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Abstract

Moving target defense (MTD) is an emerging paradigm in which system defenses dynamically mu-
tate in order to decrease the overall system attack surface. Though the initial concept is promising,
implementations have not been widely adopted. The field has been actively researched for over
ten years, and has only produced a small amount of extensively adopted defenses, most notably,
address space layout randomization (ASLR). This is despite the fact that there currently exist a
variety of moving target implementations and proofs-of-concept. We suspect that this results from
the moving target controls breaking critical system dependencies from the perspectives of users
and administrators, as well as making things more difficult for attackers. As a result, the impact of
the controls on overall system security is not sufficient to overcome the inconvenience imposed on
legitimate system users. In this paper, we analyze a successful MTD approach. We study the con-
trol’s dependency graphs, showing how we use graph theoretic and network properties to predict
the effectiveness of the selected control. Then, with this framework in place, the dynamic nature
of some Moving Target Defenses opens the possibility of modeling them with dynamic systems
approaches, such as state space representations familiar from control and systems theory. We then
use this approach to develop state space models for Moving Target Defenses, provide an analysis
of their properties, and suggest approaches for using them.

3



4



Contents

1 Introduction 9

Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Dependency Graphs 13

Use Case: Address Space Layout Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Address Space Layout Randomization with Data Execution Prevention . . . 18

Overall Dependency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Graph Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Community Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Cut finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Application of Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Defense Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 State Space 35

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Open Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Output Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5



State Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Output Feedback Example: Application to Network Randomization Approaches . . . . . . . 45

4 Conclusion 51

References 52

6



List of Figures

2.1 Dependency graphs for users and adversaries prior to applying any defenses. . . . . . 19

2.2 Updated dependencies after applying address space layout randomization. Adver-
saries no longer have reliable knowledge of the location of injected code within
memory, making NOP-sled type attacks the most likely. . . . . . . . . . . . . . . . . . . . . . 22

2.3 After applying data execution prevention adversaries can no longer reliably execute
injected code, and instead are likely to use return-oriented programming techniques. 23

2.4 After implementing DEP and applying ASLR to some executables the adversary
is still likely to use return-oriented programming techniques, but will now need to
build the malicious code only from modules that are not protected by ASLR. . . . . . 25

2.5 After implementing DEP and protecting all modules with ASLR, the adversary
must exploit a memory disclosure vulnerability to learn the base address of a mod-
ule, and then dynamically construct malicious ROP code. . . . . . . . . . . . . . . . . . . . . 27

3.1 Open-loop state space representation for moving target defense . . . . . . . . . . . . . . . . 36

3.2 Output feedback state space representation for moving target defense. . . . . . . . . . . 39

3.3 State feedback with state observer state space representation for moving target
defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Network randomization dependency graph showing costs to fulfill dependencies
prior to applying network randomization. The user’s costs are all 0 because our
user costs metrics consider percent increase in costs. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 (a) Response for adversary dependencies A28=(n28,n26) and (b) A25=(n22,n13)
and A26 = (n22,n23) before and after IP randomization. Edges A25 and A28 are
not directly impacted by the IP randomization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7



List of Tables

2.1 Original adversary costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Updated adversary costs after ASLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Updated adversary costs after DEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Updated adversary costs after DEP and a partial application of ASLR . . . . . . . . . . . 26

2.5 Updated adversary costs after DEP and a complete application of ASLR . . . . . . . . 28

2.6 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Edge Betweenness Centrality for Attacker Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8



Chapter 1

Introduction

Moving Target Defense (MTD) has been studied for over a decade. Forward thinking scientists
and engineers saw the writing on the wall back then with regard to burgeoning cyber-crime. At
that point, most malicious computer attacks were, for lack of a better term, not really malicious by
today’s standards. At that time, the hacking underground consisted of hobbyists and programmers
who were exploring computer systems to see what they could really do, and what they could do
with them. This was somewhat of a naive age, prior to the involvement of organized crime and
terrorist organizations. But people could see where things were heading — as soon as criminal
organizations understood the low level of risk and high profitability of cyber-crime, they would
start to get involved. And they did, as did others, leading us to where we are today [4, 9]. The pre-
vailing opinion was that existing defenses were insufficient to protect networked systems against
the attackers of the day, let alone those of the future.

Some funding agencies began to wonder if changing a system when under threat to a higher
level of overall security might be a fruitful path forward. Many physical security systems work in
this way. The US military still uses the DEFCON [37] system, as well as the newer FPCON [36]
system; it seemed sensible that this might be a useful avenue for research. It certainly seems
valuable to have systems that can autonomically adjust their run state based on environmental
context, and systems that can do this in response to an ongoing attack should be more secure than
statically provisioned systems.

Furthermore, MTD approaches allow systems to dynamically update and adjust to their operat-
ing environment proactively or in response to perceived or detected threats or attacks. The intention
is to provide legitimate system users and defenders with an advantage over attackers, since those
attackers will find it more difficult to determine the current status of a system, or may not be able
to rely on the system being in the same configuration when they launch their attack as it was when
they performed reconnaissance, developed the attack, or otherwise performed their planning and
preparation activities. Of course, MTDs can also make it more difficult for legitimate system users,
defenders, and administrators to know the current configuration of their systems, which potentially
creates opportunities for attackers. This environment provided by MTD approaches leads us to
consider state space models for studying the dynamic interactions between attackers and defenders
with MTDs at their disposal.
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Related Work

Other researchers have modeled and studied cyber systems and the impact of moving target
defenses on them. Zaffarano et. al. present a simulation framework that allows them to rapidly
configure a variety of different systems topologies over which to apply moving target defenses.
Many simulations of these systems are made, and data from these simulations is compiled into a
variety of measures intended to represent the productivity of the system, the success of the activity
model, and whether data was delivered unexposed and intact. The authors then use the mean of
those measures to represent the performance of the simulated system [38]. Zhuang et. al. describe
a formal logic for describing MTD systems. The logic itself takes into account system policies,
constraints that must be met by operating systems, and the operational goals of a given system.
It also describes sets of actions and configuration states, yielding a formal way to define moving
target systems. They also address the key problems in MTD management, namely configuration
and adaptation selection and timing problems, and describe why they are important to theoretical
MTD analysis [40]. Additional work presents a way to model cyber attacks that takes into account
overall system information, pre- and post-conditions, and attack processes that encompass multiple
stages. The model is logically rigorous and enables the description of limited system dynamics in
that time is referenced, but monotonically, rather than functionally [39]. A hyper-geometric prob-
ability distribution model has been proposed for studying the effects of various types of defenses
within a computer network [12]. The author’s specifically look at systems with no protections,
systems with honeypots, and address shuffling under two attacker strategies. They find that de-
ception (honeypots) is more successful than motion (shuffling), but that using both simultaneously
provides the greatest increase in security posture. Prakash et. al. use FlipIt, a simple game in which
players compete for control of a single resource, to analyze possible moving target strategies. They
run the game many thousands of times, and find that each configuration of attacker and defender
strategies has at least one equilibria, and in some cases many equilibria [24].

Many MTDs have been suggested in the literature. A survey of them has been provided by
Okhravi et al. [26]. The attacker-defender dynamics in MTD have previously been studied using
game theoretic models. Colbaugh and Glass analyze MTD strategies against adaptive adversaries
under the assumption that the available defensive systems are independent so that attacks are ef-
fective against a single system [10]. Carter allows attacks to be effective against some subset of
systems, and further assumes that the defender does not know which systems are vulnerable and is
not able to detect exploits [6]. Van Dijk introduces the FlipIt game to model advanced persistent
threats and targeted attacks in which one player has complete control of a resource, but in which it
is not known which player controls the resource until a player makes a move, which comes at some
cost [35]. Jones extends FlipIt to MTD by allowing defenders to ”morph” the system to disrupt
attacker knowledge [22]. Prakesh modifies FlipIt by allowing attackers to detect when control of
the resource is gained by the defender, and to allow multiple target resources with objectives over
the number controlled [29]. Miehling studies MTDs using partially observable Markov decision
processes [25].

State space representations have been used to study both linear and nonlinear systems for many
decades. They have found particular success in control engineering, where they are used to model

10



physical systems by inputs, outputs, and state variables, and provide a convenient means of study-
ing the time-evolution of such systems. State space models are useful in control engineering for
understanding the influence of inputs and disturbances on system state even though the models are
simplified approximations of the underlying physical systems.
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Chapter 2

Dependency Graphs

Despite the amount of research into moving target defense, we find that relatively few mov-
ing target approaches have been embraced in practice. It seems that this may be because the
inter-dependencies and side-effects introduced by the moving target defenses were not adequately
considered when the defenses were designed, and that they were not revealed during limited labo-
ratory experiments. Furthermore, in operational settings some dynamic defenses impact users and
defenders similarly to attackers, making it difficult to maintain and operate the resulting systems.
We propose to study this problem by analyzing the dependencies of users, defenders, and adver-
saries, providing a means of determining where to locate moving target defenses, and helping to
direct future research into approaches that are more likely to be transitioned to practice.

Dependencies pervade computing systems. Consider, for instance, the popular OSI model for
communication systems, which has applications at the top layer, followed by the presentation,
session, transport, network, data-link, and physical layers [33]. In this model higher levels are
dependent on lower levels, so network layer devices have dependencies on the data-link and phys-
ical layers [11]. If the functionality of any single layer is broken, then all of the layers above it
are impacted. For example, if a router stops functioning then computers connected to that router
will not be able to access the Internet. Still considering the OSI model, the protocols at each level
are also dependent on the protocols at lower layers. So, if an IP address (network layer) changes
unexpectedly, then TCP sessions will be impacted.

It is known that the underlying MTD must have sufficient understanding of the functional and
security requirements of the system, though this has not been placed in the context of dependencies
[41]. Carvalho et al. have proposed a command and control system to appropriately coordinate
movements in the system [7]. Our work is in identifying system details that would be needed by
such a control system. Armed with this knowledge, we can then locate adversary dependencies
that are not shared by users or defenders, allowing us to disrupt malicious behavior without having
undue impact on legitimate users or administrators.

We begin by identifying the dependencies of the users, defenders (administrators), and adver-
saries of a system. By representing the dependencies of each agent on a labeled graph we can
determine the overall cost of satisfying each agent’s dependencies. Then, given a set of defender
options, we can analyze the impact of any subset of defenses on each agent, allowing us to find
that subset of defenses that will minimally disrupt users and defenders while maximally impacting
attackers. If no such defenses can be found, the analysis may instead suggest new defenses.

13



Formally, system components and their dependencies can be represented by a labeled, directed
graph, G = (V,E,W ), where V is a set of vertices or nodes, E is a set of ordered pairs defining di-
rected edges between the vertices, and W is a set of weights for the edges. An edge e∈E,e=(µ,ν)
is directed from node µ ∈V to node ν ∈V and, in our formulation, indicates that reaching ν is de-
pendent on first reaching µ and then satisfying the dependency that labels (µ,ν). This means that
success of ν requires success of µ . An element w ∈W is a function of cost metrics associated with
an edge. From an agents’ perspective, increasing cost is detrimental. So, for instance, administra-
tors and users want to increase the attacker’s cost while minimizing their own, while the adversary
desires the opposite. Potential metrics include implementation costs (time, money), memory costs
(increased storage requirements), performance costs (time), network and communication costs (la-
tency, throughput, reliability), and usability costs (support requests, system crashes). Additional
metrics suggested for cyber security include time to compromise confidentiality, integrity, and
availability [5, 13], defense coverage, unpredictability, and timeliness [19], and measures of deter-
rence, deception, and detectability [21].

We develop graphs for identified stakeholders by establishing three dependency graphs Gu =
(Vu,Eu,Wu), Gd = (Vd,Ed,Wd), Ga = (Va,Ea,Wa), for our system to represent the dependen-
cies of system users, system defenders, and adversaries, respectively. Note that, while we in-
clude only these three sets of agents, additional stakeholders can be added to the analysis with
definitions similar to those for these three agents. The weights wu

k ,k ∈ Eu in the user’s graph
are defined by f u

w : R → R,wu
k = f u

w (c
u
i (k), i = 1 . . .nu) where the cu

i (k), i = 1 . . .nu are the na

user costs associated with the edge k ∈ Eu. We similarly define defender labels wd
k ,k ∈ Ed by

f d
w : R→ R,wd

k = f d
w
(
cd

i (k), i = 1 . . .nd
)

for defender costs cd
i , i = 1 . . .nd and adversary labels

wa
k ,k ∈ Ea by f a

w : R→ R,wa
k = f a

w (c
a
i (k), i = 1 . . .na) for adversary costs ca

i , i = 1 . . .na. Note that
f u
w (·), f d

w (·) and f a
w (·) are not necessarily the same and that the definitions of the cost metrics and

the number of cost metrics nu, nd , and na for users, defenders, and adversaries can also be different.

Now, we must establish the cost for satisfying the dependencies for each agent. To do so, we
must find the lowest cost path to each terminal node from a root node. We define the cost of a
path as a function of the costs associated with the edges along that path. Letting wu

i , i = 1 . . .n
be the set of weights along a path pu

i from a root node to a terminal node in the user’s graph,
we define the cost of the path as f u

c : R→ R, pu
i = f u

c (w
u
i , i = 1 . . .n). Given this definition, root

node α ∈ Vu, and terminal node ζ ∈ Vu, Dijkstra provides an algorithm for finding the lowest
cost path from α to ζ [15]. We similarly define the cost of a path pd

i in the defenders’ graph
as f d

c : R → R, pd
j = f d

c
(
wd

i , i = 1 . . .n
)

and the cost of a path pa
j in the adversary’s graph by

f a
c : R→ R, pa

j = f a
c (w

a
i , i = 1 . . .n) and, of course, can use the same algorithm for finding the

lowest cost paths.

Now, we require a method for determining the overall cost for each agent. To do so, let Pu =

{piu,i=mu} ,Pd =
{

pid ,i=md

}
and Pa = {pia,i=ma} be the sets of the lowest cost paths satisfying all

mu,md and ma of the user’s, defender’s, and adversary’s terminal dependencies, respectively. Then
define the user’s overall cost, su, by f u

s : R→ R,su = f u
s (pu

i , i = 1 . . .mu). Likewise, the defender
and adversary costs are defined by f d

s : R→ R,sd = f d
s (pd

i , i = 1 . . .md) and f a
s : R→ R,sa =

f a
s (pa

i , i = 1 . . .ma), respectively.
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Use Case: Address Space Layout Randomization

As an example of this dependency graph based approach, we now consider applying it to ad-
dress space layout randomization (ASLR). ASLR is a code location randomization technique used
to help defeat Return Oriented Programming attacks, or other types of attacks that depend on the
attacker having some a priori knowledge of the code map of a running program. By randomizing
the locations of various libraries and functions in a running program image, the level of difficulty
of developing exploits increases significantly. ASLR is widely implemented in modern operating
systems, appearing in Windows, Linux, OS X, Android, and iOS.

ASLR is typically used in conjunction with Data Execution Prevention (DEP). DEP marks
areas in memory as being executable or non-executable. Only code appearing in the executable
regions can be run by programs. Hardware-enforced DEP, which uses hardware to mark pages
as executable or non-executable, is most effective, but software-enforced DEP is also available.
DEP protects against attacks that rely on executing instructions located in non-executable pages.
It is especially useful against buffer overflows, since these attacks often store instructions in non-
executable memory locations. Like ASLR, DEP is also widely deployed and appears in Windows,
Linux, OS X, iOS, and Android operating systems.

DEP was originally developed to stop the proliferation of stack-overflow based attacks, through
which attackers could easily inject shellcode into running programs via taking advantage of the
stored instruction pointer. Typically, attackers would overwrite a buffer such that the memory
after the buffer would be tactically overwritten to insert a new value into the stored instruction
pointer. This causes the program to resume execution at an overwritten location below the in-
struction pointer at which the attacker was able to inject valid code. DEP prevented this attack
by prohibiting execution from these memory regions. This lead to the development of Return-
Oriented Programming, a programming paradigm in which attackers jump to single instructions
(or parts of instructions) within the running program. With a static, known runtime program image,
these instruction locations are easily reusable, once located. The solution to this problem was to
randomize the layout of the address space, which moves these instructions so that they cannot be
predicted based on previous experimentation.

Individually, DEP and ASLR are not particularly effective. Attackers can compromise systems
without DEP via stack overflow techniques, and DEP without layout randomization is compro-
mised via ROP. When combined however, they are particularly effective. For this use case, we
consider only defenders and attackers.

Metrics

We use different metrics for evaluating the costs of users and adversaries fulfilling their respec-
tive dependencies. For adversaries our metrics are:

• time to acquire access

15



• cost to acquire access

• time to acquire knowledge

• cost to acquire knowledge

• unpredictability

• frequency of movement

The first two metrics represent the adversary’s difficulty in achieving the proper position to
complete an action or to fulfill a dependency. For example, an adversary wishing to exploit a
buffer overflow must first be in a position to write to the buffer. The next two metrics describe the
skills and knowledge required by an adversary to be successful in the attack. The final two metrics
describe the uncertainty that an attacker will face when attempting to complete an attack step. We
estimate this uncertainty by how predictable the operating environment is to the adversary and by
how often this environment changes. Additional metrics, such as the size of the attack team and
their commitment to the attack could also be employed [16]. We found that, for this example,
additional metrics did not help to differentiate the attack steps. For each edge in the adversary’s
dependency graph we evaluate each of these metrics on a ”low-medium-high” scale.

For users our metrics are:

• change in memory requirements

• change in CPU requirements

• change in system stability

• change in networked communication latency

• change in networked communication bandwidth

• change in networked communication stability

These metrics focus on disruption to the user’s computing experience with respect to both
computational and networking or communication overhead. For scoring, we initially assign the
cost of fulfilling each dependency as zero. This is because the initial state is an existing system or
implementation, so no overhead results from maintaining this state. Then, we evaluate the cost of a
defense by estimating the percent change in each metric that will result from applying the defense.

Note that the specific set of metrics used for this analysis can be changed to suit the application
or system under study. Additionally, we also note that the absolute scores assigned to each metric
for each edge are less important than the relative scores between edges. This is because assigning
a particular cost to an edge or path is less important than knowing which paths are the most or
least expensive. Due to this, consistency in assignment of scores is necessary. For example, if a
”low-medium-high” scale is used to score the attacker metrics then it is useful to define boundaries
or ranges for each of the scores to aid in consistent application of them.

16



Scoring

Users and adversaries alike have sets of dependencies that they must satisfy in order to achieve
their goals. These sets are represented by paths from the initial node to a terminal node in the
dependency graph. The cost of completing the goal is then the cost of satisfying each of the depen-
dencies. Consequently, we need to estimate the aggregate cost of fulfilling a set of dependencies.

It does not make sense to add the individual costs since this unfairly penalizes longer paths,
which may occur simply because some portions of the dependency graph are more detailed than
others. We also know that it probably does not make sense to use the maximum individual cost as
the composite cost since, for instance, multi-stage attacks with several equally and highly expen-
sive steps are likely more costly for attackers than attacks with only one such difficult step.

We transform the cost of each stage of a dependency path into a value between 0 and 1. For
this, we map more costly steps to values closer to 0, and easier steps to values close to 1. Conceptu-
ally, we think of these values as representing the probability of success, although this interpretation
should not be taken literally. Now, after transforming the costs, and using our probabilistic inter-
pretation, we can compose them by finding the joint probability of success of the path. The joint
probability of success is strictly smaller than any of the individual probabilities of success. This
means that the joint probability will include contributions from each individual dependency; easily
satisfied dependencies are not assumed to be fulfilled, although they will have less impact than
more difficult steps. After finding the joint probability, we can then transform it back into a cost
by inverting the original transformation.

The transformation we propose is

p =
m−d

m
(2.1)

where m is an upper bound for the cost of a step, d is the cost of a step, and p is the value that we
interpret as the probability of success for this step. To aggregate the probabilities of success across
a set of edges ei, i = 1 . . .n we simply calculate ∏i pi. The inverse transformation corresponding to
equation 2.1 is

d = m− pm (2.2)

and so the composed cost of the multi-stage dependency is

c = m−m∏
i

pi (2.3)

where the vi correspond to the individual steps in the dependency path.
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Evaluation

We are generally interested in answering questions about the costs of paths through the de-
pendency graph from the start node to an ending node. Typically, we are interested in finding the
adversary’s least costly paths for satisfying all of the dependencies for a particular attack, and in
finding the most costly paths for users, administrators, and other legitimate users. This is because
we would like for our defenses to maximize the cost of the adversary’s least expensive paths, while
minimizing the cost of legitimate actors’ most expensive paths. Djikstra’s algorithm is suited to
solving this problem if we use eqn. 2.3 as the distance metric [15].

Address Space Layout Randomization with Data Execution Prevention

In our dependency graphs each directed edge is labeled with three values. The first label in-
dicates whether the edge is an adversary or user dependency, and is of the form aN or uN, where
N is an integer and a and u indicates adversary or user, respectively. The next label describes the
dependency, and the third label is the cost for satisfying the dependency. For visual reference, ad-
versary edges and nodes are depicted in orange, and user edges and nodes in purple. Shared nodes
are shown in white. Edges that are made prohibitively expensive by a defensive action are denoted
by gray dashed lines, and nodes that are cutoff from the graph by defensive actions are also shown
in gray.

We consider a running example in which a defender attempts to prevent attacks by implement-
ing ASLR and DEP. We first consider the initial system state before any defense is deployed. We
then consider ASLR and DEP independently, DEP combined with a partial implementation of
ASLR, and DEP combined with a complete implementation of ASLR. In each case we examine
likely attacker approaches responding to the defense.

First, we discuss the initial scenario before any defenses are deployed. Considering Figure
2.1, we first describe why this particular set of dependencies was selected. In this case, we in-
clude user dependencies that capture local code execution. This involves executing subroutines
and other code that is located at different locations in the address space since not all instructions
appear at sequential addresses. Host application attacks typically require jumping to or otherwise
redirecting the execution flow to injected code. This can be accomplished by placing the code at
an address that appears on the stack as a return address, so we must include attacker dependencies
for accomplishing this. The users’ dependency graph is presented in the purple path in Figure 2.1,
where we see that the users’ dependencies include calling the subroutine, pushing the return ad-
dress onto the stack, executing the subroutine, and writing data into a buffer. After the subroutine
is complete the return address is popped off the stack, the instruction pointer is updated, and the
original program execution continues. Since this is the initial system configuration and the user’s
costs are defined as changes from some baseline, all of user’s dependencies are assigned zero cost.
The adversary’s original dependencies are shown by the orange paths in Figure 2.1. In this initial
setting, the adversary can succeed at injecting and executing malicious code by exploiting a simple
buffer overflow vulnerability. For this, the adversary must have knowledge of the machine archi-
tecture, locate a vulnerable buffer, and be able to write data into this buffer. By overflowing this
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Figure 2.1. Dependency graphs for users and adversaries prior to
applying any defenses.
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buffer, the adversary is able to inject the malicious code. Note that, owing to the monoculture of
defense postures, the adversary can identify the vulnerable process and write the buffer overflow
exploit for it offline. Now, the adversary uses any of several methods for overflowing the buffer
and redirecting program execution to the malicious code. Approaches for this may include over-
writing the return address on the stack, or making use of a dangling or out of bounds pointer. In
any case, if the adversary is able overflow the buffer to inject the malicious code and then update
the instruction pointer to point to this code, then the malicious program will be executed. Due to
the static, predictable defense posture presented to the adversary in this scenario, we find that the
cost for satisfying the adversary’s dependencies is low in this initial setting. We score each of the
attacker’s metrics on a scale from 0− 1, with 1 being the most costly. For this example, we only
allow scores of 0,1/3,2/3 and 1, although finer gradations are possible. The initial attacker costs
are presented in Table 2.1. In Table 2.1 ta is the attacker’s time to acquire access, ca is the cost to
acquire access, tk and ck are the time and cost to acquire knowledge, u is unpredicitability, fm is
the frequency of movement, and oc is the overall cost.

Table 2.1. Original adversary costs

ta ca tk ck u fm oc
a0 0.00 0.00 0.33 0.33 0.00 0.00 0.11
a1 0.00 0.00 0.67 0.67 0.00 0.00 0.22
a2 0.33 0.33 0.00 0.00 0.00 0.00 0.11
a3 0.00 0.00 0.67 0.67 0.00 0.00 0.22
a4 0.33 0.33 0.67 0.33 0.00 0.00 0.28
a5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a6 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a7 0.33 0.33 0.67 0.33 0.00 0.00 0.28
a8 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a9 0.33 0.33 0.67 0.33 0.00 0.00 0.28

a10 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a11 0.33 0.33 0.67 0.33 0.00 0.00 0.28
a37 0.00 0.00 0.33 0.33 0.00 0.00 0.11
a38 0.00 0.00 0.33 0.33 0.00 0.00 0.11

Figure 2.2 shows updated dependencies after applying ASLR. Note that the cost of ASLR
to the user is essentially zero, with only a slight increase in CPU overhead for randomizing the
memory space when a process is initialized. This change is shown in Figure 2.2, where we have
included a 10% change in CPU requirements completing dependency u0. This manifests as a
total increase in cost of less than 1%, which is consistent with the literature on 32-bit ASLR
[34]. However, the randomized memory layout has a greater impact on the cost of fulfilling the
adversary’s dependencies since key elements, such as the location of the stack and buffers and
the base address of loaded modules are now randomized. These increased costs are also shown
in Figure 2.2. Some of the adversary dependencies, such as learning the reliable location of the
return address and modifying a pointer with the address of exploit code, have more costly access
requirements due to the effort required for learning the appropriate return addresses. Some of the
dependencies also now require a more sophisticated adversary, increasing the cost of acquiring the
knowledge required for a successful attack. The greatest increases in cost, however, arise from
the unpredictability introduced to the system by ASLR. Since the adversary can no longer identify

20



reliable addresses before launching an attack, the adversary now faces a less predictable operating
environment. However, it is still possible for the adversary to be successful. We find that the cost
of fulfilling the adversary’s dependencies for a successful attack increases by 29%. The updated
costs are presented in Table 2.2. One option available to the adversary is to brute force or guess
the locations of the required structures. While this may be possible in some circumstances, it is
also risky and may lead to detection. We find that the more likely attack is to employ a NOP-sled
or other heap-spraying technique, which is consistent with the literature [30]. In these approaches,
a large section of memory is filled with NOP instructions, with the malicious code following the
NOPs. Jumping anywhere within the sequence of NOPs will eventually cause the malicious code
to execute. We add this as a potential adversary dependency as well.

Table 2.2. Updated adversary costs after ASLR

ta ca tk ck u fm oc
a3 0.00 0.00 0.67 0.67 0.00 0.00 0.22
a6 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a22 0.00 0.00 0.00 0.00 0.33 0.33 0.11

In Figure 2.3 we present dependency graphs showing the influence of DEP. The cost to users
is low, with only minor computational overhead and a slight decrease in system stability. The
decreased stability is primarily caused by legacy applications that do not conform to the mem-
ory restrictions enforced by DEP. We estimate these costs as a 5% increase in CPU requirements
for edges u1,u3 and u6 and 5% decrease in system stability for u2. We estimate the total in-
creased cost to users at less than 1%. There is a much larger increase in the cost of fulfilling the
adversary’s dependencies. Since code injected with a buffer overflow is likely to be in memory
marked as non-executable, adversaries must find new methods of attack. Typically, these attacks
use return-oriented programming [28]. This technique strings together sequences of instructions
from existing programs. Since these instructions are in memory locations marked as executable,
the adversary need only to locate an acceptable sequence and then update the program counter to
follow the desired sequence. Since DEP does not introduce any randomization, ROP exploits can
be identified and written offline. We represent this by adding attacker dependencies for identifying
the ROP code at the top of Figure 2.3. The attacker must still inject some exploit code to hijack
control of execution, likely with a buffer overflow attack to overwrite the return address, and so
this set of dependencies still appears. After this, there are several approaches the attacker may
take for executing the exploit that depend on the particular construction of the exploit code. These
appear at the bottom of Figure 2.3. Constructing ROP attacks is more difficult than writing stan-
dard shellcode exploits, and consequently requires more knowledgeable adversaries. Additionally,
execution of these exploits requires not only construction of the ROP code, but also modification
of the instruction pointer. In Figure 2.3 these distinct dependencies are indicated by labeling sets
of adversary terminal nodes as ’(0)’ and ’(1)’. The adversary must fulfill dependencies from both
sets in order to be successful. Due to the additional requirements on adversary capability for de-
veloping the attack and the distinct dependency paths for development and injection of the attack,
we find that DEP increases the adversary’s cost by about 52%, which is larger than with ASLR.
Changes from the attacker’s original costs appear in Table 2.3

Individually, both ASLR and DEP can be bypassed relatively easily with well-known tech-
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Figure 2.2. Updated dependencies after applying address space
layout randomization. Adversaries no longer have reliable knowl-
edge of the location of injected code within memory, making NOP-
sled type attacks the most likely.
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Figure 2.3. After applying data execution prevention adversaries
can no longer reliably execute injected code, and instead are likely
to use return-oriented programming techniques.
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Table 2.3. Updated adversary costs after DEP

ta ca tk ck u fm oc
a6 1.00 1.00 1.00 1.00 1.00 1.00 1.00

a22 1.00 1.00 1.00 1.00 1.00 1.00 1.00
a26 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a30 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a31 0.00 0.00 0.00 0.00 0.33 0.33 0.11
a33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a34 0.00 0.00 0.00 0.00 0.33 0.33 0.11
a38 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a39 0.00 0.00 0.00 0.00 0.33 0.33 0.11
a40 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a41 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a42 0.33 0.33 0.67 0.67 0.00 0.00 0.33

niques, and so they are not particularly effective when used independently [34, 32]. However, they
are complementary techniques and can be employed together. One method for doing this is to use
DEP in conjunction with a limited application of ASLR in which not all modules are protected.
Dependency graphs for this are shown in Figure 2.4. Here, we find that because of DEP the ad-
versary is still likely to use a ROP attack. However, ASLR prevents the adversary from knowing
memory locations for all executables in advance, so the adversary must locate modules that are not
protected by ASLR and then build the ROP program from those modules. Consequently, we add
an attacker dependency of finding an executable or relative address that is not protected by ASLR
from which to build the ROP attack. This limitation on the adversary’s access complicates the at-
tack and requires circumventing both the ASLR and DEP protections. Since these protections are
dissimilar, defeating one does not imply the ability to defeat the other. This effective independence
increases the adversary’s cost considerably. We find a 117% increase in adversary cost, which is
slightly more than the combined increase required for defeating both ASLR and DEP indepen-
dently. The changes from the attacker’s original costs and assessment of new edges appears in
Table 2.4. As before, we find that the user’s costs increase by less than 1%. This represents a 5%
increase in CPU requirements for edges u1,u3 and u6, a 10% increase in CPU requirements for u0
and 5% decrease in system stability for u2.

We can also pair DEP with a complete application of ASLR that protects all modules. In the
scenario, the adversary can no longer rely on any code being at known locations. The adversary
must now learn the location of a module using some memory disclosure vulnerability, and then
exploit this vulnerability to dynamically construct a ROP payload. Following [14], we represent
this by incorporating attacker dependencies for using a memory disclosure vulnerability to find
the base address of a dynamically linked library, and then using this to dynamically construct the
ROP payload. While the basic process of using ROP to bypass DEP is unchanged, the skills and
difficulty of constructing the exploit increase greatly, and in Figure 2.5 we find a 168% increase in
the adversary’s cost. Changes from the attacker’s DEP and partial ASLR costs and assessment of
new dependencies appear in Table 2.5. Note that we have assigned the maximum possible cost to
a15 and a17, indicating that those edges have been removed by the defensive action. As before,
users are essentially unaffected by the protections, and their costs increase by less than 1%. As
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Figure 2.4. After implementing DEP and applying ASLR to
some executables the adversary is still likely to use return-oriented
programming techniques, but will now need to build the malicious
code only from modules that are not protected by ASLR.
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Table 2.4. Updated adversary costs after DEP and a partial appli-
cation of ASLR

ta ca tk ck u fm oc
a2 0.33 0.33 0.00 0.00 0.33 0.33 0.22
a3 0.33 0.33 0.67 1.00 0.33 0.33 0.50
a6 1.00 1.00 1.00 1.00 1.00 1.00 1.00

a15 0.33 0.33 1.00 1.00 0.33 0.33 0.56
a16 0.00 0.00 0.67 0.67 0.00 0.00 0.22
a17 0.33 0.33 1.00 1.00 0.33 0.33 0.56
a18 0.33 0.33 0.67 0.67 0.33 0.33 0.44
a19 0.00 0.00 0.67 0.67 0.00 0.00 0.22
a22 1.00 1.00 1.00 1.00 1.00 1.00 1.00
a23 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a26 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a28 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a30 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a31 0.00 0.00 0.00 0.00 0.33 0.33 0.11
a33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a34 0.00 0.00 0.00 0.00 0.33 0.33 0.11
a36 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a38 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a39 0.00 0.00 0.00 0.00 0.33 0.33 0.11

with DEP and partial ASLR, these costs are incurred through a 5% increase in CPU requirements
for edges u1,u3 and u6, a 10% increase in CPU requirements for u0 and 5% decrease in system
stability for u2. The results from our analysis of these four scenarios are summarized in Table 2.6.

Finally, we also note that it is possible for an attacker to bypass a protection entirely. For ex-
ample, an attacker might bypass ASLR by targeting an application that leaks memory information
and then using this to bypass ASLR, or by simply turning ASLR off. After bypassing ASLR the
attacker can then proceed with a DEP resistant exploit, such as a ROP attack that uses instructions
at memory locations that the attacker can learn after bypassing ASLR. Our modeling approach is
intended to assess the costs incurred by the various classes of users when a particular defense is
correctly deployed. Due to this, we model the costs to an attacker to complete the attack assum-
ing that the defense is in place. Consequently, while we acknowledge the possibility of defenses
being bypassed entirely, we do not attempt to capture it in our models since there is little to gain
by modeling a defense and then simply bypassing it, which effectively removes it from the model.
Additionally, while we present ASLR and DEP as an example of the modeling approach, we reit-
erate that a primary benefit of the modeling approach is for identifying attacker dependencies that
are suitable for targeting with a defense. Or initial motivating use and target application may be
moving target or dynamic defense, but the approach is suitable for a variety of different environ-
ments.
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Figure 2.5. After implementing DEP and protecting all mod-
ules with ASLR, the adversary must exploit a memory disclosure
vulnerability to learn the base address of a module, and then dy-
namically construct malicious ROP code.
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Table 2.5. Updated adversary costs after DEP and a complete
application of ASLR

ta ca tk ck u fm oc
a15 1.00 1.00 1.00 1.00 1.00 1.00 1.00
a17 1.00 1.00 1.00 1.00 1.00 1.00 1.00
a19 0.00 0.00 0.67 0.67 0.00 0.00 0.22
a28 0.33 0.33 0.67 0.67 0.00 0.00 0.33
a29 0.33 0.33 0.67 0.67 0.33 0.33 0.44
a30 0.33 0.33 1.00 1.00 0.33 0.33 0.56
a31 0.33 0.33 1.00 1.00 0.33 0.33 0.56
a32 0.33 0.33 1.00 1.00 0.33 0.33 0.56

Table 2.6. Summary of results

defensive ∆ adversary ∆ user ∆ adversary cost /
technique cost cost ∆ user cost

ASLR 23% 0.25% 92
DEP 47% 0.06% 783

partial ASLR 117% 0.29% 403
and DEP
full ASLR 163% 0.29% 562
and DEP

Overall Dependency Analysis

Optimization

In section 2 we demonstrated the use of dependency graphs to analyze a moving target defense.
We also applied Djikstra’s shortest path finding algorithm with a modified distance metric, to find
the overall user and attacker costs for fulfilling all of the relevant dependencies. Now, we explore
additional analytic approaches for studying dependency graphs and suggest how these approaches
could be applied to analysis of MTDs.

Recall from section 2 that the users’, defenders’, and attackers’ overall costs for fulfilling their
dependencies are su, sd , and sa, respectively. To identify locations most suitable for applying exist-
ing MTDs, or even to identify attacker dependencies that could be impacted by new defenses with-
out burdening users or defenders, we want to find those ways to maximally impact the adversary
while minimally impacting users and defenders. One way to do so is by solving the multi-objective
optimization problem min(su,sd,−sa). We use−sa in the formulation of the optimization problem
since minimizing it is equivalent to maximizing the adversary’s cost. The optimization itself can
be constrained by defining a list of defender options and associating with each of them the impact
that they will have on the user, defender, and adversary cost metrics cu

i , i = 1 . . .nu, cd
i , i = 1 . . .nd ,

and ca
i , i = 1 . . .na. In general, these impacts vary from edge to edge within a graph, although in

practice a particular defense option will influence only a subset of edges within a graph and so the
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impact of the defense mechanism only needs to be determined for that set of edges. If no suitable
solution to the multi-objective optimization problem can be found, or due to interest in discovering
new defensive approaches, this analysis can be expanded to allow for defense discovery, which can
be aided by graph analysis techniques.

Graph Analysis

There are many graph analysis tools and algorithms that are appropriate for analyzing depen-
dency graphs. Algorithms and approaches for detecting or identifying bottlenecks, popular nodes,
low costs paths, communities belonging solely to users, defenders, or attackers, and cuts that sep-
arate such communities, allowing them to be targeted, are all of interest. Here, we provide a
brief overview of some of the relevant graph analysis techniques for achieving these goals. For-
mally, we define a multigraph Gm = (Vm,Em,Wm) where Vm = Vu ∪Vd ∪Va, Em = Eu ∪Ed ∪Ea,
Ei ∩E j = /0, i 6= j, and Wm = Wu ∪Wd ∪Wa, Wi ∩Wj = /0, i 6= j, which is simply a single graph
produced by combing the user, attacker, and defender digraphs.

Centrality

Graph centrality measures attempt to identify the most important nodes or edges within a graph.
We consider both edge betweenness centrality and eigenvector centrality. The betweenness cen-
trality of an edge e is the sum of the fraction of all pairs shortest paths that pass through e [3]. It
is calculated as c(v) = ∑s,t∈V

σ(s,t|e)
σ(s,t) where V is the set of nodes in the graph, e is the edge under

consideration, σ (s, t) is the number of shortest paths from node s to node t, and σ (s, t|e) is the
number of those shortest paths that pass through e.Using this definition of centrality, increasing
adversary costs on the in-edges of central nodes is desirable since doing so will increase the ad-
versary’s costs for satisfying even the least expensive dependencies. If enough such defenses are
available, the adversary’s costs can all be increased to some minimum value. This may have the ef-
fect of eliminating some attackers from the system entirely. Considering the user’s and defender’s
dependencies, defensive maneuvers that impact nodes with large betweenness centrality scores is
desirable because such defenses will impact shortest-paths in the dependency graph. Increasing
the cost of these shortest paths is more desirable than increasing the cost of paths that are already
expensive to satisfy.

With eigenvector centrality connections to high-scoring nodes contribute more to a node’s score
than connections to lower scoring nodes. This is appealing for our study of dependency graphs
since it permits us to identify not only the most central nodes, but also the nodes that lead to these
central nodes. This allows us to consider defenses that impact not only the most central nodes,
but also to identify and impact nodes that are connected to them. This broadens the number of
edges available for targeting while also increasing the adversary’s costs for satisfying common
dependencies. If we can find defenses that impact paths leading to user and defender nodes that
have low centrality scores then this might limit the impact on users and defenders since these paths
are not exercised very frequently.
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Dissimilarity centrality measures assign more relevance to nodes with greater dissimilarity,
since those nodes allow the given node access to portions of the graph that the given node cannot
access directly. For example, if there are two clusters of nodes in a graph and these clusters are
connected by a single edge, then the nodes connected by this edge are more central (most dissim-
ilar) because they permit access to the different clusters. Targeting these edges in the attacker’s
graph allows us to increase the cost of traversing bottlenecks in the attacker’s graph. Conversely,
finding such bottlenecks in user’s or defender’s graphs may help us to identify defenses or system
changes to add parallel paths or to increase the connectivity of the legitimate actor’s graphs.

Community Detection

Graphs have community structure if their nodes can be grouped into subsets that are internally
densely connected. Such communities are of interest to us for a variety of reasons. If we identify
communities within attacker graphs, then we may be able to target defenses to increase the costs
of satisfying edges within a community, or we may be able to find central or influential nodes
within individual communities to target with our defenses. Similarly, we may also be able to
identify communities in the defender graphs and then seek defensive measures such as increasing
the number of communities or reducing the centrality of nodes within communities to limit the
negative impacts of attacker and defender actions on the defenders. Additionally, we may attempt
to divide the defender and attacker nodes into distinct communities to limit the negative impact of
defender actions on the defender.

Community detection is useful for defense discovery. It allows us to look for adversary de-
pendencies that are not shared by users or defenders. These are the edges e = (µ,ν) ∈ Ea s.t.
µ,ν /∈Vu∪Vd . Any such edges are dependencies belonging only to the adversary, and so defensive
measures targeting those edges, and no others, will impact only adversarial operations.

The Girvan-Newman algorithm is one approach for community detection [17]. The Girvan-
Newman algorithm detects edges that are most likely between communities by finding those edges
that appear along many shortest paths. These edges are then removed from the graph, and the
process repeats. In a network with community structure containing two or more internally densely
connected communities, but with few edges connecting them, those edges that connect communi-
ties will have high edge-betweenness and are targeted for removal. Eventually, only the densely
connected communities remain in the graph. This approach is useful for finding central nodes in
networks that have known starting and ending points, which is true for dependency graphs.

Cut finding

The minimum cut of a graph is a bottleneck in the graph. We want to find these bottle-
necks and either remove them for defenders or attempt to create or strengthen them for attack-
ers. Additionally, finding cuts of the graph that separate or almost separate it into defender and
attacker graphs may allow us to identify defenses that preferentially impact the attacker’s edges
more so than the defender’s edges. Similarly, such cuts may also suggest locations for adding
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new defender or attacker requirements to either make it easier for the defender to preferentially
target attacker dependencies, or to make it more difficult for the attacker to preferentially tar-
get defender dependencies. For instance, we can search for cuts in the merged graph that dis-
connect more of the adversary’s nodes than user and defender nodes. If the user and defender
nodes can be reconnected to their original graphs, for example, by adding additional vertices,
then these cuts will identify adversary edges that can be targeted for new defensive measures and
which will require minimal additional edges to be added to the user and defender graphs. In
particular, if we can find a cut C = (S,T ) = {(s, t) ∈ Em|s ∈ S, t ∈ T} of Gm = (Vm,Em,Wm) s.t.
|{t ∈ T ∩Eu}| ≤ |{t ∈ T ∩Ed}|< |{t ∈ T ∩Ea}| then we might consider defender actions that will
impact the edges in T . In practice, it is possible that these defender actions will not actually par-
tition Gm, but rather that they will increase the weights associated with the edges in T . Although
these actions will also impact users and defenders, if the weights in Wu and Wd associated with the
edges {t ∈ T ∩Eu} and {t ∈ T ∩Ed} do not increase too much, or if additional edges eu and ed that
are not impacted by the defender action can be added to Eu and Ed , then these edges effectively
patch the user and defender systems, reducing the impact of the defensive action on those agents.

Efficiency

The local efficiency of a node indicates how well the network can transfer information when
that node is removed. In some sense it describes how well the network functions when a node is
eliminated. Attacker nodes with high efficiency are those nodes which will have little impact on the
attacker’s graph if they are removed, or if the cost for reaching them is increased. Consequently, we
can choose either to attempt to decrease the overall efficiency of the attacker’s graph by targeting
defenses on nodes with high local efficiency, or we can target defenses on inefficient nodes to
increase the cost of passing through bottlenecks in the attacker’s graph. On the other hand, we
want the defender’s network to have high efficiency, so we might look for nodes with low local
efficiency and then seek methods, such as adding additional nodes or edges, for improving it.

Application of Optimizations

Now, we consider applying these optimization approaches to our example problem to show
how, in addition to modeling the impact of a defense, our dependency graph approach can also be
used to identify areas for applying defenses. Since we have a limited set of defender options in
this example, the impacts of which are summarized in Table 2.6, the multi-objective optimization
described in section 2 is trivially solved as a full implementation of ASLR and DEP. The graph
analysis approaches of section 2 are of more interest in this example. We consider edge between-
ness centrality, local and global efficiency, and Girvan-Newman community detection on the graph
in Figure 2.1. We begin with edge betweenness centrality. Recall from Section 2 that attacker
edges with large centrality are attractive for targeting because they are the nodes most likely to
appear along the attacker’s shortest, and hence most likely, paths. The centrality for each attacker
edge is presented in Table 2.7. From this, our analysis suggests defenses targeting edges a7 and
a38 or the edges leading to them. These edges lead to a collection of parallel paths beginning
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with a3,a8,a10 and a7. Targeting these would be of little value, since the attacker would still be
left with many alternative options. Now, since the recommended edges a37 and a38, which rep-
resent the attacker gaining knowledge of the machine instruction set and development of exploit
code. These are not direclty impacted by ASLR or DEP, this suggests that a defense that does
target those dependencies, such as instruction set randomization, would be useful in concert with
ASLR and DEP [23, 2, 20]. Since the user’s dependency graph has a single path the concept of
betweenness centrality is not useful for analyzing it.

Table 2.7. Edge Betweenness Centrality for Attacker Edges

Edge Centrality Edge Centrality
a0 0.08 a7 0.14
a1 0.15 a8 0.05
a2 0.20 a9 0.02
a3 0.05 a10 0.05
a4 0.02 a11 0.02
a5 0.15 a37 0.24
a6 0.08 a38 0.27

Next, we consider the graph efficiency metrics. Recall from Section 2 that nodes with high
efficiency are those that will have little impact on the graph if they are removed. This implies that
we should either target inefficient attacker nodes, helping to create bottlenecks in the attacker’s
graph, or to broadly target efficient nodes in an attempt to lower the global efficiency of the at-
tacker’s graph. Since the attacker’s graph is consists almost entirely of serial connections, we find
that node n38, which leads to set of parallel paths, has efficiency 0.25 and is the most efficient in
the network and so preventing or increasing the attacker’s difficulty for reaching it should be use-
ful. Indeed, this is the only node in the graph with nonzero efficiency. As with edge betweenness
centrality, this again suggests introducing instruction set randomization to make it more difficult
for the attacker to learn the machine’s instruction set and to use this knowledge to craft an exploit.
This metric also reveals that the user’s graph has low efficiency and so implementing measures
for parallelizing paths in the user’s graph might be useful. Additionally, since two nodes (n5 and
n6) are shared by the users and attackers, any defenses that target the attacker’s dependencies for
reaching these nodes should be careful not to overly burden the user.

Now, recall from Section 2 that the Girvan-Newman algorithm, finds those edges that are most
likely to be in between separate communities in a graph. By locating these edges, we can target
defenses at the boundaries in between attacker communities to attempt to separate them from the
graph or to make it more costly for the attacker to reach one community from the other. From the
user’s perspective, defenses for blurring the boundaries between communities may be desirable
since they may make it easier to fulfill dependencies. Applying Girvan-Newman to the attacker’s
graph to produce four communities reveals (n1, n8), (n9, n5, n37), (n38, n10, n11, n12), and
(n15, n6, n17) as the four attacker communities, with (n1, n8) the least important of these. Of the
remaining communities, the boundary nodes are n9, n37, n38, and n15. This suggests that defenses
that make it more difficult for an attacker to identify the machine architecture and instruction set, to
develop exploit code, and to use buffer overflows to inject code are all of potential interest. ASLR
impacts the use of buffer overflows by making it more difficult for an attacker to redirect program
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execution to the location of the injected code. DEP also has an impact on buffer overflows since
it makes it more likely that injected code will be in a non-executable region. Additionally, ISR is
likely to increase attacker difficulty for learning about the instruction set and developing exploit
code. Finally, we note that the three prominent communities detected by Girvan-Newman can be
described as ”exploit development” (n9, n5, n37), ”exploit insertion” (n38, n10, n11, n12), and
”exploit execution” (n15, n6, n17), and so techniques for separating these communities, such as
execution environment between exploit development or insertion and execution, may be useful.

Defense Discovery

The graph analysis algorithms suggest approaches where one might look to apply defenses to
have the greatest impact on attackers. This permits ”defense discovery” in which we use analysis
of our dependency graphs to find attacker and defender nodes and edges that are most suitable
for targeting with a defense. In this setting, there may be situations in which an existing defense
addresses the identified edges or nodes, such as with using ISR to frustrate exploit development in
the preceding example, and other situations in which there is no existing defense that targets the
identified nodes or edges. In these cases, the analysis provides some research direction into the
identification of new defensive techniques that are likely to have a large impact on attackers without
overly burdening legitimate users. These analysis could be applied to any dependency graph to
help with identification of appropriate defenses or to suggest research directions for development
of new defenses.
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Chapter 3

State Space

Approach

We begin the modeling process by making several assumptions. We assume that the attacker
and the defender can each influence the system state by applying inputs to the system. These inputs
may be corrupted by noise. We further assume that attackers and defenders can at least partially
observe the system state. These output observations may also be corrupted by noise. Additionally,
we assume that there is no guarantee that either party can impact all of the state variables, or that
their observations of the state are correct.

Open Loop

Figure 3.1 shows the simplest open-loop state space representation that conforms to these as-
sumptions. It is a mixed deterministic-stochastic system approach for modeling the dynamic be-
havior of MTD systems. By inspecting Figure 3.1 we see that

xk+1 = Axk +Bduk +Bamk +wk (3.1)
yk =Cdxk +vk (3.2)
zk =Caxk +qk (3.3)

where xk ∈ Rn is the state vector, yk ∈ Rqd and pk ∈ Rqa are the output vectors as observed by the
defender and attacker, respectively, uk ∈Rpd and mk ∈Rpa are the defender and attacker’s respec-
tive input vectors, wk is a stochastic disturbance input, vk and qk are random vectors impacting
the defender’s and attacker’s respective observations of the state, A ∈ Rn×n is the system matrix,
Bd ∈ Rn×pd and Ba ∈ Rn×pa are the input matrices for the defender and attacker, respectively, and
Cd ∈ Rqd×n and Ca ∈ Rqa×n are the defender’s and attacker’s respective output matrices.

To represent an MTD with this model we must determine how to construct each of these matri-
ces and vectors. We have previously developed a dependency graph based approach for analyzing
cyber defenses [18]. In that approach different classes of actors, such as system users, adminis-
trators, and attackers, are each assumed to have some set of dependencies that they must fulfill
in order to accomplish their goal. Some of these may be shared between the different classes of
actors, while others will not be. Each of the dependencies has some costs associated with fulfilling
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Figure 3.1. Open-loop state space representation for moving tar-
get defense

it. We interpret the state of the system at time k as a vector of costs for satisfying each of the n
edges in the dependency graph. It is then natural that the system matrix, A, be an adjacency matrix
representation of the dependency graph. Consequently, ai j = 1 if there is an edge from node i to
node j in the dependency graph, and Ai j = 0 otherwise. The n× pd matrix Bd maps the defender’s
control input uk. One option is for the input uk to define the change in each cost metric for each
edge in the dependency graph as a result of some defender action. Consequently, we will have
pd > n. In this interpretation Bd will be a block diagonal matrix with its entries averaging the
impact of the metrics to obtain an overall change in cost for an edge. For example, if there are six
metrics and we use an unweighted average to combine them into a cost, then Bd will have the form



α 0 0 . . . 0 . . . 0
0 α 0 . . . 0 . . . 0
0 0 α . . . 0 . . . 0
...

...
... . . . ...

...
0 0 0 . . . α . . . 0
...

...
...

... . . . ...
0 0 0 . . . 0 . . . 0


where

α =
[

1/6 1/6 1/6 1/6 1/6 1/6
]
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0 =
[

0 0 0 0 0 0
]

The attacker’s input matrix Ba and input vector mk are defined similarly, but will have nonzero
entries along the entire diagonal. Alternatively, we can have Bd ∈Rn×n and Ba ∈Rn×n, which will
cause the input matrices to impact each metric equally. In this formulation, the input vectors uk
and mk represent the change in cost for fulfilling a dependency. This form is more amenable to
analysis of closed-loop feedback systems.

We interpret yk = Cdxk + vk as the defender’s view of the current system state xk. Conse-
quently, each of the qd rows of Cd will have a single 1 in a column corresponding to one of
the dependency graph’s edges. If qd < n then some of the edges are not visible to the defender.
Oftentimes this will be the case, since we do not necessarily assume that the defender has knowl-
edge of all of the attacker’s dependencies. Similarly, the attacker’s view of the system state is
zk =Caxk+qk and so Ca also has a single 1 in each of its qa rows. In general, we can have qa < n
to indicate that the attacker has incomplete knowledge of the dependency graph. However, in ac-
cordance with Shannon’s maxim that ”the enemy knows the system” [31] we will usually assume
that qa = n and that Ca = I, providing the attacker with visibility into each of the graph’s edges.
Note, however, that while the attacker may have knowledge of each of the edges, the random vector
qk may prevent the attacker from having perfect knowledge of xk.

We say that the system is defender observable if

Od =
[

Cd CdA CdA2 . . . CdAn−1 ]T (3.4)

has rank n and that it is defender controllable if

Cd =
[

Bd ABd A2Bd . . . An−1Bd
]

(3.5)

has rank n. Similarly, the system is attacker observable if

Oa =
[

Ca CaA CaA2 . . . CaAn−1 ]T (3.6)

has rank n and it is attacker controllable if

Ca =
[

Ba ABa A2Ba . . . An−1Ba
]

(3.7)

has rank n.

Now, consider the defender’s view of the system’s transfer function. Taking Z-transforms, we
obtain

zX(z)− zx0 = AX(z)+BdU(z)+BaM(z)+W (z)

Y (z) =CdX(z)+V (z)

by rearranging the state equation and substituting into the expression for Y (z) we obtain

Y (z) =Cd(zI−A)−1zx0

+Cd(zI−A)−1 [BdU(z)+BaM(z)+W (z)]+V (z) (3.8)

37



The transfer function observed from the defender’s perspective is Hd(z) = Y (z)/U(z) and so

Hd(z) =Cd(zI−A)−1
[

Bd +
BaM(z)+W (z)

U(z)

]
+V (z)/U(z) (3.9)

Ideally for the defender the BaM(z) term will be null, indicating no attacker activity. The defender
can estimate the value of this term from output measurements by solving eqn. 3.8 for BaM(z),
which yields

BaM(z) =C−1
d (zI−A) [Y (z)−V (z)]−BdU(z)−W (z) (3.10)

Similarly, the transfer function from the attacker’s perspective is Ha(z) = P(z)/M(z). Manipu-
lating the equations produces the attacker’s view of the output as

P(z) =Ca (zI−A)−1 [BdU(z)+BaM(z)+W (z)]+Q(z) (3.11)

and

Ha(z) =Ca(zI−A)−1
[

Ba +
BdU(z)+W (z)

M(z)

]
+Q(z)/M(z) (3.12)

The attacker can estimate the defender’s influence on the system by solving eqn. 3.11 for BdU(z)
to obtain

BdU(z) =C−1
a (zI−A) [P(z)−Q(z)]−BaM(z)−W (z) (3.13)

From both the attacker’s and the defender’s perspective, this open loop system is stable if the
eigenvalues of A fall within the unit circle.

Output Feedback

Now, we add output feedback and set points to our representation, as shown in Figure 3.2. This
allows the defender and the attacker to attempt to drive the system state, as they observe it, to
some desired value. State feedback is not an option for defenders since in general the state is not
observable to the defender, and in practice may not be visible to the attacker, either. Considering
Figure 3.2 we first note that

xk+1 = Axk +Bduk +Bamk +wk (3.14)
yk =Cdxk +vk (3.15)
zk =Caxk +qk (3.16)

where

uk = rk−Kdyk (3.17)
mk = sk−Kapk (3.18)

and where we have
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Figure 3.2. Output feedback state space representation for mov-
ing target defense.

Kd ∈ Rpd×qd is the defender’s feedback gain

Ka ∈ Rpa×qa is the attacker’s feedback gain

and where rk and sk are the defender and attacker set points, respectively. We begin by finding
the defender and attacker transfer functions. Considering the defender first, we assume zero initial
conditions and take z-transforms of the state and output

zX(z) = AX(z)+BdU(z)+BaM(z)+W (z)

U(z) = R(z)−Kd [CdX(z)+V (z)]

Y (z) =CdX(z)+V (z)

substituting U(z) into the first expression and expanding and rearranging terms yields

X(z) = (zI−A+BdKdCd)
−1×

[BdR(z)+BaM(z)−BdKdV (z)+W (z)] (3.19)

Substituting this into the expression for Y (z) produces

Y (z) =Cd (zI−A+BdKdCd)
−1×

[BdR(z)+BaM(z)−BdKdV (z)+W (z)]+V (z) (3.20)
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and so we obtain the closed loop transfer function seen by the defender as

Hcld(z) =
Y (z)
R(z)

= (3.21)

Cd (zI−A+BdKdCd)
−1
[
Bd +

BaM(z)−BdKdV (z)+W (z)
R(z)

]
+ V (z)

R(z)

Now, in the defender’s ideal case the BaM(z) term is the null vector. The defender can use a
measurement of Y (z) to estimate the value of BaM(Z). Solving for BaM(Z) in eqn. 3.20 gives

BaM(z) =C−1
d (zI−A+BdKdCd) [Y (z)−V (z)]

−BdR(z)+BdKdV (z)−W (z) (3.22)

The defender may be able to use this estimate of the attacker’s influence on the system to counteract
the attacker’s actions.

We may also desire to express the transfer function from R to Y while incorporating the at-
tacker’s input vector mk. If we assume knowledge of the attacker’s behavior and design a control
system that incorporates it, we may then be able to study how closely we can approximate this
situation when the defender either does not have knowledge of the attacker’s system, or when the
defender can only estimate the attacker’s influence, for instance, with eqn. 3.22. We begin by
considering the system state and both defender and attacker inputs

zX(z) = AX(z)+BdU(z)+BaM(z)+W (z)

U(z) = R(z)−Kd [CdX(z)+V (z)]

M(z) = S(z)−Ka [CaX(z)+Q(z)]

Substituting the expressions for U(z) and M(Z) into the expression for X(Z) we obtain

X(z) = (zI−A+BdKdCd +BaKaCa)
−1×
[BdR(z)+BaS(z)−BdKdV (z)−BaKaQ(z)+W (z)] (3.23)

Now, since we have that Y (z) =CdX(z)+V (z) then the transfer function from R to Y is

Y (z)
R(z)

=Cd (zI−A+BdKdCd +BaKaCa)
−1×[

Bd +
BaS(z)−BdKdV (z)−BaKaQ(z)+W (z)

R(z)

]
+

V (z)
R(z)

(3.24)

which is the same as eqn. 3.21 when Ba is the zero matrix. Finally, we also note from eqn. 3.23
that the system is stable if the roots of zI−A+BdKdCd +BaKaCa are within the unit circle.
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We can determine the attacker’s transfer function Ycla =
P(z)
S(z) by taking z-transforms of the state

and output, substituting the expression for M(z) into the expression for X(z), expand and rearrange
terms and substitute the result into the expression for P(z) to obtain

P(z) =Ca (zI−A+BaKaCa)
−1×

[BdU(z)+BaSz−BaKaQ(z)+W (z)]+Q(z) (3.25)

and so the attacker’s closed loop transfer function is

Hcla(z) =
P(z)
S(z)

= (3.26)

Ca (zI−A+BaKaCa)
−1
[
Ba +

BdU(z)−BaKaQ(z)+W (z)
S(z)

]
+ Q(z)

S(z)

The attacker can use eqn. 3.25 to estimate the defender’s influence on the system, BdU(z), by
calculating

BdU(z) =C−1
a (zI−A+BaKaCa) [P(z)−Q(z)]−BaS(z)+BaKaQ(z)−W (z)

Now, let’s consider the controllability and observability of this system. We begin by writing

uk = rk−Kdyk = rk−Kd (Cdxk +vk) (3.27)
mk = sk−Kapk = sk−Ka (Caxk +qk) (3.28)

considering the defender first, we substitute this expression for uk into the expression for xk+1 to
obtain

xk+1 = Axk +(Bdrk−BdKdCdxk−BdKdvk)+Bamk +wk

grouping terms provides

(A−BdKdCd)xk +Bd (rk−Kdvk)+Bamk +wk

and so the defender’s observability and controllability matrices are

Od =
[

Cd Cd (A−BdKdCd) . . . Cd (A−BdKdCd)
n−1 ]T (3.29)

Cd =
[

Bd (A−BdKdCd)Bd . . . (A−BdKdCd)
n−1 Bd

]
(3.30)

Considering the attacker’s perspective, we substitute the expression for mk into the expression
for xk+1 from which the attacker’s observability and controllability matrices are

Oa =
[

Ca Ca(A−BaKaCa) . . . Ca (A−BaKaCa)
n−1 ]T (3.31)

Ca =
[

Ba (A−BaKaCa)Ba . . . (A−BaKaCa)
n−1 Ba

]
(3.32)

Here, the system is defender stable if the eigenvalues of A−BdKdCd are within the unit circle.
The system is attacker stable if the eigenvalues of A−BaKaCa are within the unit circle.
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State Feedback

To overcome the defender’s inability to measure the current state, we can also consider state
observer feedback representations, as shown in 3.3. Before beginning, we note that the defender
may not be aware of all of the attacker’s edges, and that this prevents the defender from having an
observable system. Due to this, if the defender constructs a state observer feedback system then
information about unobservable modes will not be included in the output prediction error term, and
the defender’s state observer will only be stable if all of the unobservable modes are stable [27].

Considering Fig. 3.3, we first write down the state equations as

xk+1 = Axk−DdKd x̂d,k +Bdrk−BaKax̂a,k +Bask +wk (3.33)
x̂d,k+1 = Ax̂d,k +Bduk +Ld (yk−Cd x̂d) (3.34)
x̂a,k+1 = Ax̂a,k +Bamk +La (pk−Cax̂a) (3.35)

yk =Cdxk +vk (3.36)
pk =Caxk +qk (3.37)

uk =−Kd x̂d + rk (3.38)
mk =−Kax̂a + sk (3.39)

where x̂d,k and x̂a,k are the defender’s and the attacker’s estimates of the state at time k, respectively
and

Ld ∈ Rn×qd is the defender’s observer gain

La ∈ Rn×qa is the attacker’s observer gain

We begin by finding the transfer function from the defender’s perspective. First, we take the z-
transform of eqn. 3.33 and solve for X(z), to obtain

X(z) = (zI−A+BdKd)
−1×

[BdKdEd(z)+BdR(z)+W (z)+BaM(z)] (3.40)

Substituting this into the z-transform of eqn. 3.36 and divide by R(z) to find

Y (z)
R(z)

=Cd (zI−A+BdKd)
−1× [

Bd +
BdKdEd(z)+W (z)+BaM(z)

R(z)

]
+

V (z)
R(z)

(3.41)

From the defender’s perspective, this system is stable if the roots of zI−A+BdKd are within the
unit circle. The defender’s observability and controllability matrices are

Od =
[

Cd Cd (A−BdKd) . . . Cd (A−BdKd)
n−1 ]T (3.42)

Cd =
[

Bd (A−BdKd)Bd . . . (A−BdKd)
n−1 Bd

]
(3.43)
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Figure 3.3. State feedback with state observer state space repre-
sentation for moving target defense
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By substituting eqn. 3.40 into eqn 3.36 and solving for BaM(z) we can obtain the defender’s
estimate of the attacker’s influence on the system as

BaM(z) =C−1
d (zI−A+BdKd)×

[Y (z)−V (z)]−BdKdEd(z)−BdR(z)−W (z) (3.44)

Similarly, we can obtain the transfer function from the attacker’s perspective as

P(z)
S(z)

=Ca (zI−A+BaKa)
−1× [

Ba +
BaKaEa(z)+W (z)+BdU(z)

S(z)

]
+

Q(z)
S(z)

(3.45)

From the attacker’s perspective the system is stable if the roots of zI−A+BaKa are within the unit
circle, and the attacker’s observability and controllability matrices are

Oa =
[

Ca Cd (A−BaKa) . . . Ca (A−BaKa)
n−1 ]T (3.46)

Ca =
[

Ba (A−BaKa)Ba . . . (A−BaKa)
n−1 Ba

]
(3.47)

The attacker can use measurements of P(z) to estimate the defender’s influence by

BdU(z) =C−1
a (zI−A+BaKa)×

[P(z)−Q(z)]−BaKaEa(z)−BaS(z)−W (z) (3.48)

Now, let’s consider the situation in which the defender has knowledge of the attacker’s use of
state-observer feedback. If we consider the error terms

ed,k = xk− x̂d,k

ea,k = xk− x̂a,k

then we can write the state estimates as

x̂d,k = xk− ed,k (3.49)
x̂a,k = xk− ea,k (3.50)

Substituting eqns. 3.49 and 3.50 into eqn. 3.33 produces

xk+1 = (A−BdKd)xk +BdKded,k−BaKaxk+

BaKaea,k +Bdrk +Bask +wk (3.51)

Now, by taking the z-transform of eqn. 3.51 and substituting into the z-transform of eqn. 3.36 we
obtain the defender’s transfer function

Y (z)
R(z)

=Cd (zI−A+BdKd +BaKa)
−1×[

Bd +
BaS(z)+BdKdEd(z)+BaKaEa(z)+W (z)

R(z)

]
+

V (z)
R(z)

(3.52)
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The defender can obtain an estimate of the attacker’s influence by substituting z-transforms of eqns.
3.39 and 3.50 into eqn. 3.44, solving for the Ba terms, and substituting X(z) =C−1

d (Y (z)−V (z))
which yields

Ba
[
S(z)+KaEa(z)−KaC−1

d (Y (z)−V (z))
]

=C−1
d (zI−A+BdKd)×

[Y (z)−V (z)]−BdKdEd(z)−BdR(z)−W (z) (3.53)

Output Feedback Example: Application to Network Random-
ization Approaches

Now, we apply the output feedback modeling approach to studying network randomization
techniques. In particular, we consider IP and port hopping and route randomization. We use the
output feedback model to study the dynamics of a system, as viewed by defenders and attackers
of that system, in response to defender and attacker actions on the system. This study allows us to
explore the effects that attackers and defenders can have on the system and the dynamics of various
defender strategies for deploying the mitigations.

First, we must combine the dependency graphs of the three defenses into a single dependency
graph. Then, we take the adjacency matrix representation of this graph as the system matrix, A.
As in section 3, the Bd and Ba matrices map the defender’s and attacker’s inputs, which represent
the impact of the inputs on each of the metrics affiliated with each of the edges in the dependency
graph, to their effect on the system state, xk, which represents the cost of fulfilling the dependency
represented by an edge in the graph. These input matrices define how the attacker and defender
actions can influence the system state. Consequently, it is through the Bd matrix that we define the
impact of a moving target defense on the system, In the output feedback system, we additionally
have attacker and defender feedback gain matrices Kd and Ka. These matrices determine how much
influence the defender’s and attacker’s measurement of the system state have on the selection of
the next defender or attacker action.

The defender’s input set point, rk and attacker’s input set point, sk, represent the desired values
of each of the metrics for each of the edges from the defender and attacker perspectives. While
more nuanced set points are possible, we generally assume that the defender will want to minimize
all of the costs for fulfilling all of the defender’s dependencies while also maximizing all of the
costs for fulfilling each of the attacker’s dependencies. The attacker will desire to minimize each
of the attacker’s costs. While it is unlikely that either the defender or the attacker will be able to
reach these ideal set points, the defender can use the distance from this set point, as measured by
uk, to help in selection of an appropriate moving target defense. That is, we envision a playbook,
consisting of a set of j matrices

{
Bd0 . . .Bd j

}
where j is the number of defensive moves available to

the defender. Each of these defenses will impact the system by changing some of the cost metrics
for some of the edges in the dependency graph. At each time step k the defender can choose
which defense, if any, to apply to the system. If no defensive move is made then the defender
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Figure 3.4. Network randomization dependency graph showing
costs to fulfill dependencies prior to applying network random-
ization. The user’s costs are all 0 because our user costs metrics
consider percent increase in costs.
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simply selects the initial input matrix Bd0, which represents the cost of fulfilling dependencies
with no defenses in place, and has no impact on the system at that time step. Considering this,
we have time-varying input matrices Bd(k) and Ba(k), and our problem is to identify which of
the available defender moves

{
Bd0 . . .Bd j

}
to select at each time step. We call a sequence of

moves (Bd(0) . . .Bd(k)) a defender strategy. There are many ways to undertake the analysis. We
can define a strategy and then study how it performs by solving the state equations to find the
resulting system dynamics. We can also use the defender’s knowledge of the system at a given
time k, as provided by the output vector yk, to choose the next defense Bd,k+1 according to some
rulebook and study the resulting evolution of the system dynamics. The resulting sequence of input
matrices is a defender strategy guided by the rulebook, and so its performance can be used to help
us define acceptable rulebooks and strategies for various attacker scenarios. Similar comments and
definitions hold for the attacker.

Figure 3.4 shows an example dependency graph for standard TCP/IP and HTTP network com-
munications on which we will study network randomization approaches [8]. The costs for fulfilling
dependencies in this graph are the initial costs without any network randomizations in place. We
begin by briefly describing the dependencies. First, the attacker performs a traffic scan to iden-
tify endpoints and valid IP addresses, a network scan to identify IP addresses with open HTTP
ports, and finally an HTTP scan. The attacker also creates and tests attacks, and then launches
an exploit by submitting a malicious script, HTML, or command to the server and injecting it to
the targeted user when the user visits the site. This compromises the user’s system. The user has
dependencies related to communicating with HTTP over TCP/IP. The network randomization ap-
proaches impact the user and attacker dependencies in various ways. IP randomization impacts the
attacker’s ability to identify the network topology and correlate traffic scan data to identify valid
endpoints. This makes it more difficult to select a valid IP address, which in turn increases the
difficulty of finding an open HTTP port over which to submit a malicious payload to a targeted
user. It also increases the user’s cost for select valid IP addresses, communicating over TCP/IP,
and sending HTTP requests. The impact on the user is primarily from increased network latency,
and from small increases in CPU and memory requirements. Port randomization also complicates
identification of the network topology, increases the difficulty of selecting valid HTTP ports, and
consequently of submitting malicious payloads to the user. It increases the user’s costs for select-
ing valid ports, communicating over TCP/IP, and sending HTTP requests by increasing network
latency and slightly impacting CPU and memory requirements. Path randomization primarily im-
pacts the attacker’s ability to correlate traffic scan data for network mapping. It increases the user’s
costs for communicating over TCP/IP and sending HTTP requests by increasing network latency.
When we combine these mitigations we impact the union of the dependencies impacted by the in-
dividual dependencies, although the change in costs for fulfilling the dependencies is usually less
than the sum of the change for the individual mitigations.

We study this system with our output feedback state space model. For brevity, we consider
only the influence of defensive actions through the Bd matrices and the defender’s set point rk,
although similar assignments hold for the attacker’s input matrices Ba and set point sk.

We begin by transforming our dependency graph model of the system depicted in 3.5 into our
output feedback state space representation. In this representation the system matrix A ∈ Rn×n
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where n = 44 represents the 44 nodes in our system and the edges connecting these nodes. We
also have input matrices Bd,Ba ∈ R44×44. The system’s initial conditions represent the cost for
fulfilling each of the dependencies without any defenses in use. For this example, we consider IP
randomization. This defense impacts the defender by slightly increasing the memory and process-
ing requirements for selecting valid IP addresses at u0 and u13, while also slightly degrading the
system and network stability for doing so. It also increases latency for standard TCP/IP commu-
nications at u2− u4, u6, u8, and u10− 12. From the attacker’s perspective the time and cost for
acquiring access and knowledge to identify the network topology (a7), correlate traffic scan data
(a10), and select valid IP addresses (a14) is increased, as is the the unpredictability and frequency
of defense movement at these edges. The unpredictability, frequency of movement, and time and
cost for acquiring the necessary knowledge to select an IP address with open HTTP port(a26),
submit a malicious script, HTTP, or command (a37− 39), and identify when the targeted user
visits the compromised web site (a43) are also increased. We represent these changed costs for
fulfilling dependencies by creating a new input matrix Bd1 with diagonal entries reflecting the new
overall costs for fulfilling each dependency. Note that since several edges can originate at the same
node, as with node n3, the influence of a defense on a particular node is represented by adding
the influence on all of the edges originating at that node. This is a consequence of our adjacency
matrix representation of the graph, which causes the state space models to view the system from
the perspective of costs for reaching a node, rather than the costs for traversing edges. This aliases
the influence of edges originating from a single node into a single entry of the Bd or Ba matrices,
and also into a single entry of the set point, state, and output vectors. The defender wants the cost
of fulfilling every attacker edge to reach its maximum value of 1 and for the cost of fulfilling each
defender edge to reach its minimum value of 0. These desires are codified in the set point vector rk
by setting the ith element of rk to γ where γ is the number of attacker edges originating at node i.
We also have output matrices Cd,Ca ∈Rn×n,n = 44. We generally assume that the attacker has full
knowledge of the dependency graph, and so Ca = In. In this case, we also assume that the defender
is aware of all of the nodes in the dependency graph, and so we also have Cd = In. However, this
will not always be the case. In particular, if we want to model an attack that the defender is not
familiar with then we would include nodes and edges in the dependency graph that are unknown
to the defender, and the diagonal elements of Cd that correspond to these nodes would be set to 0.

With these assignments in place we can begin to study the system. First, we consider properties
of the open-loop system with Bd0 in place, indicating that none of the network randomization
options is applied. First, we find that the system is defender observable, but that it has 14 states
that are uncontrollable by the defender. A pole-zero plot reveals that the open loop system is
unstable, but we also find that all of the uncontrollable modes are located at the origin, and so we
know that the system can be stabilized by the feedback controller. We use the Linear Quadratic
Regulator (LQR) design technique to find a feedback gain matrix Kd ∈Rn×n,n = 44 that stabilizes
the closed-loop system [1]. The feedback has no impact on the observability or controllability
of the system. We next find the time-domain response of the open and closed loop system and
compare them. Results for the attacker edge (n25,n26) are presented in figure 3.5. In figure 3.5a
we see the impact of IP randomization on attacker dependency A28 = (n28,n26), which is not
directly influenced by the IP randomization. Here, we see that the IP randomization moves the
the attacker’s costs closer to the set point than the system with no network randomization. Similar
behavior is observed in figure 3.5b, which shows the dynamics of attacker dependencies A25 and
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A26. Here, edge A26 is directly influenced by the IP randomization but A25 is not. As before, the
system that includes IP randomization is closer to obtaining the set point. Notice that, since two
attacker edges originate at node n22 the set point in figure 3.5b is 2. While we do not show them
here, many of the attacker and user dependencies do not exhibit any dynamic behavior under the
baseline or IP randomization conditions. Some of these dependencies are uncontrollable and some
are not influenced by these particular inputs. This will usually be the case. If the defender wishes
to impact all of the attacker’s dependencies, then the defender must identify a set of defenses that
collectively cover all of the attacker’s edges. Oftentimes, this will not be possible, and so we can
instead use graph analysis techniques such as graph centrality and community detection to identify
those attacker edges that are most beneficial to target. Further discussion on this topic appears in
[18].
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Figure 3.5. (a) Response for adversary dependencies A28 =
(n28,n26) and (b) A25 = (n22,n13) and A26 = (n22,n23) before
and after IP randomization. Edges A25 and A28 are not directly
impacted by the IP randomization.
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Chapter 4

Conclusion

Although many MTD approaches have been presented in the literature, we find that relatively
few of them have been adopted in practice. We suspect that this is because, in addition to impacting
attackers, many MTDs break or increase the cost of system dependencies for users and adminis-
trators. These impacts on legitimate system users result in the cost of the MTD outweighing its
benefits and prevents it from being adopted. To explore this issue we presented a dependency
graph approach for modeling MTDs and their impacts on users, defenders, and attackers, and ap-
plied this model to address space layout randomization. We find that results from our model agree
with previously reported experimental results, and so we then suggest optimization and graph anal-
ysis approaches for studying dependency graphs to identify appropriate locations for introducing
MTDs. We have also introduced several state space representations for modeling the dynamic
interactions between attackers and defenders in cyber systems. These modeling approaches may
be particularly well suited to analyzing moving target defense systems since in these systems the
defensive posture changes over time. We focused our attention on describing several potential mod-
els and developing the mathematical fundamentals for analyzing them, including various transfer
functions, observability, and controllability. Future work can use this foundation to explore mode
advanced concepts by adopting concepts from the wealth of existing control theory work to these
new models.

Future work should also study the resiliency of systems to perturbations and modeling inaccu-
racies. In particular, it will be important to understand how sensitive the defender is to inaccura-
cies in modeling the attacker. For example, sensitivity to an attacker that uses a different feedback
structure than that modeled by the defender, or an attacker that uses an open-loop strategy in which
attacks are not influenced by observation of the system behavior are both of interest. It will also
be important to study sensitivity to inaccuracies in the dependency graph. These may be due to
unknown and un-modeled dependencies or inaccurately modeled dependencies. Additionally, our
network randomization example only considers the defender’s influence on the system. Future
analysis should study the system dynamics that result from a combination of defender and attacker
inputs to the system.
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