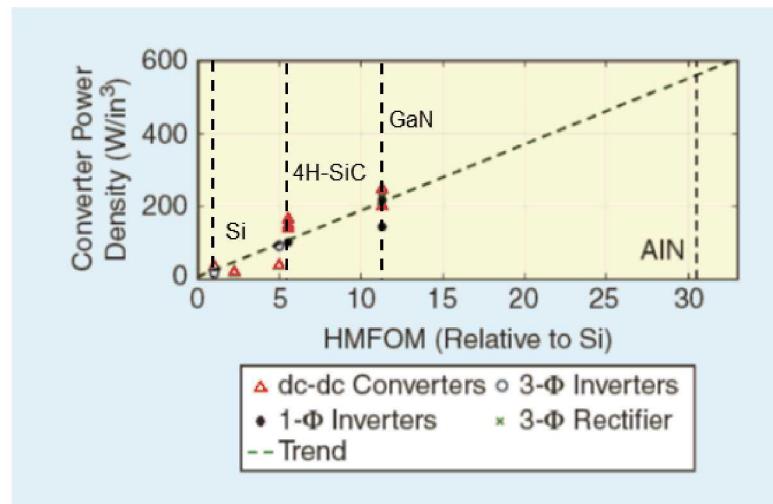


Sandia 2018/19 Rad-Hard Little-Bus Challenge

Jason Neely

Sandia National Laboratories

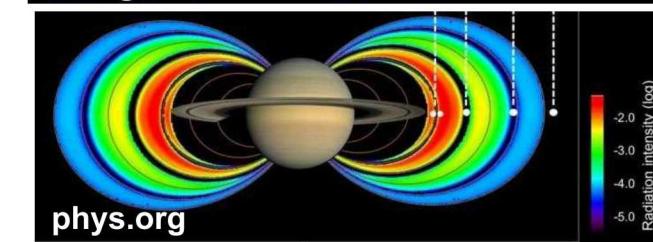
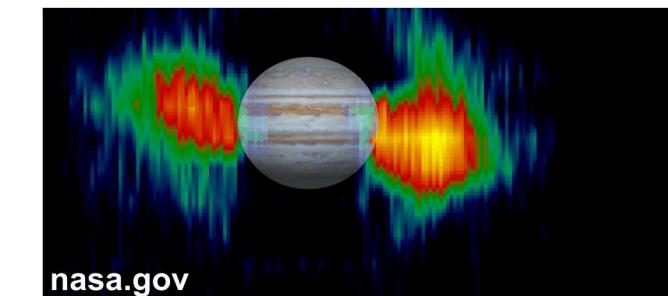
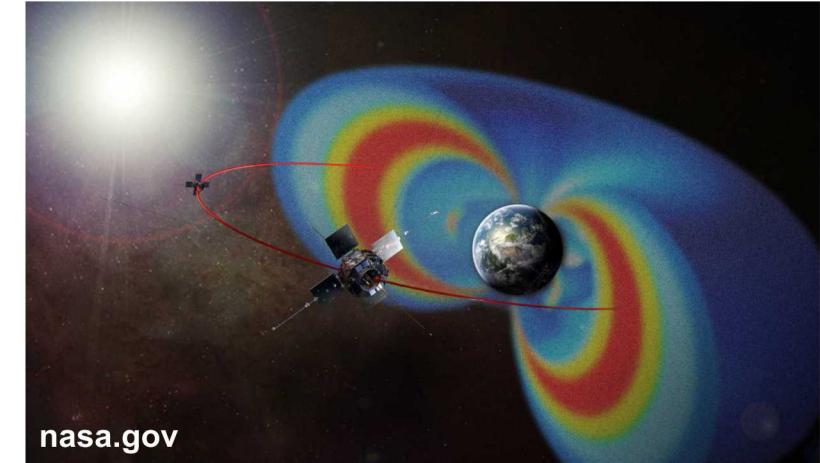
Albuquerque, NM


Exceptional service in the national interest

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Semiconductor Material Properties Dictate Power Conversion System Size and Weight

- Recent developments in wide bandgap (WBG) semiconductors, have enabled a new generation of devices, resulting in power electronics with unprecedented power density and efficiency (recall the Google Littlebox Challenge)
- WBG materials also have some properties that may enable superior resilience to radiation environments




$$\text{Huang Material FOM} = E_C \mu_n^{1/2}$$

SOA commercial microinverter
250 W in 59 in³ → 4.2 W/in³

Rad-Hard Power Electronics May Enable Extended Space Missions

- Energetic charged particles from solar wind and cosmic rays are present in the solar system
- High concentrations of charged particles exist around Earth
 - Inner Van Allen belt: 1,000 – 6,000 km above Earth
 - 100s of keV electrons
 - Up to 100 MeV protons
 - Outer Van Allen belt: 13,000 – 60,000 km above Earth
 - 100 keV – 10 MeV electrons
 - Protons and ions (alpha particles and heavy elements)
 - For protons of energy 1.0 MeV and higher, flux is as high as 2×10^7 p/sec \cdot cm 2 (magnetic equator at \sim 3 Earth radii, normal conditions)
- Radiation belts exist around outer planets as well, e.g. Jupiter and Saturn
- Radiation exposure of space craft components influences design, flight plans, and mission time

Rad-Hard Power Electronics May Enable Improved Nuclear Disaster Response

- Nuclear reactor incidents are low probability, but high consequence when they do occur
- The Fukushima Dai-ichi reactor incident demonstrated that response crews may be unprepared to handle such a crisis, with environments too hazardous for humans to enter
- Robotics technology is critical to respond to these types of incidents, but is often used in an ad-hoc scenario with whatever is available.
- Rad-hard power electronics may be an important component for extending the operational time of robots in harsh radioactive environments (as high as 1000 Rad/hour gamma)

Dai-ichi Reactor Buildings – Post Incident

Work at Dai-ichi – Post Incident

The operating environment within the Chernobyl Unit 4 sarcophagus is extremely harsh

- Gamma radiation up to 1000 R/hr
- Temperature 0–35°C
- Humidity up to 100%
- High airborne dust concentration
- Little or no ambient light
- Fresh concrete and solidified fuel
- Debris everywhere

A series of three photographs showing the interior of the Chernobyl Unit 4 sarcophagus. The environment is dark, filled with debris, and shows the remains of the destroyed reactor structure. The text overlay describes the harsh operating environment within the sarcophagus.

Radiation Damage Depends on Several Factors

➤ ***Radiation damage*** depends on:

- Dose
- Dose rate
- Damage mode

➤ ***Radiation damage modes*** depend on:

- Type of particle
- Particle energy
- Initial condition or bias of the material

➤ Particle flux ϕ is specified in units of particles/s·cm²

➤ Particle fluence Φ is the flux integrated over total exposure time, specified in units of particles/cm²

➤ The dose is the energy deposited per gram of material

- 1 rad = 0.01 J/kg = 6.24×10^{13} eV/g
- Dose rate is the deposited dose per unit exposure time, specified in units of rad(mat)/s

Sandia Facilities Enable the Testing of Radiation Effects and Damage Modes: Gamma Irradiation Facility

- The **Gamma Irradiation Facility (GIF)** simulates gamma radiation environments for materials and component testing
 - GIF produces a wide range of gamma radiation environments (from 10^{-3} to over 10^3 rad/s) using cobalt-60 sources
 - GIF can irradiate objects as small as electronic components and as large as a satellite
- GIF is used for:
 - Testing for electronic-component hardness
 - Materials-properties testing
 - Investigations of various physical and chemical processes
 - Testing and radiation certification of satellite system electronic components
 - Investigations of radiation damage to materials

The Project

- This is a competitive project between two or more teams to develop a power electronic converter design that is suited for use in a candidate cube-sat power system architecture.
- The goal is to realize power converter designs that are power dense (i.e. small), reasonably efficient, and hardened against ionizing radiation.
- Two power converter prototypes (per team) will be operated in a gamma irradiation cell to determine their resilience to long term radiation exposure.
- The team with the best design (determined by a weighted performance measure) will be acknowledged.
- Scoring will follow these guidelines
 - 50% - Mean Converter Radiation Dose before first failure (in kRad(Si))
 - 25% - Mean Converter Efficiency (in %)
 - 25% - Mean Converter Power Density (W/in³)

