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Abstract

We assess how geospatial-temporal semantic graphs [1] and our GeoGraphy code
implementation might contribute to induced seismicity analysis. We focus on
evaluating strengths and weaknesses of both 1) the fundamental concept of semantic
graphs and 2) our current code implementation. With extensions and research effort,
code implementation limitations can be overcome. The paper also describes
relevance including possible data input types, expected analytical outcomes and how
it can pair with other approaches and fit into a workflow.
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1. INTRODUCTION

This document will describe our assessment of how geospatial-temporal semantic graphs, and
our GeoGraphy code implementation, might contribute to SUbTER project objectives. Note that
there are two distinct issues here: the fundamental graph approach, and our code implementation.
Code implementation shortcomings can be overcome with additional programming effort, while
limitations of the fundamental approach require deeper research to resolve, if even possible.
Thus in the discussion that follows, we will attempt to distinguish these issues.

In the rest of the paper, we will describe the geospatial-temporal graph method and its strengths
and weaknesses, focusing on both fundamental and implementation aspects. Then we will
discuss possible extensions to resolve weaknesses and relevance with the induced seismicity
approach. The appendix will provide additional details including algorithm description and
possible applications for SubTER.






2. DESCRIPTION
2.1. Fundamental Concept

Geospatial-temporal semantic graphs are data structures that represent discrete world objects and
events as nodes, and relationships between those objects and/or events as edges. This
fundamentally requires delineating objects and events in space and time, so that graph nodes can
be identified. At the most basic level, once discrete objects and events are identified, the graph
structure enables search for patterns specifying pre-specified relationships including both
spatiotemporal relationships and other semantic relationships. This approach has a great deal of
flexibility in representing a wide range of problems. However, it also incurs fundamental
challenges that must be appreciated by SUubTER; these will be explained below.

2.2. Implementation

We have implemented a software code base, named GeoGraphy, which implements geospatial-
temporal semantic graphs and several associated search algorithms. This code has demonstrated
the application of geospatial-temporal semantic graphs to a fairly broad set of example problems,
ranging from wide-area search for facilities in overhead image data to analysis of trajectories
within geospatial context to a simple analysis of induced seismicity. While the code has
successfully solved these examples, it remains a research code with a number of limitations,
explained below.
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3. STRENGTH
3.1. Fundamental concept strengths

The geospatial-temporal semantic graph representation provides semantic encoding and search of
data. Geospatial-temporal semantic graphs encapsulate attributes of regions, events, and physical

and temporal relationships into nodes and edges, which enables data from different sources to be

represented in a single uniform search representation.

As the graph representation allows relationships to be represented as edges, it allows flexible
search designs and efficient searches compared to relational databases, which require several join
operations over tables which are complicated and expensive. Additionally, many graph
algorithms including connected components, matching, path search, edge and node connectivity,
transitive closure, etc, can be applied to geospatial-temporal semantic graphs.

The graphs enable identification and analysis of aggregates that correspond to semantically
important multi-object groups, which taken together constitute important spatiotemporal features
for subsequent analysis or review. For instance, the geospatial-temporal semantic graph
representation allows finding an earthquake with preceding injection events along a common
fault, using both spatial and temporal relationships (Figure 1). The resulting injection-fault-
earthquake ensembles then become higher-level semantic objects available for further analysis.
One example subsequent analysis might be cascading earthquake analysis, which could also be
supported by the graph representation.

Subsurface Fault

Earthguake

(a) Earthgquake near faults

IFgul:lwrhl:l.-l:rmll

d = 1,000 m
At s 1 yr earlier

Well Injection

() Earthguake with preceding injection events dong a
cormtnon fault.

Figure 1. Example Hierarchical Spatiotemporal Search
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3.2. Implementation strengths

The GeoGraphy software allows multi-modality data as input including preprocessed image data
and point data. The GeoGraphy graph construction program employs a streaming algorithm that
generates this type of geospatial-temporal semantic graph incrementally; image data is scanned
line-by-line, enabling the processing of very large images. The program also accepts formatted
text files as a source of point data.

GeoGraphy allows search results to be written back to the graph, which in turn enables multi-
step searches and cumulatively enhances the graph with hierarchical and growing semantics. For
instance, an earthquake with associated preceding events can be found via a multi-step search
(Figure 1):

1. Search for earthquake events near subsurface faults, producing “earthquake near
fault” (ENF) matches.
2. Search for injections near the resulting ENF matches, subject to the temporal

constraint that the injections must precede the earthquake in the ENF.

This will produce matches that include an earthquake with associated injections that are spatially
close to a common fault, and where the injections are guaranteed to precede the earthquake
within a user-specified time delay. Such a search could support exploration of a hypothesis
“induced earthquakes are preceded by injections that propagate along a fault.”

In general, a hierarchical search with search writeback helps reuse searches, run smaller and
modular searches, develop hierarchical semantics and expand the scope of possible searches.

GeoGraphy supports match quality ranking based on a user-defined metric. The search metric
can be defined using properties in the graph including attributes on nodes, edges, cardinality, etc.
For instance, users can sort the matches based on the size of the earthquake, injection volumes,
distances between injection and earthquake, etc. The quality metric method sorts best matches to
the front, while poor false positives are shifted to the back of the list.
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4. WEAKNESSES
4.1. Fundamental concept weakness

Geospatial-temporal graphs are a discrete representation that fundamentally requires identifying
discrete objects in the world. Thus any given object in the world must have a well-defined
boundary. (Note that this does not necessarily require partitioning the world; objects may have
overlapping boundaries. See below.) For SubTER, this raises these important considerations:

* Uncertainty in subterranean features. At some locations, much is known about
subterranean features (for example, where well core samples are obtained), while at other
locations little is known. For areas where little is known, it may be difficult to define
meaningful nodes, and in particular the separation between nodes.

* Lack of clearly defined boundaries. Some object boundaries are crisp and well-defined,
such as the differentiation between a built structure and a surrounding lawn. Meanwhile
other boundaries might be diffuse and ill-defined, such as the transition between thick
forest, thinning trees at the edge of a meadow, and an open grassy plain. Where does the
forest end and the plain begin? The lack of a clear boundary transition might be common
in some subterranean domains.

*  Object boundaries might not be semantically relevant. Even if subterranean features are
well-known and can be clearly delineated, they might not match what is relevant for a
given analysis. For example, imagine an underground petroleum deposit in permeable
rock. Imagine that extraction in one area has led to reduced petroleum concentration
and/or pressure, and this effect appears as a gradient along the extent of the deposit.
Treating this as one single monolithic feature might overlook the important distinction
that one end of the deposit has less petroleum content and pressure than the entire
deposit.

» Some objects might not have boundaries at all. Consider an example well injection.
While the injection’s geospatial location is discrete and well-defined, suppose that it is
operated continuously in support of a nearby process. Considering time, where is the
temporal boundary?

* 3-d representation. Full three-dimensional representation of subsurface features further
complicates these issues. It also makes partitioning connected features more difficult.

In short, the discretization required by geospatial-temporal semantic graphs imposes
requirements and models of SubTER-relevant objects, and what is known about them. It seems
that quakes and injections submit to discrete representations fairly easily, but effective
discretization of subsurface features is less clear to us at this time. However, the “Possible
Extensions” section below will outline how additional research might develop a technique for
resolving these issues.

4.2. Implementation weakness

The GeoGraphy software is research code. It does not accept the wide range of input formats
one would expect from a commercial tool, it does not have a full-featured friendly user interface,
and it is not yet optimized for speed. Further, some desired node-to-node relationships that may
be important to SubTER problems might require code extensions to support.
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Temporal analysis capabilities are currently limited. The code already does support change
detection, temporal clusters via connected component analysis and short-sequence temporal
ordering algorithms (up to three steps). But the code does not support duration-limited search
and multi-step sequence search. Please see more details in the appendix. The range of possible
temporal analysis approaches and algorithms is huge, and it seems unrealistic to expect any
implementation to fully cover all potential temporal analysis capabilities that might be desired.

Modeling the interaction between subterranean features might require representation of
parameters such as subsurface permeability, and a desired analysis might seek the likely speed
and volume of flow through a subsurface region, accumulating terms such as pressure drop, total
volume, or aggregate flow rate across sets of nodes and edges. While the fundamental
geospatial-temporal graph approach could support this sort of information, is not yet supported in
the GeoGraphy implementation.

The current code supports two-dimensional data, plus height above ground. Three-dimensional
subsurface features are not supported.

14



5. POSSIBLE EXTENSIONS

Above we noted that geospatial-temporal semantic graphs require discretization of the domain,
and that this can lead to challenges due to uncertainty, diffuse boundaries, and a mismatch
between object boundaries and what’s semantically relevant. In this passage, we will describe an
envisioned extension of the concept to resolve these issues.

The basic approach is to define “cells” underground that incorporate regions where a given
description can hold. These are reminiscent of finite-element meshes, but differ in two important
ways: (1) They are not of regular geometric shape, and (2) they do not partition space. Instead,
they have shapes that vary based on available data, and can overlap.

» Using this approach, we can resolve the diffuse boundary issue by either defining
intermediate cells, with varying levels of mixed content, having cells overlap where
boundaries are not clear, or some combination of both.

*  We can address the mismatch between object boundaries and semantics of interest by
splitting cells into smaller cells with the desired semantic properties. For example, for
the extended petroleum deposit with a pressure gradient described above, we could break
the petroleum deposit object into pieces, each with a nearly constant pressure within it.
This is similar to techniques we have employed for past problems where object
boundaries did not exactly match the semantics of interest, although the computational
details would be different.

* We can address the uncertainty issue by defining cell contents to be ambiguous where
data are uncertain, and adjusting cell density and size to match the specificity of what is
known in a given region. For example, we might represent a larger number of fine-grain
high-confidence cells in the vicinity of a core sample location, with broader, ambiguous
cells in the wide area far from well bores.

» This cell approach, with overlap and uncertainty, could be used in three dimensions also,
including the presence of oblique fault boundaries.

The graph analysis would remain similar, with attributes of cells used to guide search, and
relationships between cells calculated to support search. All of these envisioned new capabilities
would require significant further development, both conceptually and in code implementation.

A second extension would be to include weights on nodes and edges (e.g., permeability). This
would enable potential future graph search algorithms to accumulate flow and pressure drop
along sequences of cells to account for flow distance and resistance effects. Again this would
require significant development. Note that other database approaches do not support the
aggregate chain analysis that would be enabled by the graph approach.

A third extension would be to augment the graph search with a temporal causality analysis. We
have a current LDRD project in progress which is developing techniques for analyzing multi-
modality data streams and events of interest, seeking precursors that are causally related to the
events in a statistically significant way. These analysis methods consider both temporal
statistical causality relationships and spatiotemporal relationships explicitly represented in the
geospatial-temporal graph. We believe that the analysis techniques under development are an
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excellent match to the SUbTER analysis problem, and feel that extending GeoGraphy to perform
temporal causality analysis for SUbTER data sets might be very fruitful.
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6. RELEVANCE
6.1. What data would it use?

GeoGraphy currently supports image and point data. For the SubTER domain, the code can
utilize projected two-dimensional subsurface fault data, earthquake data including location,
magnitude, timestamp, etc., human activity data such as injection location, volume, timestamp,
type, etc. Two-dimensional maps of fault locations can currently be input; with significant
extension, 3-d fault models could be input. In addition, landcover image data could be utilized to
search aspects not included in the point data sets such as construction, nearby facilities,
population density of nearby locations, etc.

6.2. Expected analytical outcomes?

If we envision a system with the extensions listed above, we would anticipate producing an
analysis of induced seismicity that would shed light on the conditions that preceded induced
earthquakes, demonstrating a statistically significant causal relationship. This would help
quantify the possible causal link between injection or other human activities and later
earthquakes, and characterize the conditions that are most closely correlated with induced
earthquake events. If successful, these results might also be used to identify regions most prone
to future induced seismic events, or the human activities most likely to cause further seismicity.

Here’s how this might work: First we would extend GeoGraphy to support three-dimensional
subsurface feature models. This might be accomplished using the cell approach described above,
or perhaps via a simpler approach of representing faults as three-dimensional surfaces
approximating the fault location. A graph decomposition process analogous to our current path
partitioning capability would delineate these fault models into individual segments suitable for
detailed graph analysis. Then a multi-step graph search would identify (1) earthquakes near fault
structures, (2) well injections and other human activity near fault structures, and (3)
activity*—>fault* - earthquake ensembles (where * denotes potentially multiple entities). These
ensembles would then inform a temporal analysis that would determine whether the aggregate of
many ensembles across Oklahoma is consistent with a statistically significant indication of
injections causing seismicity, and if so, where and under what injection conditions. Then
interpretation of this output would yield the results envisioned above. Note that this envisioned
outcome would require substantial extensions of our current capability, developed under future
SubTER funding.

6.3. Would it fit into a workflow?

We don’t have a clear understanding of this question. By “workflow,” do we mean work flow in
a production user environment, or workflow in a research environment? The following
paragraphs will offer a few remarks on each of these.

A production user scenario might correspond to a situation where one or more users perform
induced seismicity analysis on a recurring basis, in response to the arrival of new data. In such a
scenario, we would envision a growing geospatial-temporal semantic graph, encoding past
seismic events and human activity, and as new data arrives, it is added to the graph. Searches for
correlations of interest could then be repeated, to identify new occurrences of patterns of interest,
and temporal causality analysis could also be updated. We note that changes to the model of
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subsurface features could also be modeled, using the geospatial-temporal graph’s durable change
analysis representation. (The feasibility of this will depend on the nature of the changes to the
subsurface model, for example its geometric representation and whether it obeys certain
monotonicity requirements. More study is needed here.)

For a research work flow, we could envision data provided by data providers, passed to
researchers constructing graphs to support inquiry. Meanwhile, information describing desired
questions flows from other researchers to those constructing the graph. Then the questions
would be translated to graph search queries, fed as input to graph search software to produce
ensemble matches. The resulting matches are then output and passed along to interested
researchers for further analysis. The injection-fault-earthquake analysis described in the
Appendix is a simple example, where the output of the graph search could be passed to
subsequent temporal analysis.

6.4. Does it pair with other approaches well?

The geospatial-temporal graph technique might fit well with some other methods explored in the
SubTER sapling phase. For example, outcomes from tensor decomposition would narrow down
data that is relevant to seismic events and could potentially be used as GeoGraphy input, yielding
the benefit of reducing complexity of graphs. As another example, various uncertainty models
could be incorporated with geospatial-temporal semantic graphs to represent uncertainty of graph
attributes and elements, which would then propagate into estimates of confidence in the output
search and analysis results.

In addition, we feel that there is a potential for pairing this approach with analysis techniques
being developed at other laboratories, such as the nearest-neighbor work being developed by
Veronika Vasylkivska at NETL. As another example, one could imagine pairing geospatial-
temporal graphs with graph-based uncertainty analysis techniques including Bayesian networks
[4], which are being explored by Jen Bauer at NETL. But to date we have not put sufficient
effort into exploring possible synergistic connections.

The high-performance computing work that is part of SUbTER Task 1 could inform further
extensions of GeoGraphy to run on parallel platforms to improve computation speed. In our
work so far and also envisioned in the near term, we have emphasized study of how to produce a
correct, useful computation result, and have not focused on speed. Once high-value computation
designs have been achieved, further work could optimize performance and integrate with
SubTER Task 1 results. We have not yet engaged this topic in detail.
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APPENDIX A: GEOGRAPHY ALGORITHM AND WORKFLOW

Search Algorithms Supported by GeoGraphy

e Star Graph Search — A hub and spokes, with various constraints.

A star-graph search query is defined with respect to a hub node of a given type and
potentially heterogeneous spoke nodes connected to the hub node. The star graph
algorithm also includes the notion of a spoke-to-spoke constraint, which is a constraint
which must be satisfied across certain spokes. This is required to solve some problems of
interest, due to actual inter-spoke requirements[1].

Subsurface Fault

[1,0°]

d<1,000m

d<1,000m
e

Earthquake

|
|
|
|
|
|
|
|
|
|
At<1lyr |
|
|

Well Injection

Figure 2. Example star graph search definition and outputs: An earthquake (hub) with
preceding injection events (spoke) along a common fault (spoke).

e Transitive Closure Search — Unlike other geographic information systems, GeoGraphy
provides transitive closure searches via the interrupted star algorithm which allows a user to
define ordinary nodes and interrupt nodes along with edges connecting them [2].

e Path Search —Some nodes from image data including roads and subsurface faults are highly
connected to a large portion of a graph. This does not match how a human would typically
describe a road—we tend to think of roads in smaller units such as “blocks.”

Further, if we wish to reason about the area or relative direction to a path from some other
node such as a building, we must break these large road networks into more manageable
pieces. GeoGraphy provides path the network recovery algorithm to segment path network
and find paths from one node to the other [3].
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Figure 3. The path found by path-connected search is shown by the dark path that
connects the Parking Lot node to the House node using road network segments.

e Connected Component Search- A connected-component search finds connected
components of nodes in the SearchGraph, whose edges are controlled by the user-defined
qguery specification. For example, a user may specify a connected-component search
including edges only where two nodes are within a specified distance threshold.

e e e
..-u-.-"-“""""'"'-""'-.-__.a-

..__'._..-.-.h-u.-h-.-...h‘.,_\

Figure 4. Example connected components search: connected pixels of faults.
[ ]

Change Detection: Calculating the magnitude of change, GeoGraphy can detect true

changes. Additionally, our graph-based change analysis approach enables a more accurate
depiction of complex change events than purely geometric approaches [1].
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Figure 5. Change detection example : A complex of new buildings,
replacing a previous complex.

Temporal Groups: Searches with edges of temporal proximity including temporal overlap,
adjacency and distance are supported.

Short-Sequence Temporal Ordering: Searches with less than a three step time-sequence
could be designed using the star graph search algorithm.

Example Search Algorithms Not Yet Supported by GeoGraphy

Duration-limited Search - The basic algorithm procedure of the duration-limited search is to
first execute a standard GeoSearch, and then visit each of the resulting search results in
turn. For each search result, the algorithm sorts the ephemeral nodes of the result in order
of increasing start time, and then walks from the beginning of the list toward the end,
considering each ephemeral node as a possible match start node. For each candidate start
node, the algorithm marches forward in the list (and thus in time), accumulating nodes until
the maximum duration limit is exceeded. The resulting node sequence is a maximal-length
match beginning at the start node and obeying the maximum duration limit [2]. Pseudo
code and algorithms have been developed, but the code is not implemented.

Multi-step Sequence: Algorithms to look for time-sequence matches with more than three
steps are not yet developed.
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GeoGraphy Workflow Diagram
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APPENDIX B: EVALUATION SLIDES
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Geospatial-Temporal Semantic Graph
Evaluation forInduced Seismicity Analysis

GeoGraphy Overview
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—  Potential analytical cutcomes @ Statistical analysis of indwed seismicity causal relationships.
v Softwarefdata inputtype:

—  Software : GeoGraphy | SNL Reseanch Code)

= Input data typ=

L mEgT Gata c Tempesiet a Baoass T gmemetyp Wliglt imagm sl omaBle peasB meddieg et el R amge (250 2w ame
" Powel dala : Pommetod o flc ediceticg loolice eed Sme of xoamic o Bemaes ecialy cenih

*  Workflow (pair with other approaches as well?)

— Tensor decomposition : Reduce complexity of sraphs.

—  Uncertainty models : Multi-modality data int=gration, Bay=sian

= Other graphical tachnigues : Nearest Neizhbor condenses input to graphs

—  Other graphical techniques : Graphs prowides input to Newral Networks.

— Distributed computing™PC{Task 1): Improve computaticns] speed.,
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APPENDIX C: PRELIMINARY RESULTS SLIDES
Project Overview ) ==

= Evaluating Induced Seismicity in Oklahoma
with Geoscience Computing & Big Data (Pl : Kelly Rose, NETL)

3500 - . =
Central U.5.
Earthquakes
1973 - Jan 2016

= B W) Esrivgeakes 1670 - 2008
- ! ) —?!_Iﬂllt!_ﬂ.h.i.-m-_h?ﬂll?_
1975 1980 1985 1950 1995 2000 2005 2010 2015
» Are they natural, or man-made?

" Causes, consequences, risks?

Project Overview ) ==

= Evaluating Induced Seismicity in Oklahoma
with Geoscience Computing & Big Data (Pl : Kelly Rose, NETL)
» Objectives
" Developprobabiligic approach that can be utilized to assesspotentialfor
inducedsesmicity impacts.
* Developstochastic approachesto reduce uncertainty and constrain
subsurfacetrends.
" Improve joint analysis of multiple datasets, focus on advancing “Big Data”
mining and integrationtechniques.
®» Tacks

" GQeosdencecomputing advances for more efficient data managemert,
fusion and accessbility. (METL, PNML, ANL)

" Development of probabilistic approaches to analyze likelihood of
induced seismicity. (SML, LAML, METL)




Motivation .

* Today's Talk

* Demonstrate how to use geospatial-temporal semantic graph inthe

geoscience damain.®
* Owerview tensor decomposition and uncertainty integration inthe

geoscience domain.

*Caveat we are not geoscientists andthe graph construction and search criteria
are chosento demonstrate GeoGraphy capabilities.

Team Members

Kristina Czuchlewski Diane Woodbridge Randy Brost
(PM}) (Pl




T

Point of Contact @

Overall Projects (Kristina Czuchlewski)

Geospatial-temporal Semantic Graphs (Randy Brost)

* Tensor Decomposition (Danny Dunlawvy)

Uncertainty Analysis (David Stracuzzi)

L

Overview @

:GEDG raphy Concept :

*» Graph Construction
®» Search

GeoGraphy Results
Additional GeoGraphy Capabilities

®» Tensor Decomposition

Uncertainty Analysis
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GeoGraphy Overview )

* (Geospatial-temporal Semantic Graph Construction

Subswrface [tiff)

GeoGraphy Overview ) =

» Geospatial-temporal Semantic Graph Construction

Subswrface [t}




GeoGraphy Overview )

* (Geospatial-temporal Semantic Graph Construction

GeoGraphy Overview ) =

» Geospatial-temporal Semantic Graph Construction

= Search
® Star Graph— Hub and spokes, with various constraints.
* Connected Components- Find groups of related items.

Subswrface [t}




GeoGraphy Overview

* (Geospatial-temporal Semantic Graph Construction

» Search
® Star Graph— Hub and spokes, with various constraints.

* Connected Components- Find groups of related items.

-

2

Subswrface [t}
:l | ——

i

GeoGraphy Overview

* (Geospatial-temporal Semantic Graph Construction

» Search
® Star Graph— Hub and spokes, with various constraints.

* Connected Components- Find groups of related items.

Subsurface [} : }_;'.- o
.

HER

7




GeoGraphy Capabilities =

»  Efficient data representation using spatial-temporal semantic graph.

*  pulti-modality in a single uniform search representation.

®»  Search for semantic concepts, inimage data, ensembles of pointdata, etc.
»  Allowsearch goal variation intopology, shape, metric properties.

* Graph search enables multiple algorithms: star, transitive closure, path
search, duration-limited, clusters, etc.

®» Search across space and time: Change analysis, temporal clusters, short-
sequence temporal ardering, duration-limited, multi-step sequence.

»  Match quality ranking
*  Fpundation for temporal analysis.

I —
Graph Construction using OGS data

= Utilized Data
®» Subsurfacefault—x, v location only.
® Injection—Timestamp, location, volume, well type/status, etc.

» Earthguakes —Timestamp, location, depth, etc.

E zsx METLs Energy Dataedcharge

# ® g Search and Share

ENERGY DATA

oNE MW
= v




Graph Construction using OGS data

.._-.--mﬁ.}.‘-!:i x|, ,J 1-.,
et ; FLE

. £y,
. ‘ Wy 1
= " :l: s
. LR ]
- aat? l..- - L
O - oy ’
- Fpult . , . .r'-.-
@ Ingection Fi : . -
@ Eanhgwake ., '
= Distance edges are implicit (calculated on demand)
@m
atrna
|t

GeoSearch - Hypothesis Scenario

» Do injection events near faults cause earthquakes?*

» Seek earthquakes happening after injection events, along a

common fault.
Azimple sxample:

. . L] [
L
L] = o [T
Tom T - [ ]
T= -
™ .
[ T [ 1 ™
&
L] L4 L T
Taan iaun
T compm i
R e 1] iy leresks

Simiplified rendering
{z=quence instead of timestamps)

*Caveat we are not geoscientists andthe search criteria are chosento

demonstrate GeoGraphy capabilities.
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Query Design

* Find an earthquake with preceding injection events
along common fault(s).

® Star Graph Search
* Hub:Earthquake

Search Template Search Input Search Outputs
Sndrsiface Fauh
=l . ®-
L]
| : I I
LY ;
-. o
LN R
A N, 3 7 I 9 10
. L
[ 1% . "
|
b ~
wavieion | |8 S N I

.,. & 7 8 8 LI

. e

Example Search Outcomes L=
IMPUT QUTPUT
Match #1 (;=2) atc = atc =
] | M ®. a ._'.. , F F
L B o i; ‘.J' -------------
&: L “*:. &
o .- .-
L B [ .
L 2 . [~ 38
L 1 1
b [ b ' b c b [
® iectin ® wecion ® nietion ® ijecton
@ Earthguake @ Carthoguake @ Cathguake @ Earthguake
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Overview @

GeoGraphy Concept

* Graph Construction

(nSearch_ _ ___
(GeoGraphy Results,

Additional GeoGraphy Capabilities

Tensor Decomposition

* Uncertainty Analysis

Graph Construction using SUbTER Data

» Subsurface Faults { .tiff)

Faull
B hjection
@ Eerthguais

*Assumption : Mo 30D data for now.
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Graph Construction using SUbTER Data

= Connected Subsurface Faults

"".‘I.l‘:l “'-".;. wF: :-i
SR :ﬁ prics
oot S
i %11L E.;#ll'!l..n-'h;"
fauit '\-ﬂ ?5.":. ~ F:.‘.:-E_;I.::l
B hpctan —_— ;}."ﬁ:d_ =n e
Earfhguiion . s e X, s, -
o] b Maoal 1:::5.'__ _‘.‘-.__.__ <3
1,484 nodes il
(00:17:45)

—
Graph Construction using SUbTER Data

= Point Data T )
* |njection Data (2011) T A8 L

[ ] :':::Im

B terftguahe
113,486 nodes
(00:04:20)

*Assumption : Mo 30D data for now.

i 8
] . " g ®



Graph Construction using SUbTER Data

8 Point Data

' H '-'_ - .
* Farthquake (2011-2012) E,-: o
: Earthauaion T r.‘{f";..?"l .
2,569 nodes L
(00:00:0.753)
I
I
T |
LU

*Assumption : Mo 30 data far now.

Graph Search L=

» Earthquake Near Faults

4 -+
Subsurface Fault Lo
. 1-‘.:"-‘,'_, )
fauit LI, S
B njectian - w - '-1,.‘1' -
d= 1,000 m @ et ' . re
1,506 nodes Fot N
(00:06:23)
Earthgualo:
] gy
| - 5
-~




Graph Search )

* Earthquake Near Injection Events Along a Common Fault
.-*""r"ﬁl L
f!:m:m-imnm '
/ bt
L] Ir::tll-an ) .'F-l m'r‘;:‘ T
@ Herthguibs ty
1,087 nodes 4
/ (23:14:54)
i
o | _
4<1,000m i P &
t =1 yrasrlisr L .
Well bnjection
]
" ShEcki
Overview .

GeoGraphy Concept
*» Graph Construction
® Search

GeoGraphy Results

i
jAdditional GeoGraphy Capabilities

® Tensor Decomposition

Uncertainty Analysis



Additional GeoGraphy Capability =~ @&

= Partitioning connected faults
* (Cascading induced seismicity detection
» GeoGraphy Ul trial
= Metric criterion for sorting matches
» Example
* Largestquake
* Largestinjection
* Largestinjection closest to quake
* Most permeablefault, etc.
“““““““ T -~~~ -~~~ ~~~ Requires Extensions ~---""""""7°
» Add the z dimension “
* Weight on nodes/edges, based on permeability, etc.
*» Temporal Analysis (Randy’s Event Prediction LDRD)

= Representing subsurface uncertainty

T

Overview @)

GeoGraphy Concept
*» Graph Construction
® Search

GeoGraphy Results

GeoGraphy Possible Extension
=== =-===".- |

= lTE[‘ISDr Decompositionl

Uncertainty Analysis

I
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Analysis of Temporal Data using QN
Tensor Decompositions

* Tensor decompeositions: Higher order analog of Principal
Component Analysis (PCA)

* Models count or continuous sparse and dense data.

® pHew research focuses on combinations of data types.

= QK CSIL Data Analysis: count of features contributing to

induced seismicity I E D 5 T A TV E 5 pp—

®  Aquifers, urban areas, rivers, [ . -

wells, mines, dams, lakes, | =

heavy rain, earthquakes, etc. 1=t

§ =

* Goal: Incorporate temporal | = =

. . 1 .

information and perform » =
SEnSiti\J‘it'f ﬂnﬂl‘fSiS. Cormiiative Spetelimmms Lagers jemifar 5 Saer = ) METL-TREI-Z01E

T

Overview @)

GeoGraphy Concept

*» Graph Construction
» Search

GeoGraphy Results

GeoGraphy Possible Extension

Tensor Decomposition
|—m——————— -
|



Multimodal Data Integration Under Uncertainty

1. Evaluate uncertainty associated with "objects” indata
® | abels

= 2]

®» Spatial extent g g £ =

» Temporal extent & ;:
Samariic Laba'

Zampiz Locstian
2. Combine data from multiple sources

* Analyze uncertainty associated with each source

" Combine uncertainties acrosssources

» Derive the value orimpact of each source to some target question

combined objects zource 2 valus
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