186 stk::topology hex20 = stk::topology::HEX_ 20;

187 EXPECT_EQ (6u, hex20.num_sides());

188

189 stk::topology quad8 = stk::topology::SHELL_QUADRILATERAL_S;

190 EXPECT_EQ (2u, quad8.num_sides());

191

192 stk::topology wedge = stk::topology::WEDGE_15;

193 EXPECT_EQ (5u, wedge.num_sides());

194 EXPECT_EQ (stk::topology: :QUADRILATERAL_8, wedge.side_topology(0));
195 EXPECT_EQ (stk::topology: :QUADRILATERAL_8, wedge.side_topology(l));
196 EXPECT_EQ (stk::topology: :QUADRILATERAL_8, wedge.side_topology(2));
197 EXPECT_EQ (stk::topology::TRIANGLE_6, wedge.side_topology(3));

198 EXPECT_EQ (stk::topology: :TRIANGLE_6, wedge.side_topology(4));

199

200 }

2.1.14 STK topology for a SuperElement

Listing 2.14 demonstrates the API for using super elements in STK Topology.

Listing 2.14: Example using a SuperElement with STK topology

./..[..Jcode/stk/stk_topology/tests_for_documentation/how_to_use_stk_topology.cpp

75

203 TEST (stk_topology_understanding, superelements)

204 {

205 unsigned eightNodes=8;

206 stk::topology validSuperElement = stk::create_superelement_topology (eightNodes);
207 EXPECT_TRUE (validSuperElement.is_superelement ()) ;

208 EXPECT_TRUE (stk::topology: :ELEMENT_RANK == validSuperElement.rank());

209 EXPECT_EQ (eightNodes, validSuperElement.num_nodes());

210 EXPECT_EQ (Ou, validSuperElement.num_edges());

211 EXPECT_EQ (Ou, validSuperElement.num_faces());

212 EXPECT_EQ (Ou, validSuperElement.num_permutations());

213 EXPECT_EQ (Ou, validSuperElement.num_sides());

214 EXPECT_EQ (Ou, validSuperElement.dimension());

215 EXPECT_EQ (stk::topology: :INVALID_TOPOLOGY, validSuperElement.face_topology());
216 EXPECT_EQ (stk::topology: :INVALID_TOPOLOGY, validSuperElement.edge_topology());
217 EXPECT_EQ (stk::topology: :INVALID_TOPOLOGY, validSuperElement.base());

218 EXPECT_FALSE (validSuperElement .has_homogeneous_faces()) ;

219 EXPECT_FALSE (validSuperElement.is_shell());

220

221 unsigned zeroNodes=0;

222 stk::topology invalidSuperElement = stk::create_superelement_topology (zeroNodes);
223 EXPECT_FALSE (invalidSuperElement.is_superelement ()) ;

224 EXPECT_TRUE (stk::topology: :INVALID_RANK == invalidSuperElement.rank());

225 EXPECT_EQ (zeroNodes, invalidSuperElement.num_nodes());

226 EXPECT_EQ (Ou, invalidSuperElement.num_edges());

227 EXPECT_EQ (Ou, invalidSuperElement.num_faces());

228 EXPECT_EQ (Ou, invalidSuperElement.num_permutations());

229 EXPECT_EQ (Ou, invalidSuperElement.num_sides());

230 EXPECT_EQ (Ou, invalidSuperElement.dimension());

231 EXPECT_EQ (stk::topology: :INVALID_TOPOLOGY, invalidSuperElement.face_topology());
232 EXPECT_EQ (stk::topology: :INVALID_TOPOLOGY, invalidSuperElement.edge_topology());
233 EXPECT_EQ (stk::topology: :INVALID_TOPOLOGY, invalidSuperElement.base());

234 EXPECT_FALSE (invalidSuperElement .has_homogeneous_faces());

235 EXPECT_FALSE (invalidSuperElement.is_shell());

236 }

2.2 Mapping of Sierra topologies

Listing 2.15 compares four topology implementations found in Sierra: the Exodus Topology (de-
fined by the name and number of nodes of the element), Ioss Topology, STK Topology, and the
Cell (Shards) Topology. The test shows how a few elements compare for these implementations.

Listing 2.15: Example for understanding various Sierra topologies

.JI.J../code/stk/stk_topology/tests_for_documentation/understanding_various_topologies.cpp

68 void setUpMappingsToTest (std::vector<TopologyMapper>& topologyMappings)

69 {

70 std::string exodusName;

71 int exodusNumNodes=-1;

72 std::string iossTopologyName;

73 stk::topology stkTopology;

74 stk::mesh::CellTopology shardsTopology;

75

76 exodusName="sphere";

77 exodusNumNodes=1;

78 iossTopologyName="sphere";

79 stkTopology=stk::topology: :PARTICLE;

80 shardsTopology=stk::mesh::CellTopology (shards::getCellTopologyData< shards::Particle >());
81 topologyMappings.push_back (TopologyMapper (exodusName, exodusNumNodes, iossTopologyName,

stkTopology, shardsTopology));

76

82
83 exodusName="BEam";

84 exodusNumNodes=3;

85 iossTopologyName="bar3";

86 stkTopology=stk::topology::BEAM_3;

87 shardsTopology=stk::mesh::CellTopology (shards::getCellTopologyData< shards::Beam<3> >());
88 topologyMappings.push_back (TopologyMapper (exodusName, exodusNumNodes, iossTopologyName,

stkTopology, shardsTopology));

90 exodusName="Tri";

91 exodusNumNodes=3;

92 iossTopologyName="trishell3";

93 stkTopology=stk::topology::SHELL_TRIANGLE_3;

94 shardsTopology=stk::mesh::CellTopology (shards::getCellTopologyData<
shards::ShellTriangle<3> >());

95 topologyMappings.push_back (TopologyMapper (exodusName, exodusNumNodes, iossTopologyName,

stkTopology, shardsTopology));

96

97 exodusName="hex";

98 exodusNumNodes=20;

99 iossTopologyName="hex20";

100 stkTopology=stk::topology: :HEXAHEDRON_20;

101 shardsTopology=stk::mesh::CellTopology (shards::getCellTopologyData<
shards: :Hexahedron<20> >());

102 topologyMappings.push_back (TopologyMapper (exodusName, exodusNumNodes, iossTopologyName,
stkTopology, shardsTopology));

103 }

104

105 TEST (Understanding, sierra_topologies)

106 {

107 int spatialDim = 3;

108 std::vector<TopologyMapper> topologyMappings;

109 setUpMappingsToTest (topologyMappings) ;

110

111 size_t numMappings = topologyMappings.size();

112

113 createlossElementRegistryForKnownElementTopologies () ;

114

115 for (size_t 1=0;i<numMappings;i++)

116 {

117 TopologyMapper goldValues = topologyMappings[i];

118

119 std::string fixedExodusName = Ioss::Utils::fixup_type (topologyMappings[i].exodusName,
topologyMappings[i] .exodusNumNodes, spatialDim);

120 Ioss::ElementTopology *iossTopology = Ioss::ElementTopology::factory (fixedExodusName,
true);

121 ASSERT_TRUE (iossTopology != NULL);

122 EXPECT_EQ (goldValues.iossTopologyName, iossTopology->name());

123

124 stk::topology mappedStkTopologyFromIossTopology =
stk::io0::map_ioss_topology_to_stk (iossTopology) ;

125 EXPECT_EQ (goldValues.stkTopology, mappedStkTopologyFromIossTopology) ;

126

127 stk::mesh::CellTopology mappedShardsTopologyFromStkTopology =
stk::mesh::get_cell_topology (mappedStkTopologyFromIossTopology) ;

128 EXPECT_EQ (goldValues.shardsTopology, mappedShardsTopologyFromStkTopology) ;

129

130 stk::topology mappedStkTopologyFromShards =
stk::mesh::get_topology (mappedShardsTopologyFromStkTopology, spatialDim);

131 EXPECT_EQ (goldValues.stkTopology, mappedStkTopologyFromShards);

132 }
133}

Some client applications still heavily use shards topologies with STK Mesh. To maintain sup-
port for this capability, STK Mesh provides a fast mapping between shards and stk_topology (see

77

listing 2.16).

Listing 2.16: Mapping of shards::CellTopologies to stk::topologies provided by

stk::mesh::get_cell_topology() ../../../code/stk/stk_mesh/stk_mesh/base/MetaData.cpp

1039 CellTopology get_cell_topology (stk::topology t)

1040 {
1041
1042
1043

switch (t ())

{
case stk::topology: :NODE:

1044 return CellTopology(shards::getCellTopologyData< shards::Node >());
1045 case stk::topology::LINE_2:

1046 return CellTopology(shards::getCellTopologyData< shards::Line<2> >());
1047 case stk::topology::LINE_3:

1048 return CellTopology(shards::getCellTopologyData< shards::Line<3> >()) ;
1049 case stk::topology::TRI_3:

1050 return CellTopology(shards::getCellTopologyData< shards::Triangle<3> >())
1051 case stk::topology::TRI_4:

1052 return CellTopology(shards::getCellTopologyData< shards::Triangle<4> >())i
1053 case stk::topology::TRI_6:

1054 return CellTopology(shards::getCellTopologyData< shards::Triangle<6> >())
1055 case stk::topology::QUAD_4:

1056 return CellTopology(shards::getCellTopologyData< shards::Quadrilateral<4> >());
1057 case stk::topology::QUAD_8:

1058 return CellTopology(shards::getCellTopologyData< shards::Quadrilateral<8> >())
1059 case stk::topology::QUAD_9:

1060 return CellTopology(shards::getCellTopologyData< shards::Quadrilateral<9> >());
1061 case stk::topology::PARTICLE:

1062 return CellTopology(shards::getCellTopologyData< shards::Particle >());
1063 case stk::topology::LINE_2_1D:

1064 return CellTopology(shards::getCellTopologyData< shards::Line<2> >());
1065 case stk::topology::LINE_3_1D:

1066 return CellTopology(shards::getCellTopologyData< shards::Line<3> >());
1067 case stk::topology::BEAM 2:

1068 return CellTopology(shards::getCellTopologyData< shards::Beam<2> >());
1069 case stk::topology::BEAM_3:

1070 return CellTopology(shards::getCellTopologyData< shards::Beam<3> >());
1071 case stk::topology::SHELL_LINE_2:

1072 return CellTopology (shards::getCellTopologyData< shards::ShellLine<2> >()) ;
1073 case stk::topology::SHELL_LINE_3:

1074 return CellTopology(shards::getCellTopologyData< shards::ShellLine<3> >()) ;
1075 case stk::topology::TRI_3_2D:

1076 return CellTopology(shards::getCellTopologyData< shards::Triangle<3> >()) ;
1077 case stk::topology::TRI_4_2D:

1078 return CellTopology(shards::getCellTopologyData< shards::Triangle<4> >()) ;
1079 case stk::topology::TRI_6_2D:

1080 return CellTopology(shards::getCellTopologyData< shards::Triangle<6> >()) ;
1081 case stk::topology::QUAD_4_2D:

1082 return CellTopology(shards::getCellTopologyData< shards::Quadrilateral<4> >()) ;
1083 case stk::topology::QUAD_8_2D:

1084 return CellTopology(shards::getCellTopologyData< shards::Quadrilateral<8> >()) ;
1085 case stk::topology::QUAD_9_2D:

1086 return CellTopology(shards::getCellTopologyData< shards::Quadrilateral<9> >()) ;
1087 case stk::topology::SHELL_TRI_3:

1088 return CellTopology (shards::getCellTopologyData< shards::ShellTriangle<3> >()) ;
1089 case stk::topology::SHELL_TRI_4:break;

1090 //NOTE: shards does not define a topology for a 4-noded triangular shell

1091 //return CellTopology (shards::getCellTopologyData< shards::ShellTriangle<4> >());
1092 case stk::topology::SHELL_TRI_6:

1093 return CellTopology(shards::getCellTopologyData< shards::ShellTriangle<6> >()) ;
1094 case stk::topology::SHELL_QUAD_4:

1095 return CellTopology(shards::getCellTopologyData< shards::ShellQuadrilateral<4> > ());
1096 case stk::topology::SHELL_QUAD_S8:

1097 return CellTopology(shards::getCellTopologyData< shards::ShellQuadrilateral<8> >());
1098 case stk::topology::SHELL_QUAD_9:

1099 return CellTopology(shards::getCellTopologyData< shards::ShellQuadrilateral<9> >());

1100 case stk::topology::TET_4:

78

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129

return CellTopology(shards
case stk::topology::TET_8:
return CellTopology(shards
case stk::topology::TET_10:
return CellTopology(shards
case stk::topology::TET_11:
return CellTopology(shards
case stk::topology::PYRAMID_5:
return CellTopology (shards
case stk::topology::PYRAMID_13:
return CellTopology(shards
case stk::topology::PYRAMID_14:
return CellTopology(shards
case stk::topology: :WEDGE_6:
return CellTopology(shards
case stk::topology::WEDGE_15:
return CellTopology(shards
case stk::topology::WEDGE_18:
return CellTopology(shards
case stk::topology::HEX_8:
return CellTopology(shards
case stk::topology::HEX_ 20:
return CellTopology(shards
case stk::topology::HEX_ 27:
return CellTopology (shards
default: break;
}
return CellTopology (NULL) ;

::getCellTopologyData<
::getCellTopologyData<
::getCellTopologyData<
::getCellTopologyData<
::getCellTopologyData<
::getCellTopologyData<
::getCellTopologyData<
::getCellTopologyData<
::getCellTopologyData<
::getCellTopologyData<
::getCellTopologyData<
::getCellTopologyData<

::getCellTopologyData<

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

:Tetrahedron<4>
:Tetrahedron<8>
:Tetrahedron<10>
:Tetrahedron<l1l>
:Pyramid<5>
:Pyramid<13>
:Pyramid<14>
:Wedge<6>
:Wedge<15>
:Wedge<18>
:Hexahedron<8>
:Hexahedron<20>

:Hexahedron<27>

79

This page intentionally left blank.

Chapter 3

STK Fields

A STK field is a data structure that defines values associated with entities, such as temperatures,
coordinates, or stress. A field can be defined over the whole mesh or a subset of the mesh (typically
defined by a list of parts). STK Mesh currently manages STK field creation, storage, retrieval and
field data memory allocation. Fields are managed by entity rank (node, edge, face, element, etc.).
Fields can have the same name as long as they are defined on different entity ranks.

The following code listings demonstrate some common usage of fields:

Scalar, vector, and tensor fields

Fields on nodes or on elements

Fields allocated for the entire mesh
Fields allocated for only part of the mesh
Fields with constant size across the mesh

Fields with variable size per part
Multi-state fields
o Communicate field data

In each example, the general flow of execution is as follows:

1. Declare and initialize stk : :mesh: :MetaData: declare fields and parts
2. Declare and initialize stk : :mesh: :BulkData: create elements and nodes
3. Initialize, access and/or test field-data.

3.1 Example STK fields usage

Listing 3.1: Examples of constant-size whole-mesh field usage

.J..l../code/stk/stk_mesh/testsForDocumentation/useSimpleFields.cpp

69 TEST (stkMeshHowTo, useSimpleFields)
70 {

71 stk::mesh::MetaData metaData (SpatialDimension::three, stk::mesh::entity_rank names());
72

73 typedef stk::mesh::Field<double> ScalarField;

74 typedef stk::mesh::Field<double, stk::mesh::Cartesian3d> VectorField;

81

76

77
78
79

80
81

82
83
84
85
86
87
88
89
90
91
92
93
94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111

}

ScalarField& pressureField =
metaData.declare_field<ScalarField> (stk::topology::ELEM_RANK, "pressure");
VectorFields& displacementsField =
metaData.declare_field<VectorField> (stk::topology: :NODE_RANK, "displacements");

double initialPressureValue = 4.4;

stk::mesh::put_field_on_entire_mesh_with_initial_value (pressureField,
&initialPressureValue) ;

stk::mesh::put_field_on_entire_mesh(displacementsField);

stk::mesh::BulkData mesh (metaData, MPI_COMM_WORLD) ;
create_two_tet_element_mesh (mesh) ;

const stk::mesh::BucketVector& nodeBuckets = mesh.buckets (stk::topology: :NODE_RANK) ;
EXPECT_TRUE (!nodeBuckets.empty ()) ;
for(size_t bucketIndex=0; bucketIndex<nodeBuckets.size(); bucketIndex++)
{
const stk::mesh::Bucketé& bucket = xnodeBuckets[bucketIndex];
doublex displacementDataForBucket = stk::mesh::field data(displacementsField, bucket);
EXPECT_GT (bucket.size (), Ou);
for (size_t nodeIndex=0; nodeIndex<bucket.size(); nodelndex++)
{
unsigned numValuesPerNode =
stk::mesh::field_scalars_per_entity(displacementsField, bucket);
EXPECT_EQ (SpatialDimension: :three, numValuesPerNode);
for (unsigned i=0; i<numValuesPerNode; i++)
{
EXPECT_EQ (0.0, displacementDataForBucket [nodeIndexxnumValuesPerNode + i]);
displacementDataForBucket [nodeIndex*numValuesPerNode + i] = 99.9;

stk::mesh::Entity eleml = mesh.get_entity(stk::topology::ELEM_RANK, 1);
doublex pressureFieldDataForEleml = stk::mesh::field data(pressureField, eleml);
EXPECT_EQ (initialPressureValue, *pressureFieldDataForEleml);

stk::mesh::Entity elem2 = mesh.get_entity(stk::topology::ELEM_RANK, 2);
doublex pressureFieldDataForElem2 = stk::mesh::field _data(pressureField, elem2);
EXPECT_EQ(initialPressureValue, x*pressureFieldDataForElem2) ;

Multidimensional fields (including ’vector’ fields) must be declared by passing a second type pa-
rameter into the field’s templated parameter list; failure to do so will result in the instantiation of a
scalar field.

127
128
129
130
131
132

133
134
135

136
137
138
139

Listing 3.2: Example of incorrect vector field declaration

.J.J..[code/stk/stk_mesh/testsForDocumentation/useSimpleFields.cpp

TEST (stkMeshHowTo, declareVectorFields_putFieldIgnoresLength)

{

stk::mesh::MetaData metaData (SpatialDimension::three, stk::mesh::entity_rank_names());

typedef stk::mesh::Field<double, stk::mesh::Cartesian3d> VectorField;
VectorFields& velocities = metaData.declare_field<VectorField> (stk::topology: :NODE_RANK,
"velocities");

typedef stk::mesh::Field<double> BadVectorField;

BadVectorField& displacements =
metaData.declare_field<BadVectorField> (stk::topology: :NODE_RANK,
"displacements");

unsigned fieldLength = 3;

stk::mesh::put_field(velocities, metaData.universal_part (), fieldLength);
stk::mesh::put_field(displacements, metaData.universal_part (), fieldLength);

82

140
141 stk::mesh::BulkData mesh (metaData, MPI_COMM_WORLD) ;

142 create_single_tet_element (mesh);

143

144 stk::mesh::Entity nodel = mesh.get_entity(stk::topology::NODE_RANK, 1);
145 EXPECT_NE (stk::mesh::field_scalars_per_entity(velocities, nodel),

stk::mesh::field scalars_per_entity(displacements, nodel));
146 '}

Listing 3.3: Examples of how to get fields by name

.J.J..[code/stk/stk_mesh/testsForDocumentation/howToGetFields.cpp

47 TEST (stkMeshHowTo, getFields)

48 {

49 stk::mesh::MetaData metaData (SpatialDimension::three);

50

51 typedef stk::mesh::Field<double> ScalarField;

52 typedef stk::mesh::Field<double, stk::mesh::Cartesian3d> VectorField;
53

54 const std::string pressureFieldName = "pressure";

55 const std::string displacementsFieldName = "displacements";

56 ScalarField #pressureField =

&metaData.declare_field<ScalarField> (stk::topology::ELEM_RANK,
pressureFieldName) ;

57 VectorField *displacementsField =
&metaData.declare_field<VectorField> (stk::topology: :NODE_RANK,
displacementsFieldName) ;

58 metaData.commit () ;

59

60 EXPECT_EQ (pressureField, metaData.get_field<ScalarField> (stk::topology::ELEM_RANK,
pressureFieldName)) ;

61 EXPECT_EQ (pressureField, metaData.get_field(stk::topology::ELEM_RANK, pressureFieldName));

62

63 EXPECT_EQ (displacementsField, metaData.get_field<VectorField> (stk::topology: :NODE_RANK,
displacementsFieldName)) ;

64 EXPECT_EQ (displacementsField, metaData.get_field(stk::topology::NODE_RANK,

displacementsFieldName)) ;
65 }

Listing 3.4: Examples of using fields that are variable-size and defined on only a subset of the mesh

.J.[../code/stk/stk_mesh/testsForDocumentation/useAdvancedFields.cpp

50 TEST (stkMeshHowTo, useAdvancedFields)

514

52 const unsigned spatialDimension = 3;

53 stk::mesh::MetaData metaData (spatialDimension, stk::mesh::entity_rank_names());

54

55 typedef stk::mesh::Field<double, stk::mesh::Cartesian> VectorField;

56 typedef stk::mesh::Field<double, stk::mesh::FullTensor36> TensorField;

57 TensorField& tensorField = metaData.declare_field<TensorField> (stk::topology::ELEM_RANK,
"tensor") ;

58 VectorField& variableSizeField =
metaData.declare_field<VectorField> (stk::topology::ELEM_RANK,
"variableSizeField");

59

60 stk::mesh::Part &tetPart = metaData.declare_part_with_topology ("tetElementPart",
stk::topology::TET_4);

61 stk::mesh::Part &hexPart = metaData.declare_part_with_topology ("hexElementPart",
stk::topology::HEX_8);

62

63 double initialTensorValuel] = {1, 2, 3, 4, 5, 6, 7, 8, 9};

64 stk::mesh::put_field_on_entire_mesh_with_initial_value (tensorField, initialTensorValue);

65

66 double initialVectorvaluel] = {1, 2, 3, 4, 5, 6, 7, 8};

83

67

const unsigned nodesPerTet = 4;

68 stk::mesh::put_field(variableSizeField, tetPart, nodesPerTet, initialVectorValue);

69 const unsigned nodesPerHex = 8;

70 stk::mesh::put_field(variableSizeField, hexPart, nodesPerHex, initialVectorValue);

71

72 metaData.commit () ;

73 stk::mesh::BulkData mesh (metaData, MPI_COMM_WORLD) ;

74 mesh.modification_begin();

75 stk::mesh::EntityId tetId = 1;

76 stk::mesh::EntityIdVector tetNodes {1, 2, 3, 4};

77 stk::mesh::Entity tetElem=stk::mesh::declare_element (mesh, tetPart, tetId, tetNodes);

78 stk::mesh::EntityId hexId = 2;

79 stk::mesh::EntityIdVector hexNodes {5, 6, 7, 8, 9, 10, 11, 12};

80 stk::mesh::Entity hexElem=stk::mesh::declare_element (mesh, hexPart, hexId, hexNodes);

81 mesh.modification_end();

82

83 const unsigned tensor_scalars_per_hex = stk::mesh::field_scalars_per_entity(tensorField,
hexElem) ;

84 const unsigned tensor_scalars_per_tet = stk::mesh::field_scalars_per_entity(tensorField,
tetElem) ;

85

86 EXPECT_EQ (tensor_scalars_per_hex, tensor_scalars_per_tet);

87 const unsigned tensor_enum_size = stk::mesh::FullTensor36::Size;

88 EXPECT_EQ (tensor_scalars_per_hex, tensor_enum_size);

89

90 double* tensorData = stk::mesh::field_data(tensorField, hexElem);

91 for (unsigned i=0; i<tensor_scalars_per_hex; i++)

92 {

93 EXPECT_EQ (initialTensorValue[i], tensorDatali]);

94 }

95

96 const unsigned scalars_per_tet = stk::mesh::field_scalars_per_entity(variableSizeField,
tetElem);

97 EXPECT_EQ (nodesPerTet, scalars_per_tet);

98

99 const unsigned scalars_per_hex = stk::mesh::field_scalars_per_entity(variableSizeField,
hexElem) ;

100 EXPECT_EQ (nodesPerHex, scalars_per_hex);

101

102 doublex vectorHexData = stk::mesh::field_data (variableSizeField, hexElem);

103 for (unsigned i=0; i<scalars_per_hex; i++)

104 {

105 EXPECT_EQ (initialVectorValue[i], vectorHexDatal[il]);

106 }

107

108 doublex vectorTetData = stk::mesh::field_data(variableSizeField, tetElem);

109 for (unsigned i=0; i<scalars_per_tet; i++)

110 {

111 EXPECT_EQ(initialVectorValue[i], vectorTetDatali]);

112 }

113}

Some application time-stepping algorithms use multi-state fields to assist with separating and up-
dating the field values for time-step n, n — 1, n+ 1, etc. STK Mesh supports fields with up to 6
states.

Listing 3.5: Examples of multi-state field usage

.J../../code/stk/stk_mesh/testsForDocumentation/useMultistateFields.cpp

49 TEST (stkMeshHowTo, useMultistateField)

50 {

51 const unsigned spatialDimension = 3;

52 stk::mesh::MetaData metaData (spatialDimension, stk::mesh::entity_rank_names());
53

54 typedef stk::mesh::Field<double> ScalarField;

84

W ow
v

60
61
62
63

64

66
67
68
69
70
71
72
73
74

76
71
78
79
80
81

82

const unsigned numStates = 2;

ScalarField& temperatureFieldStateNpl =
metaData.declare_field<ScalarField> (stk::topology: :NODE_RANK, "temperature",
numStates) ;

double initialTemperatureValue = 1.0;
stk::mesh::put_field on_entire mesh with initial value (temperatureFieldStateNpl,
&initialTemperatureValue);

metaData.commit () ;

stk::mesh::BulkData mesh (metaData, MPI_COMM_WORLD) ;

mesh.modification_begin();

stk::mesh::EntityId nodeId = 1;

stk::mesh::Entity node = mesh.declare_entity(stk::topology::NODE_RANK, nodeld);
mesh.modification_end();

EXPECT_EQ (stk::mesh::StateNP1l, temperatureFieldStateNpl.state());

doublex temperatureStateNpl = stk::mesh::field_data (temperatureFieldStateNpl, node);
EXPECT_EQ(initialTemperatureValue, *temperatureStateNpl);

double newTemperatureValue = 2.0;

*temperatureStateNpl = newTemperatureValue;

ScalarField& temperatureFieldStateN =

temperatureFieldStateNpl.field _of_state(stk::mesh::StateN);
doublex temperatureStateN = stk::mesh::field_data (temperatureFieldStateN, node);
EXPECT_EQ (initialTemperatureValue, xtemperatureStateN);

mesh.update_field_data_states();

temperatureStateN = stk::mesh::field_data (temperatureFieldStateN, node);
EXPECT_EQ (newTemperatureValue, xtemperatureStateN);

85

This page intentionally left blank.

Chapter 4

STK 10

4.1 STK IO: usage examples

STK 10 is a module available for reading from and writing to Exodus [1] files (and other formats)
into and out of STK Mesh. This section gives examples of how to use STK IO (referred hereon as
STK Mesh 10 Broker).

4.1.1 Reading mesh data to create a STK Mesh

The first example shows how to read mesh data from a file and create a STK Mesh corresponding
to that mesh data. A STK Part will be created for each element block, nodeset, and sideset on the
input mesh file and the name of the corresponding part will be the same as the name of the block
or set in the mesh file.

Listing 4.1: Reading mesh data to create a STK mesh

.[.[..Jcode/stk/stk_io/testsForDocumentation/readMesh.cpp

73 //

74 //+ EXAMPLE:

75 //+ Read mesh data from the specified file.

76 stk::io::StkMeshIoBroker stkIo(communicator);

77 stkIo.add_mesh_database (mesh_name, stk::io::READ_MESH);
78

79 //+ Creates meta data; creates parts

80 stkIo.create_input_mesh();

81

82 //+ Any modifications to the meta data must be done here.
83 //+ This includes declaring fields.

84

85 //+ Commit the meta data and create the bulk data.

86 //+ populate the bulk data with data from the mesh file.
87 stkIo.populate_bulk_data();

88

89 //

90 //+ VERIFICATION

91 //+ There should be:

92 //+ 4 parts corresponding to the 1 hex block and 3 shell blocks
93 stk::mesh::MetaData &meta = stkIo.meta_datal();

94 stk::mesh::Part xinvalid = NULL;

95 EXPECT_NE (invalid, meta.get_part ("block_1"));

96 EXPECT_NE (invalid, meta.get_part ("block_2"));

97 EXPECT_NE (invalid, meta.get_part ("block_3"));

98 EXPECT_NE (invalid, meta.get_part ("block_4"));

87

99
100 //+ 3 parts corresponding to the 3 nodesets.

101 EXPECT_NE (invalid, meta.get_part ("nodelist_1"));
102 EXPECT_NE (invalid, meta.get_part ("nodelist_2"));
103 EXPECT_NE (invalid, meta.get_part ("nodelist_3"));
104

105 //+ 3 parts corresponding to the 3 sidesets.

106 EXPECT_NE (invalid, meta.get_part ("surface_1"));
107 EXPECT_NE (invalid, meta.get_part ("surface_2"));
108 EXPECT_NE (invalid, meta.get_part ("surface_3"));

109
110

4.1.1.1 Face creation for input sidesets

Sidesets on volume elements where no shells are involved

Exploded view of input Resulting STK Mesh

Orientation

coincident surfaces

Figure 4.1: Sideset face creation in STK IO for 2 hexes.

m ‘face is put into part’
‘ ‘face attached to element’

- ‘element side in sideset’

- ‘face normal oriented this direction’
Legend

mo =M

Figure 4.2: Legend for Sideset Face Creation

88

The simple case of reading in Exodus files with sidesets on an exposed or interior surfaces of
volume elements (like hexes, tetrahedra, etc.) creates single faces on each surface during mesh read
by StkMeshlOBroker. Additional sidesets on exposed or interior surfaces do not create additional
faces but do add that face into additional STK parts.

When a face is created due to a sideset in Exodus, it is connected to all elements that share those
nodes on a surface. So even if a sideset is present on an interior surface and has only one adjacent
volume element, it will be connected to both volume elements that share that interior surface.

This includes doubly-sided sidesets with sides on the two adjacent interior surfaces on neighboring
volume elements. In this case, only a single face that is connected to the two neighboring volume
elements will be created but it will added to two STK parts. Whichever side of these coincident
sidesets is listed first in the Exodus file will be created first, hence the orientation of that side will
be used to set the orientation of the face. The SEACAS utility ncdump is useful in determining
the ordering of sides and sidesets in Exodus files.

Figure 4.1 shows an example for 2 hexes with a sideset on the leftmost interior surface. Figure 4.2
shows the legend. Listing 4.2 documents the behavior and shows how to check.

Listing 4.2: Face creation during IO for one sideset between hexes

.J.[.Jcode/stk/stk_doc_tests/stk_mesh/IOSidesetFaceCreation.cpp

55 bool is_positive_permutation (stk::mesh::BulkData & mesh,

56 stk::mesh::Entity face,

57 stk::mesh::Entity hex,

58 unsigned face_ordinal)

59 {

60 stk::topology faceTopology = mesh.bucket (face).topology () ;

61 stk::mesh::EntityVector face_nodes (mesh.num_nodes (face));

62 for (unsigned face_node_count=0; face_node_count < mesh.num_nodes (face);
++face_node_count) {

63 face_nodes[face_node_count] = mesh.begin_nodes (face) [face_node_count];

64 }

65 std::pair<bool, unsigned> permutation = stk::mesh::side_equivalent (mesh, hex,
face_ordinal, face_nodes.data());

66

67 bool is_a_valid_permutation = permutation.first;

68 EXPECT_TRUE (is_a_valid_permutation);

69 bool is_positive_permutation = permutation.second <
faceTopology.num_positive_permutations () ;

70 return is_positive_permutation;

71}

72
73 TEST (StkMeshHowTo, StkIO2HexlSidesetFaceCreation)

74 4

75 if (stk::parallel_machine_size (MPI_COMM_WORLD) == 1) {

76 /] == IS ——== === |[F ===

77 /] | [| | | [A | I

78 // |HEX1 5<-|D 4 HEX2| —--STK-IO--> |HEX1l 5<-|C->4 HEX2|

79 /] | 1E | | | [1E |

80 /] e [S === ——————= | ==

81 // |E |-——-> face is put into
82 // | T part surface_1
83 // |-——> orientation points outward
84 // from Hexl faceb
85

86 stk::i0::StkMeshIoBroker stkMeshIoBroker (MPI_COMM_WORLD) ;

87 stkMeshIoBroker.add_mesh_database ("ALA.e", stk::io::READ_MESH) ;

88 stkMeshIoBroker.create_input_mesh();

89 stkMeshIoBroker.populate_bulk_data();

&9

9

91 stk::mesh::BulkData &mesh = stkMeshIoBroker.bulk_data();

92 stk::mesh::EntityVector all_faces;

93 stk::mesh::get_entities (mesh, stk::topology::FACE_RANK, all_faces);

94 std::sort (all_faces.begin(),all_faces.end());

95 unsigned expected_num_faces = 1;

96 ASSERT_EQ (expected_num_faces, all_faces.size());
97 size_t face_index = 0;

98 stk::mesh::Entity face = all_faces[face_index];
99 unsigned expected_connected_elements = 2;

100 ASSERT_EQ (expected_connected_elements, mesh.num_elements (face));

1
2 EXPECT_TRUE (mesh.bucket (face) .member (xmesh.mesh_meta_data () .get_part ("surface_1")));

)

10

103

104 const stk::mesh::Entity * connected_elements = mesh.begin_elements (face);
105 const stk::mesh::ConnectivityOrdinal * which_side_of_element =

mesh.begin_element_ordinals (face) ;

8 int element_count = 0;

9 stk::mesh::Entity hex 2 = connected_elements[element_count];
110 EXPECT_EQ (2u, mesh.identifier (hex_2));

111 unsigned expected_face_ordinal = 4;

112 EXPECT_EQ (expected_face_ordinal, which_side_of_element [element_count]);
113 EXPECT_FALSE (is_positive_permutation (

114 mesh, face, hex_2, expected_face_ordinal));

115 }

116

117 {

118 int element_count = 1;

119 stk::mesh::Entity hex_1 = connected_elements|[element_count];
120 EXPECT_EQ(lu, mesh.identifier (hex_1));

121 unsigned expected_face_ordinal = 5;

122 EXPECT_EQ (expected_face_ordinal, which_side_of_element [element_count]);
123 EXPECT_TRUE (is_positive_permutation (

124 mesh, face, hex_1, expected_face_ordinal));

125 }

126

127 }

128 }

Sidesets on shell elements

Sides in sidesets can be created on either surface of a shell or both surfaces. If a single side is
present in the Exodus file, a single face will be created and connected to the shell on a single sur-
face. If two sides are present, two faces will be created with opposite permutations and individually
connected to single distinct surfaces of the shell.

Figure 4.3 shows an example of two cases on a single shell. Figure 4.2 shows the legend.
Sidesets on stacked shell elements

On coincident shells, a maximum of two faces are ever created with opposite permutations, no
matter how many sidesets are present. Extra sidesets cause parts to be added to the faces. If a
single face is created, it is hooked to the same orientation of every coincident shell. If two faces
are created, they are individually hooked to the same orientation of all coincident shells.

Sidesets on mixed volume and shell elements

90

Exploded view of input Resulting STK Mesh

O ne Orientation
sideset
£
TWO Orientation 2 Orientation
sidesets :

o

Figure 4.3: Sideset face creation in STK IO for one shell.

When shells are adjacent to volume elements, a maximum of two faces can be created (as opposed
to single face with no shells present).

The first side in the first sideset (from the ordering in Exodus as checked by ncdump) determines
the orientation of the face created for this surface on the element. If this side is on a volume
element, it will be hooked to the opposite orientation of any and all coincident shells. If this
side is on a shell element, it will be hooked to the same orientation of all other coincident shells
but the opposite orientation of any adjacent surfaces on volume elements. If additional sides in
sidesets are present in Exodus that would create faces that are already defined, additional parts
will be created but not additional faces. If additional sides in sidesets would create a face on the
opposing orientation of the shell, then it will be created and hooked to all other shell elements on
that orientation and the opposite orientation of any adjacent surfaces on volume elements. Note
that orientations of faces on volume elements are always outward directed.

Figure 4.4 an example of two shells between two hexes with three sidesets, only two faces are
created. Figure 4.2 shows the legend. Listing 4.3 shows relevant code for checking the ordinals,
permutations and parts.

Listing 4.3: Face creation during IO for shells between hexes with sidesets

«J.[.Jcode/stk/stk_doc_tests/stk_mesh/IOSidesetFaceCreation.cpp

132 TEST (StkMeshHowTo, StkIO2Hex2Shell3SidesetFaceCreation)
133 {

134 if (stk::parallel_machine_size (MPI_COMM_WORLD) == 1) {
135 /] e [S IS] ISl IS IS =—======

136 /| | IT |H| [H] [|

137 // |HEX1 5<-|D |E| |EO<—|D |D->4 HEX2|

138 /| | [E IL| |L| |[E |E | |

139 /] —mmm= [S IL] L] [S S =——————- |

Exploded view of input

coincident surfaces

Resulting STK Mesh

Orientation

Orientation

Figure 4.4: Sideset face creation in STK 10 for a complicated example with stacked shells between
two hex elements and multiple sidesets.

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

// IE 3 4 |E |E

/7 I'T IT |T

//

//

//

//

/] mmmm IFIs| IS

/7 | |A-—|H|->1H|

// |HEXl 5<—|C->1E| |EQ<———————————
/] | IE |LO<—|L|-—————=——————
/] —mmmmee I 1Ll L]

// | 3 4

/7 |-——> orientation

/! |--=> in surface_l part
//

STK

IF =
A | |
|C->4 HEX2|
[E | |

|

|-—>orientation

|-=>in surface_2 and
surface_3 parts

stk::io::StkMeshIoBroker stkMeshIoBroker (MPI_COMM_WORLD) ;
stkMeshIoBroker.add_mesh_database ("ALefLRA.e", stk::io::READ_MESH);

stkMeshIoBroker.create_input_mesh();
stkMeshIoBroker.populate_bulk_data();

stk::mesh::BulkData &mesh = stkMeshIoBroker.bulk_data();

stk::mesh::EntityVector all_faces;

stk::mesh::get_entities (mesh, stk::topology::FACE_RANK, all_faces);
std::sort (all_faces.begin(),all_faces.end());

unsigned expected_num_faces = 2;

92

167 ASSERT_EQ (expected_num_faces, all faces.size());
168

169 size_t face_index = 0;

170 {

171 stk::mesh::Entity face = all_faces[face_index];

172 unsigned expected_connected_elements = 3;

173 ASSERT_EQ (expected_connected_elements, mesh.num_elements (face));

174

175
EXPECT_TRUE (mesh.bucket (face) .member (xmesh.mesh_meta_data() .get_part ("surface_1")));

176

177 const stk::mesh::Entity % connected_elements = mesh.begin_elements (face);

178 const stk::mesh::ConnectivityOrdinal * which_side_of_element =
mesh.begin_element_ordinals (face);

179

180 {

181 int element_count = 0;
182 stk::mesh::Entity shell_3 = connected_elements[element_count];
183 EXPECT_EQ (3u, mesh.identifier (shell_3));
184 unsigned expected_face_ordinal = 1;
185 EXPECT_EQ (expected_face_ordinal, which_side_of_element [element_count]);
186 EXPECT_FALSE (is_positive_permutation(
187 mesh, face, shell_3, expected_face_ordinal));
188 }
189 {
190 int element_count = 1;
191 stk::mesh::Entity shell_4 = connected_elements[element_count];
192 EXPECT_EQ (4u, mesh.identifier (shell_4));
193 unsigned expected_face_ordinal = 1;
194 EXPECT_EQ (expected_face_ordinal, which_side_of_element [element_count]);
195 EXPECT_FALSE (is_positive_permutation(
196 mesh, face, shell_4, expected_face_ordinal));
197 }
198 {
199 int element_count = 2;
200 stk::mesh::Entity hex_1 = connected_elements[element_count];
201 EXPECT_EQ (lu, mesh.identifier (hex_1));
202 unsigned expected_face_ordinal = 5;
203 EXPECT_EQ (expected_face_ordinal, which_side_of_element [element_count]);
204 EXPECT_TRUE (is_positive_permutation (
205 mesh, face, hex_1, expected_face_ordinal));
206 }
207 }
208
209 face_index = 1;
210 {
211 stk::mesh::Entity face = all_faces[face_index];
212 unsigned expected_connected_elements = 3;
213 ASSERT_EQ (expected_connected_elements, mesh.num_elements (face));
214
215
EXPECT_TRUE (mesh.bucket (face) .member (xmesh.mesh_meta_data () .get_part ("surface_2")));
216
EXPECT_TRUE (mesh.bucket (face) .member (xmesh.mesh_meta_data () .get_part ("surface_3")));
217
218 const stk::mesh::Entity % connected_elements = mesh.begin_elements (face);
219 const stk::mesh::ConnectivityOrdinal * which_side_of_element =

mesh.begin_element_ordinals (face);

222 int element_count = 0;

223 stk::mesh::Entity shell_3 = connected_elements[element_count];

224 EXPECT_EQ (3u, mesh.identifier (shell_3));

225 unsigned expected_face_ordinal = 0;

226 EXPECT_EQ (expected_face_ordinal, which_side_of_element[element_count]);
227 EXPECT_FALSE (is_positive_permutation (

228 mesh, face, shell_ 3, expected_face_ordinal));

93

230 {
231 int element_count = 1;

232 stk::mesh::Entity shell 4 = connected_elements[element_count];

233 EXPECT_EQ (4u, mesh.identifier (shell_4));

234 unsigned expected_face_ordinal = 0;

235 EXPECT_EQ (expected_face_ordinal, which_side_of_element[element_count]);

236 EXPECT_FALSE (is_positive_permutation (

237 mesh, face, shell_4, expected_face_ordinal));

238 }

239 {

240 int element_count = 2;

241 stk::mesh::Entity hex_2 = connected_elements[element_count];

242 EXPECT_EQ (2u, mesh.identifier (hex_2));

243 unsigned expected_face_ordinal = 4;

244 EXPECT_EQ (expected_face_ordinal, which_side_of_element[element_count]);

245 EXPECT_TRUE (is_positive_permutation (mesh, face, hex_2,
expected_face_ordinal));

246 }

247 }

248 }

249 '}

STK IO Classic for Transition

To aid transition, we are documenting and preserving the old STK IO behavior for now. The old
behavior is that every sideset creates a unique face. These faces are not hooked to other elements.

4.1.2 Reading mesh data to create a STK Mesh allowing StkMeshloBroker
to go out of scope

This example shows how to read mesh data from a file and create a STK Mesh corresponding to
that mesh data while also allowing the StkMeshloBroker to go out of scope without deleting the
STK Mesh.

Listing 4.4: Reading mesh data to create a STK mesh using set bulk

data../../../code/stk/stk_mesh/testsForDocumentation/createStkMeshAltl.cpp

53 TEST (StkMeshHowTo, CreateStkMesh)

544

55 MPI_Comm communicator = MPI_COMM_WORLD;

56 if (stk::parallel_machine_size (communicator) != 1) { return; }
57 const std::string exodusFileName = "example.exo";

59 create_example_exodus_file (communicator, exodusFileName);

60 // Creation of STK Mesh objects.

61 // MetaData creates the universal_part, locally-owned part, and globally shared part.
62 const int spatialDim = 3;

63 stk::mesh::MetaData stkMeshMetaData (spatialDim) ;

64 stk::mesh::BulkData stkMeshBulkData (stkMeshMetaData, communicator);

66 // STK IO module will be described in separate chapter.
67 // It is used here to read the mesh data from the Exodus file and populate an STK Mesh.

68 // The order of the following lines in {} are important

69 {

70 stk::io::StkMeshIoBroker exodusFileReader (communicator);
71

72 // Inform STK IO which STK Mesh objects to populate later
73 exodusFileReader.set_bulk_data (stkMeshBulkData) ;

94

74
75 exodusFileReader.add_mesh_database (exodusFileName, stk::io::READ_MESH);
76

77 // Populate the MetaData which has the descriptions of the Parts and Fields.
78 exodusFileReader.create_input_mesh();

79

80 // Populate entities in STK Mesh from Exodus file

81 exodusFileReader.populate_bulk_data();

82 }

83

84 // Test if the STK Mesh has 512 elements. Other examples will discuss details below.
85 stk::mesh::Selector allEntities = stkMeshMetaData.universal_part();

86 std::vector<unsigned> entityCounts;

87 stk::mesh::count_entities(allEntities, stkMeshBulkData, entityCounts);

88 EXPECT_EQ(512u, entityCounts[stk::topology::ELEMENT_RANK]) ;

89 unlink (exodusFileName.c_str());

9 }

4.1.3 Reading mesh data to create a STK Mesh, delaying field allocations

This example is almost the same as the previous except it delays the allocation of field data so that
the application can modify the mesh. If the field data is allocated prior to the mesh modification,
the reordering and moving of field data memory may be expensive; if the field data allocation is
delayed, no reordering or moving of memory is needed.

The field data memory allocation delay is accomplished by calling populate_mesh ()
and populate_field_data () instead of populate_bulk_data (). Any mesh mod-
ifications, for example, creating mesh edges or mesh faces is performed prior to calling
populate_field_data().

Listing 4.5: Reading mesh data to create a STK mesh; delay field allocation

.[..[..Jcode/stk/stk_io/testsForDocumentation/readMeshDelayFieldAllocation.cpp

68 //

69 //+ EXAMPLE:

70 //+ Read mesh data from the specified file.

71 stk::i0::StkMeshIoBroker stkIo(communicator);

72 stkIo.add_mesh_database (mesh_name, stk::io::READ_MESH);
73

74 //+ Creates meta data; creates parts

75 stkIo.create_input_mesh();

76

77 //+ Any modifications to the meta data must be done here.
78 //+ This includes declaring fields.

79

80 //+ Commit the meta data and create the bulk data.

81 //+ populate the bulk data with data from the mesh file.
82 stkIo.populate_mesh();

83

84 //+ Application would call mesh modification here.

85 //+ for example, create_edges() or create faces().

86

87 //+ Mesh modifications complete, allocate field data.
88 stkIo.populate_field_data();

89
90

95

4.1.4 Outputting STK Mesh

Listing 4.6: Writing a STK Mesh ../../../code/stk/stk_io/testsForDocumentation/howToWriteMesh.cpp

#include <unistd.h>

#include <gtest/gtest.h>

#include <stk_mesh/base/MetaData.hpp>
#include <stk_mesh/base/BulkData.hpp>
#include <stk_mesh/base/Comm.hpp>

#include <stk_io/StkMeshIoBroker.hpp>
#include <stk_unit_test_utils/ioUtils.hpp>
namespace

{

© ® N AW N —

=3

TEST (StkIoHowTo, WriteMesh)
{

o

b

13 std::string filename = "output.exo";

14 {

15 stk::mesh::MetaData meta;

16 stk::mesh::BulkData bulk (meta, MPI_COMM_WORLD) ;

17 stk::unit_test_util::fill_mesh_using_stk_io("generated:1x1x4", bulk);
18

19 stk::io0::StkMeshIoBroker stkIo;

20 stkIo.set_bulk_data (bulk);

21 size_t outputFileIndex = stkIo.create_output_mesh(filename, stk::io::WRITE_RESULTS) ;
22 stkIo.write_output_mesh (outputFileIndex) ;

23 stkIo.write_defined_output_fields (outputFileIndex);

24 }

25

26 {

27 stk::mesh: :MetaData meta;

28 stk::mesh::BulkData bulk (meta, MPI_COMM_WORLD) ;

29 stk::unit_test_util::fill_mesh_using_stk_io(filename, bulk);
30

31 std::vector<size_t> entityCounts;

32 stk::mesh: :comm_mesh_counts (bulk, entityCounts);

33 EXPECT_EQ (4u, entityCounts[stk::topology::ELEM_RANK]) ;

34 }

35

36 unlink (filename.c_str());

37}

38

39 }

4.1.5 Outputting results data from a STK Mesh

This example shows how an application can output the application’s calculated field data to a
results database.

Listing 4.7: Writing calculated field data to a results database

.J.[../code/stk/stk_io/testsForDocumentation/writeResults.cpp

82 //

83 //+ EXAMPLE:

84 //+ Read mesh data from the specified file.

85 stk::io::StkMeshIoBroker stkIo(communicator);

86 stkIo.add_mesh_database (mesh_name, stk::io::READ_MESH);
87

88 //+ Creates meta data; creates parts

89 stkIo.create_input_mesh();

90

91 //+ Declare a field

96

92 //+ NOTE: Fields must be declared before "populate_ bulk_data()" is called

93 //+ since it commits the meta data.
94 const std::string fieldName = "disp";
95 stk::mesh::Field<double> &field =

stkIo.meta_data() .declare_field<stk::mesh::Field<double>
> (stk::topology: :NODE_RANK, fieldName, 1);

96 stk::mesh::put_field(field, stkIo.meta_data().universal_part());

97

98 //+ commit the meta data and create the bulk data.

99 //+ populate the bulk data with data from the mesh file.

100 stkIo.populate_bulk_data();

101

102 //

103 //+ Create results file. By default, all parts created from the input

104 //+ mesh will be written to the results output file.

105 size_t fh = stkIo.create_output_mesh(results_name, stk::io::WRITE_RESULTS);
106

107 //+ The field will be output to the results file with the default field name.
108 stkIo.add_field(fh, field);

109

110 std::vector<stk::mesh::Entity> nodes;

111 stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);
112

113 // Iterate the application’s execute loop five times and output
114 // field data each iteration.

115 for (int step=0; step < 5; step++) {

116 double time = step;

117

118 // Application execution...

119 double value = 10.0 * time;

120 for(size_t 1=0; i<nodes.size(); i++) {

121 double *node_data = stk::mesh::field_data(field, nodes[i]);
122 *node_data = value;

123 }

124

125 //+ Output the field data calculated by the application.

126 stkIo.begin_output_step (fh, time);

127 stkIo.write_defined_output_fields (fh);

128 stkIo.end_output_step (fh);

129 }
130

4.1.6 Outputting a field with an alternative name to a results file

The client can specify a field name for results output that is different than the internally used
STK Mesh field name. The results output field name is specified as the second argument to the
add_field () function. The code excerpt shown below replaces line 108 in the previous exam-
ple (Listing 4.7) to cause the name of the field on the output

Listing 4.8: Outputting a field with an alternative name

.J../../[code/stk/stk_io/testsForDocumentation/requestedResultsFieldName.cpp

105 //+ The field ’'fieldName’ will be output to the results file with the name
"alternateFieldName’

106 std::string alternateFieldName ("displacement");

107 stkIo.add_field(fh, field, alternateFieldName) ;

108

97

4.1.7 Outputting both results and restart data from a STK Mesh

The STK Mesh 10 Broker class can output both results data and restart data. Currently, the only
difference between results data and restart data is that a restart output will automatically output
the multiple states of a multi-state field. If, for example, the application defines a three-state field
named “disp”, then outputting this field to a restart database will result in the two newest states
being output. On the restart database the variables will appear as “disp” and “disp.N.” Outputting
this field to a results database will only output the data on the newest state as the variable “disp”.
When the restart database is read back in, the variables will be restored back to the same states that
were written.

The example below shows how an application can output both a results and restart database. The
example shows both databases being written on each step, but this is not required — each file can
specify its own output frequency.

Listing 4.9: Write results and restart

.J.[../code/stk/stk_io/testsForDocumentation/writeResultsAndRestart.cpp

84 //
85 //+ EXAMPLE:
86 //+ Read mesh data from the specified file.
87 stk::io::StkMeshIoBroker stkIo(communicator);
88 stkIo.add_mesh_database (mesh_name, stk::io::READ_MESH);
89
90 //+ Creates meta data; creates parts
91 stkIo.create_input_mesh();
92
93 //+ Declare a three-state field
94 //+ NOTE: Fields must be declared before "populate bulk_data()" is called
95 //+ since it commits the meta data.
96 const std::string fieldName = "disp";
97 stk::mesh::Field<double> &field =
stkIo.meta_data() .declare_field<stk::mesh::Field<double>
> (stk::topology::NODE_RANK, fieldName, 3);
98 stk::mesh::put_field(field, stkIo.meta_data().universal_part());
99
100 const stk::mesh::Part& block_1 = *stkIo.meta_data() .get_part ("block_1");
101 //+ create a two-state field
102 stk::mesh::Field<double> &fooSubset = stkIo.meta_data().
103 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "fooSubset",
2);
104 stk::mesh::put_field(fooSubset, block_1);
105
106 //+ commit the meta data and create the bulk data.
107 //+ populate the bulk data with data from the mesh file.
108 stkIo.populate_bulk_data();
109
110 //
111 //+ Create results file. By default, all parts created from the input
112 //+ mesh will be written to the results output file.
113 size_t results_fh = stkIo.create_output_mesh (results_name, stk::io::WRITE_RESULTS) ;
114
115 //+ Create restart file. By default, all parts created from the input
116 //+ mesh will be written to the results output file.
117 size_t restart_fh = stkIo.create_output_mesh (restart_name, stk::io::WRITE_RESTART) ;
118
119 //+ The field will be output to the results file with the default field name.
120 //+ Only the newest state will be output.
121 stkIo.add_field(results_fh, field);

122

98

123 //+ Output the field to the restart database also.

124 //+ The two newest states will be output.

125 stkIo.add_field(restart_fh, field);

126 stkIo.add_field(restart_fh, fooSubset);

127

128 std::vector<stk::mesh::Entity> nodes;

129 stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);

130

131 stk::mesh::FieldBase xstatedFieldNpl = field.field_state(stk::mesh::StateNP1l);

132 stk::mesh::FieldBase *statedFieldN = field.field_state(stk::mesh::StateN);

133 stk::mesh::FieldBase *statedFieldNml = field.field_state(stk::mesh::StateNMl);

134

135 // Iterate the application’s execute loop five times and output

136 // field data each iteration.

137 for (int step=0; step < 5; step++) {

138 double time = step;

139

140 // Application execution...

141 double value = 10.0 x time;

142 for(size_t i=0; i<nodes.size(); 1i++) {

143 double xnpl_data = static_cast<doublex> (stk::mesh::field_data(xstatedFieldNpl,
nodes[i]));

144 *npl_data = value;

145 double *n_data = static cast<doublex*>(stk::mesh::field_data (*statedFieldN,
nodes[i]));

146 *n_data = value + 0.1;

147 double *nml_data = static cast<doublex> (stk::mesh::field_data (*statedFieldNml,
nodes[i]));

148 *nml_data = value + 0.2;

149 }

150

151 //+ Results output...

152 stkIo.begin_output_step (results_fh, time);

153 stkIo.write_defined_output_fields (results_fh);

154 stkIo.end_output_step(results_fh);

155

156 //+ Restart output...

157 stkIo.begin_output_step(restart_fh, time);

158 stkIo.write_defined_output_fields (restart_fh);

159 stkIo.end_output_step(restart_fh);

160 }
161

4.1.8 Writing multi-state fields to results output file

The previous example showed that a results file will only output the newest state of a multi-state
field. However, it is possible to tell a results file to output multiple states from a multi-state field.
Each state of the field must be registered individually. Since each state will have the same field
name, the add_field () call must also specify the name to be used for the variable on the results
database in order to get unique names for each state. The example below shows how to output all
three states of a multi-state field to a results database.

Listing 4.10: Writing multi-state field to results output

.J..../code/stk/stk_io/testsForDocumentation/usingResults.cpp

70 const std::string fieldName = "disp";

71 const std::string nplName = fieldName+"NP1";
72 const std::string nName = fieldName+"N";
73 const std::string nmlName = fieldName+"Nml";

99

74 {

75 //

76 //+ INITIALIZATION

77 const std::string exodusFileName = "generated:1x1x8";

78 stk::io::StkMeshIoBroker stkIo(communicator);

79 size_t index = stkIo.add_mesh_database (exodusFileName, stk::io::READ_MESH);
80 stkIo.set_active_mesh (index) ;

81 stkIo.create_input_mesh();

82

83 //+ Declare a three-state field

84 //+ NOTE: Fields must be declared before "populate bulk_data()" is called

85 //+ since it commits the meta data.

86 stk::mesh::Field<double> &field =

87 stkIo.meta_data() .declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK,
88 fieldName, 3);
89 stk::mesh::put_field(field, stkIo.meta_data().universal_part());

90

91 stkIo.populate_bulk_data();

92

93 size_t fh =

94 stkIo.create_output_mesh (resultsFilename, stk::io::WRITE_RESULTS);

95

96 //

97 //+ EXAMPLE

98 //+ Output each state of the multi-state field individually to results file
99 stk::mesh::FieldBase xstatedFieldNpl = field.field_state(stk::mesh::StateNP1l);
100 stk::mesh::FieldBase xstatedFieldN = field.field_state(stk::mesh::StateN);

101 stk::mesh::FieldBase *statedFieldNml = field.field_state(stk::mesh::StateNMl);
102

103 std::vector<stk::mesh::Entity> nodes;

104 stk::mesh::get_entities (stkIo.bulk_data (), stk::topology::NODE_RANK, nodes);
105

106 stkIo.add_field(fh, *statedFieldNpl, nplName);

107 stkIo.add_field(fh, *statedFieldN, nName) ;

108 stkIo.add_field(fh, *statedFieldNml, nmlName) ;

109

110 // Iterate the application’s execute loop five times and output
111 // field data each iteration.

112 for (int step=0; step < 5; step++) {

113 double time = step;

114

115 // BApplication execution...

116 // Generate field data... (details omitted)

117

131 //+ Results output...

132 stkIo.begin_output_step (fh, time);

133 stkIo.write_defined_output_fields (fh);

134 stkIo.end_output_step (fh);

135 }
136

4.1.9 Writing multiple output files

The following example shows how to write multiple output files. Although different fields and
global variables are written to each file in the example, the same field or global variable can be
written to multiple files.

Listing 4.11: Writing multiple output files

.J.[..Jcode/stk/stk_io/testsForDocumentation/writingMultipleOutputFiles.cpp

100

59 //+ EXAMPLE -- Two results output files

60 stk::mesh::FieldBase xdisplacementField =

61 meta_data.get_field(stk::topology::NODE_RANK, displacementFieldName);

62

63 //+ For file one, set up results and global variables

64 size_t filelHandle = stkIo.create_output_mesh (resultsFilenamel,

65 stk::io: :WRITE_RESULTS) ;

66 stkIo.add_field(filelHandle, =*displacementField);

67 std::string globalVarNameFilel = "eigenValue";

68 stkIo.add_global (filelHandle, globalVarNameFilel, Ioss::Field::REAL);

69

70 //+ For file two, set up results and global variables

71 size_t file2Handle = stkIo.create_output_mesh (resultsFilename2,

72 stk::io: :WRITE_RESULTS) ;

73 std::string nameOnOutputFile ("deformations");

74 stkIo.add_field(file2Handle, *displacementField, nameOnOutputFile);

75 stk::mesh::FieldBase xvelocityField = meta_data.get_field(stk::topology: :NODE_RANK,
velocityFieldName) ;

76 stkIo.add_field(file2Handle, xvelocityField);

77 std::string globalVarNameFile2 = "kineticEnergy";

78 stkIo.add_global (file2Handle, globalVarNameFile2, Ioss::Field::REAL);

79

80 //+ Write output

81 double time = 0.0;

82 stkIo.begin_output_step(filelHandle, time);

83 stkIo.write_defined_output_fields (filelHandle) ;

84 const double globalVarValuel = 13.0;

85 stkIo.write_global (filelHandle, globalVarNameFilel, globalVarValuel);

86 stkIo.end_output_step(filelHandle) ;

87

88 stkIo.begin_output_step(file2Handle, time);

89 stkIo.write_defined_output_fields (file2Handle) ;

90 const double globalVarValue2 = 14.0;

91 stkIo.write_global (file2Handle, globalVarNameFile2, globalVarValue2);

92 stkIo.end_output_step(file2Handle);

93
94

4.1.10 Outputting nodal variables on a subset of the nodes

By default, a nodal variable is assumed to be defined on all nodes of the mesh. If the variable does
not exist on all nodes, then a value of zero will be output for those nodes. If a nodal variable is
only defined on a few of the nodes of the mesh, this can increase the size of the mesh file since it
is storing much more data than is required. There is an option in STK Mesh IO Broker to handle
this case by creating one or more “nodesets” which consist of the nodes of the part or parts where
the nodal variable is defined. The name of the nodeset will be the part name suffixed by “_n”. For
example, if the part is named “firset”, the nodeset corresponding to the nodes of this part will be
named “fireset_n".

Listing 4.12: Using a nodeset variable to output nodal fields defined on only a subset of the mesh

.J..[..Jcode/stk/stk_io/testsForDocumentation/useNodesetDbVarForNodalField.cpp

75 //

76 // INITIALIZATION

77 std::string s_elems_per_edge = Ioss::Utils::to_string(num_elems_per_edge);
78

79 //+ Create a generated mesh containg hexes and shells.

80 std::string input_filename = s_elems_per_edge + "x" +

101

81 s_elems_per_edge + "x" +

82 s_elems_per_edge + "|shell:xyzXYZ";

83

84 stk::io::StkMeshIoBroker stkIo(communicator);

85 stkIo.add_mesh_database (input_filename, "generated",

86 stk::i0::READ_MESH) ;

87 stkIo.create_input_mesh();

88

89 stk::mesh::MetaData &meta_data = stkIo.meta_data();

90 stk::mesh::Field<double> &temperature = meta_data.

91 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK,
92 appFieldName, 1);

93

94 //

95 //+ Put the temperature field on the nodes of the shell parts.

96 const stk::mesh::PartVector &all_parts = meta_data.get_mesh_parts();
97 stk::mesh::Selector shell_subset;

98 for (size_t 1i=0; 1 < all_parts.size(); 1i++) {

99 const stk::mesh::Part xpart = all_parts[i];

100 stk::topology topo = part->topology();

101 if (topo == stk::topology::SHELL_QUAD_4) {

102 stk::mesh::put_field (temperature, =*part);

103 }

104 }

105

106 stkIo.populate_bulk_data();

107

108 // Create the output...

109 size_t fh = stkIo.create_output_mesh(resultsFilename, stk::io::WRITE_RESULTS);

110
111 //+ The "temperature" field will be output on nodesets consisting

112 //+ of the nodes of each part the field is defined on.

113 stkIo.use_nodeset_for_ part_nodes_fields (fh, true);

114 stkIo.add_field(fh, temperature, dbFieldName) ;

115

116 std::vector<stk::mesh::Entity> nodes;

117 stk::mesh::get_entities (stkIo.bulk_data(),

118 stk::topology: :NODE_RANK, nodes);
119

120 // Add three steps to the database

121 // For each step, the value of the field is the value ’time’
122 for (size_t 1=0; 1 < 3; 1i++) |

123 double time = 1i;

124

125 for(size_t inode=0; inode<nodes.size(); inode++) {

126 double xfieldDataForNode = stk::mesh::field_data (temperature, nodes[inode]);
127 if (fieldDataForNode)

128 «fieldDataForNode = time;

129 }

130

131 stkIo.begin_output_step (fh, time);

132 stkIo.write_defined_output_fields (fh);

133 stkIo.end_output_step (fh);

134 }

135 // Verification omitted...

136

4.1.11 Get number of time steps from a database

Listing 4.13: get num time steps

.J..[.Jcode/stk/stk_io/testsForDocumentation/howToGetNumTimeSteps.cpp

26 TEST_F (ExodusFileWithVariables, queryingFileWithSingleTimeStep_NumTimeStepsEqualsOne)

102

27 |

28 create_mesh_with_single_time_step (filename, get_comm());
29 read_mesh (filename) ;
30 EXPECT_EQ (1, stkIo.get_num_time_steps());

31}

32

33 TEST_F (ExodusFileWithVariables, queryingFileWithoutTimeSteps_NumTimeStepsEqualsZero)
34 {

35 stk::unit_test_util::create_mesh_without_time_steps (filename, get_comm());
36 read_mesh (filename) ;
37 EXPECT_EQ (0, stkIo.get_num_time_steps());

38}

39

40 TEST_F (ExodusFileWithVariables, readDefinedInputFieldsFromInvalidTimeStep_throws)
41

42 create_mesh_with_single_time_step (filename, get_comm());

43 read_mesh (filename) ;

44 EXPECT_THROW (stkIo.read_defined_input_fields(3), std::exception);
45)

47 TEST_F (ExodusFileWithVariables, readDefinedInputFields_throws)

48 |

49 stk::unit_test_util::create_mesh_without_time_steps (filename, get_comm());
50 read_mesh (filename) ;

51 EXPECT_THROW (stkIo.read_defined_input_fields(l), std::exception);

4.1.12 Reading sequenced fields from a database

Sequenced fields have the same base name and are numbered sequentially starting with one
(field_1, field_2, ..., field_n). They can be read into individual fields or collapsed into a single
multi-dimensioned field.

Listing 4.14: Reading sequenced fields

./../../code/stk/stk_io/testsForDocumentation/setOptionToNotCollapseSequencedFields.cpp

17 TEST_F (MultipleNumberedFieldsWithSameBaseName, whenReading collapseToSingleStkField)

18 {

19 stk::unit_test_util::create_mesh_with_ field 1_ field 2 field 3 (filename, get_comm());

0 read_mesh (filename) ;

1 EXPECT_EQ (lu, get_meta().get_fields(stk::topology::ELEM_RANK) .size());

2}

3

24 TEST_F (MultipleNumberedFieldsWithSameBaseName,
whenReadingWitlhoutCollapseOption_threeStkFieldsAreRead)

25 |

26 stk::unit_test_util::create_mesh_with__field_1_field_2_ field 3 (filename, get_comm());
27 stkIo.set_option_to_not_collapse_sequenced_fields();

28 read_mesh (filename) ;

29 EXPECT_EQ (3u, get_meta().get_fields (stk::topology::ELEM_RANK) .size());

30 }

4.1.13 Reading initial conditions from a field on a mesh database

This example shows how to read data from an input mesh database at a specified time and put the
data into a STK Mesh field for use as initial condition data. The name of the field in the database

103

and the name of the STK Mesh field do not match to illustrate how to specify alternate names. The
initial portion of the example, which is not shown, creates a mesh with timesteps at times 0.0, 1.0,
and 2.0. The database contains a nodal field called “temp” with the same values for each node.
The value is the same as the time (0.0, 1.0, and 2.0) for each time step. The example shows how to
specify the reading of the field data at a specified time step.

Listing 4.15: Reading initial condition data from a mesh database

.J../../code/stk/stk_io/testsForDocumentation/readInitial Condition.cpp

106 //

107 //+ EXAMPLE:

108 //+ Read the value of the "temp" field at step 2 and populate

109 //+ the nodal field "temperature" for use as an initial condition

110 stk::io::StkMeshIoBroker stkIo(communicator);

111 size_t index = stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;
112 stkIo.set_active_mesh (index) ;

113 stkIo.create_input_mesh();

114

115 stk::mesh::Field<double> &temperature = stkIo.meta_datal().

116 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature",1);
117 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());
118 stkIo.populate_bulk_data();

119

120 //+ The name of the field on the database is "temp"

121 stkIo.add_input_field(stk::io::MeshField (temperature, "temp"));

122

123 //+ Read the field values from the database at time 2.0

124 stkIo.read_defined_input_fields(2.0);

125

126 //

127 //+ VERIFICATION

128 //+ The value of the field at all nodes should be 2.0

129 std::vector<stk::mesh::Entity> nodes;

130 stk::mesh::get_entities (stkIo.bulk_data (), stk::topology::NODE_RANK,
131 nodes) ;

132 for(size_t 1=0; i<nodes.size(); i++) {

133 double xfieldDataForNode = stk::mesh::field_data (temperature, nodes[i]);
134 EXPECT_DOUBLE_EQ (2.0, xfieldDataForNode) ;

135 }
136

4.1.14 Reading initial conditions from a field on a mesh database — apply to
a specified subset of mesh parts

This example is similar to the previous except that the field data read from the mesh database is
limited to a subset of the parts in the model. The mesh consists of seven element blocks — one
hex block and six shell blocks. The mesh database contains a single field defined on all blocks. In
the example, the reading of the field is limited to the six shell element blocks; the field on the hex
element block will not be initialized from the data on the mesh database. The add_subset ()
function is where this is specified.

Listing 4.16: Reading initial condition data from a mesh database

./../../code/stk/stk_io/testsForDocumentation/readInitial ConditionSubset.cpp

63 std::string dbFieldNameShell = "ElementBlock_1";
64 std::string appFieldName = "pressure";

104

66 MPI_Comm communicator = MPI_COMM_WORLD;

67 int numProcs = stk::parallel machine_size (communicator);

68 if (numProcs != 1) {

69 return;

70 }

71

72 {

73 //

74 // INITIALIZATION

75 //+ Create a generated mesh containg hexes and shells with a

76 //+ single element variable -- ElementBlock_1

77 std::string input_filename = "9x9x9|shell:xyzXYZ|variables:element,l|times:1";
78

79 stk::i0::StkMeshIoBroker stkIo(communicator);

80 stkIo.add_mesh_database (input_filename, "generated", stk::io::READ_MESH);
81 stkIo.create_input_mesh();

82

83 stk::mesh::MetaData &meta_data = stkIo.meta_data();

84

85 // Declare the element "pressure" field...

86 stk::mesh::Field<double> &pressure = stkIo.meta_data() .

87 declare_field<stk::mesh::Field<double> > (stk::topology::ELEMENT_RANK, appFieldName,1);
88

89 // "ElementBlock_1" is the name of the element field on the input mesh.
90 stk::io::MeshField mf (pressure, dbFieldNameShell);

91

92 const stk::mesh::PartVector &all_parts = meta_data.get_mesh_parts();

93 for (size_t 1i=0; i < all_parts.size(); i++) {

94 const stk::mesh::Part xpart = all_parts[i];

95

96 //+ Put the field on all element block parts...

97 stk::mesh::put_field(pressure, #*part);

98

99 stk::topology topo = part->topology();

100 if (topo == stk::topology::SHELL_QUAD_4) {

101

102 //+ But only initialize the "pressure" field from mesh data on the shell parts.
103 mf.add_subset (xpart) ;

104 }

105 }

106

107 stkIo.add_input_field (mf);

108 stkIo.populate_bulk_data();

109

110 double time = stkIo.get_input_io_region()->get_state_time(1l);

111

112 //+ Populate the fields with data from the input mesh.

113 stkIo.read_defined_input_fields (time);

114
115

The previous example specified all of the subset parts on a single MeshField. It is also possible
to specify a separate MeshField for each subset part. This is not the most efficient method, but
can be used if other modifications of the MeshField are needed for each or some of the subset
parts.

Listing 4.17: Reading initial condition data from a mesh database

./..[..Jcode/stk/stk_io/testsForDocumentation/readInitial ConditionMultiSubset.cpp

73 //

74 // INITIALIZATION

75 //+ Create a generated mesh containg hexes and shells with a
76 //+ single element variable —-- pressure

105

77 std::string input_filename = "9x9x9|shell:xyzXYZ|variables:element,l|times:1";
78

79 stk::io0::StkMeshIoBroker stkIo(communicator);

80 stkIo.add_mesh_database (input_filename, "generated", stk::io::READ_MESH);
81 stkIo.create_input_mesh () ;

82

83 stk::mesh::MetaData &meta_data = stkIo.meta_data();

84

85 // Declare the element "pressure" field...

86 stk::mesh::Field<double> &pressure = stklIo.meta_datal().

87 declare_field<stk::mesh::Field<double> > (stk::topology::ELEMENT_RANK, appFieldName, 1) ;
88

89 const stk::mesh::PartVector &all_parts = meta_data.get_mesh_parts();
90 for (size_t 1=0; 1 < all_parts.size(); i++) {

91 //+ Put the field on all element block parts...

92 stk::mesh::put_field(pressure, =*all_parts[i]);

93 }

94

95 // This commits BulkData and populates the coordinates, connectivity, mesh...
96 stkIo.populate_bulk_data();

97

98 double time = stkIo.get_input_io_region()->get_state_time(1l);

99

100 //+ Initialize the "pressure" field from mesh data on the shell parts on demand...
101 for (size_t 1i=0; 1 < all_parts.size(); 1i++) |

102 stk::topology topo = all_parts[i]->topology();

103 if (topo == stk::topology::SHELL_QUAD_4) {

104

105 stk::io0::MeshField mf (pressure, dbFieldNameShell);

106 mf.set_read_time (time);

107 mf.add_subset (xall_parts[i]);

108 #if O

109 stkIo.read_input_field(mf);

110 #else

111 stkIo.add_input_field(mf);

112 #endif

113 }

114 }

115

116 //+ Populate any other fields with data from the input mesh.

117 //+ This would *not* know about the MeshFields above since

118 //+ "add_input_field()" was not called...

119 stkIo.read_defined_input_fields (time);

120
121
122

The final example in this section shows that the same STK field can be initialized from different
database fields on different parts through the use of multiple Me shFie1ds with different subsets.
In this example, the “pressure” field on the shell element blocks is initialized from one database
element variable and the “pressure” field on the non-shell element blocks is initialized from a
different database element variable.

Listing 4.18: Reading initial condition data from a mesh database

.J..[..Jcode/stk/stk_io/testsForDocumentation/readInitial ConditionTwoFieldSubset.cpp

63 std::string dbFieldNameShell = "ElementBlock_1";

64 std::string dbFieldNameOther = "ElementBlock_2";

65 std::string appFieldName = "pressure";

66

67 MPI_Comm communicator = MPI_COMM_WORLD;

68 int numProcs = stk::parallel_machine_size (communicator);
69 if (numProcs != 1) {

70 return;

106

74 // =

75 // INITIALIZATION

76 //+ Create a generated mesh containg hexes and shells with two

77 //+ element variables —— ElementBlock_1l and ElementBlock_2

78 std::string input_filename = "9x9x9|shell:xyzXYZ|variables:element, 2 |times:1";
79

80 stk::io::StkMeshIoBroker stkIo(communicator);

81 stkIo.add_mesh_database (input_filename, "generated", stk::io::READ_MESH);

82 stkIo.create_input_mesh();

83

84 stk::mesh::MetaData &meta_data = stkIo.meta_data();

85

86 // Declare the element "pressure" field...

87 stk::mesh::Field<double> &pressure = stkIo.meta_data() .

88 declare_field<stk::mesh::Field<double> > (stk::topology::ELEMENT_RANK, appFieldName,1l);

90 stk::io::MeshField mf_shell (pressure, dbFieldNameShell);
91 stk::io0::MeshField mf_other (pressure, dbFieldNameOther);
92

93 const stk::mesh::PartVector &all_parts = meta_data.get_mesh_parts();

94 for (size_t 1i=0; 1 < all_parts.size(); 1i++) |

95 const stk::mesh::Part xpart = all_parts[i];

96

97 //+ Put the field on all element block parts...
98 stk::mesh::put_field(pressure, =*part);

99
100 stk::topology topo = part->topology();

101 if (topo == stk::topology::SHELL_QUAD_4) {

102 //+ The shell blocks will have the pressure field initialized

103 //+ from the dbFieldNameShell database variable.

104 mf_shell.add_subset (*part) ;

105 }

106 else {

107 //+ The non-shell blocks will have the pressure field initialized
108 //+ from the dbFieldNameOther database variable.

109 mf_other.add_subset (xpart) ;
110 }

111 }

112

113 stkIo.add_input_field (mf_shell);

114 stkIo.add_input_field(mf_other);

115 stkIo.populate_bulk_data();

116

117 double time = stkIo.get_input_io_region()->get_state_time(1l);

118
119 //+ Populate the fields with data from the input mesh.
120 stkIo.read_defined_input_fields (time);

121

122

4.1.15 Reading initial conditions from a field on a mesh database — only read
once

This example is the same as the previous example, except that the initial condition field will only be
active for a single read. Once data has been read into the field, it is no longer active for subsequent
reads. This is specified by calling set_read_once (true) on the input field as shown on
line 125.

107

The read_defined_input_fields () function is called twice and it is verified that the field
data does not change on the second call since the input field is no longer active at that call.

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

Listing 4.19: Reading initial condition data from a mesh database one time only

.[../../code/stk/stk_io/testsForDocumentation/readInitial ConditionOnce.cpp

//
//+ EXAMPLE:

//+ Read the value of the "temp" field at step 2 and populate

//+ the nodal field "temperature" for use as an initial condition

//+ The input field should only be active for one ’'read_defined_ input_fields’
//+ call, so verify this by calling the function again at step 3 and

//+ then verify that the field values are still those read from step 2.
stk::io::StkMeshIoBroker stkIo(communicator);

size_t index = stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;
stkIo.set_active_mesh (index) ;

stkIo.create_input_mesh();

stk::mesh::Field<double> &temperature = stklIo.meta_datal().

declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature", 1);
stk::mesh::put_field(temperature, stkIo.meta_data() .universal_part());
stkIo.populate_bulk_data();

//+ The name of the field on the database is "temp"

stk::io0::MeshField input_field(temperature, "temp", stk::io::MeshField::CLOSEST);
input_field.set_read_once (true);

stkIo.add_input_field (input_field);

//+ Read the field values from the database at time 2.0

//+ Pass in a time of 2.2 to verify that the value returned is
//+ from the closest step and not interpolated.
stkIo.read_defined_input_fields(2.2);

//
//+ VERIFICATION
//+ The value of the field at all nodes should be 2.0
std::vector<stk::mesh::Entity> nodes;
stk::mesh::get_entities (stkIo.bulk_data (), stk::topology::NODE_RANK,
nodes) ;
for(size_t 1=0; i<nodes.size(); i++) {
double xfieldDataForNode = stk::mesh::field_data (temperature, nodes[i]);
EXPECT_DOUBLE_EQ (2.0, xfieldDataForNode) ;
}

//+ Call read_defined_input_fields again and verify that the
//+ input field registration is no longer active after the
//+ since it was specified to be "only read once()"
stkIo.read_defined_input_fields(3.0);

//+ The value of the field at all nodes should still be 2.0

for(size_t i=0; i<nodes.size(); 1i++) {
double xfieldDataForNode = stk::mesh::field_data (temperature, nodes[i]);
EXPECT_DOUBLE_EQ (2.0, *fieldDataForNode);

108

4.1.16 Reading initial conditions from a mesh database field at a specified
database time

This example is similar to the previous two examples except that the database time at which the
field data is to be read is specified explicitly instead of being equal to the analysis time. This is
specified by calling set_read_time () on the input field as shown on line 141.

The read_defined_input_fields () function is called with an analysis time argument of
1.0. The “flux” field gets the database field values corresponding to that time, but the “temp” field
gets the database field values at the database time (2.0) time at which it is explicitly specified.

Listing 4.20: Reading initial condition data from a mesh database at a specified time

./..[..[code/stk/stk_io/testsForDocumentation/readInitial ConditionSpecified Time.cpp

114 //

115 //+ EXAMPLE:

116 //+ Register the reading of database fields "temp" and "flux" to

117 //+ populate the stk nodal fields "temperature" and "heat_flux"

118 //+ for use as initial conditionss.

119 //+ Specify that the "temp" field should be read from database

120 //+ time 2.0 no matter what time is specified in the read_defined_input_fields
121 //+ call.

122 //+ The "flux" field will be read at the database time corresponding

123 //+ to the analysis time passed in to read_defined_input_fields.

124

125 stk::io::StkMeshIoBroker stkIo(communicator);

126 size_t index = stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;

127 stkIo.set_active_mesh (index) ;

128 stkIo.create_input_mesh () ;

129

130 stk::mesh::Field<double> &temperature = stkIo.meta_datal().

131 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature", 1);
132 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());

133

134 stk::mesh::Field<double> g&heat_flux = stkIo.meta_datal().

135 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "heat_flux", 1);
136 stk::mesh::put_field(heat_flux, stkIo.meta_data() .universal_part());

137 stkIo.populate_bulk_data();

138

139 // The name of the field on the database is "temp"

140 stk::io::MeshField temp_field(temperature, "temp", stk::io::MeshField::CLOSEST);
141 temp_field.set_read_time(2.0);

142 stkIo.add_input_field(temp_field);

143

144 // The name of the field on the database is "flux"

145 stk::io::MeshField flux_field(heat_flux, "flux", stk::io::MeshField::CLOSEST);
146 stkIo.add_input_field (flux_field);

147

148 //+ Read the field values from the database at time 1.0

149 //+ The value of "flux" will be the values from database time 1.0

150 //+ However, the value of "temp" will be the values from database time 2.0

151 stkIo.read_defined_input_fields(1.0);

152

153 //

154 //+ VERIFICATION

155 std::vector<stk::mesh::Entity> nodes;

156 stk::mesh::get_entities (stkIo.bulk_data (), stk::topology::NODE_RANK,

157 nodes) ;

158

159 //+ The value of the "temperature" field at all nodes should be 2.0

160 for (size_t i=0; i<nodes.size(); i++) {

161 double xfieldDataForNode = stk::mesh::field_data (temperature, nodes[i]);

109

162 EXPECT_DOUBLE_EQ (2.0, xfieldDataForNode) ;
163 }
164

165 //+ The value of the "heat_ flux" field at all nodes should be 1.0

166 for (size_t i=0; i<nodes.size(); i++) {

167 double xfieldDataForNode = stk::mesh::field_data (heat_flux, nodes([i]);
168 EXPECT_DOUBLE_EQ (1.0, =xfieldDataForNode) ;

169 }
170

4.1.17 Reading field data from a mesh database — interpolating between
database times

This example shows how to read data from an input mesh database at multiple times. The database
field values are linearly interpolated if the analysis time does not match an existing database time.
The initial portion of the example, which is not shown, creates a mesh with time steps at times 0.0,
1.0, and 2.0. The database contains a nodal field called “temp” with the same values for each node.
The value is the same as the time (0.0, 1.0, and 2.0) for each time step. The example shows how
to specify the reading of the field data at multiple steps and linearly interpolating the database data
to the specified analysis times. Line 128 shows how to specify that the field data are to be linear
interpolated.

Listing 4.21: Linearly interpolating field data from a mesh database

./../../code/stk/stk_io/testsForDocumentation/interpolateNodalField.cpp

106 //

107 //+ EXAMPLE:

108 //+ The input mesh database has 3 timesteps with times 0.0, 1.0, 2.0,

109 //+ The value of the field "temp" is equal to the time

110 //+ Read the "temp" value at times 0.0 to 2.0 with an interval

111 //+ of 0.1 (0.0, 0.1, 0.2, 0.3, ..., 2.0) and verify that

112 //+ the field contains the correct interpolated value.

113 stk::io::StkMeshIoBroker stkIo(communicator);

114 stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;

115 stkIo.create_input_mesh();

116

117 stk::mesh::Field<double> &temperature = stkIo.meta_datal().

118 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature",1l);
119 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());

120

121 stkIo.populate_bulk_data();

122

123 std::vector<stk::mesh::Entity> nodes;

124 stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);
125

126 //+ Specify that the field data are to be linear interpolated.

127 stkIo.add_input_field(stk::io::MeshField (temperature, "temp",

128 stk::io::MeshField: :LINEAR_INTERPOLATION)) ;
129

130 //+ If the same stk field (temperature) is added more than once,

131 //+ the first database name and settings will be used. For example,

132 //+ the add_input_field below will be ignored with no error or warning.

133 stkIo.add_input_field(stk::io::MeshField (temperature, "temp-again",

134 stk::io0::MeshField::LINEAR_INTERPOLATION)) ;
135

136 for (size_t i=0; i < 21; 1i++) {

137 double time = i1/10.0;

110

138 //+ Read the field values from the database and verify that they
139 //+ are interpolated correctly.

140 stkIo.read_defined_input_fields (time);

141

142 //

143 //+ VERIFICATION

144 // The value of the "temperature" field at all nodes should be ’'time’
145 for(size_t 7=0; Jj<nodes.size(); Jj++) {

146 double xfieldData = stk::mesh::field_data (temperature, nodes[]]);
147 EXPECT_DOUBLE_EQ (time, xfieldData);

148 }
149 }
150

4.1.18 Combining restart and interpolation of field data

This example shows how to specify that an analysis, that is using field interpolation, should be
restarted. This requires two input databases: one that contains the restart data and another that
contains the field data to be interpolated.

The initial portion of the example, which is not shown, creates a restart database with several
nodal and element fields containing three time steps at times 0.0, 1.0, and 2.0. It then also creates
a database containing the field values which will be interpolated. This database contains 10 time
steps (0.0 to 9.0) with the nodal field “temp”. The value of the field at each time step is equal to
the database time (0.0 to 9.0).

The add_mesh_database () function is called twice — once for each database. Since there
are multiple mesh databases, the set_active_mesh () function is called to specify which
mesh is active for subsequent calls. The fields that are to be read from each database are spec-
ified using add_all_mesh_fields_as_input_fields () for the restart database and
add_input_field () for the interpolated field database. Note that the file index for the in-
terpolated field database is passed to the add_input_field () since that database is not active
at the time of the call.

The example then “restarts” the analysis by setting the restart database as the active mesh and
reads the restart field data at time 1.0. The active mesh is then switched to the mesh database
containing the “temp” field and the analysis is then continued up to time 9.0 with the values for the
temperature field being interpolated.

Listing 4.22: Combining restart and field interpolation

.J..[..Jcode/stk/stk_io/testsForDocumentation/restartInterpolatedField.cpp

143 //+ EXAMPLE:

144 //+ The restart mesh database has 3 timesteps with times 0.0, 1.0, 2.0,
145 //+ and several fields.

146 //+

147 //+ The initial condition database has 10 timesteps with times

148 //+ 0.0, 1.0, ..., 9.0 and a nodal variable "temp"

149 //+ The value of the field "temp" is equal to the time

150 //+

151 //+ The example will read the restart database at time 1.0

111

152 //+ and then simulate continuing the analysis at that time

153 //+ reading the initial condition data from the other database

154 //+ interpolating this data.

155 stk::io::StkMeshIoBroker stkIo(communicator);

156 size_t ic = stkIo.add_mesh_database(ic_name, stk::io::READ_MESH);

157 size_t rs = stkIo.add_mesh_database(rs_name, stk::io::READ_RESTART);
158

159 //+ "Restart" the calculation...

160 double time = 1.0;
161 stkIo.set_active_mesh (rs);

162 stkIo.create_input_mesh();

163

164 stkIo.add_all_mesh_fields_as_input_fields();

165

166 stk::mesh::Field<double> &temperature = stkIo.meta_data().

167 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature", 1);
168 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());

169

170 // The name of the field on the initial condition database is "temp"

171 stkIo.add_input_field(ic, stk::io::MeshField(temperature, "temp",

172 stk::io0::MeshField: :LINEAR_INTERPOLATION)) ;
173 stkIo.populate_bulk_data();

174

175 std::vector<stk::mesh::Entity> nodes;

176 stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);
177

178 //+ Read restart data

179 stkIo.read_defined_input_fields (time);

180

181 //+ Switch active mesh to "initial condition" database

182 stkIo.set_active_mesh (ic);

183

184 double delta_time = 1.0 / 4.0;

185 while (time <= 9.0) {

186 //+ Read the field values from the database and verify that they

187 //+ are interpolated correctly.

188 stkIo.read_defined_input_fields (time);

189

190 // ==== = = ===

191 //+ VERIFICATION

192 // The value of the "temperature" field at all nodes should be ’time’

193 for (size_t i=0; i<nodes.size(); i++) {

194 double xfieldDataForNode = stk::mesh::field_data (temperature, nodes[i]);
195 EXPECT_DOUBLE_EQ (time, xfieldDataForNode) ;

196 }

197 time += delta_time;
198 }

199

4.1.19 Interpolating field data from a mesh database with only a single
database time

If an application specifies that the mesh database field data should be linearly interpolated, but the
mesh database only has a single time step, then the field data will not be interpolated and instead,
the values read from that single time will be used.

The initial portion of the example, which is not shown, creates a mesh with a time step at time 1.0.
The database contains a nodal field called “temp” with the same values for each node. The value
is the same as the time (1.0).

112

The example specifies that the field data should be linearly interpolated and then reads the data at
multiple steps. Since there is only a single step on the mesh database, all field values are equal to
the database values at that step.

Listing 4.23: Linearly interpolating field data from a mesh database with only a single step

.J..[../code/stk/stk_io/testsForDocumentation/interpolateSingleStep.cpp

102 //

103 //+ EXAMPLE:

104 //+ The input mesh database has 1 timesteps with time 1.0
105 //+ The value of the field "temp" is equal to the time

106 //+ Read the "temp" value at times 0.0 to 2.0 with an interval
107 //+ of 0.1 (0.0, 0.1, 0.2, 0.3, ..., 2.0) and verify that
108 //+ the field value does not change since there are not
109 //+ enough steps to do any interpolation.

110 //+

111 stk::io::StkMeshIoBroker stkIo(communicator);

112 stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;

113 stkIo.create_input_mesh();
114

115 stk::mesh::Field<double> &temperature = stkIo.meta_datal().

116 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature",1l);
117 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());

118

119 // The name of the field on the database is "temp"

120 stkIo.add_input_field(stk::i0::MeshField (temperature, "temp",

121 stk::i0::MeshField::LINEAR_INTERPOLATION)) ;
122

123 stkIo.populate_bulk_data();

124

125 std::vector<stk::mesh::Entity> nodes;

126 stk::mesh::get_entities (stkIo.bulk_data (), stk::topology::NODE_RANK, nodes);
127

128 for (size_t i=0; i < 21; i++) {

129 double time = i/10.0;

130 //+ Read the field values from the database and verify that they

131 //+ are interpolated correctly.

132 stkIo.read_defined_input_fields (time);

133

134 //

135 //+ VERIFICATION

136 // The value of the "temperature" field at all nodes should be 1.0

137 for(size_t 7=0; Jj<nodes.size(); Jj++) {

138 double xfieldData = stk::mesh::field_data (temperature, nodes[]]);

139 EXPECT_DOUBLE_EQ (1.0, xfieldData);

140 }

141 }

142

4.1.20 Interpolating field data from a mesh database when time is outside
database time interval

If an application specifies that the mesh database field data should be linearly interpolated, but
requests data at times outside the interval of times present on the mesh database, then the values
at the closest database time will be used instead. In other words, the database values are not
extrapolated.

The initial portion of the example, which is not shown, creates a mesh with two time steps at times

113

1.0 and 2.0. The database contains a nodal field called “temp” with the same values for each node.
The value is the same as the time (1.0 or 2.0).

The example specifies that the field data should be linearly interpolated and then reads the data at
multiple times from 0.0 to 3.0. Since the database only contains data at times 1.0 and 2.0, the field
values at times 0.0 to 1.0 will be set to the database values at time 1.0 and the field values at times
2.0 to 3.0 will be set to the database values at time 2.0. The field values at times 1.0 to 2.0 will be
linearly interpolated from the database values.

Listing 4.24: Linearly interpolating field data when the time is outside the database time interval

.J..[../code/stk/stk_io/testsForDocumentation/interpolateOutsideRange.cpp

104 //

105 //+ EXAMPLE:

106 //+ The input mesh database has 2 timesteps with time 1.0 and 2.0
107 //+ The value of the field "temp" is equal to the time

108 //+ Read the "temp" value at times 0.0 to 3.0 with an interval

109 //+ of 0.1 (0.0, 0.1, 0.2, 0.3, ..., 2.0).

110 //+

11 //+ The times 0.0 to 1.0 and 2.0 to 3.0 are outside

112 //+ the range of the mesh database so no interpolation

113 //+ or extrapolation will occur —-- the field values

114 //+ will be set to the values at the nearest time.

115 //+

116 //+ Verify that the values from times 0.0 to 1.0

117 //+ are equal to 1.0 and that the values from 2.0 to 3.0

118 //+ are equal to 2.0.

119 //+ The field values from 1.0 to 2.0 will be interpolated

120 //+

121 stk::io::StkMeshIoBroker stkIo(communicator);

122 stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;

123 stkIo.create_input_mesh();

124

125 stk::mesh::Field<double> &temperature = stkIo.meta_data().

126 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature",1);
127 stk::mesh::put_field(temperature, stkIo.meta_data() .universal _part());
128

129 stkIo.populate_bulk_data();

130

131 std::vector<stk::mesh::Entity> nodes;

132 stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);
133

134 // The name of the field on the database is "temp"

135 stkIo.add_input_field(stk::io::MeshField (temperature, "temp",

136 stk::io0::MeshField::LINEAR_INTERPOLATION)) ;
137

138 for (size_t i=0; i < 21; 1i++) {

139 double time = i1/10.0;

140 //+ Read the field values from the database and verify that they
141 //+ are interpolated correctly.

142 stkIo.read_defined_input_fields (time);

143

144 //

145 //+ VERIFICATION

146

147 double expected_value = time;

148 if (time <= 1.0)

149 expected_value = 1.0;

150 if (time >= 2.0)

151 expected_value = 2.0;

152

153 for(size_t 3=0; Jj<nodes.size(); Jj++) {

154 double xfieldData = stk::mesh::field_data (temperature, nodes[j]);
155 EXPECT_DOUBLE_EQ (expected_value, xfieldData);

114

156 }
157 }
158

4.1.21 Error condition — reading initial conditions from a field that does not
exist on a mesh database

This example shows the behavior when the application specifies that initial condition or restart
data should be read from the input database, but one or more of the specified fields do not exist on
the database. The application specifies that the data for the field “displacement” is to be populated
from the database field “disp”, which does not exist. Two scenarios are possible. In the first, the
application passes in a vector which on return from the read_defined_input_fields ()
function will contain a list of all fields that were not found, with one entry for each missing field
state. In the second, the vector is omitted in the call to read_defined_input_fields();
in this case, the code will print an error message and throw an exception if there are any fields not
found.

Listing 4.25: Specifying initial conditions from a non-existent field

.J.[.Jcode/stk/stk_io/testsForDocumentation/handleMissingFieldOnRead.cpp

108 //
109 //+ EXAMPLE:

110 //+ Demonstrate what happens when application requests the
111 //+ reading of a field that does not exist on the input

112 //+ mesh database. The nodal field "displacement" is

113 //+ requested for input from the database field "disp" which

114 //+ does not exist.

115 stk::io::StkMeshIoBroker stkIo(communicator);

116 size_t index = stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;
117 stkIo.set_active_mesh (index) ;

118 stkIo.create_input_mesh();

119

120 stk::mesh::Field<double> &temperature =

121 stkIo.meta_data () .declare_field<stk::mesh::Field<double> > (

122 stk::topology: :NODE_RANK, "temperature",1);
123 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());
124

125 stk::mesh::Field<double> &displacement =

126 stkIo.meta_data () .declare_field<stk::mesh::Field<double> > (

127 stk::topology: :NODE_RANK, "displacement", 3);
128 stk::mesh::put_field(displacement, stkIo.meta_data().universal_part());
129 stkIo.populate_bulk_data();

130

131 // The name of the field on the database is "temp"

132 // This field does exist and should be read correctly

133 stkIo.add_input_field(stk::io::MeshField (temperature, "temp"));

134

135 //+ The name of the field on the database is "disp"

136 //+ This field does not exist and will not be found.

137 stkIo.add_input_field(stk::io::MeshField(displacement, "disp"));

138

139

140 //+ Read the field values from the database at time 2.0

141 //+ The 'missing fields’ vector will contain the names of

142 //+ any fields that were not found.

143 std::vector<stk::io::MeshField> missing_fields;

144 stkIo.read_defined_input_fields (2.0, &missing_fields);

115

145

146 //

147 //+ VERIFICATION

148 //+ The ’'missing’ vector should be of size 1 and contain

149 //+ 'disp’

150 EXPECT_EQ(2u, missing_fields.size());

151 EXPECT_EQ("disp", missing_fields[0].db_name());

152 EXPECT_EQ ("displacement"”, missing_fields[0].field()->name());

153 EXPECT_EQ ("disp", missing_fields[1l].db_name());

154 EXPECT_EQ ("displacement_STKFS_N", missing_fields[1].field()->name());
155

156 // The value of the "temperature" field at all nodes should be 2.0
157 std::vector<stk::mesh::Entity> nodes;

158 stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK,
159 nodes) ;

160 for(size_t 1=0; i<nodes.size(); i++) {

161 double xfieldDataForNode =

162 stk::mesh::field_data (temperature, nodes[i]);

163 EXPECT_DOUBLE_EQ (2.0, =*fieldDataForNode);

164 }

165

This example is the same as the previous except that instead of passing in the vector to hold
the missing fields, the application will throw an exception for the missing field. Note that if the
application throws an exception, it will not read any field data even for the fields that do exist.

Listing 4.26: Specifying initial conditions from a non-existent field

.J.[..Jcode/stk/stk_io/testsForDocumentation/handleMissingFieldOnRead Throw.cpp

136 //+ If read the fields, but don’t pass in the ’'missing fields’
137 //+ vector, the code will print an error message and throw an
138 //+ exception if it doesn’t find all of the requested fields.
139 EXPECT_ANY_THROW (stkIo.read_defined_input_fields (2.0));

140

141 //+ If code throws due to missing field(s), it will NOT read
142 //+ even the fields that exist.

143

4.1.22 Interpolation of fields on database with negative times

Although it is not common, there are occasions when an analysis will use negative times. For
example, an analysis may run from time -3.0 to 0.0 to “preload” a structure and then continue from
time 0.0 onward to analyze the preloaded structure. This example shows that the field interpolation
capability works correctly when the mesh database and the analysis use negative times.

Listing 4.27: Interpolating fields on a database with negative times

.J.J..[code/stk/stk_io/testsForDocumentation/interpolateFieldNegativeTime.cpp

107 //

108 //+ EXAMPLE:

109 //+ The input mesh database has 3 timesteps with times -2.0, -1.0, 0.0.
110 //+ The value of the field "temp" is equal to the time

111 //+ Read the "temp" value at times -2.0 to 0.0 with an interval

112 //+ of 0.1 (-2.0, -1.9, -1.8, ..., 0.0) and verify that

113 //+ the field contains the correct interpolated value.

114 stk::io0::StkMeshIoBroker stkIo(communicator);

115 stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;

116

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

stkIo.create_input_mesh () ;

stk::mesh::Field<double> &temperature = stkIo.meta_datal().
declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature", 1);
stk::mesh::put_field(temperature, stkIo.meta_data() .universal _part());

stkIo.populate_bulk_data();

std::vector<stk::mesh::Entity> nodes;
stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);

// The name of the field on the database is "temp"
stkIo.add_input_field(stk::io::MeshField (temperature, "temp",
stk::io::MeshField: :LINEAR_INTERPOLATION)) ;

for (int i=-20; i <= 0; 1i++) {
double time = i1/10.0;
//+ Read the field values from the database and verify that they
//+ are interpolated correctly.
stkIo.read_defined_input_fields (time);

//
//+ VERIFICATION
// The value of the "temperature" field at all nodes should be ’'time’
for(size_t j=0; j<nodes.size(); j++) {
double xfieldData = stk::mesh::field_data (temperature, nodes[jl);
EXPECT_DOUBLE_EQ (time, =xfieldData);
}

4.1.23 Interpolation of fields on database with non-monotonically increas-

ing times

In some cases, the database from which the field values are being interpolated may contain non-
monotonically increasing time values. For example, the time steps could contain the values 2.0 at
step 1, 0.0 at step 2, and 1.0 at step 3. The example shows that the field interpolation capability
works correctly in this case.

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

Listing 4.28: Interpolating fields on a database with non-monotonically increasing times

./..[..Jcode/stk/stk_io/testsForDocumentation/interpolateFieldNonMonotonicTime.cpp

//
//+ EXAMPLE:

//+ The input mesh database has 3 timesteps with times 2.0, 0.0, 1.0
//+ which are non-monotonically increasing.

//+ The value of the field "temp" is equal to the time

//+ Read the "temp" value at times 0.0 to 2.0 with an interval

//+ of 0.1 (0.0, 0.1, 0.2, ..., 2.0) and verify that

//+ the field contains the correct interpolated value.
stk::io::StkMeshIoBroker stkIo(communicator);
stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;
stkIo.create_input_mesh();

stk::mesh::Field<double> &temperature = stkIo.meta_datal().
declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature", 1);
stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());

stkIo.populate_bulk_data();

117

124

125 std::vector<stk::mesh::Entity> nodes;

126 stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);

127

128 // The name of the field on the database is "temp"

129 stkIo.add_input_field(stk::io::MeshField (temperature, "temp",

130 stk::io::MeshField: :LINEAR_INTERPOLATION)) ;

132 for (int i=0; i < 21; 1i++) {

133 double time = i/10.0;

134 //+ Read the field values from the database and verify that they
135 //+ are interpolated correctly.

136 stkIo.read_defined_input_fields (time);

138 //

139 //+ VERIFICATION

140 // The value of the "temperature" field at all nodes should be ’time’
141 for(size_t 3=0; Jj<nodes.size(); Jj++) {

142 double xfieldData = stk::mesh::field_data (temperature, nodes[]]);
143 EXPECT_DOUBLE_EQ (time, =xfieldData);

144 }
145 }

4.1.24 Arbitrary analysis time to database time mapping during field input

There are instances in which the analysis times do not exactly correspond to the times on the
mesh database. An example is a mesh database with times in microseconds and the analysis using
seconds for the time units. Another example is when the conditions specified on the mesh database
describe a cyclic loading over a small time period, but the analysis time runs over multiples of this
period.

The InputFile class in STK Mesh IO Broker module contains several options for mapping the
analysis time to the database time. These include: offset, scale, period, startup, period type, start
time, and stop time.

To describe the mapping from analysis time to database time we will use the following notation:

a variable of type 7, is in units of time.

® l4pp 1s application time.

e 1, is database time, which is the time that will be used to query the database.
® Iperioa 18 the length of the cyclic period; it is 0.0 if not cyclic.
e scale is the time scaling factor.

® Iyfser 18 the time offset.

e The cyclic behavior can either by specified as CYCLIC or REVERSING. In the cyclic case,
the time would repeat as 1,2,3,1,2,3,...; the reversing case would repeat as 1,2,3,2,1,2,3,,....
Both of these have a f,,,oq Of length 2.

118

We now describe the mapping:

o If: 14, < tsiart OF tapp > ts0p Then the field is inactive.
o If: 14 < tstarnp Then tg, = tgpp.
e Else if cyclic behavior is CYCLIC Then tgp = tsarnp + mM0d (tapp — Lstartups tperiod)-
e Else if cyclic behavior is REVERSING Then
- Lett,, = mod (tapp — tstarmp> 2 X tperiod)
— If: (tpm < tperioa) Then tap = tsarup +tom
— Else: 1y = tsarmp + (2 X tperiod — tom)-
e Finally: 14, = tg, X scale + t,e;.
The example below shows an input mesh database containing a nodal field named “temp”. The

database contains 3 steps with times 0.0, 10.0, and 20.0; the value of the field at each time is equal
to the time value (0.0, 10.0, or 20.0).

The analysis wants to use the data on this mesh to provide linearly interpolated values for the
analysis field “temperature”. The mesh database values will be defined as REVERSING cyclic
with a period length of 2.0; in addition, the times will be scaled by 10. This should result in a
mapping of application time (Z,pp) to database time (74,) of:

tp O 1 2 3 4 5 6 78 9 10
s 0 10 20 10 0 10 20 10 0 10 20

Listing 4.29: Arbitrary analysis time to database time mapping during field input

.J..[..Jcode/stk/stk_io/testsForDocumentation/interpolateField Cyclic.cpp

107 //

108 //+ EXAMPLE:

109 //+ The input mesh database has 3 timesteps with times 0.0, 10.0, 20.0,
110 //+ The value of the field "temp" is equal to the time

11 //+ Read the "temp" value at times 0.0 to 10.0 with an interval
112 //+ of 0.25 (0.0, 0.25, 0.50, 0.75, ..., 10.0)

113 //+ The mapping from analysis time (0.0 to 10.0) to database

114 //+ time will be reverse cyclic and scaled.

115 //+

116 //+ The parameters are:

117 //+ * period = 2.0

118 //+ * scale = 10.0

119 //+ * offset = 0.0

120 //+ * cycle type = REVERSING

121 //+

122 //+ Analysis Time and DB_Time:

123 //+ 0 1 2 3 4 5 6 7 8 9 10

124 //+ 0 10 20 10 0 10 20 10 0 10 20

125 //+

126

127 stk::io::StkMeshIoBroker stkIo(communicator);

128 size_t idx = stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;
129 stkIo.create_input_mesh();

130

131 stk::mesh::Field<double> &temperature = stkIo.

132 meta_data () .declare_field<stk::mesh::Field<double> >

119

133 (stk::topology: :NODE_RANK, "temperature", 1);

134 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());

135

136 stkIo.populate_bulk_data();

137

138 std::vector<stk::mesh::Entity> nodes;

139 stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);
140

141 // The name of the field on the database is "temp"

142 stkIo.add_input_field(stk::io::MeshField (temperature, "temp",

143 stk::io::MeshField: :LINEAR_INTERPOLATION)) ;
144

145 //+ Set the periodic parameters on the input mesh...

146 double period_length = 2.0;

147 double startup = 0.0;

148 double scale = 10.0;

149 stkIo.get_mesh_database (idx)

150 .set_periodic_time (period_length, startup, stk::io::InputFile::REVERSING)
151 .set_scale_time (scale)

152 .set_start_time (0.0) .set_offset_time(0.0).set_stop_time(999.0); // These are optional
153 double delta_time = 0.25;

154 double time = 0.0;

155 double expected = 0.0;

156 double exp_inc = 10.0 *» delta_time;

157

158 while (time <= 10.0) {

159

160 //+ Read the field values from the database and verify that they

161 //+ are interpolated correctly.

162 stkIo.read_defined_input_fields (time);

163

164 //

165 //+ VERIFICATION

166 // The value of the "temperature" field at all nodes should be ’expected’
167 for (size_t i=0; i<nodes.size(); i++) {

168 double xfieldData = stk::mesh::field_data (temperature, nodes[i]);

169 EXPECT_DOUBLE_EQ (expected, xfieldData);

170 }

171 time += delta_time;

172 expected += exp_inc;

173 if (expected >= 20.0 || expected <= 0.0) {

174 exp_inc = -exp_inc;

175 }
176 }
177

4.1.25 Error condition - specifying interpolation for an integer field

This example shows the behavior when the application specifies that linear interpolation should be
used for an integer field. Although there are a few instances in which this could be valid, it is not
supported and an exception will be thrown when the field is registered.

Listing 4.30: Error condition — specifying interpolation of an integer field

.J../../code/stk/stk_io/testsForDocumentation/interpolateIntegerFieldInvalid.cpp

58 //

59 //+ EXAMPLE:

60 //+ Interpolated fields cannot be of type integer.

61 //+ An exception will be thrown if you try to register an
62 //+ integer interpolated field.

120

64 stk::i0::StkMeshIoBroker stkIo(communicator);
65

66 const std::string generatedFileName = "generated:8x8x8|nodeset:xyz";

67 stkIo.add_mesh_database (generatedFileName, stk::io::READ_MESH);

68 stkIo.create_input_mesh();

69

70 stk::mesh::Field<int> &integer_field = stkIo.meta_datal().

71 declare_field<stk::mesh::Field<int> > (stk::topology::NODE_RANK, "int_field", 1);
72 stk::mesh::put_field(integer_field, stkIo.meta_data().universal_part());
73 stkIo.populate_bulk_data();

74

75 EXPECT_ANY_THROW (stkIo.add_input_field(stk::io::MeshField(integer_field,
76 "int_field",

77 stk::io0::MeshField: :LINEAR_INTERPOLATION))) ;

78

4.1.26 Working with element attributes

Listing 4.31: Working with element attributes

.J..J../code/stk/stk_io/testsForDocumentation/readAttributes.cpp

57 std::vector<double> get_attributes_of_ first_element (const stk::mesh::BulkData &bulk, const
stk::mesh::Part *ioPart)

59 stk::mesh::FieldVector attributeFields =
stk::io::get_attribute_fields_for_part (bulk.mesh_meta_data(), ioPart);

60

61 stk::mesh::EntityVector elements;

62 stk::mesh::get_selected_entities (xioPart, bulk.buckets (stk::topology::ELEM_RANK),
elements) ;

63

64 std::vector<double> attributes;

65 if (!elements.empty())

66 {

67 for (const stk::mesh::FieldBase xfield : attributeFields)

68 {

69 unsigned numAttribute = stk::mesh::field_scalars_per_entity(xfield, elements[0]);

70 double xdataForElement = static cast<doublex> (stk::mesh::field _data(xfield,
elements[0]));

71 for (unsigned i=0; i<numAttribute; ++1i)

72 attributes.push_back (dataForElement [i]);

73 }

74 }

75 return attributes;

76}

77
78 TEST_F (ExodusFileWithAttributes, readAttributes_haveFieldsWithAttributes)

79 {

80 setup_mesh ("hex_spider.exo", stk::mesh::BulkData::AUTO_AURA);

81

82 const stk::mesh::Part *partBlock2 = get_meta().get_part ("block_2");

83 const stk::mesh::Part *partBlockl0 = get_meta().get_part ("block_10");

84

85 EXPECT_EQ (lu, get_attributes_of_first_element (get_bulk (), partBlock2).size());
86 EXPECT_EQ (7u, get_attributes_of_first_element (get_bulk (), partBlockl0) .size());
87 }

88
89 TEST_F (ExodusFileWithAttributes, addAttribute_haveFieldsWithAttribute)
9 {

91 allocate_bulk (stk::mesh::BulkData::AUTO_AURA) ;
92
93 stk::io::StkMeshIoBroker stkIo;

121

94 stkIo.set_bulk_data(get_bulk());

95 stkIo.add_mesh_database ("hex_spider.exo", stk::io::READ_MESH);
96 stkIo.create_input_mesh();

97

98 double initialvValue = 0.0;

99 auto &newAttrField =

get_meta () .declare_field<stk::mesh::Field<double>> (stk::topology::ELEM_RANK,
"newAttr");

100 stk::io::mark_field_as_attribute (newAttrField);

101 const stk::mesh::Part *partBlockl0 = get_meta () .get_part ("block_10");

102 stk::mesh::put_field(newAttrField, xpartBlockl0, &initialVvalue);

103

104 stkIo.populate_bulk_data();

105

106 EXPECT_EQ (8u, get_attributes_of_ first_element (get_bulk (), partBlockl0) .size());
107 }

4.1.27 Create an output mesh with a subset of the mesh parts

If a results file that only contains a portion or subset of the parts existing in the STK Mesh is
wanted, this can be specified by creating a Selector (see Section 1.4) containing the desired
output parts and then calling the set_subset_selector () function with that Selector as
an argument. This is illustrated in the following example.

Listing 4.32: Creating output mesh containing a subset of the mesh parts

./.[.Jcode/stk/stk_io/testsForDocumentation/subsettingOutputDB.cpp

67 //

68 // INITIALIZATION

69 std::string s_elems_per_edge = Ioss::Utils::to_string(num_elems_per_edge);
70

71 //+ Create a generated mesh containg hexes and shells.

72 std::string input_filename = s_elems_per_edge + "x" +

73 s_elems_per_edge + "x" +

74 s_elems_per_edge + "|shell:xyzXYZ";
75

76 stk::io::StkMeshIoBroker stkIo(communicator);

77 size_t index = stklIo.add_mesh_database (input_filename, "generated",
78 stk::io::READ_MESH) ;

79 stkIo.set_active_mesh (index) ;

80 stkIo.create_input_mesh();

81 stkIo.populate_bulk_data();

82

83 stk::mesh::MetaData &meta_data = stkIo.meta_data();

84 const stk::mesh::PartVector &all_parts = meta_data.get_mesh_parts();
85

86 //

87 //+ EXAMPLE

88 //+ Create a selector containing just the shell parts.

89 stk::mesh::Selector shell_subset;

90 for (size_t i=0; 1 < all_parts.size(); i++) {

91 const stk::mesh::Part xpart = all parts[i];

92 stk::topology topo = part->topology();

93 if (topo == stk::topology::SHELL_QUAD_4) {

94 shell_subset |= xpart;

95 }

96 }

97

98 // Create the output...

99 size_t fh = stkIo.create_output_mesh(resultsFilename,

100 stk::io0: :WRITE_RESULTS) ;
101

122

102 //+ Specify that only the subset of parts selected by the

103 //+ "shell subset" selector will be on the output database.
104 stkIo.set_subset_selector (fh, shell_subset);

105 stkIo.write_output_mesh (fh);

106 // Verification omitted...

107

4.1.28 Writing and reading global variables

The following example shows the use of global variables for a scalar double precision floating
point value, but a similar interface exists for working with vectors of global values. The example
also shows two methods for handling the error condition of accessing a nonexistent global variable.

Listing 4.33: Writing and reading a global variable

.J..../code/stk/stk_io/testsForDocumentation/writingAndReadingGlobal Variables.cpp

48 TEST (StkMeshIoBrokerHowTo, writeAndReadGlobalVariables)

49 |

50 const std::string restartFileName = "OneGlobalDouble.restart";

51 const std::string timeStepVarName = "timeStep";

52 const double timeStepSize = le-6;

53 const double currentTime = 1.0;

54 MPI_Comm communicator = MPI_COMM_WORLD;

55 int numProcs = stk::parallel_machine_size (communicator);

56 if (numProcs != 1) {

57 return;

58 }

59

60 //+ Write restart file with time step size as a global variable

61 {

62 stk::io::StkMeshIoBroker stkIo(communicator);

63 const std::string exodusFileName = "generated:1x1x8";

64 stkIo.add_mesh_database (exodusFileName, stk::io::READ_MESH) ;

65 stkIo.create_input_mesh();

66 stkIo.populate_bulk_data();

67

68 size_t fileIndex =

69 stkIo.create_output_mesh (restartFileName, stk::io::WRITE_RESTART);
70 stkIo.add_global (fileIndex, timeStepVarName, Ioss::Field::REAL);
71 stkIo.begin_output_step(fileIndex, currentTime);

72 stkIo.write_global (fileIndex, timeStepVarName, timeStepSize);
73 stkIo.end_output_step (filelIndex);

74 }

75

76 //+ Read restart file with time step size as a global variable

77 {

78 stk::io::StkMeshIoBroker stkIo(communicator);

79 stkIo.add_mesh_database (restartFileName, stk::io::READ_RESTART) ;
80 stkIo.create_input_mesh () ;

81 stkIo.populate_bulk_data();

82 stkIo.read_defined_input_fields (currentTime) ;

83 std::vector<std::string> globalNamesOnFile;

84 stkIo.get_global_variable_names (globalNamesOnFile) ;

85

86 ASSERT_EQ (1lu, globalNamesOnFile.size());

87 EXPECT_STRCASEEQ (timeStepVarName.c_str (),

88 globalNamesOnFile[0].c_str());

89 double timeStepSizeReadFromFile = 0.0;

90 stkIo.get_global (globalNamesOnFile[0], timeStepSizeReadFromFile) ;
91 const double tolerance = le-16;

92 EXPECT_NEAR (timeStepSize, timeStepSizeReadFromFile, tolerance);

123

93
94 //+ If try to get a global that does not exist, will throw

95 //+ an exception by default...

96 double value = 0.0;

97 EXPECT_ANY_THROW (stkIo.get_global ("does_not_exist", value));

98

99 //+ If the application wants to handle the error instead (without a try/catch),
100 //+ can pass in an optional boolean:

101 bool abort_if_ not_found = false;

102 bool found = stkIo.get_global ("does_not_exist", wvalue, abort_if not_found);
103 ASSERT_FALSE (found) ;

104 }

105

106 unlink (restartFileName.c_str());

107 '}

4.1.29 Writing and reading global parameters

The following example shows the use of stk::util::Parameter objects for global variable
output and input. The example defines several parameters of type double, integer, vector of dou-
bles, and a vector of integers. The list containing these parameters is iterated and each is defined
to be an output global variable. Then, each variable is written in the time step loop. At the end of
writing, the file is reopened for reading and the parameter values are restored and checked to make
sure the correct values were read.

Listing 4.34: Writing and reading parameters as global variables

.J..[../code/stk/stk_io/testsForDocumentation/writingAndReadingGlobalParameters.cpp

49 TEST (StkMeshIoBrokerHowTo, writeAndReadGlobalParameters)
50 {

51 //

52 //+ INITIALIZATION

53 const std::string file_name = "GlobalParameters.e";

54 MPI_Comm communicator = MPI_COMM_WORLD;

55

56 // Add some parameters to write and read...

57 stk::util::ParameterList params;

58 params.set_param("PI", 3.14159); // Double

59 params.set_param("Answer", 42); // Integer

6(

61 std::vector<double> my_vector = { 2.78, 5.30, 6.21 };

62 params.set_param("doubles", my_vector); // Vector of doubles...
63

64 std::vector<int> ages = { 55, 49, 21, 19};

65 params.set_param("Ages", ages); // Vector of integers...

66

67 {

68 stk::io::StkMeshIoBroker stkIo(communicator);

69 const std::string exodusFileName = "generated:1x1x8";

70 size_t index = stkIo.add_mesh_database (exodusFileName, stk::io::READ_MESH) ;
71 stkIo.set_active_mesh (index) ;

72 stkIo.create_input_mesh();

73 stkIo.populate_bulk_data();

74

75 /1

76 //+ EXAMPLE

77 //+ Write output file with all parameters in params list...
78 size_t idx = stkIo.create_output_mesh(file_name,

79 stk::i0::WRITE_RESTART) ;

124

81 stk::util::ParameterMapType: :const_iterator i = params.begin();

82 stk::util::ParameterMapType: :const_iterator ie = params.end();
83 for (; 1 !'= ie; ++1) |

84 const std::string parameterName = (%i).first;

85 stk::util::Parameter ¶m = params.get_param(parameterName) ;
86 stkIo.add_global (idx, parameterName, param.value, param.type);
87 }

88

89 stkIo.begin_output_step(idx, 0.0);

9

91 for (i = params.begin(); 1 != ie; ++1i) {

92 const std::string parameterName = (xi).first;

93 stk::util::Parameter ¶m = params.get_param(parameterName) ;
94 stkIo.write_global (idx, parameterName, param.value, param.type);
95 }

96

97 stkIo.end_output_step (idx);

98 }

99

100 {

101 //

102 //+ EXAMPLE

103 //+ Read parameters from file...

104 stk::io::StkMeshIoBroker stkIo(communicator);

105 stkIo.add_mesh_database (file_name, stk::io::READ_MESH);

106 stkIo.create_input_mesh();
107 stkIo.populate_bulk_data();
108

109 stkIo.read_defined_input_fields (0.0);

110

111 stk::util::ParameterMapType: :const_iterator i = params.begin();
112 stk::util::ParameterMapType::const_iterator ie = params.end();
113 for (; 1 !'= ie; ++1) |

114 const std::string parameterName = (xi).first;

115 stk::util::Parameter ¶m = params.get_param(parameterName) ;
116 stkIo.get_global (parameterName, param.value, param.type);

117 }

118

119 //

120 //+ VALIDATION

121 stk::util::ParameterList gold_params; // To compare values read
122 gold_params.set_param("PI", 3.14159); // Double

123 gold_params.set_param("Answer", 42); // Integer

124 gold_params.set_param("doubles", my_vector);

125 gold_params.set_param("Ages", ages); // Vector of integers...
126

127 size_t param_count = 0;

128 for (i = params.begin(); i != ie; ++1i) {

129 param_count++;

130 const std::string parameterName = (%i).first;

131 stk::util::Parameter ¶m = params.get_param(parameterName) ;
132 stk::util::Parameter &gold_parameter =

133 gold_params.get_param(parameterName) ;

134 validate_parameters_equal_value (param, gold_parameter);

135 }

136

137 std::vector<std::string> globalNamesOnFile;

138 stkIo.get_global_variable_names (globalNamesOnFile);

139 ASSERT_EQ (param_count, globalNamesOnFile.size());

140 }

141 //

142 // CLEAN UP

143 unlink (file_name.c_str());

144 }

145

125

4.1.30 Writing global variables automatically

This example is similar to the previous one except that in this case, the global variables are writ-
ten automatically without calling write_global () for each value. The only changes to the
previous example are:

e replace the call to add_global () withacall to add_global_ref ().

e pass the address of the value instead of just the value as is shown on line 94, and

e replace the code on lines 89 to 97 of the previous example with the call to

process_output_request () on line 99.

Listing 4.35: Automatically writing parameters as global variables

J.[.Jcode/stk/stk_io/testsForDocumentation/writingAndReadingGlobalParametersAuto.cpp

74 // ... Setup is the same as in the previous example

75 // Write output file with all parameters in params list...

76 {

77 stk::io0::StkMeshIoBroker stkIo(communicator);

78 const std::string exodusFileName = "generated:1x1x8";

79 size_t input_index = stkIo.add _mesh_database (exodusFileName, stk::io::READ_MESH) ;
80 stkIo.set_active_mesh (input_index) ;

81 stkIo.create_input_mesh();

82 stkIo.populate_bulk_data();

83

84 size_t idx = stkIo.create_output_mesh(file_name,

85 stk::i0: :WRITE_RESTART) ;
86

87 stk::util::ParameterMapType::const_iterator i = params.begin();
88 stk::util::ParameterMapType: :const_iterator iend = params.end();
89 for (; i !'= iend; ++1i) {

90 const std::string paramName = (xi).first;

91 //+ NOTE: Need a reference to the parameter.

92 stk::util::Parameter ¶m = params.get_param(paramName) ;

93 //+ NOTE: Calling add_global_ref, passing address of value

94 stkIo.add_global_ref (idx, paramName, ¶m.value, param.type);
95 }

96

97 //+ All writing of the values is handled automatically,

98 //+ do not need to call write_global

99 stkIo.process_output_request (idx, 0.0);

100 }

101 // ... Reading is the same as in previous example

102

4.1.31 Heartbeat output

The Heartbeat periodically outputs user-defined data to either a text or binary (exodus) file. The
data are typically defined in stk::util::Parameter objects, but raw integer, double, or
complex values can also be specified. The format of the heartbeat output is customizable and
consists of an optional “legend” followed by one or more lines containing the current value of the
registered variables at each time step. The data can be scalars, vectors, tensors, or other composite
types consisting of integer, real, or complex values.

126

The currently defined basic formats for heartbeat output are:

Csv Comma-separated values. The output consists of a header line containing
the names of each variable being output. The names are separated by com-
mas. Each data line consists of comma-separated values.

TS_CSV Time-stamped comma-separated values. Similar to the CSV format except
that each line is preceded by a timestamp showing, by default, the time of
day that the line was output in 24-hour format.

TEXT Similar to CSV except that tab characters are used to separate the fields
instead of commas.

TS_TEXT Similar to TEXT except that each line is preceded by a timestamp.

SPYHIS A format that can be plotted by the spyplot graphics program.

BINARY The data will be output to an exodus file as global variables. This is some-
times referred to as a “history” file.

The format is specified as the second argument to the add_heartbeat_output () command
as shown on line 90 in the example below where the TEXT format is selected.

The following example shows the basic usage of the heartbeat capability. In the initialization
section, the parameters and their values are defined. Note that in addition to scalar values, vec-
tors of values are also supported. The values to be output to the heartbeat file are defined in
lines 92 to 103. The values are output at line 111. Note that the application does not have
to individually output each value; the heartbeat system does this automatically. The applica-
tion only has to make sure that the correct value is in the parameter.value prior to calling
process_heartbeat_output ().

Listing 4.36: Writing global variables to a Heartbeat file

.[..[../code/stk/stk_io/testsForDocumentation/usingHeartbeat.cpp

60 stk::util::ParameterList params;

61

62 {

63 //

64 //+ INITIALIZATION...

65 // Add some params to write and read...

66 params.set_param("PI", -3.14159); // Double
67 params.set_param("Answer", 42); // Integer
68

69 std: :vector<double> my_vector;

70 my_vector.push_back (2.78);

71 my_vector.push_back (5.30);

72 my_vector.push_back (6.21);

73 params.set_param("some_doubles", my_vector); // Vector of doubles
74

75 std::vector<int> ages;

76 ages.push_back (55);

77 ages.push_back (49);

78 ages.push_back (21);

79 ages.push_back (19);

80 params.set_param("Ages", ages); // Vector of integers
81 }

82

83 {

84 //

127

85 //+ EXAMPLE USAGE...

86 //+ Begin use of stk io heartbeat file...

87 stk::io::StkMeshIoBroker stkIo(communicator);

88

89 //+ Define the heartbeat output to be in TEXT format.

90 size_t hb = stkIo.add_heartbeat_output (file_name, stk::io::TEXT);
91

92 stk::util::ParameterMapType::const_iterator i = params.begin();
93 stk::util::ParameterMapType: :const_iterator iend = params.end();
94 for (; 1 != iend; ++1) {

95 const std::string paramName = (*1i).first;

96 //+ NOTE: A reference to the param is needed here.

97 stk::util::Parameter ¶m = params.get_param(paramName) ;

98

99 //+ Tell heartbeat which variables to output at each step...

100 //+ NOTE: The address of the value to be output is needed since the
101 //+ value is output in the process_heartbeat_output call.
102 stkIo.add_heartbeat_global (hb, paramName, ¶m.value, param.type);
103 }

104

105 // Application’s "Execution Loop"

106 int timestep_count = 1;

107 double time = 0.0;

108 for (int step=1l; step <= timestep_count; step++) {

109 //+ Now output the global variables...

110 //+ NOTE: All registered global values automatically output.
111 stkIo.process_heartbeat_output (hb, step, time);

112 }

113 }

If the stk: :io0:: TEXT argument to the add_heartbeat_output () function is changed to
stk::io: :BINARY, then the code will output a binary “history” file instead of a text-based file.
Similarly for the other formats described above.

4.1.31.1 Change output precision

The default precision of the floating point values written by heartbeat to the non-binary formats is
five which gives a number of the form “-1.12345e+00”. To change the precision, the application
defines the “PRECISION” property prior to creating the heartbeat output. The lines below show
how this is done and also select the CSV format. These lines would replace line 90 in the previous
example.

Listing 4.37: Writing global variables to a Heartbeat file in CSV format with extended precision

.J.[.Jcode/stk/stk_io/testsForDocumentation/usingHeartbeatCSV ChangePrecision.cpp

92 //+ Output should have 10 digits of precision (1.0123456789e+00)
93 //+ default precision is 5 digits (1.012345e+00)

94 Ioss::PropertyManager hb_props;

95 hb_props.add(Ioss::Property ("PRECISION", 10));

96

97 //+ Define the heartbeat output and the format (CSV)

98 size_t hb =

99 stkIo.add_heartbeat_output (file_name, stk::io0::CSV, hb_props);

100

128

4.1.31.2 Change field separator

Other customizations of the output are also possible. The example below shows the lines that
would be changed in order to use a vertical bar “I” as the field separator in the TEXT format.

Listing 4.38: Writing global variables to a Heartbeat file with a user-specified field separator

.[.[.Jeode/stk/stk_io/testsForDocumentation/usingHeartbeatOverrideSeparator.cpp

92 //+ Use vertical bar as field separator

93 Ioss::PropertyManager hb_props;

94 hb_props.add(Ioss::Property ("FIELD_SEPARATOR", " | "));

95 size_t hb =

96 stkIo.add_heartbeat_output (file_name, stk::io::TEXT, hb_props);

97

4.1.32 Miscellaneous capabilities

This section describes how to perform some functions that are useful, but don’t fit into any of the
previous sections.

4.1.32.1 Add contents of a file and/or strings to the information records of a database

The first example shows how to embed the contents of a file into the information records of a
results or restart output database. This is done on line 96. This is often useful since it then provides
some documentation internal to the database itself showing the commands that were given to the
application that created the database. The example also shows (see line 100) how to add a string
as an additional information record.

In a parallel run in which the file-per-processor output is being used, the information records are
only written to the file on processor 0.

Listing 4.39: Adding the contents of a file to the information records of an output database

.J.[.Jcode/stk/stk_io/testsForDocumentation/addFileContentsToOutputDatabase.cpp

63 //

64 //+ SETUP

65 std::string input_file = "application_input_file.i";

66 std::string infol ("This is the first line of the input file.");

67 std::string info2 ("This is the second line of the input file. "

68 "It is longer than 80 characters, so it should be wrapped.");
69 std::string info3("This is the third line of the input file.");

70 std::string info4 ("This is the fourth and last line of the input file.");

71

72 std::string additional_info_record = "This is an info record added explicitly,"
73 " not from the input file.";

74 {

75 std::ofstream my_file (input_file.c_str());

76 my_file << infol <<"\n" << info2 <<"\n" << info3 <<"\n" << info4 <<"\n";

77 }

79 {

129

80 //

81 //+ EXAMPLE

82 stk::io0::StkMeshIoBroker stkIo(communicator);

83 size_t ifh = stkIo.add_mesh_database ("9x9x9|shell:xyzXYZ", "generated",
84 stk::io::READ_MESH) ;

85 stkIo.set_active_mesh (ifh);

86 stkIo.create_input_mesh();

87 stkIo.populate_bulk_data();

88

89 // Output...

90 size_t fh = stkIo.create_output_mesh(filename,

91 stk::i0: :WRITE_RESULTS) ;
92 Ioss::Region xio_reg = stkIo.get_output_io_region(fh).get();

93

94 //+ Add the data from the file "application_input_file.i"

95 //+ as information records on this file.

96 io_reg->property_add(Ioss::Property ("input_file_ name", input_file));
97

98 //+ Add the data from the "additional_info_record" vector as

99 //+ information records on this file.

100 io_reg->add_information_record(additional_info_record);
101

102 stkIo.write_output_mesh (fh);

103 // ... Verification deleted

104

4.1.32.2 Tell database to overwrite steps instead of adding new steps

The next example shows how to tell an output database (typically restart) to only store a single
time step and overwrite this time step each time that a new step is added to the database. This
is done by setting the cycle count on the database to one as is shown on line 84. The reason an
application would want to do this is to minimize the size of a restart file, but still output restart data
periodically in case the analysis job crashes for some reason.

For more robustness, an application might have two or more restart databases active and cycle
writing to each database in turn. That is, if the application had two restart databases and it was
writing every 0.1 seconds, it would write to the first database at times 0.1, 0.3, 0.5, 0.7; and it
would write to the second database at times 0.2, 0.4. 0.6, 0.8. In this scenario, a crash during the
output of one database would not affect the other database, so there should always be a database
containing valid data.

Listing 4.40: Overwriting time steps instead of adding new steps to a database

./..[..Jcode/stk/stk_io/testsForDocumentation/singleStepOnRestart.cpp

73 // ... Setup deleted

74 //

75 // EXAMPLE USAGE...

76 // Create a restart file,

77 size_t fh = stkIo.create_output_mesh (filename,

78 stk::i0::WRITE_RESTART) ;
79 stkIo.add_field(fh, field);

80

81 //+ Set the cycle count to 1. This will result in a maximum
82 //+ of one step on the output database -- when a new step is
83 //+ added, it will overwrite the existing step.

84 stkIo.get_output_io_region (fh)->get_database () ->set_cycle_count (1);

85

130

86 // Write multiple steps to the restart file.

87 for (size_t step=0; step < 3; step++) {
88 double time = step;
89 stkIo.begin_output_step(fh, time);

90 stkIo.write_defined_output_fields (fh);
91 stkIo.end_output_step (fh);
92 }

o4 //+ At this point, there should only be a single state on the
95 //+ restart database. The time of this state should be 2.0.
96 // ... Verification deleted

The cycle count can be set to any value. In general, if the “analysis” step is “AS” and the cycle
count is “CYCLE”, then the database step is given by “AS mod CYCLE” where “mod” is the
remainder when AS is divided by CYCLE.

131

This page intentionally left blank.

Chapter 5

STK Search

The STK Search module provides a geometric proximity box-box search using various methods
as documented below in Listings 5.1 - 5.2. Though there has been work in adding the geometry
toolkit (GTK) search into STK, that work is incomplete.

5.1 STK Search: usage examples

STK Search takes two lists of bounding volumes and finds intersections between them. It is gen-
erally more efficient to have the first list be larger than the second list.

5.1.1 Using Boost R-tree bounding volume search

Listing 5.1: Using the bounding volume search with the Boost R-tree method

.J.[../code/stk/stk_search/testsForDocumentation/boundingBoxSearch3D.cpp

35 #include <stk_search/CoarseSearch.hpp>

36 #include <stk_search/BoundingBox.hpp>

37 #include <gtest/gtest.h>

38

39 namespace

40 |

41 typedef stk::search::Box<double> Box;

42 typedef stk::search::IdentProc<int, int> Id;

43 void assertPairInResults (Id a, Id b, const std::vector<std::pair<Id, Id> > &searchResults);
44 TEST (StkSearchHowTo, useBoostRtreeSearch)

45 |

46 MPI_Comm comm = MPI_COMM_WORLD;

47 int myProcId = stk::parallel machine_rank (comm) ;

48 std::vector<std::pair<Box, Id> > firstList, secondList;

49 Box unitBox (Box::point_type (0, 0, 0), Box::point_type(l, 1, 1));

50 Id firstId(0, myProcId);

51 firstList.push_back (std::make_pair (unitBox, firstId));

52 Id secondId(l, myProcId);

53 secondList.push_back (std: :make_pair (unitBox, secondId));

54

55 std::vector<std::pair<Id, Id> > searchResults;

56 stk::search::coarse_search(firstList, secondList, stk::search::BOOST_RTREE, comm,
searchResults) ;

57

58 int numProc = stk::parallel_machine_size (comm) ;

59 for (int procId = 0; procId < numProc; procId++)

133

60 {

61 assertPairInResults (Id (0, myProcId), Id(l, procId), searchResults);
62 assertPairInResults (Id(0, procId), Id(l, myProcId), searchResults);
63 }

64 }

65 TEST (StkSearchHowTo, useSphereAndPointBoundingVolumes)
66 |

67 MPI_Comm comm = MPI_COMM_WORLD;

68 int myProcId = stk::parallel machine_rank (comm) ;

69 std::vector<std::pair<stk::search::Sphere<double>, Id> > firstlList;
70 stk::search::Point<double> center (0, 0, 0);

71 const double radius = 0.5;

72 stk::search: :Sphere<double> unitSphere (center, radius);

73 Id firstId(0, myProcId);

74 firstList.push_back (std::make_pair (unitSphere, firstId));

75 std::vector<std::pair<stk::search::Point<double>, Id> > secondList;
76 stk::search::Point<double> point (0.1, 0.2, 0.3);

77 Id secondId(l, myProcId);

78 secondList.push_back (std::make_pair (point, secondId));

79

80 std::vector<std::pair<Id, Id> > searchResults;

81 stk::search::coarse_search(firstList, secondList, stk::search::BOOST_RTREE, comm,

searchResults) ;
82

83 int numProc = stk::parallel_machine_size (comm) ;

84 for (int proclId = 0; procId < numProc; procIld++)

85 {

86 assertPairInResults (Id (0, myProcId), Id(l, procId), searchResults);
87 assertPairInResults (Id (0, procId), Id(l, myProcId), searchResults);
88 }

89 }
90 void assertPairInResults(Id a, Id b, const std::vector<std::pair<Id, Id> > &searchResults)
91 |

92 std::pair<Id, Id> expectedIntersectionPair(a, b);

93 std::vector<std::pair<Id, Id> >::const_iterator resultsIter =

94 std::find(searchResults.begin(), searchResults.end(), expectedIntersectionPair);
95 bool foundExpectedPairInResults = resultsIter != searchResults.end();

96 ASSERT_TRUE (foundExpectedPairInResults) ;

5.1.2 Search method options

Listing 5.2 shows the list of possible search methods.

Listing 5.2: Search method options ../../../code/stk/stk_search/stk_search/SearchMethod.hpp

BOOST_RTREE,

OCTREE,

KDTREE, // Coming soon!
MORTON_LINEARIZED_BVH // Coming soon!

134

Chapter 6

STK Util

The STK Util module provides many utility capabilities that are used within STK modules and
STK-based applications. The categories of utilities include error-handling, exception handling,
execution tracing, application argument processing, parallel operations, timing, string operations,
etc. These utilities are candidates for future independent STK modules.

6.1 Using the Diagnostic Timers

The following tests show the basic usage of the Diagnostic Timers.

Listing 6.1: Diagnostic Timers ../../../code/stk/stk_doc_tests/stk_util/TimerHowTo.cpp

35 #include <gtest/gtest.h>

36 #include <stk_util/diag/PrintTimer.hpp>

37 #include <stk_util/diag/Timer.hpp>

38 #include <comparison/stringAndNumberComparisons.h>

40 namespace
41 {

43 #if defined (NDEBUG)

44 const double tolerance = 5e-2;
45 #else

46 const double tolerance = 10e-2;
47 #endif

49 void doWork ()

50 {

51 ::usleep(leb);
52}

54 TEST (StkDiagTimerHowTo, useTheRootTimer)
55 {

56 stk::diag::TimerSet enabledTimerSet (0);

57 stk::diag::Timer rootTimer = createRootTimer ("totalTestRuntime", enabledTimerSet);
58

59 {

60 stk::diag::TimeBlock totalTestRuntime (rootTimer) ;

61 doWork () ;

62

63 std::ostringstream outputStream;

64 bool printTimingsOnlySincelLastPrint = false;

65 stk::diag::printTimersTable (outputStream, rootTimer, stk::diag::METRICS_ALL,

printTimingsOnlySinceLastPrint);

135

67
68
69
70

80

90
91
92
93
94
95
96
97
98

99
100
101
102
103
104
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

123

124
125
126
127
128
129

130

std::string expectedOutput = "
Timer

totalTestRuntime 1 SKIP SKIP

Took 0.0001 seconds to generate the table above.

n.
’

EXPECT_TRUE (unitTestUtils::areStringsEqualWithToleranceForNumbers (expectedOutput,

outputStream.str (), tolerance));

stk::diag::deleteRootTimer (rootTimer) ;

TEST (StkDiagTimerHowTo, useChildTimers)

{
enum {CHILDMASKl = 1, CHILDMASK2 = 2};
stk::diag::TimerSet enabledTimerSet (CHILDMASK1 | CHILDMASK2);
stk::diag::Timer rootTimer = createRootTimer ("totalTestRuntime",
rootTimer.start ();

stk::diag::Timer childTimerl ("childTimerl", CHILDMASK1l, rootTimer);
stk::diag::Timer childTimer2 ("childTimer2", CHILDMASK2, rootTimer);

stk::diag::TimeBlock timeStuffInThisScope (childTimerl);
stk::diag::TimeBlock timeStuffInThisScopeAgain(childTimer2);
doWork () ;

std::ostringstream outputStream;
bool printTimingsOnlySincelastPrint = false;

Wall Time

0.100 SKIP

enabledTimerSet) ;

stk::diag::printTimersTable (outputStream, rootTimer, stk::diag::METRICS_ALL,

printTimingsOnlySinceLastPrint);

stk::diag::TimeBlock timeStuffInThisScope (childTimerl);
doWork () ;

stk::diag::printTimersTable (outputStream, rootTimer, stk::diag::METRICS_ALL,

printTimingsOnlySinceLastPrint);

std::string expectedOutput = "

Timer Count CPU Time
totalTestRuntime 1 SKIP SKIP
childTimerl 1 SKIP SKIP
childTimer2 1 SKIP SKIP
Took 0.0001 seconds to generate the table above.
Timer Count CPU Time
totalTestRuntime 1 SKIP SKIP
childTimerl 2 SKIP SKIP
childTimer2 1 SKIP SKIP

Took 0.0001 seconds to generate the table above.

",
’

Wall Time

0.100 SKIP
0.100 SKIP
0.100 SKIP

Wall Time

0.200 SKIP
0.200 SKIP
0.100 SKIP

EXPECT_TRUE (unitTestUtils::areStringsEqualWithToleranceForNumbers (expectedOutput,

outputStream.str (), tolerance));

stk::diag::deleteRootTimer (rootTimer);

TEST (StkDiagTimerHowTo, disableChildTimers)

{
enum {CHILDMASKl = 1, CHILDMASK2 = 2};

136

~ =

—

P

P e

131 stk::diag::TimerSet enabledTimerSet (CHILDMASK2) ;

132 stk::diag::Timer rootTimer = createRootTimer ("totalTestRuntime", enabledTimerSet);

133 rootTimer.start ();

134

135 stk::diag::Timer disabledTimer ("disabledTimer", CHILDMASK1, rootTimer);

136 stk::diag::Timer enabledTimer ("enabledTimer", CHILDMASK2, rootTimer);

137

138 {

139 stk::diag::TimeBlock timeStuffInThisScope (disabledTimer) ;

140 stk::diag::TimeBlock timeStuffInThisScopeAgain (enabledTimer);

141 doWork () ;

142 }

143

144 std::ostringstream outputStream;

145 bool printTimingsOnlySincelastPrint = false;

146 stk::diag::printTimersTable (outputStream, rootTimer, stk::diag::METRICS_ALL,
printTimingsOnlySinceLastPrint);

147

148 {

149 stk::diag::TimeBlock timeStuffInThisScope (disabledTimer) ;

150 doWork () ;

151 }

152

153 stk::diag::printTimersTable (outputStream, rootTimer, stk::diag::METRICS_ALL,
printTimingsOnlySinceLastPrint);

154

155 std::string expectedOutput = " \

156 Timer Count CPU Time Wall Time \

157 e o \

158 totalTestRuntime 1 SKIP SKIP 0.100 SKIP \

159 enabledTimer 1 SKIP SKIP 0.100 SKIP \

160 \

161 Took 0.0001 seconds to generate the table above. \

162 Timer Count CPU Time Wall Time \

163 ——— e e e \

164 totalTestRuntime 1 SKIP SKIP 0.200 SKIP \

165 enabledTimer 1 SKIP SKIP 0.100 SKIP \

166 \

167 Took 0.0001 seconds to generate the table above. \

168 ";

169 EXPECT_TRUE (unitTestUtils::areStringsEqualWithToleranceForNumbers (expectedOutput,
outputStream.str (), tolerance));

170

171 stk::diag::deleteRootTimer (rootTimer) ;

172}

173

174 '}

Listing 6.2: Diagnostic Timers in Parallel ../../../code/stk/stk_doc_tests/stk_util/TimerHowToParallel.cpp

35 #include <gtest/gtest.h>

36 #include <stk_util/diag/PrintTimer.hpp>

37 #include <stk_util/diag/Timer.hpp>

38 #include <comparison/stringAndNumberComparisons.h>

3

namespace
41 {

43 const double tolerance = 5e-2;
45 void doWork ()

46 |
47 ::usleep(leb);

50 TEST (StkDiagTimerHowTo, useTimersInParallel)

137

52 MPI_Comm communicator = MPI_COMM_WORLD;

53 int numProcs = -1;

54 MPI_Comm_size (communicator, &numProcs);

55 if (numProcs == 2)

56 {

57 enum {CHILDMASK1l = 1};

58 stk::diag::TimerSet enabledTimerSet (CHILDMASK1) ;

59 stk::diag::Timer rootTimer = createRootTimer ("totalTestRuntime", enabledTimerSet);

60 rootTimer.start ();

62 stk::diag::Timer childTimerl ("childTimerl", CHILDMASK1l, rootTimer);

65 stk::diag::TimeBlockSynchronized
timerStartSynchronizedAcrossProcessors (childTimerl, communicator);

66 doWork () ;

67 }

68

69 std::ostringstream outputStream;

70 bool printTimingsOnlySinceLastPrint = false;

71 stk::diag::printTimersTable (outputStream, rootTimer, stk::diag::METRICS_ALL,
printTimingsOnlySinceLastPrint, communicator);

73 int proclId = -1;

74 MPI_Comm_rank (communicator, &procId);

75 if (procId == 0)

76 {

77 std::string expectedOutput = " \
78 CPU Time CPU Time CPU Time \
79 Wall Time Wall Time Wall Time \
80 Timer Count Sum (% of System) Min (% of System) Max (% of System) \
81 Sum (% of System) Min (% of System) Max (% of System) \
8 SKIP ———— ———— SKIP SKIP SKIP ————————————————————— \
83 totalTestRuntime 2 SKIP SKIP SKIP SKIP SKIP SKIP \
84 0.200 SKIP 0.100 SKIP 0.100 SKIP \
85 childTimerl 2 SKIP SKIP SKIP SKIP SKIP SKIP \
86 0.200 SKIP 0.100 SKIP 0.100 SKIP \
87 \
88 Took SKIP seconds to generate the table above. \

89 ";
90 EXPECT_TRUE (unitTestUtils::areStringsEqualWithToleranceForNumbers (expectedOutput,
outputStream.str (), tolerance));

93 stk::diag::deleteRootTimer (rootTimer) ;

96

The line at the end that prints the time to generate the table is not that useful for small or medium
sized runs, but at large numbers of processors, it can take a non-trivial amount of time to gather the
timing data from all processors. Knowing this time can help you understand the overall problem
runtime.

138

6.2 Communicating with other MPI processors

Listing 6.3 shows an example of how to pass a floating point value(double) to all other processors.
Note that there currently is a two phase process for doing this. In phase 1, the data that is to be
sent is used to size the communication buffer which will be sent to that processor. Then at the end
of phase 1, the buffer allocation call is made. Then, in phase 2, the same packing of buffers is
done again, and in this phase, the communicate call is made. Finally, the buffer for each receive is
obtained and unpacked in the order in which it was packed. Here, the assumption is that only one
value is received from each processor.

Note, that the call to allocate_buffers takes a parameter which is usually 1/4 of the total number
of processors. Inside the communicate method, the number of max processors to communicate
with is calculated, and if that number is less than a certain threshold, a sparse communication
method is chosen, otherwise a dense communication method is chosen. The parameter sent to
allocate_buffers is that threshold value.

Listing 6.3: Example showing how to communicate with other processors

.J../..Jcode/stk/stk_doc_tests/stk_util/CommSparseHowTo.cpp

45 TEST (ParallelComm, HowToCommunicateOneValue)

46 {

47 MPI_Comm comm = MPI_COMM_WORLD;

48 stk::CommSparse commSparse (comm) ;

49

50 int myProcId = commSparse.parallel_rank();
51 int numProcs = commSparse.parallel_size();
52

53 double sendSomeNumber = 100-myProcId;

54

55 for (int phase = 0; phase < 2; ++phase)

56 {

57 for (int proc=0;proc<numProcs;proc++)
58 {

59 if (proc != myProcId)

60 {

61 stk::CommBuffer& proc_buff = commSparse.send_buffer (proc);
62 proc_buff.pack<double> (sendSomeNumber) ;
63 }

64 }

65 if (phase == 0)

66 {

67 commSparse.allocate_buffers();

68 }

69 else

70 {

71 commSparse.communicate () ;

72 }

73 }

74

75

76 for (int proc=0;proc<numProcs;proc++)

77 {

78 if (proc != myProcId)

79 {

80 stk::CommBuffer& dataReceived = commSparse.recv_buffer (proc);
81 double val = -1;

82 dataReceived.unpack (val);

83 EXPECT_EQ (100-proc, wval);

84 }

139

86}

Listing 6.4 shows how to receive an unknown amount of data from a processor.

Listing 6.4: Example showing how to communicate an arbitrary amount of data with other processors

.J.[.Jeode/stk/stk_doc_tests/stk_util/CommSparseHowTo.cpp

88 TEST (ParallelComm, HowToCommunicateAnArbitraryNumberOfValues)

89 {

90 MPI_Comm comm = MPI_COMM_WORLD;

91 stk::CommSparse commSparse (comm) ;

92

93 int myProcId = commSparse.parallel_rank();

94 int numProcs = commSparse.parallel_size();

95

96 double sendSomeNumber = 100-myProcId;

97

98 for (int phase = 0; phase < 2; ++phase)

99 {

100 for (int proc=0;proc<numProcs;proc++)

101 {

102 if (proc != myProcId)

103 {

104 stk::CommBuffer& proc_buff = commSparse.send_buffer (proc);

105 for (int i=0;i<myProcId;i++)

106 {

107 proc_buff.pack<double> (sendSomeNumber+i) ;

108 }

109 }

110 }

111 if (phase == 0)

112 {

113 commSparse.allocate_buffers();

114 }

115 else

116 {

117 commSparse.communicate () ;

118 }

119 }

120

121

122 for (int
procFromWhichDataIsReceived=0;procFromiWhichDatalIsReceived<numProcs;procFromWhichDataIsReceived++)

123 {

124 if (procFromWhichDataIsReceived != myProcId)

125 {

126 stk::CommBuffer& dataReceived =
commSparse.recv_buffer (procFromWhichDataIsReceived) ;

127 int numItemsReceived = 0;

128 while (dataReceived.remaining())

129 {

130 double val = -1;

131 dataReceived.unpack (val) ;

132 EXPECT_EQ (100-procFromWhichDataIsReceived+numItemsReceived, val);

133 numItemsReceived++;

134 }

135 int goldNumItemsReceived = procFromWhichDataIsReceived;

136 EXPECT_EQ (goldNumItemsReceived, numlItemsReceived) ;

137 }

138 }

139 }

140

6.3 Using the STK Scheduler

The STK Scheduler provides a capability for scheduling an operation, for example output, that will
happen at various periods throughout an analysis. The application can create a scheduler and then
set the schedule based on time intervals, explicit times, step intervals, and explicit steps. Multiple
scheduling intervals can be specified with different scheduling in each interval. The application
can then query the scheduler throughout the analysis and determine whether the scheduled activity
should be performed at the current analysis time and step.

This section describes two methods of using the STK Scheduler tool: time-based and step-based
scheduling. Examples of time-based and step-based scheduling are provided below to show the
behavior of the two methods and the combinations thereof. The figures at the end of the section
show differences between time-based and step-based scheduling. One main difference is that with
time-based scheduling, the is_it_time () function will return ‘true” the first time it is called
per time period, while the step-based scheduling will return “true” only if the step number is equal
to a step period.

In addition to time-based and step-based scheduling, the STK Scheduler state can also be modified
via operating system signals and explicit application control; examine the source code to see these
additional capabilities.

Listing 6.5: Using the scheduler ../../../code/stk/stk_util/testsForDocumentation/usingScheduler.cpp

36 #include <gtest/gtest.h>

37 #include <stk_util/environment/Scheduler.hpp>
38

39 namespace

40 |

41 TEST (StkUtilTestForDocumentation, TimeBasedScheduling)
4

43 stk::util::Scheduler scheduler;

44

45 const stk::util::Time startTime = 0.0;

46 const stk::util::Time timelInterval = 1.0;

47 scheduler.add_interval (startTime, timelInterval);

48

49 stk::util::Step timeStep = O;

50 EXPECT_TRUE (scheduler.is_it_time (0.0, timeStep++));
51 EXPECT_FALSE (scheduler.is_it_time (0.5, timeStep++));
52 EXPECT_TRUE (scheduler.is_it_time (1.0, timeStep++));

53}

55 TEST (StkUtilTestForDocumentation, TimeBasedSchedulingWithTerminationTime)
56 {

57 stk::util::Scheduler scheduler;

58

59 const stk::util::Time startTime = 2.0;

60 const stk::util::Time timeInterval = 10.0;

61 scheduler.add_interval (startTime, timelInterval);

63 const stk::util::Time terminationTime = 8.2;

64 scheduler.set_termination_time (terminationTime) ;

65

66 stk::util::Step timeStep = O;

67 EXPECT_FALSE (scheduler.is_it_time (startTime - 1.0, timeStep++));

68 const stk::util::Time firstTimeAfterStartTime = terminationTime-0.1;

69 EXPECT_TRUE (scheduler.is_it_time (firstTimeAfterStartTime, timeStep++));
70 const stk::util::Time firstAfterTermination = terminationTime+0.1;

141

71 EXPECT_TRUE (scheduler.is_it_time(firstAfterTermination, timeStep++));
2 EXPECT_FALSE (scheduler.is_it_time (terminationTime+0.2, timeStep++));

75 TEST (StkUtilTestForDocumentation, StepBasedScheduler)
76 |

77 stk::util::Scheduler scheduler;

78

79 const stk::util::Step startStep = 0;

80 const stk::util::Step stepInterval = 4;

81 scheduler.add_interval (startStep, stepInterval);

82

83 const stk::util::Time dt = 0.1;

84 for (stk::util::Step timeStep=0;timeStep<100;timeStep+=3)
85 {

86 stk::util::Time time = timeStep=*dt;

87 bool check = scheduler.is_it_time(time, timeStep);
88 if (timeStep % stepInterval == 0)

89 {

90 EXPECT_TRUE (check) ;
91 }

92 else

93 {

94 EXPECT_FALSE (check) ;

96 }

99 TEST (StkUtilTestForDocumentation, TimeBasedSchedulerWithTwoTimeIntervals)

100 {
101 stk::util::Scheduler scheduler;

102 const stk::util::Time startTimel = 0.0;

103 const stk::util::Time deltal = 0.1;

104 scheduler.add_interval (startTimel, deltal);
105 const stk::util::Time startTime2 = 0.9;

106 const stk::util::Time delta2 = 0.3;

107 scheduler.add_interval (startTime2, delta?2);

109 stk::util::Step timeStep = O;
110 EXPECT_TRUE (scheduler.is_it_time (0.0, timeStep++));
111 EXPECT_FALSE (scheduler.is_it_time (0.07, timeStep++));

112 EXPECT_TRUE (scheduler.is_it_time (0.14, timeStep++));

113 EXPECT_TRUE (scheduler.is_it_time(0.62, timeStep++));

114 EXPECT_TRUE (scheduler.is_it_time (0.6999999, timeStep++));
115 EXPECT_FALSE (scheduler.is_it_time (0.77, timeStep++));

116 EXPECT_TRUE (scheduler.is_it_time (0.9, timeStep++));

117 EXPECT_FALSE (scheduler.is_it_time (0.97, timeStep++));

118 EXPECT_FALSE (scheduler.is_it_time (1.04, timeStep++));

119 EXPECT_FALSE (scheduler.is_it_time(1.11, timeStep++));

120 EXPECT_TRUE (scheduler.is_it_time(1.27, timeStep++));

142

Delta 1 Delta 2

1y2,3,4,5,6,7,8,9, 10 , 11 N
O I R R N N B B B | | >
0.0 0.9 1.2 15
A A

Start Time 1 Start Time 2

Figure 6.1: Example time-based scheduler: Using two intervals of different sizes. The first interval
spans the time from 0.0 to 0.9 with a time-delta of 0.1; the second interval continues from time 0.9
to the end of the analysis with a time-delta of 0.3.

1,2,3,4,5 6 ,7,8,9 10 11
=t = = = =t == = ——
0.0 0.9 1.2 1.5

True
¢ False
True within tolerance

Figure 6.2: Example time-based scheduler: The first call to 1s_it_time () per interval (within
a tolerance) will return true. The diamond shapes show the sequence of calls and the color of the
diamond signifies whether the function returns true (green or yellow) or false (red). The time-delta
and interval settings are the same as in the previous figure.

Step Increment =4 Step Increment = 2
TrllJe
& False
(\
| | | | A | A | -
I i i i I i i i I I v I T I -
0 1 2 3 4 5 6 7 8 9 11 13
Start Step 1 Start Step 2

Figure 6.3: Example step-based scheduler: The call to is_it_time () will return true on the
interval boundary aligned with the step increment. The diamond shapes show the sequence of calls
and the color of the diamond signifies whether the function returns true (green) or false (red). This
scheduler has two intervals; the first spans steps O to 9 with a step-increment of 4 followed by an
interval with a step-increment of 2.

143

6.4 Parameters — type-safe named storage of any variable type

The Parameter class provides a type-save mechanism for storing any variable. A variable or
vector of variables can be stored in a ParameterList and later retrieved by name. The param-
eters can also be read from and written to mesh and results files as demonstrated in Sections 4.1.29
and 4.1.30.

The supported variable types that can currently be stored in a Parameter object are 32-bit inte-
gers, 64-bit integers, doubles, floats, and std::strings and vectors of those types. If an additional
type is required, it can be added fairly easily and non-supported types can be stored with reduced
functionality.

The first example sets up some variables of various types for use in the following parameter exam-
ples.

Listing 6.6: Parameters: Data for use in the following examples

.[..[..Jcode/stk/stk_util/testsForDocumentation/parameters.cpp

51 //+ INITIALIZATION

52 std::vector<std::string> expected_name;

53 std::vector<stk::util::ParameterType::Type> expected_type;

54

55 //+ Scalar values of type double, float, int, int64_t, and string
56 double pi = 3.14159;

57 float e = 2.71828;

58 int answer = 42;

59 int64_t big_answer = 42000000000001;

60 std::string team_name = "STK Transition Team";

61

62 expected_name.push_back ("PI");

63 expected_type.push_back (stk::util::ParameterType: :DOUBLE) ;

64 expected_name.push_back ("E");

65 expected_type.push_back (stk::util::ParameterType: :FLOAT) ;

66 expected_name.push_back ("Answer") ;

67 expected_type.push_back (stk::util::ParameterType: : INTEGER) ;

68 expected_name.push_back ("Answer_64");

69 expected_type.push_back (stk::util::ParameterType: :INT64);

70 expected_name.push_back ("TeamName") ;

71 expected_type.push_back (stk::util::ParameterType: :STRING) ;

72

73 //+ vector of doubles

74 std::vector<double> my_double_vector;

75 my_double_vector.push_back(2.78); my_double_vector.push_back (5.30);
76 my_double_vector.push_back (6.21);

77 expected_name.push_back ("some_doubles") ;

78 expected_type.push_back (stk::util::ParameterType: :DOUBLEVECTOR) ;
79

80 //+ vector of floats

81 std::vector<float> my_float_vector;

82 my_float_vector.push_back(194.0); my_float_vector.push_back(-194.0);
83 my_float_vector.push_back (47.0); my_float_vector.push_back(92.0);
84 expected_name.push_back ("some_floats");

85 expected_type.push_back (stk::util::ParameterType: :FLOATVECTOR) ;

86

87 //+ vector of ints

88 std::vector<int> ages;

89 ages.push_back (55); ages.push_back (49); ages.push_back(21l); ages.push_back (19);
90 expected_name.push_back ("Ages") ;

91 expected_type.push_back (stk::util::ParameterType: : INTEGERVECTOR) ;

92

144

93 //+ vector of int64_ts

94 std::vector<int64_t> ages_64;

95 ages_64.push_back (55); ages_64.push_back(49); ages_64.push_back (21);
ages_64.push_back (19);

96 expected_name.push_back ("Ages_64") ;

97 expected_type.push_back (stk::util::ParameterType: :INT64VECTOR) ;

98

99 //+ vector of strings

100 std::vector<std::string> names;

101 names.push_back ("greg"); names.push_back ("chloe"); names.push_back ("tuffy");

102 names.push_back ("liberty"); names.push_back ("I have spaces");

103 expected_name.push_back ("Names") ;

104 expected_type.push_back (stk::util::ParameterType: :STRINGVECTOR) ;

105

This example illustrates how to create a ParameterList and add variables to it. Note that a
single ParameterList can store multiple variables of multiple types.

Listing 6.7: Parameters: Defining ../../../code/stk/stk_util/testsForDocumentation/parameters.cpp

108 //+ Define parameters...

109 stk::util::ParameterlList params;

110 params.set_param("PI", pi);

111 params.set_param("E", e);

112 params.set_param("Answer", answer) ;

113 params.set_param("Answer_64", big_answer);

114 params.set_param("TeamName", team_name) ;

115 params.set_param("some_doubles", my_double_vector);
116 params.set_param("some_floats", my_float_vector);
117 params.set_param("Ages", ages) ;

118 params.set_param("Ages_64", ages_64);

119 params.set_param("Names", names) ;

120

Once the parameters have been added to a ParameterList, they can be printed or accessed by
various means as shown in the following example.

Listing 6.8: Parameters: Accessing values ../../../code/stk/stk_util/testsForDocumentation/parameters.cpp

123 //+ Write parameters to stdout...

124 params.write_parameter_list (std::cout);

125

126 //+ Access parameters by name. ..

127 size_t num_param = expected_name.size();

128 for (size_t i=0; i < num_param; i++) {

129 stk::util::Parameter ¶m = params.get_param(expected_name[i]);
130 EXPECT_EQ (param.type, expected_typeli]);

131 }

132

133 //+ Extract some parameter values if know type:
134 std::vector<int> pages = params.get_value<std::vector<int> > ("Ages");
135 for (size_t 1=0; 1 < pages.size(); i++) {

136 EXPECT_EQ (pages[i], ages[i]);

137 }

138

139 double my_pi = params.get_value<double> ("PI");

140 EXPECT_EQ (my_pi, pi);

141

142 //+ Change value of an existing parameter

143 params.set_value ("Answer", 21);

144

145 int new_answer = params.get_value<int> ("Answer");
146 EXPECT_EQ (new_answer, 21);

145

147
148 {

149 //+ Access a variable of unknown type...

150 //+ The parameter uses boost::any to store the actual value.

151 stk::util::Parameter ¶m = params.get_param("Answer");

152 double value_as_double = 0.0;

153 switch (param.type) {

154 case stk::util::ParameterType: :DOUBLE:

155 value_as_double = boost::any_cast<double> (param.value) ;

156 break;

157 case stk::util::ParameterType: :FLOAT:

158 value_as_double = static_cast<double> (boost::any_cast<float> (param.value));
159 break;

160 case stk::util::ParameterType: :INTEGER:

161 value_as_double = static cast<double> (boost::any_cast<int> (param.value));
162 break;

163 case stk::util::ParameterType::INT64:

164 value_as_double = static_cast<double> (boost::any_cast<int64_t> (param.value));
165 break;

166 default:

167 std::cerr << "ERROR: I can not convert ’'Answers’ value to a double\n";

168 break;

169 }

170 EXPECT_EQ (static_cast<double> (new_answer), value_as_double);

171 }

172

173 {

174 //+ Access a variable of unknown type without using boost::any cast

175 stk::util::Parameter ¶m = params.get_param("Answer");

176 double value_as_double = 0.0;

177 switch (param.type) {

178 case stk::util::ParameterType: :DOUBLE:

179 value_as_double = params.get_value<double> ("Answer");

180 break;

181 case stk::util::ParameterType: :FLOAT:

182 value_as_double = static_cast<double> (params.get_value<float> ("Answer"));
183 break;

184 case stk::util::ParameterType::INTEGER:

185 value_as_double = static_cast<double> (params.get_value<int> ("Answer"));
186 break;

187 case stk::util::ParameterType::INT64:

188 value_as_double = static cast<double> (params.get_value<inté64_t> ("Answer"));
189 break;

190 default:

191 std::cerr << "ERROR: I can not convert ’'Answers’ value to a double\n";

192 break;

193 }

194 EXPECT_EQ (static_cast<double> (new_answer), value_as_double);

195 }
196
197

This example shows how the Parameter class deals with errors such as accessing nonexistent
parameters or specifying the incorrect type for a parameter.

Listing 6.9: Parameters: Dealing with errors

.J.[.Jeode/stk/stk_util/testsForDocumentation/parameters.cpp

200 //+ If the requested parameter does not exist,

201 //+ an error message is printed to stderr and an invalid

202 //+ parameter object is returned

203 stk::util::Parameter no_exist = params.get_param("DoesNotExist");
204 EXPECT_EQ(stk::util::ParameterType: :INVALID, no_exist.type);

205

206 //+ In this method of requesting a parameter, no error

146

207 //+ message is printed if the parameter doesn’t exist and

208 //+ instead the returned iterator is equal to the end of the

209 //+ parameter list.

210 stk::util::ParameterMapType::iterator it = params.find("DoesNotExist");
211 EXPECT_TRUE (it == params.end());

212

213 //+ If the value of a non-existant parameter is requested,

214 //+ an error message is printed and the value 0 is returned.

215 double invalid_value = params.get_value<double> ("DoesNotExist");

216 EXPECT_EQ (0.0, invalid_value);

217

218 //+ If the parameter types do not match, an error message is

219 //+ printed and the value 0 of the requested type is returned.

220 int invalid = params.get_value<int>("PI");

221 EXPECT_EQ (0, invalid);

222

223 //+ If the parameter types do not match, an error message is

224 //+ printed and an empty vector of the requested type is returned.

225 std::vector<double> pies = params.get_value<std::vector<double> > ("PI");
226 EXPECT_EQ (Ou, pies.size());

227

Although it is best to use a ParameterList with the supported variable types, it can also be
used to store types that it does not officially support. The following example shows this capability
by storing a value of std: : complex type. Note that although an unsupported type can be stored
and retrieved from a ParameterList, it cannot be read from or written to a mesh or results file
or printed using the Parameter system.

Listing 6.10: Parameters: Storing unsupported types

.[..[../code/stk/stk_util/testsForDocumentation/parameters.cpp

234 //+ Adding a parameter of "unsupported" type...

235 stk::util::ParameterList more_params;

236 std::complex<double> phase(3.14,2.718);

237 more_params.set_param("phase", phase);

238

239 //+ The print system doesn’t know about this type, so will print

240 //+ a warning message about unrecognized type.

241 more_params.write_parameter_list (std::cout);

242

243 //+ However, you can still retrieve the value of the parameter

244 //+ if you know what type it is.

245 std::complex<double> my_phase = more_params.get_value<std::complex<double> > ("phase");
246 EXPECT_EQ (my_phase, phase);

247

248 //+ The Parameter class won’t help you on determining the type,

249 //+ You must know what it is.

250 EXPECT_EQ (more_params.get_param("phase") .type, stk::util::ParameterType::INVALID);
251

252 //+ If the wrong type is specified, an exception will be thrown...

253 EXPECT_ANY_THROW (more_params.get_value<std::complex<int> > ("phase"));

6.5 Filename substitution

The filename_substitution function in STK Util provides a basic substitution capability. If the
string (typically a filename) passed as an argument to this function contains “special characters”,

147

the special characters will be replaced with runtime-calculated values. The currently supported
substitutions are:

e 3B For applications which use the command-line-argument parsing facilities provided in
stk_util/environment/ProgramOptions.hpp, and which use a command-line
argument called “input-deck”, then %$B will be replaced by the basename of the file named as
that “input-deck” argument. If there is no “input-deck” argument, then the basename “stdin”
will be used. The basename of the file is the portion of the string between the last “/” and
the last “.”. For example, given the string /path/to/the/file/input. i, the basename
would be input.

e 3P will be replaced by the number of processors being used in the current execution.

The example below shows a very simple example of this capability. It is run on 1 processor with
no input file, so the substituted filename should be “stdin-1.e”.

148

Listing 6.11: Filename substitution capability

.J..[..Jcode/stk/stk_util/testsForDocumentation/filenameSubstitution.cpp

35 #include <gtest/gtest.h> // for AssertHelper, EXPECT_EQ, etc

36 #include <stk_util/environment/EnvData.hpp> // for EnvData

37 #include <stk_util/environment/FileUtils.hpp>

38 #include <stk_util/environment/ProgramOptions.hpp>

39 #include <string> // for string, allocator, etc

40 #include <utility> // for make_pair

41 #include "boost/program_options/variables_map.hpp" // for variable_value, etc
42

43 namespace

4
45 TEST (StkUtilHowTo, useFilenameSubstitutionWithNoCommandLineOptions)

46 {

47 const std::string default_base_filename = "stdin";

48 const std::string numProcsString = "1";

49 const std::string expected_filename = default_base_filename + "-" + numProcsString + ".e";
50

51 std::string file_name = "%B-%P.e";

52 stk::util::filename_substitution (file_name) ;

53 EXPECT_EQ (expected_filename, file_name);

54 }

55
56 void setFilenameInCommandLineOptions (const std::string &filename)

57 {

58 boost::program_options::variables_map &command_line_options = stk::get_variables_map();

59 command_line_options.insert (std::make_pair ("input-deck",
boost::program_options::variable_value (filename, false)));

60 stk::EnvData::instance () .m_inputFile = filename;

61 }

62 TEST (StkUtilHowTo, useFilenameSubstitutionWithFileComingFromCommandLineOptions)
63 {

64 const std::string base_filename = "myfile";

65 const std::string full_filename = "/path/to/" + base_filename + ".g";
66 setFilenameInCommandLineOptions (full_filename);

67

68 const std::string numProcsString = "1";

69 const std::string expected_filename = base_filename + "-" + numProcsString + ".e";
70

71 std::string file_name = "%B-%P.e";

72 stk::util::filename_substitution (file_name) ;

73

74 EXPECT_EQ (expected_filename, file_name);

75 }

76}

149

This page intentionally left blank.

References

[1] Larry A. Schoof and Victor R. Yarberry, “EXODUSII: A Finite Element Data Model,”
SAND92-2137, Sandia National Laboratories, Albuquerque, NM, September, 1994.!

[2] Farhat, C. Van der Zee, K.G., Geuzaine, P. “EXODUSII: A Finite Element Data Model Prov-
ably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear

computational aeroelasticity,” Computer Methods in Applied Mechanics and Engineering,
2006; 195 (17-18): 1973-2001

IThis document is very out of date. A new document is being prepared and a draft of the current state is available
athttp://Jjal.sandia.gov/SEACAS/Documentation/exodusII-new.pdf.

151

http://jal.sandia.gov/SEACAS/Documentation/exodusII-new.pdf

Index

aura, 20, 23
aura part, 19, 30

buckets, 20
bulkdata, 20

connectivity, 18
custom ghosting, 42

downward relation, 18

element block, 31
entity, 18
explicit member, 32

field, 81
fields, 19

ghosted, 23
ghosting, 20

globally-shared part, 19, 30

induced member, 32, 33

locally-owned part, 19, 30

mesh part, 30
metadata, 20, 36

part, 19

part ordinal, 31
parts, 41
permutations, 18

rank, 18
relations, 18

search, 133
selector, 28
selectors, 19
shared, 23

topology, 18, 63

universal part, 30
upward relation, 18

152

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

153

This page intentionally left blank.

v1.38

@ Sandia National Laboratories

	STK Mesh
	STK Mesh Terms
	Entity
	Connectivity
	Topology
	Part
	Field
	Selector
	Bucket
	Ghosting
	MetaData and BulkData
	Creating a STK Mesh from an Exodus file

	Parallel
	Shared
	Ghosted
	Aura
	How to use automatically generated aura

	STK Parallel Mesh Consistency Rules
	How to enable mesh diagnostics to enforce parallel mesh rules
	How to enforce Parallel Mesh Rule 1
	Parallel API

	STK Mesh Selector
	How to use selectors

	STK Mesh Parts
	Part Identifiers and Attributes
	Induced Part Membership
	How to use ghost parts

	Mesh Modification
	Overview
	Public Modification Capability
	Add/Delete Entities
	Getting Unused Globally Unique Identifiers
	Creating Nodes that are Shared by Multiple Processors
	Change Entity Part Membership
	Change Connectivity
	Change Entity Ownership
	Change Ghosting

	Mesh Modification Examples
	Resolving Sharing Of Exodus Sidesets - Special Case

	Unsafe operations
	Automatic modification operations in modification_end()
	How to use generate_new_entities()
	How to create faces
	How to create both edges and faces
	How to create faces on only selected elements
	Creating faces with layered shells
	Creating faces between hexes, on shells, and on shells between hexes
	How to skin a mesh
	How to create internal block boundaries of a mesh
	How to destroy elements in list

	STK Mesh usage examples
	How to iterate over nodes
	How to traverse connectivity
	How to check side equivalency
	Understanding node ordering of edges and faces
	How to sort entities into an arbitrary order

	STK Topology
	STK Topology API
	How to set and get topology
	STK topology ranks
	Compile-time STK topology information
	STK topology for the Particle
	STK topology for the high order Beam
	STK topology for the high order triangular Shell
	STK topology for the linear Hexahedral
	STK topology equivalent method
	STK topology's is_positive_polarity method
	STK topology's lexicographical_smallest_permutation method
	STK topology's lexicographical smallest permutation preserve polarity method
	STK Topology's sub_topology methods
	STK Topology's sides methods
	STK topology for a SuperElement

	Mapping of Sierra topologies

	STK Fields
	Example STK fields usage

	STK IO
	STK IO: usage examples
	Reading mesh data to create a STK Mesh
	Face creation for input sidesets

	Reading mesh data to create a STK Mesh allowing StkMeshIoBroker to go out of scope
	Reading mesh data to create a STK Mesh, delaying field allocations
	Outputting STK Mesh
	Outputting results data from a STK Mesh
	Outputting a field with an alternative name to a results file
	Outputting both results and restart data from a STK Mesh
	Writing multi-state fields to results output file
	Writing multiple output files
	Outputting nodal variables on a subset of the nodes
	Get number of time steps from a database
	Reading sequenced fields from a database
	Reading initial conditions from a field on a mesh database
	Reading initial conditions from a field on a mesh database – apply to a specified subset of mesh parts
	Reading initial conditions from a field on a mesh database – only read once
	Reading initial conditions from a mesh database field at a specified database time
	Reading field data from a mesh database – interpolating between database times
	Combining restart and interpolation of field data
	Interpolating field data from a mesh database with only a single database time
	Interpolating field data from a mesh database when time is outside database time interval
	Error condition – reading initial conditions from a field that does not exist on a mesh database
	Interpolation of fields on database with negative times
	Interpolation of fields on database with non-monotonically increasing times
	Arbitrary analysis time to database time mapping during field input
	Error condition – specifying interpolation for an integer field
	Working with element attributes
	Create an output mesh with a subset of the mesh parts
	Writing and reading global variables
	Writing and reading global parameters
	Writing global variables automatically
	Heartbeat output
	Change output precision
	Change field separator

	Miscellaneous capabilities
	Add contents of a file and/or strings to the information records of a database
	Tell database to overwrite steps instead of adding new steps

	STK Search
	STK Search: usage examples
	Using Boost R-tree bounding volume search
	Search method options

	STK Util
	Using the Diagnostic Timers
	Communicating with other MPI processors
	Using the STK Scheduler
	Parameters – type-safe named storage of any variable type
	Filename substitution

	Bibliography
	Index

