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Abstract

The 2016 Parameterized Reduced Order Modeling (PROM) Workshop was held in June, 2016,
in Albuquerque, NM. This workshop included 30 researchers who took part in a two day
discussion regarding the state of the art for PROMSs, complimentary reduced order modeling
(ROM) theories, and discussion of the future directions of PROM research. The goals of the
workshop were three-fold: to assess the relative accuracy, efficiency, and merits of the different
PROM methods; to discuss the state of the art for ROMs and how PROMs can benefit from these
advances; and to define the pressing challenges for PROMs and a path for future research
collaborations.
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NOMENCLATURE

FE Finite Element

HD Hyper Dual

POD Proper Orthogonal Decomposition
PROM Parameterized Reduced Order Model
ROM Reduced Order Model



1. BACKGROUND

The focus of the 2016 Parameterized Reduced Order Modeling (PROM) Workshop is the
development and accuracy of existing PROM tools. A number of theories for developing
PROMs have recently been put forward [1, 2, 3, 4, 5, 6, 7], leading to the goals of this workshop:
- Assessing the relative accuracy, efficiency, and merits of different PROM approaches
- Discussing the state-of-the-art for reduced order models (ROMSs) and how PROMSs can
benefit from these advances
- Defining the pressing challenges for PROMs and a path for future research
collaborations.

The impetus for PROMs is found in modern engineering analysis, which must take into account
the effects of aleatoric (parametric) uncertainty in the analysis of a system. As a real system is
manufactured, part-to-part variations are introduced that can have significant ramifications on the
functionality of the system. Thus, in order to account for these variations at the design stage, a
methodology is needed to assess the performance of many (often thousands) of permutations of a
design to qualify the performance of a manufactured system.

The most common method to simulate the performance of a system is via high fidelity modeling,
such as using the finite element (FE) method. High fidelity computational simulations often can
provide very accurate predictions; however, they have a very high computational cost. In order to
develop simulations that are both efficient and sufficiently accurate, ROMs often are used as
surrogates for a full order model in order to decrease the computational expense of analysis.

To model the perturbations that are found in manufactured systems without a systematic and
efficient reduced order approach would be prohibitively expensive. For example, consider a
scenario where it takes several weeks to develop a high quality mesh for one relatively simple
component. To quantify the aleatoric uncertainty associated with manufacturing, thousands of
perturbations of the ideal geometry are necessary, and each likely requires a new mesh. Even
with factoring in time saved from some automation of the process, the number of man hours
required to construct these meshes is on the order of decades. In addition, the computational time
to analyze all of these models is on the order of years assuming that an entire super computer can
be dedicated to the analysis. Clearly, decades of time are infeasible constraints to be incorporated
into a design cycle. One method of accounting for these perturbations is to create a PROM of the
system.

In what follows, the details of the 2016 PROM Workshop are presented. In Section 2, the
programmatic details for the organization of the 2016 PROM Workshop are discussed. In
Section 3, both presentations and discussion of presentations from the 2016 PROM Workshop
are given. Finally, in Section 4, a summary of the discussion from the plenary section of the
20016 PROM Workshop is given, including the 12 main themes that were identified during the
2016 PROM Workshop’s presentation sessions.






2. WORKSHOP ORGANIZATION

The workshop was held at the COSMIAC facility (located at 2350 Alamo Ave SE, #100,
Albuquerque, NM), which is a facility jointly managed by the University of New Mexico and
Air Force Research Laboratories. The workshop itself spanned two days: June 2™ and 3", 2016.
To achieve the goals of the workshop, it was organized into five sessions: one session
overviewing recent advances in PROM, two sessions highlighting recent advances in ROMs, one
session consisting of PROM tutorials and solutions to a round robin problem distributed to
several attendees in advance of the workshop, and one session focused on discussing future
directions of PROM research.

2.1 Schedule

The agenda for the workshop followed:

June 2nd
ee O
7:30-8:15  Coffee and bagels
8:15-8:30  Welcome and introduction to the workshop

8:30-9:05  Bogdan Epureanu, NX-PROMSs

9:05-9:40 Harry Millwater, Overview of the ZFEM Multicomplex Finite Element Method
9:40 - 10:15 Matthew Brake, Hyper Dual Numbers

10:15 - Matthew Bonney, Meta-Modeling

10:50

11:00-1:00 Lunch

e O
1:00-1:30 Laura Mainini, Multistep ROM Strategy to Support Real Time Data to Decisions
1:30-2:00  Judy Brown, Quantifying the Impact of Material-Model Error on Macroscale
Quantities
2:00-2:30  Ben Pacini, Experimental ROMs

2:30-2:45 Break

e O
2:45-3:15  Gustavo Castelluccio, Multiscale Modeling Applications
3:15-3:45 Manuel Garcia, 2-Dimensional Curvilinear Progressive Fracture Using
Multicomplex FEM
3:45-4:15  Rob Kuether, Viscoelastic ROMs




June 3rd

7:30-8:00 Coffee and Bagels

e O 4 and
8:00-8:05  Overview of Day 2
8:05 —8:45  Jau-Ching, NX-PROM Round Robin and Tutorial
8:45-9:25  Jeff Fike, Hyper Dual Number Round Robin and Tutorial
9:25-10:05 Matthew Bonney, Meta-Modeling Round Robin and Tutorial
10:05 - Andres Aguirre, A Library for Multi-Complex and Multi-Dual Numbers
10:35
10:35 - Break if time allows
10:45
10:45 - Plenary Discussion on the Future of PROM Research
12:30

2.2 Participants

Thirty researchers attended this invitation only workshop:

A - ee

Andres Aguirre

EAFIT

aaguirr2@eafit.edu.co

Arturo Montoya

UT San Antonio

Arturo.Montoya@utsa.edu

Ben Pacini Sandia brpacin@sandia.gov
Bogdan Epureanu Michigan epureanu@umich.edu
Brenton Taft AFRL brenton.taft@us.af.mil
Brian Robbins Sandia barobbi@sandia.gov
David Day Sandia dmday@sandia.gov

Derek Hengeveld AFRL dhengeveld@loadpath.com
Garth Reese Sandia gmreese@sandia.gov
Gustavo Sandia gmcaste@sandia.gov
Castelluccio

Harry Millwater UT San Antonio  harry.millwater@utsa.edu
Jau-Ching Lu Michigan jauching@umich.edu
Jeffrey Fike Sandia jafike@sandia.gov

Joe Bishop Sandia jebisho@sandia.gov
Jordan Massad Sandia jemassa@sandia.gov

Judy Brown Sandia judbrow@sandia.gov
Kevin Irick AFRL kevin.irick.1.cttr@us.af.mil
Kevin Troyer Sandia kltroye@sandia.gov

Kirsten Peterson

Colorado State

kirstenpeterson999@gmail.com

10




Laura Mainini MIT Imainini@mit.edu

Lynn Munday Sandia Imunday@hotmail.com

Manuel Garcia EAFIT mgarcia@eafit.edu.co

Matthew Bonney Wisconsin msbonney@wisc.edu

Matthew Brake Sandia mrbrake@sandia.gov

Matthew Castanier USARMY matthew.p.castanier.civ@mail.mil
TARDEC

Mikhail Mesh Sandia mmesh@sandia.gov

Pania Newell Sandia pnewell@sandia.gov

Rob Kuether Sandia rikueth@sandia.gov

Scott Grutzik Sandia sigrutz@sandia.gov

Vit Babuska Sandia vbabusk@sandia.gov
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3. PROM PRESENTATIONS

In what follows, only the presentations from the PROM talks are reproduced. Many of the
presentations from the second and third sessions are in the process of being published, and are
thus withheld to protect the authors’ interests.

3.1 Session 1 Presentations — PROM Methodology Overview

The first session of the 2016 PROM workshop focused on presenting the four main branches of
PROM research. This set of four presentations is at a higher level to both introduce the
methodologies and to demonstrate their strengths and weaknesses.

3.1.1 NX-PROMSs, Bogdan Epureanu

The Next Generation PROMs (NX-PROMs) [1, 2] and their precursors developed by Bogdan
Epureanu et al. at the University of Michigan and Matthew Castanier of the US Army TARDEC,
represent some of the first work within the field of PROMs. The premise of this family of
PROM s is that four perturbations of a model in a dimension of interest are calculated. These
perturbations are then combined, using a special weighting function formulated based off of the
element formulation from the high fidelity model, to create a finite difference-based PROM. This
approach has proven very effective for single variable expansions, but more work is needed for
multivariate expansions.

13



UNIVERSITY OF MICHIGAN

Next-Generation Parametric Reduced Order Models

Bogdan |. Epureanu
Matt Castanier
Jau-Ching Lu

Sung Kwon Hong

B} Overview: Objectives

Develop
signal

Enhance
design

Develop new,

processing

:nd::;ic: “ and and damage capabilities for
simmaﬁgn identification vehicle
capabilities technology modifications,
fo:) dynamic for fast and Elp-armoring,
analysis of accurate integrated

. I predictions, monitoring,
£ SRR RBDO, advanced

(nonlinear)

hybrid-material
structures

structures

monitoring,
prognosis,
and CBM
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Overview: Challenges

1. Component-level uncertainties, design changes
and damages affect system-level structural response

2. Innovative designs, RBDO, guidance for repairs,
evaluation and measurement after repairs require
fast re-analysis to reduce computational cost

3. Cracks create nonlinear dynamics (much harder to
tackle) and crack lengths are difficult to identify

4. Monitoring, evaluation, measurement and inspection
require system information which relies on sensors
and signal processing, which is difficult for complex
structures with both uncertainties & damage

5. Element-level structural characteristics have a highly
nonlinear dependence on parameters for
parametric reduced order models

Program Overview: Solutions

1. Develop novel substructure-based methods to construct ROMs

2. Create new algorithms to allow component-level models to be
easily plugged back into ROM and enable fast re-analysis

3. Develop novel parameterizations for ROMs to treat element
nonlinearity (the next-generation PROMs)

4. Develop new signal processing & damage identification methods

QO Develop new algorithms for mode
approximations (BMAs) to characterize the
dynamics of complex nonlinear structures

U Develop new signal processing
technology by generalizing EIDV for
PROMs and BMAs (cracked complex
structures with structural variability)

QO Develop new crack identification
algorithms which are enabled by the new
PROMs and signal processing algorithms

15



> Next-Generation PROMs

Computational speed-up (modeling architecture)
Increased/Enhanced robustness
Key enhancements of element-level characteristics
Results Complex HMMWYV frame and simple plate
Integrated PROMSs with optimal signal processing

» New optimization techniques for up-armoring

plementation of vehicle performance o

yiimization

From ROMs to PROMs

16



Reduced Order Models: Overview

B Dynamic analysis of invariant complex structures
» Projection by lower modes of the large-scale eigenvalue problem

Divide and Conquer

)

Component Mode Synthesis
(CMS)

Takes more than a day only for the
dynamic structural analysis

B Dynamic analysis of damaged complex structures
» Projection by proper basis of the large-scale eigenvalue problem

» Proper basis can be defined for each damage type: cracks, dents and
other structural variations of complex structures

Reduced Order Models: Sub-Structuring

= Assemble ROMs of system (e.g., frame) from finite element analyses
of components and subcomponents

= Efficiently predict vibration, loading, stress in critical regions

System Level:
Vehicle Frame

Finite element model

of frame

Component Level:

Left Rail

Subcomponent Level:

Dynamic stress for Rail Sections,
component mode Reinforcement Plates - t
(left rail) einforcemen

/ - plates
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Why PROMs: Local Variations Lead to Global Changes

'No-crack + Structural Variations

:

30t mode

30t mode

3% Crack + Structural Variations

1t mode
30t mode

Reduced Order Models: Parametric Models (PROMs)

* Enable fast re-analysis

» Subcomponent dynamics evaluated at
sampled parameter values

» System-level response expressed as
function of parameter changes

= Balmeés: Collected eigenvectors at sampled points in the
parameter space
Problem: Overhead computational cost is very high to get
the modal matrix to project the FE model

@bal PROM (Parametric Reduced Order Models) \ /’ ﬂ

Reinforcement plate
thickness changes

- CMB-PROM (Component Mode Basis PROM)

= Zhang (2005): Collect fixed interface normal modes and
global interface mode and project the FE model

Problem: Global analysis not substructural analysis

Multi-component
- Component PROM _—
\- Park (2008): Developed PROM for substructural anaiyy \ PROM (MC-PROM)

Problem: A single design component is tackled

18



Analysis Framework

B Divide the global structure into o
substructures with or without damage ° O

B Apply Craig-Bampton CMS (CB-CMS) for
substructures which do not have any 0 O
damage or variability

0Q O

m Apply MC-PROM for the substructures with
model variations (e.g. uncertainties)

Assemble
substructures to get the
system-level response
(entire structure)

B Apply BFA for cracked structure analysis o

Core technologies
W CB-CMS

Efficient framework for
m Multi-Component PROM damage detection and for

W SMC-CMS
B Bilinear Frequency and Bilinear Mode Approximations

. structural predictions

Next-Generation PROMs

19



Next Generation PROMs: Basics of CMS

willvea ] L] ”
uO (i) \II(_.' (I)\N (i) pO (N e N

Interior Interior
yomma- DOF ==sse « _Inteface  ,ese=se= DOF sseusswems

2 ] ooF [ @HO—0-0—0-0-—0-0"
: OO0 O0000;
: f 0000000
Component 1 E I(} {.} {) & (> {} (>E
) H ) ‘@i DO r):
Static modes: as many Selected fixed-interface L5 7 s e o O I
as interface DOF normal nodes
Component 1 Component 2
B ; th component mass and stiffness matrix and force vectors
C CN (& (6
MCECMS m, m, K CBCMS _ k, 0 FOBCMS _ f
i NC N i N i fN
m, m:‘ { 0 kr‘ { i

Key: How to create a good transformation matrix

- Superscript (: Constraint part

_Superserpt Ny Intsiislpart in the presence of parameter variability ?

- Subscript i: i th component

Next Generation PROMSs: Transformation Matrix

O Previous Approach: static constraint modes and fixed-interface
normal modes for the nominal case and the upper limit case

I I . 0 0
TPROM = [TC TN] = oo pl o @
s ci ¥y N

Static constraint modes <«-+-+ Fixed-interface normal modes
T,.: Constraint modes (nominal/upper) T, : Fixed interface normal modes (nominal/upper)

0 Challenges

1. The transformation matrix (and the mass matrix): only information
from substructures with nominal and upper limit (parameters)
while stiffness matrices parameterized by 3" order Taylor series

2. If the normal mode set T, is not truncated, the size of PROM mass
and stiffness matrices can be bigger than full order matrices

3. Taylor series needs large number of matrix operations, and the
accuracy of the parameterization is limited
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Next Generation PROMs: Enhancements

U Improved accuracy/performance of the transformation matrix
Enhance accuracy and robustness of subspace of normal modes
Enhance capability to capture subspace of constraint modes

U Example: subspace of normal modes

I I I
Torons = ‘I’? ‘PE ‘Pf*

[opooy AY | |=

T v
PROM — TPROMMFEM TPROM K!‘ROM = TPROMKﬁW TI’R()M

Next Generation PROMs: Enhancements

U Example: subspace of constraint modes
Enhance robustness: reduce the number of static constraint modes

R @{ pl—p}l,g{ P=p, ).I,IC
SR 2 P—Dy

L v, L & L £ new static constraint modes
* o . .
Nominal dp 28p 38p
Po Dy

O Key Feature:
New implementation without reconstructing PROM matrices
Calculations: just a simple linear combination of partitions of
the initially generated PROM matrices

21
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L

! (%ase

oo L rear
J

L front _ -

- \ Ll [
oy s e
- -’\ .
~ Reinforcement Frame

% Engine Cradle
Uncertainty + Damage Scenario

Each reinforcement frame has thickness variation
Engine cradle has a dent

Substructure Thickness, Case1 Thickness, Case2
L rear 3.04 mm — 4.63 mm 3.04 mm — 5.58 mm
L front 3.04 mm — 5.38 mm 3.04 mm — 4.09 mm

Results: Vehicle Frame: Forced Response

Full order model ROM
System DOF 119,808 L 2,420 Sampled Point
Initial Analysis Time 60,125 (sec.) iy 21,956 (sec.) 5
Reanalysis Time 60,125 (sec.) —l» 595 (sec.)
“100
35 T v v 35 T T T T T T T T
--------- Healthy sesuneeens Healthy
5 Case 1 for full FE - Case 2 for full FE
r AR Case 1for ROM || 3 i | .. Case 2 for ROM

Velocity (mm/sec)
Velocity (mm/sec)

52 514 {:6 5I8 6:0 elz 6|4 sls als 70 52 54 56 58 60 62 64 66 68 70
Frequency (Hz) Frequency (Hz)

Forced response for cases 1 and 2
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/’\ Reinforcement Frame

-~
-
Engine Cradle
s
P

—©— Case 1
—&—Case2

Crack length measured
along the surface

n

L L 13 " ' L "
10 20 0 40 50 60 70 80 90

Crack length (%) 8" mode

Case 1 Case 2

Substructure Thickness Variation Thickness Variation

7 10 mm — 10.12 mm 10 mm — 10.06 mm

8 10mm— 10.12mm 10 mm — 10.06 mm

L

Mode | Healthy (FEM) Damaged (FEM) Case 1 (previous PROM) | Case 1 (new PROM)
1 23.276778 23.173331 22.906386 23.173995
2 40.108421 40.255157 40.112458 40.256144
3 96.111376 95.732472 95.393447 95.733345
4 112.16800 112.99557 112.87563 112.99644
5 155.84310 156.04702 165.77790 166.04771

Case 2 (FEM) Case 2 (previous PROM) | Case 2 (new PROM)
1 23.224843 23.223324 23.062921 23.224843
2 40.182215 40.181979 40.407017 40.182215
3 95.923606 95.921692 95.307588 95.923606
4 112.58054 112.58008 113.88731 112.58054
5 155.95068 155.94913 156.18793 155.95068
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» Refined parametric reduced order modeling
L Enhanced transformation matrix (significant computational savings)
L New static constraint modes developed and implemented
L Novel interpolation to capture element-level nonlinearity

25



3.1.2 Multicomplex FEA, Harry Millwater and Manuel Garcia

The multicomplex method, based on higher order complex numbers in which multiple imaginary
number systems are defined, is developed by Harry Millwater et al. at the University of Texas at
San Antonio. The advantage of using these multicomplex numbers is that they allow for either
higher order derivatives to be calculated (including cross derivatives) or for perturbations in
multiple dimensions to be considered simultaneously. To date, this method has focused on
modeling crack propagation [5, 6]. The advantage of this approach is two-fold: one, the
multicomplex numbers allow for very accurate calculations of local derivatives, and two, the
implementation in commercial FEA code is non-intrusive. Two presentations were given on this
method, the first by Harry Millwater, and the second by Manuel Garcia.

Overview of the ZFEM Multicomplex Finite
Element Method

Harry Millwater', Arturo Montoya', Manuel Garcia?,
Andres Aguirre?,
Dept. of Mechanical Engineering
1-University of Texas at San Antonio
2-Eafit University, Medillin Colombia

Parameterized Reduced Order Modeling Workshop
June 2 & 3, 2016

Um University of Texas at San Antonio
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Personnel

= Harry Millwater, Professor, ME, UTSA

= Arturo Montoya, Assistant Professor, CE, UTSA

= Manuel Garcia, Professor, ME, Eafit Univ., Medillin, Colombia

= Andres Aguirre, PhD student, ME, Eafit Univ., Medillin, Colombia

= David Wagner, PhD student, ME, UTSA

= Daniel Ramirez, PhD student, ME, UTSA

= \Wes Fielder, MS students, UTSA

= Jose Garza, PhD ME UTSA, Dec 14

= Andrew Baines, MS ME UTSA, Dec 14 Daniel Ramirez

Q

Jose Garza Wes Fielder ~ Andrew Baines David Wagner
University of Texas at San Antonio

ZFEM Development Timeline @i

08 Millwater working on probabilistic sensitivities hears about CTSE method applied in aerodynamics

08 CTSE applied to fatigue code to compute lifing sensitivities wrt initial crack size, etc. (Voorhees,
MSME UTSA)
« A Voorhees*, H.R. Millwater, R. Bagley, P. Golden, “Fatigue Sensitivity Analysis Using Complex Variable Methods,” Int J Fatigue 40 (2012)
61-73, doi:10.1016/ jiifatigue.2012.01.016
08-10 2D complex FE code written in Matlab. Concept of imaginary nodal coordinates introduced.
(Voorhees, MSME UTSA)

* A Voorhees*, H.R. Millwater, R.L. Bagley, “Complex Variable Methods for Shape Sensitivity of Finite Element Models,” Finite Elem. Anal.
Des., 47 (2011) 1146-1156, doi:10.1016/j.finel.2011.05.003

10-11 2D weight functions computed using CTSE with Matlab complex FE code (Wagner, MSME UTSA)

+ D. Wagner*, and H.R. Millwater, "2D Weight Function Development using a Complex Taylor Series Expansion Method,” Engng Fract Mech
86 (2012), 23-37, 210- doi:10.1016/j.engfracmech.2012.02.006

11-12 Implementation into Abaqus using UEL. New method called ZFEM. (Wagner, MSME UTSA)

* H.R. Millwater, D. Wagner*, A. Baines*, K. Lovelady*, “Improved WCTSE Methed for the Generation of 2D Weight Functions through
Implementation into a Commercial Finite Element Code,” Engng Fract Mech, 109 (2013) 302-309, http://dx.doi.org/10.1016/j.engfracmech.
2013.07.012

12 Extension of CTSE to multicomplex mathematics discovered by UTSA (Lantoine). Implemented into
Abaqus. (Wagner, MSME UTSA)

13-16 Extension to 2D progressive fracture (Wagner, Garcia)

* H.R. Millwater, D. Wagner, “A New Progressive Curvilinear Strain Energy-based Crack Growth Modeling Algorithm using Multicomplex
Variable Finite Elements,” Advanced Materials Research Vols. 891-832 (2014) pp 1015-1020 Online available at , doi:
10.4028 / /AMR.891-892.1015

13-14 ZFEM extended to plasticity in Abaqus (Montoya, Gomez-Farias, Fielder)

* A Montoya, R. Fielder*, A. Gomez-Farias*, H. Millwater, “Finite Element Sensitivity for Plasticity using Complex Variable Methods,” J. Eng.
Mech. 141 2 2015, DOI:10.1061/(ASCE)EM.1943-7889.0000837, 04014118.
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ZFEM Development Timeline @i

13-14 Application to Newmark-beta structural dynamics (Garza, PhD ME UTSA)
* J. Garza*® and H. Millwater, "Multicomplex Newmark-Beta Time Integration Method for Sensitivity Analysis in Structural Dynamics”, AIAA
Journal, Val. 53, No. 5 (2015), pp. 1188- 1198, doi:
14-15 High order probabilistic sensitivities demonstrated. Needed functions of matrices developed.
(Garza, PhD ME UTSA)

* J. Garza® and H.R. Millwater, “Higher-Order Probabilistic Sensitivity Calculations Using the Multicomplex Score Function Method,”
Probabilistic Engineering Mechanics, 45 (2016) 1-12, http://dx.doi.org/10.1016/j.probengmech.2015.12.001

14 ZFEM extended to creep in Abaqus (Gomez-Farias BSCE UTSA, Montoya)
* A. Gomez-Farias*®, A. Montoya, H.R. Millwater, “Complex Finite Element Sensitivity Method for Creep Analysis,” International Journal of
Pressure Vessels and Piping (2015), V 132-133, 27- 42, http://dx.doi.org/10.1016/].ijpvp.2015.05.006

14 Application to 3D fracture demonstrated (Baines, MSME UTSA)

+ H.R. Millwater, D. Wagner", A. Baines”, and A. Montoya, “A Virtual Crack Extension Method to Compute Energy Release Rates using a
Complex-valued Finite Element Methad,” Engineering Fracture Mechanics 162 (2016) 85—111, http://dx.doi.org/10.1016/j.engfracmech.
2016.04.002

15-16 Bioheat transfer (Garcia)
+ Sensitivity analysis in thermal modeling of radiofrequency ablation using the complex finite element method” by Monsalvo, J.; Garcia, M.;
Millwater, H.; Feng, Y., Phys. Med. Biol.: PMB-103963 (Under review)

15-16 Thermoelastic analysis (Montoya)

« Sensitivity Analysis in Thermoelastic Problems using the Complex Finite Element Method, Journal of Thermal Stresses (Under review)
15-16 Residual stresses (Fielder, MSME UTSA)

* Residual Stress Sensitivitiy Analysis using a Complex Variable Finite Element Method (in progress)
15-16 Elasto-plastic fracture application demonstrated (Montoya)

¢+ Inprogress

16 Multicomplex Python and Fortran libraries (Garcia, Aguirre, PhD ME Eafit)

Finite Difference Method

Im

Perturb along the

imaginary axis Finite Differencing

7 \ 4 Re
[—f
h
Forward
Differencing

df (x,) _ flx, + (=) (x,) Determining h is
dx h problematic

lm University of Texas at San Antonio
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Complex Taylor Series Expansion

Perturb along the Im Subset of Fourier
imaginary axis Differentiation
'Y
h
& Re
2 g2
F(x+£h)=F(x)+ihd—F—h—d—f df(x,) _ Im(fCx, +ih))
de 20 dx =~
3 g3 dx h
i dF
VN

h can be “very”
small ~ 10-30

lm University of Texas at San Antonio

Finite Element Implementation

12 6L
6L 41’

-2l o

P El 12 6(L+ik) (6
0 (L+ih) |6(L+ih) 4(L+ih)||¢

3 2 2 3 do
5= 'y _PLh o PLh_Ph — —Im|d]/h
SEIL El ElI  3EI dL

Um University of Texas at San Antonio
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Finite Element Implementation

(a) (b)

Fig. 1. (a) Horizontal perturbation of the hole location and (b) radial perturbation of the hole.

Example: 15t Der. of o, w.r.t. R,

First Derivative of Tangential Stress: Analtic Solution First Derivative of Tangential Stress: Analytic Solution

Analytic Solution CTSE

UTSA Matlab code

& Vborhees, HR. Millwater, R. L. Bagley, “Complex Vanable Methods for Shape Sensitivity of Finite Element Models,” Finite Elem. Anal. Des, 47
(2011) 1146-1156, do1:10.1016/1.finel.2011.05.003
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MCX Finite Element
Implementation

12 6(L+ih+ish) Ha} T 2"d Order Example

P El
0 | (L+ih+ihy| 6(L+ih+ih) HL+ih+ih)

m

] — = :
ih L, El

o=L _opr +flh(L: —iff)n,h(ff —fh’)+ 2i,h°L
EIl3 3 : 3 :

PL’ s
Reld] = +0(h”
[6] %I (h™)
@=llm,[5|= PL +0(h?) 1st Order Derivative
L h El
%6 1 2PL s .
S M [6]:F+O(h ) 2nd Order Derivative

Imaginary Nodes (DOF)

épunnmlm-u! node i, perurhation . i, perturbation 0 iy, perturbation

m University of Texas at San Antonio
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Implementation into Abaqus

= Abaqus user element
implementation (uel)
= 6 dof/node (3 real, 3 imag)

= Abaqus cannot solve complex
stiffness matrix, represent as real

Re{P}|=[Re[K] -Im[K]][Re{U}
Im{P}| |[Im[K] Re[K] ||im{uU}

n x n complex matrix solved as 2n x
2n real matrix

m University of Texas at San Antonio

Obtaining Derivatives

sShape sensitivity — input imaginary coordinates to
represent shape change. (All Imag nodes not
perturbed have a coordinate of zero)

Nodal Coordinates

1% P 1% P 100.0)
s4£—;37ﬁ 2 (1,0)
3(0,1)
4(1,1)
—L 5(0,0)
6 (0,0)

- 7(0,D)h h = 101"
z 36 8( 0,1)h

lm University of Texas at San Antonio
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Obtaining Derivatives

sLoad sensitivity — Apply perturbation in loading to
Imag nodes.

1% P 1% P Applied Loads
;T 1 ; 3(0,12P)
84 37 4(0,1/2 P)
7(0,1/2)h
8(0,1/2)h
Imaginary coordinates h=101°
2 all zero
15 26

lm University of Texas at San Antonio

Obtaining Derivatives

sMaterial sensitivity — Apply complex perturbation to
constitutive matrix.

%P 2P l—v v 0
E
84&—&37 (1 +4)(1 = 2v) v l-v 0
0 1/20-2v
v=v+ih
L Emm— Imaginary coordinates
15 26 all zero

lm University of Texas at San Antonio
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Plasticity & Creep
Arturo Montoya, CE, UTSA

= ZFEM extended to nonlinear
materials: plasticity and creep

E=30 X 10° psi

v=0.3
6,=45000 psi
(perfectly plastic)
b=2in N
Thick wall cylinder

ABAQUS Plasticity
Implementation

Nonlinear zFEM

Begin Analysis User Element (UEL)

3
1wl .
Define Initial Conditions X =Xp+Xp,
Input: N
Au =Aug +Auy,,
Start of Step — o
Complex User Material (ZUMAT)
Output: X o.D,;
Start of Increment e o.Ur
o
" * R
K;=[B"D;B"dQ
Start of Iteration Calculate: 0

q =[B"g'da
L Q

Begin User Element o

Nol K, R.:{K-,-‘J —ImK I--]
Converged? Ky ] R4K;y ]
Output: )
| Relq }
Write Output 1 Im’q"
Lmq g

i

o 5 es
—|N Endofstep? Yoo | New complex UMAT and UEL

added to Abaqus
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Stress Sensitivity Results

S e

o o GO
do, n e=—+a(—)'o do, n
ek E 0'0 e
dn O, dn o,
0.15 T T u 0.3
« FINITE DIFF
0.1 0.2p,
’é,wﬂ”w 35,000 psi “’00.
0.05 ‘,09” 0.1 @, W«m&m
3 ¢¢O ¢g¢° i g N " 990*,:9‘
i) o %, @7 0g,
do, n 0 900 1 0’0‘ * :9 a0,
= — ®, %, i 7 @,
on o, °b‘~ P00, o:S-OOD pel on oy AR S °Q¢~o
-0.05 %0, 94, 0.1 o
®ow, “on ¢ o
00, S, R b
0.1 15,000 psi %009, e, -0.2 &
4 0
Wc o’
5 e, 0.3 o ZFEM
- FINITE DIFF
02 ‘ S T S R 04 T
1 d A2 43 14 45 16 1F 48 19 2 1 11 12 13 14 15 16 17 18 19

r(in) r (in)

UTSA

University of Texas at San Antonio

Abaqus Creep Implementation
Arturo Montoya, CE, UTSA

Alpha Method

t+m}[o. - (1 _ Ct)tﬂ' + a“““g

L
O
o
P
6438000 — 20 ey "2 tol
[[+2ao |
New complex UMAT and UEL 19

added to Abaqus
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Creep Model

» Material Sensitivity o—— 35
n=:s. >
* Steady State R
i do,
on dan

25+

S0k

do, .
In

100

-125F

—— Analytical Solution| |
* ZFEM

_1000. L L . L ! |
1 11 12 13 14 1.5 16 17 18 19 2

rim r (in)

U'Im University.ofrkexasat.ban Antonio UTSA

Applications to Fracture Mechanics

Um University of Texas at San Antonio
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Weight Function Development

Calculation of the partial derivative

of the crack opening E 3;\
displacement with respect to m(a,x) = 2K -
crack length required : \d_a/f

Standard research approaches:

Assume 3-4 term approximations to du/da
or approximate the weight fn. directly.

2 ] 2
m(x,a) = ——=|1+M,(1-x/a)' > + M,(1=x/a)' +--+ M (1-x/a)""
( N27(a - x) [ ! 2 ( ]

Use multiple reference solutions to solve for Mi

m University of Texas at San Antonio

Perturbation of Crack Length

Crack tip element can be perturbed in the imaginary
domain - no perturbation of real mesh

Perturb a no. of elements around the crack tip

T
\,

Perturbation of Crack Length in Imaginary domain
University of Texas at San Antonio
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Accuracy: Crack from a Hole

Gomparison fo Domain Inegral (KK16)

Hale with a Single Crack Hole with a Single Crack
Stress Inensity Factor (RM=0.5, HW=2) Stress Intensity Factor (RA=0.2, HMW=2)
w| 103
102 102
=
o %’ 101
100 E 100
&
o
088 E 0w
]
£
0 8 ¢
& Tension Ref [Wu] + Tension WCTSE ¥ Tension [Wu] * Tension BEM “WTension Fel W] <+ Tension WGTSE -+ Tension [Wu] > Tension BEM
= Bandng WCTSE & Bandng [Wul - Banding BEM weBending WCTSE # Bsnding[Wu]  * Bsnding BEM
0e7 08
o 0e 05 s o7 05 o4 05 o5
Crack Length (a/8) Crack Length (a/B)

WCTSE weight function consistently better than published weight fns.

D. Wagner, and H. Millwater, “2D Weight Function Development using a Complex Taylor
Series Expansion Method,” Engng Fract Mech 86 (2012), 23-37

Calculation of Energy Release Rate

Energy release rate contained in strain energy

Accuracy comparable to J integral

Perturbation Method G (ZFEM)/J-Integral

Crack tip only 1.0032
Crack tip and Quarter Points of Contour 1 1.0005
4 Inner Contour Rings + Midpoints of 1.0000
Contour 5
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3D Fracture

= Perturb the crack front along the imaginary axis to
determine energy release rate. Arbitrary crack front
perturbation possible.

6]
o H
(02
10" S.ILF. vs Theta
3-5 T I T I I T I T
—e—ZFEM
—+— J—integral
3 e I S T T T T I R I T T P = _ - Analy‘lcal .|
=
2501 (RS | 1
i
il
5 i i i i i i i i
0 10 20 30 40 50 60 70 80 90

Theta

Fig. 19. Stress intensity factor along the crack front for embedded penny shaped crack.
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Elasto-Plastic Fracture

700

J-CONTOUR 1

JCONTOUR &

J-CONTOUR 10
ZFEM

JASTM

600+

500

400+

300+

Energy Release Rate (N/mm)

1001

[ 01 02 03 04 05 06 o7 08 08
Line Load displacement (mm)

Yield Flag

lm University of Texas at San Antonio

[
‘ Discussion

* J and G, accuracies equivalent

= Larger perturbations of crack region provide more accurate
results

= ZFEM requires a special user element and longer run times

= ZFEM requires no additional coding to compute G - special
case of the more general shape sensitivity capability

* G, e “POsSsibly” more robust wrt mesh quality

= Derivatives of G using bicomplex analysis available, e.g.,
dG/dradius
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Progressive Fracture

Curvilinear Crack Growth K *Construct a 3" order Taylor

i series of the strain energy

using tricomplex elements.
5 *Predict the crack path

/ along the max energy

release

st o *Progress the crack,

TAvES- remesh, repeat

U(Xn‘}'n)"fnn +Cnl(y*yn)+fnz(y*}’n)z +Cng(3"*3"n)3 +
LHEEEILLHCEE § —y0)+cu()t—x0)(y—y0)z' +

Gl —x) e (-5 Py -y + e (x— 1 Y

&

University of Texas at San Antonio

Example: Quadratic Expansion

U(xu’yu) = Cy +Cm(y K yo)"'co:(y_ yo)y * & U f};\
dx axl \;./J
i§
T

2

Cm(x_xn)"'cn(x_xo)(y_yo)"'czo(x_xn)

* 6 terms to compute U
» 3 bicomplex analyses for single crack tip  |axay O
*i1,i2 — x (dUdx, dU2dx?)
*i1,i2 —y (dUdy, dU?dy?)
*i1-x, 12 —y (dUdx, dUdy, dUdxdy) 12 azef ()
ay | | ay?

iy
i d
]

s

=1

Ulm University of Texas at San Antonio
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Validation Problem

Fatigue life and crack path predictions in generic 2D structural components,
A.C.0. Miranda, M.A. Meggiolaro, J.T.P. Castro, L.F. Martha, T.N. Bittencourt, Engineering Fracture Mechanics 70 (2003) 1259-1279

Um University of Texas at San Antonio

Future Work: 3D Fracture

Perturb the crack front in orthogonal directions
Construct a Taylor series of strain energy

Propagate the crack using gradient descent
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Multicomplex Extension of
Newmark-beta Algorithm

k
; AAN Mﬁ”m +C1-_I:+A.r 5 K,nma; - Frm.r
7 M| e 1)
I ;
Z Multicomplex Newmark-
A c 5
g_. beta algorithm
FE()+ A +1Tx(0) = 202c0s30),  x(0) =10, {0)=0 x()
J':M
_20 _30 i
_1 -0 -107 n__h mlny=]  oxy
(m]= m_;u 4 0 -m_-m o
e A o 92(0)
0 10 10 4 om’
4 -10® -10® 0 *H 4000 ) 17 0 0 0 () 202¢0s(31)
107 4 o -10™ hi(1) 0400 hx'(1) L0170 o0 '@ | 0
102 0 4 _102 hi'(r) 0040 hi'(t) 0O 0 17 0 hx'(6) 0
0 10® 10™ 4 nE(t) 0.0 0 4 ]| pivn 0 0 0 17 [| p2x"n) 0
Structural Dynamics
k
; AAN Mﬁ”m +C1-_I:+A.r 5 K,nma; - Frm.r
7 M| e 1)
I ;
Z Multicomplex Newmark-
b~ c

g_. beta algorithm

—

Um University of Texas at San Antonio
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Multicomplex Extension of
Newmark-beta Algorithm

k
; AAN Mﬁ”m +C1-_I:+A.r 5 K,nma; - Frm.r
7 M| e 1)
I ;
Z Multicomplex Newmark-
A c 5
g_. beta algorithm
FE()+ A +1Tx(0) = 202c0s30),  x(0) =10, {0)=0 x()
J':M
_20 _30 i
_1 -0 -107 n__h mlny=]  oxy
(m]= m_;u 4 0 -m_-m o
e A o 92(0)
0 10 10 4 om’
4 -10® -10® 0 *H 4000 ) 17 0 0 0 () 202¢0s(31)
107 4 o -10™ hi(1) 0400 hx'(1) L0170 o0 '@ | 0
102 0 4 _102 hi'(r) 0040 hi'(t) 0O 0 17 0 hx'(6) 0
0 10® 10™ 4 nE(t) 0.0 0 4 ]| pivn 0 0 0 17 [| p2x"n) 0
Structural Dynamics
k
; AAN Mﬁ”m +C1-_I:+A.r 5 K,nma; - Frm.r
7 M| e 1)
I ;
Z Multicomplex Newmark-
b~ c

g_. beta algorithm

—

Um University of Texas at San Antonio
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Structural Dynamics

Pix,.n
l ,.1_',| M‘i:le +C1‘.|i+a.r +K,r|.r+.'_\r = F.r+.-3.r
[][© Newmark-beta algorithm
g [ e complexified

» Derivatives wrt: nat. freq., mode shapes, initial conditions,
cross sectional dimension, beam length, forcing
amplitude, forcing frequency

PERE

—— FEm

Forcing . Forcing
Amplitude , Frequency

" 00E 003 004 006 006 007 008 009 O

tls]

1 002 003 064 005 608 00F 008 G OF

Structural Dynamics

: a r M;r'IH-At +C1',|I+AI+KTII+AI =FP+AI

Newmark-beta algorithm
complexified

|Relatwe Errorl

’ n' =Re(nhy,
I I 1
Re(k) -Im(K) —Im,(K) Im,(K) %=%
| Imy(K)y  Re(K)  -Imy,(K) —Im, (KD o' Tm, s
bicomplax Imz(K) *Imlz(K) RC(K) —Iml(K) ;'.73 h
vy Imy, (',
Tmy, (K) Tm,(K)  Im(K  Re®) | ﬁ=% 3
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Future Interests

= Large scale applications
* 3D fracture
* Residual stresses
* Contact
* Thermal fracture, thermal shock
= Extension to non-linear materials
* Visco-plasticity
* Composites, anisotropic materials
= Thermoelastic analysis
= Expanded element library

¢ Plates and shells

Acknowledgements

= Efficient Sensitivity Methods for Probabilistic Lifing and Engine Prognostics,
Pat Golden, AFRL/RXLMN, Aug. 2007-Sep. 2010

= Efficient Finite Element-based 3D Fracture Mechanics Crack Growth Analysis
using Complex Variable Sensitivity Methods, DoD PETTT, Sep. 2010 - Aug.
2011

= Implementation of Complex Variable Finite Element Methods in Abaqus, DOD
PETTT, Sep. 2011- Aug. 2012

= Enhanced Fracture Mechanics Crack Growth Analysis using Complex
Variable Sensitivity Methods, AFOSR (David Stargel), May 2011-2014

= Probabilistic Residual Stress Modeling, AFRL through Clarkson Aerospace,
Sept. 2012 — Nov. 2013

= A New Progressive Curvilinear Strain Energy-based Crack Growth Modeling
Algorithm using Multicomplex Variable Finite Elements, ONR, Sept. 2013-
Sept 2016

lm University of Texas at San Antonio
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Manuel Garcia’s presentation on progressive fracture:

Two Dimensional Curvilinear
Progressive Fracture using a
Multicomplex Finite Element Method

Manuel Garcia, David Wagner, Harry Millwater

Dept. of Mechanical Engineering,
University of Texas at San Antonio, TX
Depto of Mechanical Engineering,
Universidad EAFIT, Medellin, Colombia

Parameterized Reduced Order Modeling Workshop
June 1-2, Sandia National Laboratories

UTSA. EAFIT
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Progressive Fracture

Curvilinear Crack Growth

¢ Construct a n-order Taylor series

(2) Compute the curved crack path

1o the desired distance (Ad). approximation of the strain
energy using multicomplex
elements.
- r K ( 0 - k 1 U (xg, yo) k=df o\
' ; /| R@=UG"+a)=3, Z(L--;;.:J'! arreige 1))
(1) Perturb the crack tip z k=0 A j=0 ’
inxand y.

e Using R(a), predict the crack path
along the max energy release
e Progress the crack, remesh,

(-'UU- ?}U) ' N repeat
UNIVERSIDAD
UM The University of Texas at San Antonio 2 EA_FI.':;

Progressive Fracture

Strain energy function

Ulu) = 3 /!)J(u) ce(u)dV,

For a linear elastic body, the strain energy
release rate if given by

1dU

b da

Gla) =

G = G(a) gives the strain energy release
rate as the crack propagates in
the direction of a.

The crack propagates in the direction in o
which the energy release rate is maximum max G(a) = V,U E
(maximum energy release rate criterion): “ o

fag

UNIVERSIDAD
UM The University of Texas at San Antonio 3 EA_FI.':;
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Progressive Fracture

U
or
To compute the gradient two perturbations are necessary Ml 5= oU

ds

8_U
or

UNIVERSIDAD

m The University of Texas at San Antonio 4 M

Overview of the method

Typical first order method Proposed high order methaod

( Jeometry )
( Geometry ) ( .
Mesh )t

( Mesh )‘_ |
' W
( Solver FEM )
modify :
geometry
(Compute crack advance ompute crack advance | I

Srror > €

“URTVERSIDAD
m The University of Texas at 5an Antonio 5 mr:_

modify
geomeatry
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ZFEM Solver

Example: Quadratic Expansion

Perturk ini2 and i2 complex directions altl o’y -
6 terms to compute ax Py 'k\___)
2 bicomplex analyses for single crack tip 3
S Uz, y) Uz, y) S
U($+ h('&l‘l‘ﬁg:l} y) = Az B B2 agu ,/_
. _ Sz, oL %z, =
Uz, vt Al + ) = éy 9, aig vl iX3y \) B
Bz, L s
U (z + hiy, v+ hi) ﬁﬁ%“
Form the response function aul a4l ,/-*) Ve
au AU iy,
Elx,y) = Ulxg, —r 4+ — v |8y ] - Wave
(2, 4] (o’yo)-l-am -I-ay’y-l- -

— | == — 2
2\ Fz2 " * 5y2y + by

m The University of Texas at 5an Antonio 6
Number of ZFEM Solutions

1(82U2 U, U )
x Yy

1 3 2

2 6 3

3 10 4

4 15 5

p_ 2n+m _(2n+m)! 20+ m-1
2n 2n)'m Nz = m

UNIVERSIDAD
Um. The University of Texas at San Antonio 7 EA_F'T,
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Compute Crack Advance

Steepest descent
B R(a)= Strain energy response function

day*—10ay

'(};u'i

function SteepestAscent( my , I;U):

// create R{a) as aa taylor series expansion
-

R—=CreateTaylorPolynomial (dy;U/) ;

(-‘f‘s y) = (xo,%0) ;
while true do

VR = ({)H {)H) // gradient of R at (x,y) Hl‘nwl//
e : ; . 3 y x !

: 06 -04 -02 00 02 04 06 08
X
R Vi . . )
or = a———— // move a in the direction of VR
IVE]

T —=x+ox

AddToPath(a) // store the point
end
UNIVERSIDAD
Um. The University of Texas at San Antonio 8 EA_F'T,

Estimate Error

Adaptive/A Priori Step Size Estimation Based on Backward Deviation

------------------------------------ 1+ deviation target € is defined as

forward predicted path total deviation distance

[}

estimated crack lenght

* The crack is predicted by the
R(a) function up to a distance a
from the crack tip

» 0 is determine by the deviation

L—L/d: deviation target as
d
_____________________________________ E‘ —
. - . a
* @ is a curvilinear distance from
the crack tip * The steepest descent is run until
the deviation target is reached
UNIVERSIDAD
Um. The University of Texas at San Antonio ° EA_F'T,
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Validation Problem

F a0 F
¥ ¥
[-23,14 8] R=5.1
H=a0
cizcktip & (008,157
IntalCiack |
o o Ja)
a0 )
I t >
' 125 j 125 '

P

Fatieue life and crack path predictions ingeneric 20 structural mmponents,
A.C.0. Miranda, WA, Weegiolaro, IT.F. Castro, L.F MWartha, T.N. Bitten@urt, Engineering Fraturs Wechanis 70 (2003) 12551279

m The University of Texas at San Antonio o EAMT,
Compare Results

First order C1 equal size step results

iy Dipreiy 4, Floresh Froguency 52 s peder 1 {DOEID 1 £) Wieethy Diraity 4, Aovsenh Froguency 64 u peer 1 {DOE ID 30
ZFEM BavadBion (Sucoestisd in 2.3 Mawnss) o —— 2rE]) BB (Sutesne] i 4.3 Maass)
Comepapd CFEM Soluton (0 78%) Comesrped CFEM Soluion 005%)
Espapsimental Grach Path (0.47%) Espapsimental Grach Pah (0 29%)

32 steps, 2.3 minutes b4 steps, 4.3 minutes

m The University of Texas at 5an Antonio 1
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Compare Results

Deviation target €=0.1
Cl C‘E

steps: 17 steps: 33
time: 1.9 min time: 4.6 min
Cs 04

steps: 6 steps: 4
time: 1.5 min | time: 2.6 min
VERSIDAD
UI&\. The University of Texas at San Antonio 12 EA_Fr';
Deviation target ce=0.01
Cl 02
steps: 172 steps: 55
time: 18.9 min time: 7.7 min
Cs Cy
steps: 28 steps: 25
time: 7.0 min time: 16.2 min
ISIDAD
Um. The University of Texas at San Antonio * Eﬂ_Fr';
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Conclusions

« Multicomplex variable finite element formulation,
linear and nonlinear, allows calculation of arbitrary
order derivatives.

— Calculation of the energy release rate are a subset
of the shape sensitivity capabilities

» Accuracy comparable to J integral formulations
— Based on 2D simulations to date

» Progressive fracture algorithm — natural extension of
strain energy release rate capabilities

» Adaptive methodology that adjusts the curvilinear step
size as needed to ensure an accurate crack
propagation path with optimal computational effort

UNIVERSIDAD

UM The University of Texas at San Antonio 1 EA_FI.';

Future Work

_ _ - TR )
» Extend to multiple crack tips . o
» 3D Single crack Rk

» Integrate lifing methods with progressive fracture for lifing
predictions

» Probabilistic progressive fracture using sampling methods

UNTVERSIDAD
m The University of Texas at 5an Antonio 15 mr:_
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3.1.3 Hyper Dual Numbers, Matthew Brake

The Hyper Dual number approach to PROM development (developed by Matthew Brake and
Jeff Fike at Sandia National Laboratories) combines the ideas developed within the NX-PROM
research with the usage of higher order, generalized complex numbers (similar to the
multicomplex number approach) to calculate derivatives. Dual numbers are defined as the non-
zero square root of zero, and are best thought of as an orthogonal number system to the real
number system. Because of their well-defined mathematical properties, dual numbers allow for
the exact calculation of derivatives of functions. The PROMs based on dual numbers (and hyper-
dual numbers for higher order representations — termed HD PROMs) allow for very accurate
local perturbations based on a single finite element model [7]; however, the accuracy for large
perturbations is not guaranteed as the derivative information is all developed locally.
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e ]
Uncertainty in Large Models () .

= Aleatoric (parametric) uncertainty:
* Manufacturing tolerances —
= Geometric variations
= Material property variations
= Can result in thousands of design variables
* Models of complex structures often include hundreds of
thousands or millions of elements...

_ I 5
]
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The Challenge Inherent in Modern M
Design for High Consequence Applications!?

= High fidelity FEA leads to desire for FEA modeling/verification
= Contrast with approach taken in the 50s...
= Uncertainties omnipresent

= Environmental specifications, manufacturing tolerances, defects,
epistemic sources, etc.

= Result: robust design requirements
= Can require thousands of perturbed models

= Rough estimate of time to robustly design a single component
at SNL:

= 10 years of human effort, plus 3 years of a dedicated super computer
using high fidelity FEA...

Need for an efficient, automated process...

a4

1: High consequence — systems where consequences of failure are non-trivial, such as airplanes or automobiles

Enabling Technologies for UQ =

= Given needs for UQ (and optimization), what theoretical basis
will enable it?
= Fast simulations
= Ability to incorporate variations without remeshing
= Confidence in accuracy

= One solution: Parameterized Reduced Order Models (PROMs)

b

/1\
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Outline =

= Context

® Finite difference implementation of
methodology

® Hyper dual number basis

Extension to large, FE systems

Sandia

Possible Parameterizations e

| Component Matrices |

Parameterize Component Matrices

[ Construct CMS Matrices |

Parameterize CMS Matrices
| Assemble FE System | [ Assemble CNIS System |
Parameterize System Matrices Parameterize System Matrices
| Analyze FE System | I Analyze CNIS Systemn |
Parameterize Eigenvalues Parameterize Eigenvalues

* What is the optimal path for parameterization?
* How many terms should be taken in the expansions?

= Existing research focused on parameterizing the CMS matrices
7

a
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Candidate System @&

® Simple system considered since there is an analytical answer

= Length: 1 meter

® Thickness: 50 millimeters

= Width: 200 millimeters

= Material: 6061 Aluminum (E = 68.9 GPa, rho = 2700 kg/m?3)
= Feature: Middle of beam, 0.2 meters long

= Boundary conditions: Clamped-Free and Pinned-Pinned

Overview of Method o,
(Details to follow...)

® Given a linear subsystem expressed as
[M]{i} + [K]{u} = {0}

®* The CB model and eigenvalues of the nominal system are
readily available

* These quantities are then parameterized in terms of the
variables of interest using

1"(a)
2!

f™(a)

n!

(2 —a)® + f 3(!“)

fla+2z) = f(a)+ f'(a)(z — a) + (6 —a)" 4 (2 —a)"

= Challenge in specifying derivatives

(2]
o
[t}



Sandia

Calculation of Derivatives -

® First approach: finite difference approximations.

fla+h)— flx—h)

fl(x) ~ o
() (o o, 4@ —=2h) —4f(z = h) +6f(z) —4f(z + k) + f(z + 2h)
¥ (z) ~ =

®* Thus, derivative information can be calculated from
perturbations of the system’s model

SEESEHEIT
10

Varying Defect Thickness -
2" Order Expansion

Matural Frequency )

am an2 003 004 005 0.06 o7 008 009

—#— System Exhaustive
— System Parametenzation
- CMS Parametenization
—&—Frequency Parameterization

= Exhaustive and analytical solution lie atop one another

= Dashed blue lines indicates regime for calculating PROM 1
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Varying Defect Thickness o
4th Order Expansion

«10* Natural Frequencies: Degree 4 Taylor Expansion, 5 Mashes
1% LA

Laboratories

26

)
I
I
I
I
I
I
I
I
I
I
I

Matural Frequency (e)
g w_ |

B
S \.\‘

. i

)

5
b o
L 5

—#— System Exhaustive
—— System Parametenzation
+ CMS Parametenization

—&—F

* |n general, can achieve agreement well outside of the region
used to calculate PROMs, but requires multiple derivatives...

- 00000000
Varying Defect Length @
2" Order Expansion

%10 Natural Frequencies: Degree 2 Taylor Expansion, 3 Mashes
2r

National
Laboratories

Natural Fraguency (m)

el S B A B -
012 014 016 . 02
Length

—#— System Exhaustive
—&r— System Parameterization

~— CMS Parametenzation
—&—Frequency Parameterization

* |n general, system parameterization least accurate for
geometrical variations

13
I —
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Varying Defect Length -
4th Order Expansion

% m‘ Natural Frequencies: Degree 4 Taylor Expansion, 5 Meshes

D o 8 t,? (A
f /

Natural Frequency {m)

%.1 012 014 06 018 0.2 022 024 026 02
Length
—+#— System Exhaustive
&— System Parameterization
CMS Parametenzation

—&—Frequency Parameterization

* Though, with sufficient derivatives, even the system level PROMs
are predictive over the region used to calculate them...

14

Observations on the Finite Difference M
Based PROMs

® Fourth order system expansion is fairly accurate
= Highest order term in system matrices is of third order
= System expansion is inaccurate for node shifting model
variations

= Terms with close proximity to zero; small deviations -> large error

R |0 e

* Reduced order model accuracy on par with eigenspace
parameterization

= Some applications only are interested in frequency characteristics,
which would help guide choice in parameterization level

= PROM accuracy is good for large model variations

15
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Multivariate Parameterization &=

® Generate multivariate expansion using N-dimensional Taylor
series approximation for 5 variables simultaneously

= Specify highest order derivative (including mixed derivative
terms)

= Generate Latin Hypercube Sample (LHS) based on probability
distribution of parameters

* Plug samples into parameterized models and compare with
true system response

Exhaustive Sweep .

Mode 1, .=713.43, o= 3570 Mode 2, p=26873.27, o= 20.19

3

(22
(=]

Frequency
Frequency
£
(=)

=]

i
2750 2800 2850 2900 2950

BOD 650 700 750
@ (rad/s)

@ (rad/s)
Mode 4, p= 1146565, o= 236 47

Mode 3, L= B476 53, o= 23169

Frequency
Frequency

0 u]
5500 6000 6500 7000 7500 1.05 11 1.15 1.2
w (radfs) o (rad/s) x 10t

17
I —
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System Parameterization, 2"d Order @&

Mode 1, k=713.51, o=34.01 Mode 2, p = 26873.33, o= 19.61

8

a0
Fe Fo
In o
5 g
S s B0
= =
2 x
w w

2750 2800 2850 2900 2950

550 600 B50 700 750

@ (rad/s) @ (rad/s)
Mode 3, p= 647702, o= 21929 Mode 4, p= 11467 .05, o= 225 68
B0 100
50 a0
) & B0
c =
R 2
g £ w
10 2
0 u]
5500 6000 6500 7000 7500 1 1.05 1.1 1.15 1.2

o (rad/s)

System Parameterization, 4" Order @&

Mode 1, k=713.45, o=35.70 Mode 2, p=26873.27, o= 20.19

B0 80

&0
60
40
oy by
c c
330 S 40
=3 =2
4 4
Ll_m w

=]

60D 650 700 750 Z‘QISB 2800 2850 2900 2950

@ (radfs) o (radfs)
Mode 3, p = B476.53, o= 231.69 Mode 4, p= 1146564, o= 236 48

50 — &0

40 50
. . 40
o 33 o
c =
2 )
o o
i 0 &

=

u] 0
5500 6000 6500 7000 7500 1.05 1.1 1.15 12
o (rad/s) m (rad/s) « 10t

19
I —
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ROM Parameterization, 4t Order =~ @&,

Mode 1, L=713.49, o=3570 Mode 2, p = 2873.26, o= 20.19
80

3

3

Frequency
Frequency
£
(=)

=]

600 650 700 750 2q(5EI 2800 2850 2900 2950

@ (radfs) ® (radfs)
Mode 3, p = B476.49, o= 231.69 Mode 4, = 11465 86, o = 236 47
&0 —
a0 50
. .40
g g
2 g3
s 2 2
10 10
u}
S5m0 s00 50 7000 7500 105 1.1 115 12

w (radfs) o (rad/s) x 10t

Observations on the Multivariate Expansions (g s
of Finite Difference Based PROMs

* Even a second order expansion is good for high component

variations
= Means and standard deviations within ~10% of exhaustive approach

= Histograms relatively similar
= Uses 51 meshes
= Fourth order expansion is almost exact
= Means and standard deviations are well within .01% of exhaustive
= Histograms almost indistinguishable

= Uses 301 meshes

21
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Sandia

Revisiting the Derivatives 1

= Recall the finite difference expansions

_f@+h)—f(z—h)

f(z) = 2h
£4) (2) f(z—2h) —Af(z — h)+6f(z) —4f(z+ h) + f(z + 2h)
LT It

= For two dimensions, even larger expressions results

®* The number of meshes needed grows geometrically with the
number of free variables.

= Quickly becomes intractable for a real problem with multiple
dimensions of interest...

22

Sandia

Alternatives Exist! e

® Parameterize a single element and propagate through
models...
= Book-keeping challenge...

= Replace finite difference based expansions with complex step
approximations...

= See the recent work by Millwater’s group [1]...

= Alternatively, use hyper dual numbers...

[1]: A. Voorhees, H.R. Millwater, and R. Bagley, Finite Efements in Analysis and Design, 47, pp. 1146-1156, 2011.
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What Are Dual Numbers? i

® Branch of generalized complex numbers
= Ordinary complex numbers, £2= /2 =-1
= Double numbers, £%2 = e = 1 (Clifford, 1873)
= Dual numbers, £2 = &2 = 0 (Study, 1903)

* The complex step approximation for a Taylor series

fx+hE)=f(x)+hEf'(x) + %hzﬁ'zf”(x) +%h353f”'(x) +

simplifies based off of the choice for E...

24

Sandia

The Complex Step Expansion Bt

= Ordinary complex numbers (E%2 = i2 = -1)

1 1
f(x+ hi) = (f(x) - SR + ) +h (f’(x) — S B + )z

\ J \ J
Y L

Real Imaginary
= Double numbers (E2=e2=1)

f(x + he) = (f(x) + %hzf”(x) - ) +h (f’(x) - %fﬁf’”(x) + ) e

\ ® L >
: 4 b 4

Real Non-Real
= Dual numbers (2= =0)
flx +he) = f(x) + hf'(x)e
ol

Real Non-Real

25
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Accuracy of First Derivative Calculations @ &z.

g Error in the First Derivative

10 a o O S e e S0 0 008
: —4+— Forward Difference
—=—Central Difference
—e— Complex Step
10°° i —— Dual Numbers
Truncation error = : Subtractive cancellation error
Ié 10_10_ ...................................................................................
w
-15 : :
10 1 . ' A P " LS - o »
i \ Machirie precision threshold
10'20 i i T
10’ 107"° 107%° 107"
X Step Size, h
e
f) = — .
J(5inx)3 + (cosx)3

26

What About Higher Derivatives? @&,

= Complex step method requires a differencing operation,
which leads to subtractive cancellation error...

* Hyper dual numbers are dual numbers defined in multiple
dimensions (Fike, 2011 & 2012)
X =X+ X18 + X28 + X388
gl =g0=
& F EF 0
3182 - 8231 * 0
= This leads to the expansion

fQx+ hygg + hopey +0g185) = f(x) + hy f'(x)ey + hof'(x)e; + hihy f (X)) e 8,
which has exact first and second derivatives

27
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Accuracy of Second Derivative s

National
Calculations _
d
5 Error in the Second Derivative
10 T -
: —&— Forward-Difference
—=— Central-Difference
| —e—Complex-Step
10" .| =+—=Hyper-Dual Numbers
Ile_ 100 Gl s :
10_10_ A
10 I_ I_ :
10° 107" 107 107"
ex Step Size, h
fx) = ——= .
J(5inx)3 + (cosx)3
28

Results of PROMs Constructed With e,
Hyper Dual Numbers

. 5’ 10* Craig-Bampton CMS l‘.?alculaﬁons. 3.modes per cornporrcnt < 10° Craig-Sampton CMS Calculations, 3 modes per compaonent

: . : : 4 : Parameml.Sweeu .
B e ize Component Matri :
: Farameterize Craig-Bamplon Maltrices : :
: : ; ; A6 | = = = Farameterize Craig-Bamplon System [ oo
)] S Pa'ammj:?_ep  batrimae |t ................. = Farameterize Eigervalues : :
— Earamatarize Craig.—sampbm Matrices :
=3 = = = Paramatarize Cralg-Bampton System -
P — ize Eig g
= : 3
[ =
< g
31_5, .................................................................................... O
s ]
1- B M4 14 A dE e E A A KA a R Ll e N AR e AR AR LR idadad iR s R aR e
U_ﬁ‘- MisaadiasassasesananatEa s tiaiaaBiaiaaataa il anasaadta s natatniERitiaadadaianasnisnasnasad
L 0.15 02 028 03 o35 o, 3 4 < 5 ? 8
Width of Beam, B . -
Height of Beam, H <10
= Cubic expansion, based off of a single mesh of the beam
29
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Results of PROMs Constructed With e,
Hyper Dual Numbers

 10° Cralg-Bampton CMS Calculatians, 3 modes per component x1n® Craig-Bampton CMS Caleulations, 3 modes per compaonent
g : - . : = Paramater chep
: Parameter Sweep 6 7| m— Parameterize Component Matrices

— Paramelerise Component Matrices =— Parameterize Craig-Bampton Matrices

7 — [arametorize Craig Bampton Matrices ‘ = = = Parameterize Craig-Bampton System
H = = = Parameten rang-Bampton System [ R Paramete rize Eigenvalues

G oo o) == Parameterize Cigenvalues : - - -
= gl B ce d :
] : g |
= —_— .= p
[ : 2 37 : : : : :
g N E . . . i i "
{=2] 31 ' . B

: oL .

| a———
_ M \\H\h;
K 045 05 0.55 0.6 0.65 0.1s 0.25 35 04 045
Location of Defect, £ Cxtent of Defect W
e w—ol—
—>
= Accuracy can be further improved with a meta-modeling
approach, but that necessitates more meshes... 30

]
Application to Large Systems &

= Mathematics the exact same as for previous system

®* The challenge is in prescribing geometric dimensions for
variation...

= Several internal components; design challenge: ribs
connecting exterior to interior

31
I EEEEEEEEE——
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Preliminary Results =

Radial Deformation Case #1

z RN |

Radial Deformation Case #2

29.751 Z ;
@ Initial Condition *. . = L) “

rlr_:_

ef i
2950+ No Deformation

Eigenvalue, x 108

A SIERRA Resulls
O PROM Prediclions

04 05 08 o7
Aft Rib Thickness

= Computational time for the PROM approximately 1/40% that

of the high fidelity model, and no additional costs to consider

geometry changes. "

Summary & Conclusions [ &=,

® Hyper dual numbers are a branch of generalized complex
numbers with the property &2 =0, 20

® Building hyper dual numbers into our FEA code allows us to

develop parameterized reduced order models (PROMs) with a
single mesh

= Multiple levels of parameterization are investigated, and the
results indicate that this parameterization technique is an
effective and efficient approach to modeling

= Generally, the closer a parameterization is to the high fidelity
FEA model, the worse that the PROM constructed from it will
perform

= Results match analytical solutions very well for PROMs
constructed from Craig-Bampton models or Eigen
representations 33
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3.1.4 Meta-Modeling, Matthew Bonney

The meta-modeling approach, developed by Daniel Kammer and Matthew Bonney of the
University of Wisconsin, Madison, use sets of HD PROMs to develop globally accurate PROMs
based off of a small number of numerical models. The advantage of this approach is that it does
not depend on a single type of PROM formulation (it can be applied to HD PROMs, NX

PROMs, or other types of PROMS), and that it can result in a globally accurate formulation for
multivariate expansions. The trade-off, of course, is the high computational times necessitated by

multiple PROM formulations.

Hyper-Dual Meta-Model
Approach to PROM

Matthew Bonney
Dan Kammer

7112016 UNIVERSITY OF WISCONSIN
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Hyper-Dual (HD) Numbers

Multi-dimensional expansion of Dual numbers

» e2=0,e+0

Truncates Taylor series

* Truncation order depends on how many dual numbers

» Can generate derivatives with no subtractive or truncation
errors

f(x + hyeg + hyex +0€13) = f(x) + hy f'(x)eg + haf'(x)€z + hihy f (x)€q,
Theoretically, easy to add as many desired dual
numbers
» Computationally, not so easy

7/11/2016 UNIVERSITY OF WISCONSIN

HD Numbers Implementation

= Implementation
= Matlab

* Finite Elements
= SIERRA
* 3D Beams and Axisymmetric Solid in Matlab

= 2 types of function evaluations
= Algorithmic
» Analytical derivation

7/11/2016 UNIVERSITY OF WISCONSIN 3
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Accuracy of HD Step

Hyper-Dual Step
Central Difference
Complex Step

MNermalized Errar
3

10" 107 10"° 10° 10
Step Size, h

=/11/2016 UNIVERSITY OF WISCONSIN

Using a Hyper-Dual Step

Pros Cons

= Each code evaluation can

. . become expensive
= Single code evaluation P

’ » Requires HD solver
= No truncation error

» Only uses information from a
single point
= Limits range of effectiveness

= Exact derivatives
* Independent of step size

=/11/2016 UNIVERSITY OF WISCONSIN

5
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Hyper-Dual Meta-Model (HDM)

Improve accuracy range of HD step

* Combines the accuracy of HD step and range of finite
difference

Take information from multiple HD evaluations

Uses basis functions to characterize data

= Enforce function value and derivatives at each function
evaluation

* Polynomials, Splines, Sines
Can be parameterized at any level
= Can be more efficient at system level

UNIVERSITY OF WISCONSIN

Simple Example

L,=15"
Deflection of cantilever
tip due to applied force
Parameterize stiffness

matrix in terms of beam ly y _
length L, very nonlinear  g| /% /1 { }:{
Evaluate stiffness at 3 %} %, 4 :
meshes with first
derivative
L,=10" L=1%5" L, =20"
@ @ @
—1 0 +1

UNIVERSITY OF WISCONSIN

76

=T~
. .




Simple Example Cont.

= Fit polynomial to
stiffness matrix in terms , \ \ ;
of dimensionless length, & =Kot K + Koy + K"+ Ky + Ky

d_K:KI+;g]«{2;y+.'51(3y“+4K,,;v3+517<.'5:v4

= Match values and first 97
derivative at each § .

evaluation s = om o5 o5 w5 L)
Kl K(LU)
= Solve for unknown 10 0 0 0 0 . R()
: - 11 1 1 I 1 . || K
matrix coefficients 0 1 21 3 - st | K || k)
071 0 0 0 0| g (L)
0 1 20 3 AL S| e ?
) R K'(L,)
7/11/2016 UNIVERSITY OF WISCONSIN 8
Simple Example Results
0.7 T T T T T T T
Truth
06f —===HDM c
S Teylor , » First order
05} 1 HDM
= = ondgrder HD
5 04 {1 w/ Taylor
3 Series
E 031 i
E—
02 1* Second order
HDM lies on
0.1 { top of Truth
curve
—%_4 —{1'3 -072 —O.I1 [I] D.I1 O_IQ O.I3 0.4

Fractional Change in Length

7/11/2016 UNIVERSITY OF WISCONSIN 9
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o

Application To Finite Elements

= Planar frame using
substructuring

= Change length of
appendage

= Nominal 127
* Vary from 3” to 217

= Compare HD 2" order, .
Finite Difference, and
HDM . s e

= Parameterized at T e 0T
frequency level

Lacation [in]

7/11/2016 UNIVERSITY OF WISCONSIN 10

FE Results @

150 T T T T T T T
Truth
e ==++=++ Finite Difference
140 __-""‘ ====HD 2nd Order H
e
o ——-
o HOM
130} a"”‘ 4
_ #
.
oy
g 120} :
=
g
110F -
100 7]
m L L L L Il L 1
-80 -60 -40 20 4] 20 40 60 20

Change in Appendage Length [%]

=zli1/2016 UNIVERSITY OF WISCONSIN
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FE Results Cont.

15 T T T T T T T
=++==** Finite Difference
= === HD 2nd Order e
- -
10k HDM ,l
#
/
/
i ,"
= 5t t, .....
g Fh 1
| P SN,
E ' ... ’.f '\,
B il s cimememsmam . L Y
g of mrmrmrmeem e
o ‘._‘.‘-’»
P
!
s 3
4
4
I
"4
7
10 ¥ L I I I 1 I 1
-80 -60 -40 -20 0 20 40 B0

7/t1/2016

Change in Appendage Length [%]

UNIVERSITY OF WISCONSIN

Now for the Hard Stuff

= Apply to complicated FE
system
= Brake-Reuss Beam

= Change in Young’s
Modulus

* 50-300 Gpa

= Parameterized at
frequency level

= Uses Sierra to perform
HD calculations

7/i1/2016 UNIVERSITY OF WISCONSIN
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7/t1/2016

7/t1/2016

Frequency [Hz]

Difference in Probability

Parameter Sweep

— T 1
- MEE-Mode

- wm wm HyperDual

100 150 200
Young Modulus [GPa]

UNIVERSITY OF WISCONSIN

250

300

Distribution Propagation

Natural Frequency [Hz]

UNIVERSITY OF WISCONSIN
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3 x 107
e Taylor Series
2r Meta-Model
Hyper-Dual
Craig-Bampton
1_
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Quantitative Results

Computational Time

= HD: 21.40 sec

= HDM : 0.24 sec

RMS Error

= HD:1.488 %

* HDM :0.127%
Distribution Propagation
= HD:0.031%

= HDM : 0.009 %

= /11/2616 UNIVERSITY OF WISCONSIN

7/t1/2016

Summary

Hyper-Dual Meta-Model combines the accuracy of a
Hyper-Dual step and the accuracy range of Finite
Difference.

= Perform multiple HD code evaluations

= Apply basis function to match output and derivate at each
code evaluation

Applied to 3 different systems
» 1 analytical, 1 material property, 1 geometric changes
» Parameter Sweep and Distribution Propagation

UNIVERSITY OF WISCONSIN
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Questions

—
S

.

-_—

Portions of the work presented in this proposal are conducted with support from Sandia National Laboratories. Sandia
National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’'s National Nuclear Security Administration
under contract DE-ACo4-94ALS5000.

7/11/2016 UNIVERSITY OF WISCONSIN 18
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3.2 Summary of Sessions 2 & 3 — Complimentary Theories

The second and third sessions of the 2016 PROM Workshop focused on complimentary ROM
techniques. The goals of this session were to inform the community about recent advances in
other areas of ROM research, and to determine if there was any potential for adoption of those
techniques into PROM methodologies. The five talks during these two sessions highlighted
several topics:

e Multiscale modeling for material microstructure models (“Quantifying the Impact of
Material-Model Error on Macroscale Quantities,” by Judy Brown, and “Multiscale
Modeling Applications,” by Gustavo Castelluccio, both of Sandia National Laboratories);

e Proper Orthogonal Decompositions (POD) combined with Self Organizing Maps for real
time data to decision ROMs (by Laura Mainini, MIT);

e Nonlinear ROM development (“Experimentally derived ROMSs” by Ben Pacini and
“Viscoelastic ROMs” by Rob Kuether, both of Sandia National Laboratories).

In particular, these talks focused on nonlinear models (both due to the material model and due to
the structural model), alternative ROM strategies (such as the POD), and multiscale modeling
frameworks (see [8], for instance). Themes that emerged from these presentations, in addition to
opportunities to combine these theories with the PROM methodologies, are further discussed in
Section 4.

3.3 Session 4 Presentations — Implementation Details and Round
Robin Results

The last session of presentations at the 2016 PROM Workshop focused on two topics: one, to

discuss the details of implementation for each methodology, and two, present the results of a
round robin challenge organized specifically for this workshop.
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3.3.1 NX-PROM Round Robin and Tutorial, Jau-Ching Lu

UNIVERSITY OF MICHIGAN

NX-PROM: Interpolation of matrix

Jau-Ching Lu
Bogdan I. Epureanu
Matt Castanier
Sung Kwon Hong

84



Thickness variation

Thickness variation doesn't change the DOFs

85



Effect of thickness variation

The stiffness nonlinearly 0
varies with thickness

variation

An entry of the K

o o - O
=4 4 4 =

ONO)

Po po+dp po+20p po+3p po+4sp :Samples

e

Stiffness interpolation

K9+ K{9Ap + KS9Ap? + K9Ap® + K{9Ap*
K(po+ Ap) = =01 : : :

D(Ap)

V) 1Ap 1Ap

DAp) =1+ —)1+ -—)(1+ -—
@n) = 1+ D)+ 32D+ 20)
Ap

Po
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Sampling of K

K9+ K{9Ap + KS9Ap? + KJ9Ap® + K{9Ap?
King 4 Ap) = —0 1 2 3 4

5 unknowns: &37... £ -5 equations

Po po + 6p po + 20p Ppo + 30p

K(po +26p) | K(po+ 3dp)

Sampling of K

K2+ KP9Ap + K3 AD? + KA + K Ap*
K+ ap) = DKL Ot I St B S+

5 samples in component level

Ap=0— K(py) = K;*
1
Ap = dp — K(pg + 0p) = —— (K3 + K{%p+ - -- + K;%6p?)

D(ép)
1 . . .
Ap = 26p — K(po + 26p) = W(Koq + K{728p + - -+ K{%(26p)*)
Ap = 36p — K(po + 30p) = DE5) (K5 + K{%38p + - + K{%(36p)*)
1
Ap = 4bp — K(po +48p) = s (K5 + K{"dop+--- + K" (4dp)*)
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Matrix-vector form

K (po)
K (po + dp)
K(po + 26p)
f/\’(p(] + 35]))
| K (po + 40p) |

K(po)
K (po + 6p)
K (po + 20p)
K (po + 36p)
K (po + 46p)

Ky
_D(ES y (" + K 0p+ -

5p) (KT + K 720p 4+ -

o5y (K" +i\]"35p+---
Diogy (K07 + K("4dp + - -

+ K qap[l)
-+ K((20p)h)
+ K" (35p)")
+ 11" (40p)*)

1 0 0 0 0 7
1 op 5p° 6193 spt
D(ép)  D(dp) D(Gpg D(sp)  D(dp)
1 20p (26p) (26p) (25;0)
D(25p) D(26p) D(262) D(23p) 2
1 38p (36p) (36p)° 35;0
D(3ép) D(3dp) D(3dp) D(3dp)  D(30p)
1 45p (40p)*>  (46p)®  (49p)*
L D(46p)  D(4dp) D(46p) D(4ép) D(4dp)-

Obtain the unknowns

R 0 0 0 0o 1"
Ky 1 5p op> 5;03 sp?
K1 D(dp) D(dp) D(épg ; D(dp)

eq 1 2dp (2539) (26}” (251))4
K" = | DRop)  DRop) DRy DRy D(2op)
K31 1 3ép (36p)>  (36p)®  (3dp)
7 eq D(3dp)  D(30p)  D(30p)  D(36p)  D(30p)
Ly 1 46p (46p)® (46p)* (46p)*

L D(46p) D(46p) D(46p) D(4ép) D(46p)d

Ky* [ A A Ay Al Ags) K(po)
K" Ag1 Asy Azz Agy Ass K (po + f’g’)
K 9 = A31 A32 A33 A34 A35 I{(})() + 20}())
K31 Ap Agp Agz Agn Ass| | K(po+ 36p)
Ky | Asi Asy Ass Asq Ass| | K(po + 40p)]
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K!
K1
K51
K3

s (}1
K,

[k’ (})[])

K (po + dp)
K (po + 2dp)
R’('}J() + 3(5}))
K (po + 40p)




Re-write the equations

K" = A11 K(po) + A12K (po + op
K% = Ay K(po) + A22 K (po + dp

K3' = AuK(po) + Ag K (po + dp
]\4"1‘(/ = A51 K Po) + A52K Po + (Sp

(po) ( )+ -+ A5 K(po + 46p)

(o) ( ) + -+ + A5 K(po + 46p)
K3" = A31K (po) + A2 K (po + p) + - - -

(o) ( )+ -+ Ass K(po + 40p)

(po) ( )+ -+ Ass K (po + 40p)

(
(
+ As5 K (po + 40p)
(
(

K9+ K99Ap + KS9Ap? + KS9Ap? + K29 Ap?
D(Ap)
=bo K (po) + b1 K (po + 6p) + ba K (po + 28p) + b3 K (po + 3dp) + ba K (po + 49p)

K(po + Ap) =

Interpolation equation

K(po + Ap)
=byK (po) + b1 K (po + dp) + b2 K (po + 26p) + b3 K (po + 36p) + ba K (po + 40p)

bo = (A1 + AnAp+ -+ + A51Ap") / D(Ap)
= (A2 + A2Ap+--- + A52AP )/D(Ap)
= (A13 + Ao Ap + -+ - + As3Ap*) /D(Ap)
= (A1a + A24Ap + -+ + A54Ap )/D(Ap)
b4 = (A5 + Aoz Ap + - + Ass Ap? )/ D(Ap)

For each Ap, only »,...5, need to be re-calculated.

11
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I I I [ |
Po po+dp  po+20p po+30p po+40p  RNRN

O O g Samples

O [ : Interpolation
% X :Exact

Results: natural frequency
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)
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S S 4x107% |
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Q
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0%
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3.3.2 Hyper Dual Number Round Robin and Tutorial, Jeff Fike

Sandia
Exceptional service in the national interest m National
Laboratories

Derivative Calculations Using
Hyper-Dual Numbers

Jeffrey A. Fike
Sandia National Laboratories

June 3, 2016
©@ENEReY NISA

Hccnar iy Ao

andia Natioral Labaraloriesfs 3 mul rogeam laboratory managed and opsrated by Sandia Corporaton, 3 whally owned subsliay of Lockheed Martn
Corporation, for the U.S, Depariment of Energy's National Nuslear Security Administration under contract DE-AC04-34ALBS000. SAND NO, 2016-5252 PE

Unlimited Release
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Unlimited Release
Sanids

Derivative Calculations Using Hyper-Dual Numbers i

Hyper-Dual Numbers [preandalionso2011] are an extension of Dual
Numbers [swdy1s02], one type of Generalized Complex Number.

Ordinary Complex Numbers can be used to compute accurate first

derivatives. [Marting, Kroo, and Alonso 2000 and Martins, Sturdza, and Alonso 2003]

m Dual Numbers can be used in a similar manner to produce exact
first derivatives. ipipor 2004, Leuck and Nagel 1999]

Hyper-Dual Numbers enable exact calculations of second {or higher)
derivatives.

June 3, 2016 2

Unlimited Release

Unlimited Release
Sandia

. Hatianal
Outline s
Derivative Calculations
June 3, 2016 3

Unlimited Release
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Unlimited Release
Sanids
Natirel

First-Derivative Finite-Difference Formulas s

Forward-difference (FD) Approximation:

Of(x)  flx+ he) —fx)
Ox; - h +O(h)

Central-Difference (CD) approximation:

Of(x)  f(x + he;) — f(x — he;)
an a 2h - O(hz)

Subject to truncation error and subtractive cancellation error

B Truncation error is associated with the higher order terms that
are ignored when forming the approximation.

m Subtractive cancellation error is a result of performing these
calculations on a computer with finite precision.

June 3, 2016 4

Unlimited Release

Unlimited Release
Sanids

- . . . Mational
Accuracy of Finite-Difference Calculations e
Error in the First Derivative
10" :
—d— Forward Difference
—u—Central Difference
107 '
10_’11 ....................................................................................
S
i,

10'6 .......................
10_8 ...................................................................................

-10
10 1 1

10° 107" 107 107"
Step Size, h
eX
Flx) = e
\/sm X 4 cos- x
June 3, 2016 5

Unlimited Release
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Unlimited Release
Sanids

First-Derivative Complex-Step Approximation e
Taylor series with an imaginary step:
1 h3 i
Flx + hi) = F(x) + hf' (x)i — Ehzf”(x) - f31(x)i+

June 3, 2016 6

Unlimited Release

Unlimited Release
Sanids
Natirel

First-Derivative Complex-Step Approximation e
Taylor series with an imaginary step:
1 h?) i
Flxt hi) = £06) + B ()i — ) — T

- -
W i

real imaginary

June 3, 2016 6
-

Unlimited Release
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Unlimited Release
Sanids

First-Derivative Complex-Step Approximation B
Taylor series with an imaginary step:
1 h3 Fi
Flx + hi) = F(x) + hf ()i — Ehzf”(x) — fT(X)f + ..

Flx+hi) = (f(x) — %hgf“(x) + ) +h (f’(x> — %hzf”(x) - ) i

- -

real imaginary

First-Derivative Complex-Step Approximation: pvartins koo, and Alonso 2000 and

Martins, Sturdza, and Alonso 2003]

O LEL e

m First derivatives are subject to truncation error but are not subject to
subtractive cancellation error.

June 3, 2016 6

Unlimited Release

Unlimited Release

Generalized Complex Numbers s
Generalized Complex Numbers anwor 13891 consist of one real part and
one non-real part, @ + bE
June 3, 2016 ;

Unlimited Release
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Unlimited Release
Sanids

Generalized Complex Numbers s
Generalized Complex Numbers [kanwor 15891 consist of one real part and
one non-real part, a + bE
Addition:
(a +bEY+(c+dE)=(a+c)+(b+d)E
lune 3, 2016 ,

Unlimited Release

Unlimited Release

Generalized Complex Numbers B

Generalized Complex Numbers anwor 13891 consist of one real part and

one non-real part, a + bE

Addition:

(0 +bE)+(c+dE)=(a+c)+(b+d)E
Multiplication:
(a + bE) (c 4 dE) = ac + (ad + bc) E + bd E?
June 3, 2016 7

Unlimited Release
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Unlimited Release
Sanids
Natirel

Generalized Complex Numbers e

Generalized Complex Numbers [kanwor 15891 consist of one real part and
one non-real part, a + bE

Addition:
(a+bE)+ (c+dE)=(a+c)+(b+d)E
Multiplication:
(a + bE) (c 4 dE) = ac + (ad + bc) E + bd E?

Three types based on choice for the non-real part, E:

m Ordinary Complex Numbers E2 = /2 = —1
m Double Numbers E2 = e? = 1 (aiffora1872]

m Dual Numbers E2 = ¢2 = O [sudy1002]

June 3, 2016 7

Unlimited Release

Unlimited Release
Sanids
Natirel

Generalized Complex Numbers e
Ordinary Complex Numbers (E2 = i = —1):
1 1
Flx+hi) = (f(x) — ah?f”(x) + ) +h (f’(x) — gh?f”’(x) + ) i
r;;I ima;irnary
June 3, 2016 g

Unlimited Release
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Unlimited Release
Sanids

Generalized Complex Numbers s

Ordinary Complex Numbers (E2 = i = —1):

Fix-thi) — (f(x) - %hzf”(x) + ) th (f’(x) - %hzf”’(x) + ) j

real imaginary

Double Numbers (E2 = e = 1):

Fix-+he) — (f(x) + %hzf”(x) + ) ‘h (ff(x) + %hzf”"(x) + ) .

real non-real

June 3, 2016

Unlimited Release

Unlimited Release

Generalized Complex Numbers B
Ordinary Complex Numbers (E2 = i = —1):
1 1
Flx+hi) = (f(x) — ah?f”(x) + ) +h (f’(x) — gh?f”’(x) + ) i
r;;I ima;irnary

Double Numbers (E2 = e = 1):

Fix-+he) — (f(x) + %hzf”(x) + ) ‘h (ff(x) + %hzf”"(x) + ) .

real non-real

Dual Numbers (E2 = €2 = 0):

Flx + he) = F(x) + hf (x)e
N o

real non-real

June 3, 2016

Unlimited Release
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Unlimited Release
Sanids

. . . . Matianal
Accuracy of First-Derivative Calculations e
Error in the First Derivative
10" : e :
? —&— Forward Difference
=& Central Difference
; ——Complex Step
P10 T T WO W, . AR =—eo—Dual Numbers
g 10'10_ .....................................................................................
L
10—1577
o——a—8—0—0, A gistes—a—a—arm, B s =
-0
10 1 1
10° 107" 107 107"
Step Size, h
eX
FX) =
\/sm X 4 cos- x
June 3, 2016

Unlimited Release

Unlimited Release
Sanids

Second-Derivative Calculations? e

Ordinary Complex Numbers (E2 = i = —1):

Fix-thi) — (f(x) - %hzf”(x) + ) th (f(x) - %hzf”(x) + ) j

™ '
real imaginary

Double Numbers (E2 = e = 1):

Fix-+he) — (f(x) + %hzf”(x) + ) ‘h (ff(x) + %hzf”"(x) + ) .

real non-real

Dual Numbers (E2 = ¢2 = ():

fx+ he) :&) + hf (x)e

-
real non-real

June 3, 2016 10

Unlimited Release
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Unlimited Release
Sanids

Second-Derivative Complex-Step B
One Second-Derivative Complex-Step Approximation:
2(f(x)— Relf(x + ih
m Second derivatives are subject to subtractive cancellation error
June 3, 2016 11

Unlimited Release

Unlimited Release
Sanids
Natirel

Second-Derivative Complex-Step e

One Second-Derivative Complex-Step Approximation:

fH(X) _ 2(fx) — Rsz[f(x + ih)]) 1 O(hg)

m Second derivatives are subject to subtractive cancellation error

Alternative approximations: (s 200s)

Im [£(x + 7/2h) + F(x + £/2h)]
hZ

Flix) = + O : 0 =45°

20m [f{x + APh) 1 f(x o B3h)]
— N

m These alternatives may offer improvements, but they are still subject
to subtractive cancellation error

(%) +Oh?) - 6§ =60°

June 3, 2016 11

Unlimited Release
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Unlimited Release
Sanids

. . . Nt
Alternative Complex-Step Approximations e
Error in the Second Derivative
10" : .
? —a— Complex Step, basic
1 ; —4— Complex Step, 6 = 45
10 b o ................ —.—Comple}( Step, 9 — 60
5
i,
10 1 1
10° 107" 107 107"
Step Size, h
eX
F) = ————
\/sm X 4 cos- x
June 2, 2016 12

Unlimited Release

Unlimited Release
Sanids
Natirel

Multiple Non-Real Parts e

To avoid subtractive cancellation error:

m Second-derivative term should be the leading term of a non-real
part

m First-derivative is already the leading term of a non-real part

Suggests that we need a number with multiple non-real parts

B Use higher-dimensional extensions of generalized complex
numbers

June 3, 2016 12
1

Unlimited Release
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Unlimited Release

Quaternions B
Quaternions: one real part and three non-real parts
PP =Kk = -1
ik = —1
June 3, 2016 14

Unlimited Release

Unlimited Release
Sanids

Quaternions B
Quaternions: one real part and three non-real parts
P=pF =K = -1
ik = —1
Taylor series for a generic step, d:
! 1 P 1 3l
flx+d) =F(x)+df (x) + ﬁd f{x) + ?d () + .
June 3, 2016 14

Unlimited Release
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Unlimited Release
Sanids
Natirel

Quaternions .

Quaternions: one real part and three non-real parts

PP =Kk = -1
ik = —1

Taylor series for a generic step, d:
1 1
Flix+d) =f0x) + df'(x) + ga@f”(x) + gd?’f”’(x) + .

For a quaternion step:
d = hyi+ hoj+ 0k
d* = —(hi+h3)

m d? is real, second derivative only appears in the real part

June 3, 2016 14

Unlimited Release

Unlimited Release
Sanids
Natirel

Quaternions e
Second-Derivative Quaternion-Step Approximation:
2 (f(x) — Re[f(x + h1i + hoj + Ok)]
hi + h3
m Subject to subtractive-cancellation error
Quaternion multiplication is not commutative, f = kbutji = —k
June 3, 2016 15

Unlimited Release
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Unlimited Release
Sanids

Quaternions B
Second-Derivative Quaternion-Step Approximation:
2(f(x) — Relf(x + hyi+ hoj + Ok
hi + h3
m Subject to subtractive-cancellation error

Quaternion multiplication is not commutative, f = kbutji = —k

Instead, consider a number with three non-real components £1, E3,

and (E1Ez) where multiplication is commutative, i.e. E1E3 = Eofy

June 3, 2016 15

Unlimited Release

Unlimited Release
Sanids
Natirel

Enforce Multiplication to be Commutative e
Taylor series: . .
Flx +d) =)+ df' (x) + Edzf”(x) + Ed?’f”’(x) + ..

Unlimited Release
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Unlimited Release
Sanids
Natirel

Enforce Multiplication to be Commutative e

Taylor series:

1 1
Flx +d) =f0) + df' (x) + Edzf”(x) + gd?’f”’(x) + ..
d = hiE1 + haEs 4+ OE1E3
d? = hPET 4 h3ES + 2hihoE E
- 1=1 2=2 18251832
d® = E} + 3h h3ELES + 3hThoFTE, + A3ES
dt = hiE] + 6hin3ETES + AhThoETES + 4h h3E(ES + RES
June 3, 2016 16

Unlimited Release

Unlimited Release
Sanids
Natirel

Enforce Multiplication to be Commutative e

Taylor series: . .
Flx +d) =)+ df' (x) + Edzf”(x) + gd?’f”’(x) + ..

d = hiE1 + haEz 4 OE1E3
d? = h2ES 4 h3EZ + 2hihoE Es
d® = hE} + 3h h3ELES + 3hThoFTEs + A3E]
dt = hiE] + 6hin3ETES + AhThoETES + 4h h3E(ES + RES

m d? is first term with a non-zero (E;E3) component
m Second derivative is the leading term of the (EqE3) part

m As long as multiplication is commutative, and E1£2 # 0,
second-derivative approximations can be formed that are not
subject to subtractive-cancellation error

June 3, 2016 16

Unlimited Release
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Unlimited Release
Sanids

Several Possible Number Systems B
The requirement that E1Ex = E2E1 produces the constraint:
(E1E2)? = E1EoE1Ey = E\E\ExEy = EZE2
June 3, 2016 17

Unlimited Release

Unlimited Release

Several Possible Number Systems B
The requirement that E1Ex = E2£1 produces the constraint:
(E1E2)? = E1EoF 3 = E1E1E2Fy = EZE2
This leaves many possibilities for the definitions of £1 and Ex:
June 3, 2016 17

Unlimited Release
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Unlimited Release
Sanids

Several Possible Number Systems B
The requirement that E1Ex = E2E1 produces the constraint:
(E1E2)? = E1EoE1Ey = E\E\ExEy = EZE2
This leaves many possibilities for the definitions of £ and Ez:
m £ = E5 = —1 whichresultsin (E£2)% = 1
m Circular-Fourcomplex Numbers [olariu 2002]
m Multicomplex Numbers [price 1091
June 3, 2016 17

Unlimited Release

Unlimited Release
Sanids

Several Possible Number Systems B
The requirement that E1Ex = E2£1 produces the constraint:
2 _ _ _ 22
(Elfg) — E1EgE1Eg = E1E1EaEy — ETES
This leaves many possibilities for the definitions of £1 and Ex:
m £ = E5 = —1 whichresultsin (E£2)% = 1
m Circular-Fourcomplex Numbers [olariu 2002]
m Multicomplex Numbers [price 1091
m Constrain £ = E5 = (E4E3)?
m £} = E2 = (E1E3)? = 1 Hyper-Double Numbers (rike 2012]
m E? = E2 = (E1E3)? = 0 Hyper-Dual Numbers frike 2011]
June 3, 2016 17

Unlimited Release
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Unlimited Release
Sanids
Natirel

Several Possible Number Systems e

The requirement that E1Ex = E2E1 produces the constraint:
(E1E2)? = E1EoE1Ey = E\E\ExEy = EZE2

This leaves many possibilities for the definitions of £ and Ez:
m £ = E5 = —1 whichresultsin (E£2)% = 1
m Circular-Fourcomplex Numbers [olariu 2002]
m Multicomplex Numbers [price 1091
m Constrain £ = E5 = (E4E3)?
m £} = E2 = (E1E3)? = 1 Hyper-Double Numbers (rike 2012]
m E? = E2 = (E1E3)? = 0 Hyper-Dual Numbers frike 2011]
All are free from subtractive-cancellation error
B Truncation error can be reduced below machine precision

m Effectively exact
June 3, 2016 17

Unlimited Release

Unlimited Release
Sanids
Natirel

Hyper-Dual Numbers e
Hyper-dual numbers have one real part and three non-real parts:
G = do + a1€1 + ageg + asz€1€o

e%:e%:O
€1 # €2+ 0

1€ — €26 75 0

June 3, 2016 18
1

Unlimited Release
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Unlimited Release
Sanids
Natirel

Hyper-Dual Numbers o

Hyper-dual numbers have one real part and three non-real parts:
a = dg + a1€1 + ageg + asz€1€2
e% = e% =0
€1 # €z~ 0

1€ — €26 75 0

Taylor series truncates exactly at second-derivative term:
Flx+hie1thaeat0erea) = Fx)+hif (x)er +haf (x)eat+hihaf (x)ereg

m No truncation error and no subtractive-cancellation error
m Lack of higher order terms makes implementation easier

[Fike 2011 and Fike 2012]
June 2, 2016 18

Unlimited Release

Unlimited Release
Sanids

. . . Nt
Accuracy of Second-Derivative Calculations e
Error in the Second Derivative
10 . :
? —a&— Forward-Difference
=& Central-Difference
: #| ——Complex—Step
10" [ - .| —=—Hyper-Dual Numbers|
g 1OD ....................
L
10—1077
-0
10 1 1
10° 107" 107 107"
Step Size, h
X
(=4
F) = —
\/sm X 4 cos- x
June 3, 2016 19

Unlimited Release
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Unlimited Release
Sanids

Using Hyper-Dual Numbers B
Evaluate a function with a hyper-dual step:
f(x + hier1e; + haeoej + Oeren)
Derivative information can be found by examining the non-real parts:
8f(x) o e1part [f(x + hl e1e; + thQEj + 06162)]
an n h1
af(x) ~ egpart [f(x + hie1€; + h2€28j + 06162)]
an hQ
82f(x) _ eiegpart [f(x + hiere; + hoese; + 06162)]
aX;an N hlhg
June 3, 2016 20

Unlimited Release

Unlimited Release

Outline B
Mathematical Properties of Hyper-Dual Numbers
June 3, 2016 21

Unlimited Release
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Unlimited Release
Sanids

Arithmetic Operations B
Consider two Hyper-Dual Numbers:
d =dg+ d1€1 + doez + daereo b=bg+ bie1 + baes + baereg
June 3, 2016 22

Unlimited Release

Unlimited Release

Arithmetic Operations S
Consider two Hyper-Dual Numbers:
a =ag+ a1€1 + aoes + aseren b =bg+ bi€1 + baes + baeres
Addition:
a+b = (ao+ bo) + (a1 + b1)er + (az + bz) ez + (az + b3) e1€2
June 3, 2016 2

Unlimited Release
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Unlimited Release
Sanids
Natirel

Arithmetic Operations e
Consider two Hyper-Dual Numbers:
a@ =ag+ aie1 + aoes + aseren b=bg+ bie1 + baes + baereg
Addition:
a+b={(ao+ bo) + (a1 + br)er + (a2 + bz2) €2 + (as + b3) e162
Multiplication:

axb = (ao#*bo)+ (ag* by +ay*by)e + (ag* by + ag *by) e
+(ag = bz + a1 * by +az * by +az* bg) €162

June 3, 2016 22

Unlimited Release

Unlimited Release
Sanids
Natirel

Arithmetic Operations e
Consider two Hyper-Dual Numbers:
a =ag+ a1€1 + aoes + aseren b =bg+ bi€1 + baes + baeres
Addition:
a+b = (ao+ bo) + (a1 + b1)er + (az + bz) ez + (az + b3) e1€2
Multiplication:

axb = (ao#*bo)+ (ag* by +ay*by)e + (ag* by + ag *by) e
+(ag = bz + a1 * by +az * by +az* bg) €162

m Hyper-Dual addition: 4 real additions

m Hyper-Dual multiplication: 9 real multiplications and 5 additions

June 3, 2016 22

Unlimited Release
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Unlimited Release
Sanids

Other Operations B
The inverse:
1 1 ay as 2a1a2  as
—=— — € €3 — — €1€
g  ap a% ! a% 2 ag a% 1

m Only exists forag # 0

This suggests a definition for the norm:

norm (a) = +/ a3

This in turn implies that comparisons should only be made based on
the real part.
W i.e. g > bisequivalenttoap > bg

m This allows the code to follow the same execution path as the
real-valued code.

June 3, 2016 23

Unlimited Release

Unlimited Release

Sandia
Mational

Mathematical Properties of Hyper-Dual Numbers e
m Additive associativity, i.e. (a + b) +c=a + (b + ¢c),
m Additive commutativity,i.e.a + b =b + a,

m Additive identity, there exists a zero element,
2 =0+ 0ey 4+ Oeg + Oeqe9, suchthatae +z=z+a = a,

Additive inverse, i.e. a + (—a) = (—a) + a =0,
Multiplicative associativity, i.e. (a* b)*x c = a* (b*c),

Multiplicative commutativity, i.e.ax b = b x a,

Multiplicative identity, there exists a unitary element,
14 0eq + Oeg + Oeqeg, such thatax 1 = 1 xa = g,

m Left and right distributivity, i.e. a = (b + ¢) = (@ * b) + (@ * c)
and (b +c)xa=i(bxa)+ (cxa).

These properties make hyper-dual numbers a commutative unital

associative algebra.
June 3, 2016 24

Unlimited Release
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Unlimited Release
Sanids
Natirel

Mathematical Properties of Hyper-Dual Numbers e
Hyper-Dual Numbers are a commutative unital associative algebra.
Hyper-Dual Numbers are not a field {a commutative division algebra)

A division algebra requires the properties on the previous slide, plus

a multiplicative inverse

m i.e. there exists an inverse, ¢~ 1, such thata*xa ' =g '*xa =1

for every a # 0 + Oeqy + Oeg + Oeqeg

1

Hyper-Dual Numbers have an inverse for every a with norm(a) # 0

(i.e. ap #= 0)

June 3, 2016 25

Unlimited Release

Unlimited Release
Sanids
Natirel

Hyper-Dual Functions o

Differentiable functions can be defined using the Taylor series for a
generic hyper-dual number:

fla) = f(ao)+aif'(a)er +aof (ao)ea+ (aaf (ao) + araaf"(ao)) e1ez
For instance:

3 3 2 2 2
a” = ap + 3a1aie1 + 3azafez + (30300 + 6010200) €169

sing = sinago+ a1cosaoel + azcosapes

+ (azcosag — araasinag) 162

June 3, 2016 26

Unlimited Release

114



Unlimited Release

Sandia
Mational

Example Evaluation K

A simple example hyper-dual function evaluation:
F(x) = sin’ x

This function can be evaluated as:

th = X
f1 = sinfy
th — ft

June 3, 2016 27
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Example Evaluation K

A simple example hyper-dual function evaluation:
F(x) = sin’ x

This function can be evaluated as:

th = x+ hieg + hoes + Oeqes

ty = sinfy

sinx + h1cosxer + hacosxes — hihosinxey en
t, = t
— sin®x + 3hy cosxsingxel + 3ho COSXSiﬂ2X€2

3
71h1h2 (sinx — 3sin3x) e1eo

June 3, 2016 27
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Implementation and Use of Hyper-Dual Numbers

June 3, 2016 28
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Hyper-Dual Number Implementation i

To use hyper-dual numbers, every operation in an analysis code must
be modified to operate on hyper-dual numbers instead of real
numbers

m Basic Arithmetic Operations: Addition, Multiplication, etc.
m Logical Comparison Operators: >, #, etc.

m Mathematical Functions: exponential, logarithm, sine, absolute value,
etc.

m |nput/Output Functions to write and display hyper-dual numbers
Hyper-dual numbers are implemented as a class using operator
overloading in C++, CUDA, MATLAB and Fortran

m Change variable types, but body and structure of code is unaltered

m MPI| datatype and reduction operations also implemented

m Implementations publicly available:
http://adl.stanford.edu/hyperdual

unes, 2006 M Implementations by others for Python and Julia 29
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Variations of Hyper-Dual Numbers e
Dual numbers produce exact first derivatives

Hyper-dual numbers, as described so far, produce exact
second-derivatives

Third (or higher) derivatives can be computed by including additional
non-real parts
m Third derivatives require an €5 term and its combinations
d = hiey + hoex + hzeg + Oegeg + Oegeg + Oegeg + Oegeney

Derivatives of complex-valued functions can be computed by defining
hyper-dual numbers with complex-valued components

Vector-mode version propagates entire gradient and Hessian

m Eliminates redundant calculations, but increased memory

requirements [rre2012]
June 3, 2016 30
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Analysis Codes Using Hyper-Dual Numbers e
Hyper-Dual Numbers can be applied to codes of arbitrary complexity
in order to compute exact derivatives of output quantities of interest
with respect to input parameters.

m Computational Fluid Dynamics
m JOE, a parallel unstructured, 3-D, unsteady Reynolds-averaged
Navier-Stokes code developed at Stanford University as part of
PSAAP (the Department of Energy’s Predictive Science Academic
Alliance Program)
m Structural Dynamics
m Sierra/SD (aka Salinas), a massively parallel, high-fidelity,
structural dynamics finite element analysis code developed by
Sandia National Laboratories

June 3, 2016 31

Unlimited Release

117



Unlimited Release

Converting Codes to Use Hyper-Dual Numbers

Sandia
Mational
Lobowsitories

At a high level, converting a code to use Hyper-Dual Numbers
requires little more than changing the variables types from real
numbers to hyper-dual numbers.

B In some cases, there can be more effort required

B Requires modifying the source code
m Some codes make use of external libraries for which the source
code is unavailable

m Linear Solvers
m Eigenvalue Solvers

June 3, 2016 32
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Converting Codes to Use Hyper-Dual Numbers

Sandia
Mational
Lobowsitories

At a high level, converting a code to use Hyper-Dual Numbers
requires little more than changing the variables types from real
numbers to hyper-dual numbers.

B In some cases, there can be more effort required

B Requires modifying the source code
B Some codes make use of external libraries for which the source
code is unavailable

m Linear Solvers
m Eigenvalue Solvers

Hyper-Dual numbers can still be used to compute derivatives even if
not all parts of a code can be modified
m Requires replicating the effect of a hyper-dual calculation, i.e.
returning hyper-dual valued output containing the required

derivative information
32
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Differentiating the Solution of a Linear System B

Solving the system:

A(x)y(x) = b(x)
Differentiating both sides with respect to the it component of x gives
OA(x oy(x ob(x
)y + A DY) _ 20
aX,' an aX,'

Differentiating this result with respect to the jt" component of x gives
FA(x OA(x X)) OAX) dy(x F*y(x)  Fbx
PR, ) PR NG | O V) | DY) bl

X’;(‘?X; 8x,- 6)(); 8Xj (9)(,' 6)();8)(; 8Xj8)(;
June 3, 2016 332
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Differentiating the Solution of a Linear System B
This can be solved as:
A(x) 0 0 0 y(x) b(x)
20 AW 00 o5 O
Bg )Ej() 0 A (X) 0 85 E}x) = 8;)(;()
a%a(x A% aA(x a%y(x 8°b(x
ax?éx,-) g)(g ) g)(:, ) A(X) a;:zgx,-) %&gx?
o AX)Y() = b(x)
y(x)  Ib(x) OA(x)
A(X) 8)(,' N é?x,- B 8)(,' V(X)
Oy(x)  Ob(x) OA(x)
A(X) ox i N ox ¥ B Ox i ¥ (X)
A y(x) _ Fb(x) GQA(x)v x) IA(x) Iy IA(x) ()
8)(}8)(; 8)(1'8)(; 8)(,—8)(,- a)(,' 8Xj 8Xj 8)(,—
June 3, 2016 34

Unlimited Release

119



Unlimited Release
Sanids

Derivatives of Eigenvalues and Eigenvectors B
Eigenvalues and eigenvectors are solutions of the equation
(K — A\eM) g — Fogpp — 0O
The first derivative of an eigenvalue is
22 oK oM
= 0p {7 — Aem | e
aX; aX; aX;
The first derivative of the eigenvector is
Oy
=i+ G
aXl[ ! -‘¢£
OF;
where Fezi = — 3 Pi
1 om0
T
Ci = —5Pp P2 — ¢ Mz
and i 2@2 Bx; Pp — Mz
June 3, 2016 35
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Outline e
Other Details
June 2, 2016 36
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Matrix Representation of Generalized Complex Numbets &«

Ordinary Complex Numbers:

. a —b 1 0 0 —1
G+b!—{b 01_0[01]+b{1 0]

Double Numbers:

e TP [ 0], 00
aTPE= gy g 7% 01 10

Dual Numbers:

a 0 1 0 0
arbe=| 5 o] =a| g 1] +0] ]

= O
I

June 3, 2016 37
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Matrix Representation of Hyper-Dual Numbers e

Ordinary Complex Numbers:

ap 0O 0 O
a1 do 0 0
gz 0 ap O
g3 @ a1 ao

ao + a1€1 + a2¢ez + azerea =

June 3, 2016 38
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Questions?

June 3, 2016 39
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Exceptional service in the national interest m National
Laboratories

Round Robin: PROMs Using
Hyper-Dual Numbers

Jeffrey A. Fike and Matthew R. W. Brake
Sandia National Laboratories
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Parameterized Reduced-Order Models Using Hyper-Dual Numbers

June 3, 2016 2
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Parameterized Reduced-Order Models (PROMs) .

Create parameterized models using a Taylor series expansion about
the nominal design:
(Ax)?

FOc+ Ax) =700 + (Ax)F ) + =100 +

(AX)S 17
Tf (x)+....

Quantity of interest f(x):
m Mass and stiffness matrices from Finite-Element Analysis (FEA)
m OQutputs of FEA, such as displacements or natural frequencies

Perturbations Ax: variations in geometry or material properties

Terminology:

m Parameterized Full-Order Model if applied to FEA quantities
m Parameterized Reduced-Order Model (PROM) if applied to a
Reduced-Order Model (ROM)
m Craig-Bampton {C-B) Component Mode Synthesis {CMS)

June 3, 2016 approach |Craig and Bampton 1968] 3
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Finite Element Implementation e
Salinas (a.k.a. Sierra/SD) was modified to operate on hyper-dual

numbers and can produce up to exact third derivatives of cutputs
with respect to input parameters

m nputs:
m Derivatives with respect to Material Properties
m Derivatives with respect to Geometric Perturbations
B Geometric perturbations are currently computed internally from
the nominal mesh by using a small set of geometric

transformations to modify the nodal coordinates
B Ongoing work to get geometric sensitivies from mesh generator

m Outputs:
m Derivatives of Eigenvalues and Eigenvectors
m Derivatives of Mass and Stiffness Matrices
m Derivatives of Craig-Bampton Reduced Matrices

June 3, 2016 4
-
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PROM Round Robin Test Case
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Test Case Geometry e

m Plates are nominally 0.4 mm thick

B Square patch in center of vertical plates increased by up to 6 mm
June 3, 2016 6
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Comparison Between Codes .

First step: Try to get Salinas to agree with provided ANSYS results.

June 3, 2016 7
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Comparison Between Codes .

First step: Try to get Salinas to agree with provided ANSYS results.

Natural frequencies for first 5 vibration modes for unperturbed case:

ANSYS | Salinas (original) | Salinas {(fixed)
Mode 1 117.8 Hz 117.9 Hz 117.8 Hz
Mode 2 4089 Hz 298.5 Hz 409.0 Hz
Mode 3 666.1 Hz 666.6 Hz 666.1 Hz
Mode 4 779.0 Hz 727.5 Hz 779.0 Hz
Mode 5 | 1792.6 Hz 1226.4 Hz 1792.4 Hz
June 3, 2016 7
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Comparison Between Codes B
First step: Try to get Salinas to agree with provided ANSYS results.
Natural frequencies for first 5 vibration modes for unperturbed case:
ANSYS | Salinas {original) | Salinas (fixed)
Mode 1 117.8 Hz 117.9 Hz 117.8 Hz
Mode 2 | 408.9 Hz 298.5 Hz 409.0 Hz
Mode 3 666.1 Hz 666.6 Hz 666.1 Hz
Mode 4 779.0 Hz 727.5Hz 779.0 Hz
Mode 5 | 1792.6 Hz 1226.4 Hz 1792.4 Hz
Firstand-third-moedesmatch-welothersdenot: (Fixed)
The original Salinas runs used meshes with a couple issues, fixing
these issues results in a much better comparison.
June 3, 2016 7
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Natural Frequency as Thickness is Varied, Mode 1 e
Mode 1
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Natural Frequency as Thickness is Varied, Mode 2 e
Mode 2
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Natural Frequency as Thickness is Varied, Mode 3 e
Mode 3
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Natural Frequency as Thickness is Varied, Mode 4 e
Mode 4
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Natural Frequency as Thickness is Varied, Mode 5 e
Mode 5
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Discussion .

There are significant differences in the results
B Mode 1 and Mode 3 match well at O mm perturbation
B OthermodesdenotmatchaswellevenforOmm (Fixed)
m For these results, the plates are 2 elements thick

m Refini b chif haviort {rive Sali
poshis s AN el

m The behavior as the thickness is increased is different

B ANSYS seems to be almost linear in most cases
m Salinas exhibits non-linear behavior
m Are thicknesses for ANSYS results correct?
B The element type choice in Salinas has a large impact

m The chosen type is closer to a commercial code than the default
{according to the Salinas documentation)

m Non-linear behavior suggests that HD PROMs constructed from

Omm case will not be very accurate for large perturbations
June 3, 2016 132
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Natural Frequency as Thickness is Varied, Mode 1 B

Mode 1
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Natural Frequency as Thickness is Varied, Mode 3 e
Mode 3
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Discussion .

There are significant differences in the results
m Mode 1 and Mode 3 match well at O mm perturbation
B OthermodesdenetmatehaswelevenforOmm (Fixed)
m For these results, the plates are 2 elements thick

m Refini b chif havior | {rive Sali
wosghismeneae SIENE e n i

m The behavior as the thickness is increased is different
B ANSYS seems to be almost linear in most cases
m Salinas exhibits non-linear behavior
m Are thicknesses for ANSYS results correct?

B The element type choice in Salinas has a large impact

m The chosen type is closer to a commercial code than the default
{according to the Salinas documentation)

m Non-linear behavior suggests that HD PROMs constructed from

Omm case will not be very accurate for large perturbations
June 3, 2016 16
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Mesh Convergence Study, Mode 1 e
Mode 1
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Mesh Convergence Study, Mode 2 e
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Mesh Convergence Study, Mode 3 e
Mode 3
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Mesh Convergence Study, Mode 4 e
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Mode 5
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Discussion e
There are significant differences in the results
m Mode 1 and Mode 3 match well at O mm perturbation
B OthermodesdenetmatehaswelevenforOmm (Fixed)

m For these results, the plates are 2 elements thick

m Refini b chif havior| {rive Sali
woslis s SN e n i

B The behavior as the thickness is increased is different

B ANSYS seems to be almost linear in most cases
m Salinas exhibits non-linear behavior
m Are thicknesses for ANSYS results correct?
B The element type choice in Salinas has a large impact

m The chosen type is closer to a commercial code than the default
{according to the Salinas documentation)

m Non-linear behavior suggests that HD PROMs constructed from

Omm case will not be very accurate for large perturbations
June 3, 2016 22
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Change Thickness for ANSYS Results, Mode 1 e
Mode 1
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Change Thickness for ANSYS Results, Mode 2 e
Mode 2
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Change Thickness for ANSYS Results, Mode 3 e
Mode 3
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Change Thickness for ANSYS Results, Mode 4 e
Mode 4
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Change Thickness for ANSYS Results, Mode 5 e
Mode 5
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Discussion e
There are significant differences in the results
m Mode 1 and Mode 3 match well at O mm perturbation
B OthermodesdenetmatehaswelevenforOmm (Fixed)
m For these results, the plates are 2 elements thick

m Refini b chif havior| {rive Sali
woslis s SN e n i

m The behavior as the thickness is increased is different

B ANSYS seems to be almost linear in most cases
m Salinas exhibits non-linear behavior
m Are thicknesses for ANSYS results correct?
B The element type choice in Salinas has a large impact

m The chosen type is closer to a commercial code than the default
{according to the Salinas documentation)

m Non-linear behavior suggests that HD PROMs constructed from

Omm case will not be very accurate for large perturbations
June 3, 2016 28
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m Original elements were, 3mm x 3mm. Refine-to-ImmxImnr

B Try using default hex element type
June 3, 2016
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Additional Salinas Runs, Mode 1 e
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Additional Salinas Runs, Mode 2 e

Mode 2
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Additional Salinas Runs, Mode 3 e

Mode 3
800 . ‘ .
"% g 8 y f
M
T 600 - R
&
5 Q Ansys
ag)— 500 - O Salinas, 2 elements thick 4
A Salinas, 10 elements thick
= O Salinas, 20 elements thick
§ 400 - A Salinas, 2 elements thick, type b R
g A Salinas, 10 elements thick, type b
A Salinas, 20 elements thick, type b
300 - R
A A
200 Il 1 Il Il A 1 A
0 1 2 3 4 5 6
Thickness Variation, mm
lune 2, 2016 32

Unlimited Release

139



Unlimited Release

Additional Salinas Runs, Mode 4

Natural Frequency, Hz
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Additional Salinas Runs, Mode 5

Natural Frequency, Hz
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Discussion .

There are significant differences in the results
m Mode 1 and Mode 3 match well at O mm perturbation
B OthermodesdenotmatchaswellevenforOmm (Fixed)
m For these results, the plates are 2 elements thick

m Refini b chif haviort {rive Sali
poshis s AN el

m The behavior as the thickness is increased is different
B ANSYS seems to be almost linear in most cases
m Salinas exhibits non-linear behavior
m Are thicknesses for ANSYS results correct?

B The element type choice in Salinas has a large impact

m The chosen type is closer to a commercial code than the default
{according to the Salinas documentation)

m Non-linear behavior suggests that HD PROMs constructed from

Omm case will not be very accurate for large perturbations
June 3, 2016 35
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Outline e
PROM Comparison
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PROM Comparison e
Two PROM Comparisons:
B PROM constructed using information from Omm case

m Not expected to be accurate for entire range of variation due to
non-linear behavior
m Accurate only for small variations

m PROM constructed using information from 3mm case
m Captures behavior better for larger variations

Vary order of parameterization from 0O {constant) to 3 (cubic)

Focus on Mode 1 and Mode 3, which matched better with ANSYS
results

June 3, 2016 37
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———PROM, order 3
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Thickness Variation, mm
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]
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T
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o
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Unlimited Release

Sandis
Mational
PROM Constructed from 3mm Case i
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700
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o ¢ —— PROM, order 1
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¢ ——PROM, order 3
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Thickness Variation, mm
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Questions?
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Unlimited Release

Mode Shapes: Mode 1 [@ES.

June 3, 2016 43

mited Release

Unlimited Release

Mode Shapes: Mode 2 [@ES.
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Unlimited Release

Mode Shapes: Mode 3 [@ES.
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Unlimited Release

Mode Shapes: Mode 4 (@i,
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Unlimited Release

Mode Shapes: Mode 5 [@ES.
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Mode Shapes: Mode 6 [@ES.

June 3, 2016 48
1

Unlimited Release

147




Unlimited Release

Mode Shapes: Mode 7 [@ES.
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Unlimited Release

Mode Shapes: Mode 8 [@ES.
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Unlimited Release

Mode Shapes: Mode 9 [@ES.
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Mode Shapes: Mode 10 (@i,
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3.3.3 Meta-Modeling Round Robin and Tutorial, Matthew Bonney

)

Hyper-Dual Meta-Model Round
Robin

Matt Bonney
Dan Kammer

UNIVERSITY OF WISCONSIN
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W
Hyper-Dual Meta-Model (HDM) Review ~

= Combines the accuracy of the Hyper-Dual step and
the range of finite difference
= Perform multiple Hyper-Dual model evaluations

» Use basis function to characterize output and sensitivities
at each evaluation point

= Most effective if evaluation points at or near the extremes
of the parameter values

= Requires least amount of code modification if performed at
system level

7/11/2016 UNIVERSITY OF WISCONSIN

Simple Example

L,=15 Pl

Deflection of cantilever
tip due to applied force

Parameterize stiffness

matrix in terms of beam ly y g
length L, very nonlinear  g| /% /1 { }:{ r }
= Evaluate stiffness at 3 %} %, 4 &
meshes with first
derivative
L,=10" L=1%5" L, =20"
@ @ @
—1 0 +1

/11/2016 UNIVERSITY OF WISCONSIN
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Simple Example Cont.

Fit polynomial to

stiffness matrix in terms
of dimensionless length

Y

K=K, +Ky+Ky*+Ky’+Ky*+Ky’
3

=K, +2K,y +3Ky* +4K,y’ + SK.y*

Match values and first

derivative at each
evaluation

Solve for unknown
matrix coefficients

>

>

>

L

-

-

.

4

>

w

UNIVERSITY OF WISCONSIN

Hyper-Dual Implementation

Generated HD step in SIERA

Collect data from multiple points
» Extremes of interval and possibly mid-points

» Up to engineering intuition
Use first and second derivatives

Can parameterize at system or output level
» Changes accuracy and computational requirements for

HDM generation

Perform post-processing in Matlab

UNIVERSITY OF WISCONSIN



Hyper-Dual in Matlab

= Currently object programming on term-by-term
basis

= Requires less memory for processing compared to matrix
implementation

= Requires specific order to be programmed
individually

= Currently 2" and 374 derivatives available

= Must redefine basic operations (+-*/)

= More advance functions can be implemented in 2
ways, via algorithm or analytically

= /11/2616 UNIVERSITY OF WISCONSIN

Hyper-Dual Functions

= Create folder listed as @hyperdual2 and add to
Matlab path
= Within folder contains all functions
= Basic functions (+,-,%,/,")
» Logical function (==,~=,>,<)
= Ease of use functions (display, sort)
= More advanced functions
= Eig, sqrt, inv, norm, eye, zeros, diag

= /11/2616 UNIVERSITY OF WISCONSIN
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Round Robin System

= Are you tired of
this system yet?

= Look at thickness
variation from o to
6 mm

(0,0, 20)=(0,0,0)

= Polynomial basis .
function

» 2 data points and 3 /
data points /

Iz
(4]

1.7/

P

/

./I
/

-

| 2

e

(%] ]

Ly2

Lya ]
R - =
J/
./‘r

[

Il
= Issues with h
overfitting the data

= /11/2616 UNIVERSITY OF WISCONSIN

Simple Option

= 2 Data points

= Match output and first derivative

» 34 Order polynomial

= Match output and first two derivatives

» 5 Order polynomial

X

» Uses zero thickness and 6mm thickness from Sierra

» Compare to multiple Sierra “real” simulations

= Parameterized at Eigen frequency level

=zli1/2016 UNIVERSITY OF WISCONSIN
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Results — 15t Natural Frequency

Match First Derivatives

Frequency |Hz|

Thickness af Bump [mm]

['] 1 2 3 ] 5 3

Match First & Second Derivative

Frequency [HI]

1] 1 2 3 4 §
Thickness of Bump [mm]

= /11/2616 UNIVERSITY OF WISCONSIN 10

Results — 2" Natural Frequency

Match First Derivatives

Frequency |Hz|
"

o 1 2 3 4 5 [
Thickness af Bump [mm]

Match First & Second Derivative

1] 1 2 3 4 §
Thickness of Bump [mm]

=zli1/2016 UNIVERSITY OF WISCONSIN
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Frequency |Hz|

7/11/2016

7/11/2016

Results — 3 Natural Frequency

Match First Derivatives

-]

&
2

il
o

o
=]

] ! 2 3 ] 8
Thickness af Bump [mm]

Match First & Second Derivative

1] 1 2 3 4 § [
Thickness of Bump [mm]

UNIVERSITY OF WISCONSIN

Collect More Data

Use 3 data points
= Match 1% derivatives
= 5% Order Polynomial

= Match first two derivatives

= 8™ Order Polynomial

* Over fits the data if extrapolating

= Uses zero, 3mm, and 6mm thickness from Sierra
» Compare to multiple Sierra “real” simulations

» Parameterized at Eigen frequency level

UNIVERSITY OF WISCONSIN
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Results — 15t Natural Frequency

Match First Derivatives

Frequency |Hz|

7/11/2016

] ! 2 3 ] 5 3
Thickness af Bump [mm]

Match First & Second Derivative

Frequency |HI]

UNIVERSITY OF WISCONSIN

Results — 2" Natural Frequency

Match First Derivatives

7/11/2016

Frequency |Hz|
"

o 1 2 3 4 5 [
Thickness af Bump [mm]

Match First & Second Derivative

UNIVERSITY OF WISCONSIN



Results — 3 Natural Frequency

Match First Derivatives Match First & Second Derivative

Frequency |Hz|

] ! 2 3 ] 5 3 1] | 2 3 .1 5 [
Thickress of Bump [mm] Thickness of Bump [mm]

=/t1/2016 UNIVERSITY OF WISCONSIN 6

Implementation Problems

= Unit matching

= Derivatives can be given as non-dimensional or
dimensional

* HDM uses new non-dimensional parameter y
= 2 steps
= Model formulation
* Model usage
= Without other truth data, easy to over fit the response

» Model formulation can be very computationally
expensive for larger problems

=/t1/2016 UNIVERSITY OF WISCONSIN 17
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3.3.4 Library for Multi-Complex and Multi-Dual Numbers, Andres Aguirre

A Python library for operating
multicomplex and multidual numbers

Andrés M. Aguirre
Manuel J. Garcia
Harry R. Millwater

Parametrized Reduced Order Modeling Workshop

June 2 & 3, 2016

University of Texas at San Antonio UNIVERSIDAD
UTSA. Universidad EAFIT EAFIT,
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Multicomplex and Hyperduals

We are going to use the notation “multiduals”, because
multicomplex and hyperduals share a lot of interesting
properties:

* Numbers with multiple imaginary parts.

* Belong to the superset of hypercomplex numbers
(which also includes complex, dual, quaternions, etc).

* Useful for computation of high order derivatives
(machine precision).

UTSA. EAFIT 226

Derivatives test

10

Using the example
function from Fike 8l
and Alonso, 2011:

fz) =

\/ sin®(z) + cos3(z) 2|

UTSA. EAFIT 326
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First order derivative test

Error

10 : Error in the Fir:l'.t Derivative

10° R .................... el R R -
101 : ! :

102 .
102 .
10 i : i

1005 - R N (AT R TIRE . ]
W08 ' Forward Difference ||
107 Central Difference
108 Complex Step i
10 Bicomplex Step
1010 j ; Dual Numbers
10 N SO SN S-S S i
1012 | . U N SRR ) U SUUUPTR SUUPO
1012 T ; TR F T
104 . UUTUUI SO . : : fee enenasnnsabasans
1015 N
1076 | . SR :

0

; i . .
10t 0% 107 10 10P 10" 10 10%  10% 10%  10%
Step size, h

UTSA. EAFIT 426

Second order derivative test

Error

Error in the Second Derivative

10" {{ #—a Forward Difference ; i

10*° |{ =—a Central Difference | . O SO SO
10" l{ e—e Complex Step :

igi:_H BicomplexStep ........ A i
10%? *—+ Hyperdual Numbers I . L EIRUTURTUN SRR SO :
10 T T H = .
108 | e ]
108 : e i
10* : :

102 . E S
10° B : : :

102} = : .......... T SARRRS - SRR ST ]
10 - :

10| S S S S S-S |
108 B ............................ LU SO ........................... ]
wel T O SO SO . S, T SO SO ]
T ]
WO U IO JOUUNUP SO SR i
10.1;- \I .......... - . ...... v ....... = . B

10t 0% 107 10 10P 10" 10 10%  10% 10%  10%
Step size, h

UTSA. EAFIT 5/26
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Examples of Multicomplex and Multidual

Multicomplex:

c=cy+cit1, c€Cy, cg,c1 €R. Complex

b=0bg+ b1 +baig+b3gi1ie, beECq, Bicomplex
bg,...bs € R.

Multidual:

d=do+dier, deD;, do,dieR. Dual

h =ho+ hi €1+ haea +hzerea, h €Dy, Bidual
ho,...thR.

UTSA. EAFIT 6/26

Rules for imaginary units

Multicomplex use a rule Multiduals use one based
based on complex numbers. on dual numbers.

if, =—1 Vp, ef, =0 Vp,
iplq = iqlp VD F# @, €p€q = €q€p VD # q,
p,q € N. p,q € N.

UTSA. EAFIT 7126
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Elementary functions for dual numbers

They are based on the . = f(n) (a)
Taylor series expansion. fz) = Z

(2 —a)"

IfzeDy, z=2x9+xT1€, a=umxg,
Nilpotent rule!

Then £(2) = f(@0) + f (@) w1 + 122 1 Oy

f(Z) (330) + f (xo) X1 € Exact! Not an approximation,
but the derivative must be
known

Example: sine function. : )
(Yu and Blair, 2013) sin(z) = sin(zo) + cos(zo) z1 €

UTSA. EAFIT 8/26

Elementary functions for multiduals

oo
_ f(n)(a) n Also based on the Taylor
f(z) = Z (2 —a) series expansion.

Ifz€eDy, z=z0+ 161 +T2€2+2T3€1€62, a=xp,

Then f(2) = f(xo) + f'(z0) 21 €1 + f'(20) T2 €2 +
[f'(z0) z3 + f"(x0) T172] €162

Example: sine function (Fike and Alonso, 2011).

sin(z) = sin(xg) + cos(zg) 1 €1 + cos(xg) z2 €2 +

[cos(zg) 3 — sin(xg) T1x2] €1€2

UTSA. EAFIT 9/26
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Elementary functions for multicomplex

" |n this case Taylor series approach is not exact.

" However, multicomplex can be represented by
real matrices called Cauchy Riemann matrices.

" They are related through algebra isomorphism
(G. Baley Price, 1991).

Procedure: (G. Lantoine, 2010)
1.Convert multicomplex to matrix form.
2.Apply matrix function.

3.Convert matrix result to multicomplex.

m UHIV!IISIDAT: 1 0/26
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4. PLENARY DISCUSSION THEMES

Following the discussions from the four sessions of presentations, 12 topic areas for further
discussion were identified:

Terminology (i.e. multi-dual versus hyper dual);

Multivariate expansions;

Computer memory related issues for calculating PROMs;

Polynomial expansion functions for the PROM formulations;

“Killer” applications;

Moving nodes or changing the number of nodes within a high fidelity model;
Mixed sets of elements within a high fidelity model;

Element independent formulations;

Selection of model points for the PROM formulations;

10. How do we know the valid extent of parameterization?

11. Is it possible to reduce or remove terms in the multivariate expansions?

12. Nonlinear materials/models — how can we cross ideas from structural dynamics to solid
mechanics to materials?

©CoNo~WNE

Several other questions included:

e What problems will break the dual/complex calculations? (None found so far)

e Is mesh refinement necessary for higher order derivatives? For third order? For fifth
order? (There is some evidence that this may be the case)

e Does the order of the element matter to the formulations?

4.1 Terminology

During discussion of the PROM methodologies, it became clear that there is a need for
consensus in terms of nomenclature. Two different sets of terminology were used to refer to the
same concept: hyper dual numbers and multi dual numbers. At issue is that hyper complex
numbers is a previously defined term that includes each family of generalized complex numbers
(complex, double, dual, etc.). Thus, the use of hyper dual could be confusing. However, hyper
dual is currently used by a number of researchers, whereas the suggested alternative, multi dual,
is a new term that has not been adopted outside of a limited number of research groups. No
consensus on a path forward has been reached, but due to the wide use of hyper dual to mean
higher order dual numbers, it is most likely that this terminology will persist. The use of multi
dual is acceptable provided that it is accompanied by a statement such as “also known as hyper
dual numbers [9].” In order to help alleviate confusion in the future, Jeffrey Fike and Andres
Aguirre have been tasked with creating a Wikipedia article on the subject.

4.2 Multivariate Expansions
One of the greatest challenges for extending the use and applicability of PROMs is developing

efficient, multivariate expansions. As the number of parameterized variables increase, the
number of terms in the expansion significantly increases. Thus, an open question is “How should

173



the increase of terms for multivariate, higher order expansions be managed?” Related to the
eleventh theme, one suggestion was the development of an algorithm to assess the necessary
terms (i.e. calculating the sensitivities of the derivatives is automatic as higher order derivatives
is taken, once a sensitivity goes to zero, no other terms are needed in that branch of derivatives).

Central to this, is that multivariate expansions convolute two separate problems:
parameterizations of variables of interest, and formulations of ROMs. Both problems represent
significant research challenges that will require significant innovation for advancement.

4.3 Nonlinear Models

For nonlinear structures, there is no clear definition of mode shapes or superposition. This results
in a challenge for PROM formulations as they are based on modal reductions from structural
dynamics. Thus, the difficulty of defining a PROM from a local calculation is that the extent of
validity is expected to be too small to be useful (e.g. consider using nonlinear strain information
calculated about one design point for predicting how geometric changes might affect a system).
Consequently, the meta-modeling approach seems attractive for studying nonlinear systems as
this approach is able to capture global influences of parameters instead of just local.

4.4 Meta-Modeling

With the attractiveness of meta-modeling for extending the validity of PROMs and addressing
concerns raised from the nonlinear modeling standpoint, several questions arose:

e How can it be determined when a new design point needs to be included in the meta-
model expansion?

e How should the design points for the meta-model expansion be chosen? (e.g. Gaussian
points, stochastic reduced order models, etc.)

e How should new design points be incorporated?

e How should the parameterization be optimally constructed? (e.g. splines)

With regards to this last question, some insight comes from the NX-PROM work: a more
accurate parameterization is able to be achieved by using an element-dependent expansion
function. Thus, the optimal parameterization may depend on physical information and the finite
difference formulation.

4.5 Microstructure Parameterization

One area that is promising for extensions of parameterized modeling is developing
methodologies for representing microstructures. With the maturation of multi-scale modeling
approaches, such as highlighted in the talks given by G. Castelluccio and J. Brown, can the meta-
modeling approach or other PROM concepts be extended to representative volume elements in
order to improve the understanding of the link between material properties and physical
processes? Another way to view this question is: “Are there intuition based material modeling
approaches that can be replaced with a rigorous approach?” An example might be knowing both
information about a granular structure and some uncertainty quantification for it, what is the
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optimal macroscale material model — isotropic, anisotropic, etc.? One particular area of
applicability might be the optimization of composites.

4.6 Multidisciplinary Collaborations

In the workshop, there were two distinct populations of researchers: solid mechanics and
structural dynamics. There needs to be a greater level of collaboration between these two
communities as they are closely related. The concepts of ROMs in structural dynamics and
multi-scale modeling in solid mechanics are, to some extent, inter-related in terms of ultimate
goals and the necessity for mathematical methods to reduce the system equations. One example
of an area that is well posed for collaboration is developing reduced order models for materials.
That is, developing a methodology to investigate specific material models in structural dynamics
ROMs (such as anisotropic, viscoelastic, etc.); this would result in being able to answer
questions such as “If a material was welded in one direction versus another, how does that affect
the dynamic response?” i.e. how does the grain structure or microstructure affect the dynamic
response or system processes?
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