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Abstract

We assess how geospatial-temporal semantic graphs [1] and our GeoGraphy code 
implementation might contribute to induced seismicity analysis. We focus on 
evaluating strengths and weaknesses of both 1) the fundamental concept of semantic 
graphs and 2) our current code implementation.  With extensions and research effort, 
code implementation limitations can be overcome.  The paper also describes 
relevance including possible data input types, expected analytical outcomes and how 
it can pair with other approaches and fit into a workflow.
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1.  INTRODUCTION 
This document will describe our assessment of how geospatial-temporal semantic graphs, and 
our GeoGraphy code implementation, might contribute to SubTER project objectives.  Note that 
there are two distinct issues here: the fundamental graph approach, and our code implementation.  
Code implementation shortcomings can be overcome with additional programming effort, while 
limitations of the fundamental approach require deeper research to resolve, if even possible.  
Thus in the discussion that follows, we will attempt to distinguish these issues.
In the rest of the paper, we will describe the geospatial-temporal graph method and its strengths 
and weaknesses, focusing on both fundamental and implementation aspects. Then we will 
discuss possible extensions to resolve weaknesses and relevance with the induced seismicity 
approach.  The appendix will provide additional details including algorithm description and 
possible applications for SubTER.
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2. DESCRIPTION
2.1. Fundamental Concept
Geospatial-temporal semantic graphs are data structures that represent discrete world objects and 
events as nodes, and relationships between those objects and/or events as edges.  This 
fundamentally requires delineating objects and events in space and time, so that graph nodes can 
be identified.  At the most basic level, once discrete objects and events are identified, the graph 
structure enables search for patterns specifying pre-specified relationships including both 
spatiotemporal relationships and other semantic relationships.  This approach has a great deal of 
flexibility in representing a wide range of problems.  However, it also incurs fundamental 
challenges that must be appreciated by SubTER; these will be explained below. 

2.2. Implementation
We have implemented a software code base, named GeoGraphy, which implements geospatial-
temporal semantic graphs and several associated search algorithms.  This code has demonstrated 
the application of geospatial-temporal semantic graphs to a fairly broad set of example problems, 
ranging from wide-area search for facilities in overhead image data to analysis of trajectories 
within geospatial context to a simple analysis of induced seismicity.  While the code has 
successfully solved these examples, it remains a research code with a number of limitations, 
explained below.
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3. STRENGTH
3.1. Fundamental concept strengths
The geospatial-temporal semantic graph representation provides semantic encoding and search of 
data. Geospatial-temporal semantic graphs encapsulate attributes of regions, events, and physical 
and temporal relationships into nodes and edges, which enables data from different sources to be 
represented in a single uniform search representation. 
As the graph representation allows relationships to be represented as edges, it allows flexible 
search designs and efficient searches compared to relational databases, which require several join 
operations over tables which are complicated and expensive.  Additionally, many graph 
algorithms including connected components, matching, path search, edge and node connectivity, 
transitive closure, etc, can be applied to geospatial-temporal semantic graphs. 
The graphs enable identification and analysis of aggregates that correspond to semantically 
important multi-object groups, which taken together constitute important spatiotemporal features 
for subsequent analysis or review.  For instance, the geospatial-temporal semantic graph 
representation allows finding an earthquake with preceding injection events along a common 
fault, using both spatial and temporal relationships (Figure 1). The resulting injection-fault-
earthquake ensembles then become higher-level semantic objects available for further analysis. 
One example subsequent analysis might be cascading earthquake analysis, which could also be 
supported by the graph representation.

Figure 1. Example Hierarchical Spatiotemporal Search
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3.2. Implementation strengths
The GeoGraphy software allows multi-modality data as input including preprocessed image data 
and point data. The GeoGraphy graph construction program employs a streaming algorithm that 
generates this type of geospatial-temporal semantic graph incrementally; image data is scanned 
line-by-line, enabling the processing of very large images.  The program also accepts formatted 
text files as a source of point data.   
GeoGraphy allows search results to be written back to the graph, which in turn enables multi-
step searches and cumulatively enhances the graph with hierarchical and growing semantics.  For 
instance, an earthquake with associated preceding events can be found via a multi-step search 
(Figure 1):

1. Search for earthquake events near subsurface faults, producing “earthquake near 
fault” (ENF) matches.
2. Search for injections near the resulting ENF matches, subject to the temporal 
constraint that the injections must precede the earthquake in the ENF.

This will produce matches that include an earthquake with associated injections that are spatially 
close to a common fault, and where the injections are guaranteed to precede the earthquake 
within a user-specified time delay.  Such a search could support exploration of a hypothesis 
“induced earthquakes are preceded by injections that propagate along a fault.”
In general, a hierarchical search with search writeback helps reuse searches, run smaller and 
modular searches, develop hierarchical semantics and expand the scope of possible searches. 
GeoGraphy supports match quality ranking based on a user-defined metric. The search metric 
can be defined using properties in the graph including attributes on nodes, edges, cardinality, etc. 
For instance, users can sort the matches based on the size of the earthquake, injection volumes, 
distances between injection and earthquake, etc. The quality metric method sorts best matches to 
the front, while poor false positives are shifted to the back of the list.
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4. WEAKNESSES
4.1. Fundamental concept weakness
Geospatial-temporal graphs are a discrete representation that fundamentally requires identifying 
discrete objects in the world.  Thus any given object in the world must have a well-defined 
boundary.  (Note that this does not necessarily require partitioning the world; objects may have 
overlapping boundaries. See below.)  For SubTER, this raises these important considerations:

• Uncertainty in subterranean features.  At some locations, much is known about 
subterranean features (for example, where well core samples are obtained), while at other 
locations little is known.  For areas where little is known, it may be difficult to define 
meaningful nodes, and in particular the separation between nodes.

• Lack of clearly defined boundaries.  Some object boundaries are crisp and well-defined, 
such as the differentiation between a built structure and a surrounding lawn.  Meanwhile 
other boundaries might be diffuse and ill-defined, such as the transition between thick 
forest, thinning trees at the edge of a meadow, and an open grassy plain.  Where does the 
forest end and the plain begin?  The lack of a clear boundary transition might be common 
in some subterranean domains.

• Object boundaries might not be semantically relevant.  Even if subterranean features are 
well-known and can be clearly delineated, they might not match what is relevant for a 
given analysis.  For example, imagine an underground petroleum deposit in permeable 
rock.  Imagine that extraction in one area has led to reduced petroleum concentration 
and/or pressure, and this effect appears as a gradient along the extent of the deposit.  
Treating this as one single monolithic feature might overlook the important distinction 
that one end of the deposit has less petroleum content and pressure than the entire 
deposit.

• Some objects might not have boundaries at all.  Consider an example well injection.  
While the injection’s geospatial location is discrete and well-defined, suppose that it is 
operated continuously in support of a nearby process.  Considering time, where is the 
temporal boundary?

• 3-d representation. Full three-dimensional representation of subsurface features further 
complicates these issues. It also makes partitioning connected features more difficult.

In short, the discretization required by geospatial-temporal semantic graphs imposes 
requirements and models of SubTER-relevant objects, and what is known about them.  It seems 
that quakes and injections submit to discrete representations fairly easily, but effective 
discretization of subsurface features is less clear to us at this time.  However, the “Possible 
Extensions” section below will outline how additional research might develop a technique for 
resolving these issues.

4.2. Implementation weakness
The GeoGraphy software is research code.  It does not accept the wide range of input formats 
one would expect from a commercial tool, it does not have a full-featured friendly user interface, 
and it is not yet optimized for speed.  Further, some desired node-to-node relationships that may 
be important to SubTER problems might require code extensions to support.
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Temporal analysis capabilities are currently limited.  The code already does support change 
detection, temporal clusters via connected component analysis and short-sequence temporal 
ordering algorithms (up to three steps). But the code does not support duration-limited search 
and multi-step sequence search. Please see more details in the appendix. The range of possible 
temporal analysis approaches and algorithms is huge, and it seems unrealistic to expect any 
implementation to fully cover all potential temporal analysis capabilities that might be desired.
Modeling the interaction between subterranean features might require representation of 
parameters such as subsurface permeability, and a desired analysis might seek the likely speed 
and volume of flow through a subsurface region, accumulating terms such as pressure drop, total 
volume, or aggregate flow rate across sets of nodes and edges.  While the fundamental 
geospatial-temporal graph approach could support this sort of information, is not yet supported in 
the GeoGraphy implementation.  
The current code supports two-dimensional data, plus height above ground.  Three-dimensional 
subsurface features are not supported.
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5. POSSIBLE EXTENSIONS
Above we noted that geospatial-temporal semantic graphs require discretization of the domain, 
and that this can lead to challenges due to uncertainty, diffuse boundaries, and a mismatch 
between object boundaries and what’s semantically relevant.  In this passage, we will describe an 
envisioned extension of the concept to resolve these issues.
The basic approach is to define “cells” underground that incorporate regions where a given 
description can hold.  These are reminiscent of finite-element meshes, but differ in two important 
ways:  (1) They are not of regular geometric shape, and (2) they do not partition space.  Instead, 
they have shapes that vary based on available data, and can overlap.

• Using this approach, we can resolve the diffuse boundary issue by either defining 
intermediate cells, with varying levels of mixed content, having cells overlap where 
boundaries are not clear, or some combination of both.

• We can address the mismatch between object boundaries and semantics of interest by 
splitting cells into smaller cells with the desired semantic properties.  For example, for 
the extended petroleum deposit with a pressure gradient described above, we could break 
the petroleum deposit object into pieces, each with a nearly constant pressure within it.  
This is similar to techniques we have employed for past problems where object 
boundaries did not exactly match the semantics of interest, although the computational 
details would be different.

• We can address the uncertainty issue by defining cell contents to be ambiguous where 
data are uncertain, and adjusting cell density and size to match the specificity of what is 
known in a given region.  For example, we might represent a larger number of fine-grain 
high-confidence cells in the vicinity of a core sample location, with broader, ambiguous 
cells in the wide area far from well bores.

• This cell approach, with overlap and uncertainty, could be used in three dimensions also, 
including the presence of oblique fault boundaries.  

The graph analysis would remain similar, with attributes of cells used to guide search, and 
relationships between cells calculated to support search.  All of these envisioned new capabilities 
would require significant further development, both conceptually and in code implementation.
A second extension would be to include weights on nodes and edges (e.g., permeability).  This 
would enable potential future graph search algorithms to accumulate flow and pressure drop 
along sequences of cells to account for flow distance and resistance effects.  Again this would 
require significant development.  Note that other database approaches do not support the 
aggregate chain analysis that would be enabled by the graph approach.
A third extension would be to augment the graph search with a temporal causality analysis.  We 
have a current LDRD project in progress which is developing techniques for analyzing multi-
modality data streams and events of interest, seeking precursors that are causally related to the 
events in a statistically significant way.  These analysis methods consider both temporal 
statistical causality relationships and spatiotemporal relationships explicitly represented in the 
geospatial-temporal graph.  We believe that the analysis techniques under development are an 
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excellent match to the SubTER analysis problem, and feel that extending GeoGraphy to perform 
temporal causality analysis for SubTER data sets might be very fruitful.
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6. RELEVANCE
6.1. What data would it use?
GeoGraphy currently supports image and point data. For the SubTER domain, the code can 
utilize projected two-dimensional subsurface fault data, earthquake data including location, 
magnitude, timestamp, etc., human activity data such as injection location, volume, timestamp, 
type, etc.  Two-dimensional maps of fault locations can currently be input; with significant 
extension, 3-d fault models could be input.  In addition, landcover image data could be utilized to 
search aspects not included in the point data sets such as construction, nearby facilities, 
population density of nearby locations, etc.

6.2. Expected analytical outcomes?
If we envision a system with the extensions listed above, we would anticipate producing an 
analysis of induced seismicity that would shed light on the conditions that preceded induced 
earthquakes, demonstrating a statistically significant causal relationship.  This would help 
quantify the possible causal link between injection or other human activities and later 
earthquakes, and characterize the conditions that are most closely correlated with induced 
earthquake events.  If successful, these results might also be used to identify regions most prone 
to future induced seismic events, or the human activities most likely to cause further seismicity.
Here’s how this might work:  First we would extend GeoGraphy to support three-dimensional 
subsurface feature models.  This might be accomplished using the cell approach described above, 
or perhaps via a simpler approach of representing faults as three-dimensional surfaces 
approximating the fault location.  A graph decomposition process analogous to our current path 
partitioning capability would delineate these fault models into individual segments suitable for 
detailed graph analysis.  Then a multi-step graph search would identify (1) earthquakes near fault 
structures, (2) well injections and other human activity near fault structures, and (3) 
activity*fault*  earthquake ensembles (where * denotes potentially multiple entities).  These 
ensembles would then inform a temporal analysis that would determine whether the aggregate of 
many ensembles across Oklahoma is consistent with a statistically significant indication of 
injections causing seismicity, and if so, where and under what injection conditions.  Then 
interpretation of this output would yield the results envisioned above.  Note that this envisioned 
outcome would require substantial extensions of our current capability, developed under future 
SubTER funding.

6.3. Would it fit into a workflow?
We don’t have a clear understanding of this question.  By “workflow,” do we mean work flow in 
a production user environment, or workflow in a research environment?  The following 
paragraphs will offer a few remarks on each of these.
A production user scenario might correspond to a situation where one or more users perform 
induced seismicity analysis on a recurring basis, in response to the arrival of new data.  In such a 
scenario, we would envision a growing geospatial-temporal semantic graph, encoding past 
seismic events and human activity, and as new data arrives, it is added to the graph.  Searches for 
correlations of interest could then be repeated, to identify new occurrences of patterns of interest, 
and temporal causality analysis could also be updated.  We note that changes to the model of 
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subsurface features could also be modeled, using the geospatial-temporal graph’s durable change 
analysis representation.  (The feasibility of this will depend on the nature of the changes to the 
subsurface model, for example its geometric representation and whether it obeys certain 
monotonicity requirements.  More study is needed here.)
For a research work flow, we could envision data provided by data providers, passed to 
researchers constructing graphs to support inquiry.  Meanwhile, information describing desired 
questions flows from other researchers to those constructing the graph.   Then the questions 
would be translated to graph search queries, fed as input to graph search software to produce 
ensemble matches.  The resulting matches are then output and passed along to interested 
researchers for further analysis.  The injection-fault-earthquake analysis described in the 
Appendix is a simple example, where the output of the graph search could be passed to 
subsequent temporal analysis.

6.4. Does it pair with other approaches well?
The geospatial-temporal graph technique might fit well with some other methods explored in the 
SubTER sapling phase.  For example, outcomes from tensor decomposition would narrow down 
data that is relevant to seismic events and could potentially be used as GeoGraphy input, yielding 
the benefit of reducing complexity of graphs.  As another example, various uncertainty models 
could be incorporated with geospatial-temporal semantic graphs to represent uncertainty of graph 
attributes and elements, which would then propagate into estimates of confidence in the output 
search and analysis results.  
In addition, we feel that there is a potential for pairing this approach with analysis techniques 
being developed at other laboratories, such as the nearest-neighbor work being developed by 
Veronika Vasylkivska at NETL.  As another example, one could imagine pairing geospatial-
temporal graphs with graph-based uncertainty analysis techniques including Bayesian networks 
[4], which are being explored by Jen Bauer at NETL.  But to date we have not put sufficient 
effort into exploring possible synergistic connections.
The high-performance computing work that is part of SubTER Task 1 could inform further 
extensions of GeoGraphy to run on parallel platforms to improve computation speed.  In our 
work so far and also envisioned in the near term, we have emphasized study of how to produce a 
correct, useful computation result, and have not focused on speed.  Once high-value computation 
designs have been achieved, further work could optimize performance and integrate with 
SubTER Task 1 results.  We have not yet engaged this topic in detail.
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APPENDIX A:  GEOGRAPHY ALGORITHM AND WORKFLOW

 Search Algorithms Supported by GeoGraphy
 Star Graph Search – A hub and spokes, with various constraints.

A star-graph search query is defined with respect to a hub node of a given type and 
potentially heterogeneous spoke nodes connected to the hub node. The star graph 
algorithm also includes the notion of a spoke-to-spoke constraint, which is a constraint 
which must be satisfied across certain spokes. This is required to solve some problems of 
interest, due to actual inter-spoke requirements[1].

 

Subsurface Fault

Well Injection

Earthquake

[1,∞]

Δt ≤ 1 yr

d ≤ 1,000 m  

d ≤ 1,000 m  

Figure 2. Example star graph search definition and outputs: An earthquake (hub) with 
preceding injection events (spoke) along a common fault (spoke).

 Transitive Closure Search – Unlike other geographic information systems, GeoGraphy 
provides transitive closure searches via the interrupted star algorithm which allows a user to 
define ordinary nodes and interrupt nodes along with edges connecting them [2]. 

 Path Search – Some nodes from image data including roads and subsurface faults are highly 
connected to a large portion of a graph.  This does not match how a human would typically 
describe a road—we tend to think of roads in smaller units such as “blocks.”

Further, if we wish to reason about the area or relative direction to a path from some other 
node such as a building, we must break these large road networks into more manageable 
pieces. GeoGraphy provides path the network recovery algorithm to segment path network 
and find paths from one node to the other [3].
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Figure 3. The path found by path-connected search is shown by the dark path that 
connects the Parking Lot node to the House node using road network segments.
 Connected Component Search- A connected-component search finds connected 

components of nodes in the SearchGraph, whose edges are controlled by the user-defined 
query specification.  For example, a user may specify a connected-component search 
including edges only where two nodes are within a specified distance threshold.

Figure 4. Example connected components search: connected pixels of faults.
 Change Detection: Calculating the magnitude of change, GeoGraphy can detect true 

changes. Additionally, our graph-based change analysis approach enables a more accurate 
depiction of complex change events than purely geometric approaches [1].
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Figure 5. Change detection example : A complex of new buildings, 
replacing a previous complex.

 Temporal Groups: Searches with edges of temporal proximity including temporal overlap, 
adjacency and distance are supported.

 Short-Sequence Temporal Ordering: Searches with less than a three step time-sequence 
could be designed using the star graph search algorithm.

Example Search Algorithms Not Yet Supported by GeoGraphy

 Duration-limited Search - The basic algorithm procedure of the duration-limited search is to 
first execute a standard GeoSearch, and then visit each of the resulting search results in 
turn.  For each search result, the algorithm sorts the ephemeral nodes of the result in order 
of increasing start time, and then walks from the beginning of the list toward the end, 
considering each ephemeral node as a possible match start node. For each candidate start 
node, the algorithm marches forward in the list (and thus in time), accumulating nodes until 
the maximum duration limit is exceeded. The resulting node sequence is a maximal-length 
match beginning at the start node and obeying the maximum duration limit [2].  Pseudo 
code and algorithms have been developed, but the code is not implemented.

 Multi-step Sequence: Algorithms to look for time-sequence matches with more than three 
steps are not yet developed.
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GeoGraphy Workflow Diagram
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APPENDIX B:  EVALUATION SLIDES
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APPENDIX C:  PRELIMINARY RESULTS SLIDES
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