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Abstract

This report summarizes the methods and algorithms that were developed on the Sandia National
Laboratory LDRD project entitled “Advanced Uncertainty Quantification Methods for Circuit Sim-
ulation”, which was project # 173331 and proposal # 2016-0845. As much of our work has been
published in other reports and publications, this report gives an brief summary. Those who are in-
terested in the technical details are encouraged to read the full published results and also contact
the report authors for the status of follow-on projects.
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1. Introduction

This report contains results of an investigation into advanced methods for uncertainty quantifica-
tion (UQ) for circuits. This work was performed under LDRD2016-0845. The focus of the work
has been on advanced UQ methods which can be posed as optimization problems which can be
enhanced with gradient information. As such, steady-state and transient sensitivity analysis meth-
ods were developed and added to Xyce. For this work, the Xyce circuit simulator [1, 2] and Dakota
software [3] were used.

The major accomplishments of this LDRD project include:

1. Xyce: Steady-state and transient sensitivities analytically calculated in Xyce, using both
direct and adjoint methods.

2. Dakota: Field responses and random field model representations incorporated in Dakota.

3. Xyce-Dakota: Use of derivative-based UQ methods, including compressive-sensing based
Polynomial Chaos Expansions and reliability methods.

Because much of our work has been documented in other reports, the purpose of this report is to
provide an overview of the publications and presentations and provide a summary of the methods
with pointers to the more detailed descriptions in other publications.

1.1 Research Products
Under this LDRD, we generated the following conference presentations, internal documentation,
and papers:

• “Advanced Uncertainty Quantification Methods for Circuit Simulation: Interim Report.” SAND2014-
20238. Eric Keiter and Laura Swiler [4].

• “Sensitivity Analysis in Xyce.” SAND2016-9437 Eric Keiter, Laura Swiler, Tom Russo and
Ian Wilcox. [5]

• “Gradient-Enhanced Uncertainty Quantification Methods for Circuit Simulation.” Eric Keiter,
Laura Swiler, and Ian Wilcox. Submitted to IEEE Transactions of CAD of Integrated Circuits
and Systems. [6]
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• “Gradient-Enhanced Polynomial Chaos Methods for Circuit Simulation.” Eric Keiter, Laura
Swiler, and Ian Wilcox. Submitted to Proceedings of 11th International Conference On Sci-
entific Computing In Electrical Engineering [7]

• SIAM UQ Presentation: “Methods for Data Reduction in Uncertainty Quantification: Recon-
ciling parameters from compact modeling of electrical circuits.” Presentation at the Society
for Industrial and Applied Mathematics Uncertainty Quantification Conference, Savannah
GA, April 2014.

• CIS Poster: “Uncertainty Quantification Methods for Electrical Simulation.” Poster presenta-
tion to the External Review Committee for the Computational and Information Sciences IAT,
May 2015.

• UQ Colloquium: “Advanced Uncertainty Quantification Methods for Circuit Simulation.” Pre-
sentation at the ASC Verification, Validation, and Uncertainty Quantification Colloquium,
April 2016.

1.2 Document Organization
We have documented the algorithms and approaches developed under this LDRD in several re-
ports and articles. In this report, we provide a summary description of each major technical
accomplishment with the detailed references that provide the actual algorithm development and
implementation details. Chapter 2 covers steady-state and transient sensitivities in Xyce, Chapter
3 presents UQ approaches that can use analytic sensitivities, Chapter 4 covers field responses,
and Chapter 5 provides a summary.
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2. Xyce Sensitivities

Many of the optimization and UQ techniques of interest to this LDRD can be enhanced if the
application code is able to produce parameter sensitivities with respect to objective functions of
interest. Therefore to expedite this work, steady-state and transient sensitivity capabilities have
been added to Xyce. Typically sensitivities are computed with respect to an output of interest. For
example:

dO

dp
=
∂O

∂x

(
∂F

∂x

)−1 ∂F
∂p

+
∂O

∂p
(2.1)

Where O is the objective function (or output), p is a parameter, F is the residual equation and
x is the solution vector. ∂F/∂x is the Jacobian matrix. A typical objective function, O, could be
something like a circuit output current, or possibly a comparison of that current to measured data
for purposes of calibration. The parameter, p, is a compact model parameter such as saturation
current.

Sensitivities can be computed using two different methods; the direct method and the adjoint
method. The difference between direct and adjoint is related to the order in which the terms of
equation 2.1 are evaluated [8].

2.1 Direct Sensitivity
The general form for direct sensitivities is given by equation 2.2, in which square brackets have
been added to equation 2.1 to indicate that ∂x/∂p is determined first by way of a linear matrix
solve of the Jacobian matrix.

dO

dp
=
∂O

∂x

[(
∂F

∂x

)−1 ∂F
∂p

]
+
∂O

∂p
(2.2)

dO

dp
=
∂O

∂x

∂x

∂p
+
∂O

∂p
(2.3)

2.2 Adjoint Sensitivity
The general form for adjoint sensitivities is given by equation 2.4, in which square brackets have
been added to equation 2.1 to indicate that ∂O/∂F is determined first by way of a linear matrix
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solve of the transpose Jacobian.

dO

dp
=

[
∂O

∂x

(
∂F

∂x

)−1] ∂F
∂p

+
∂O

∂p
(2.4)

dO

dp
=
∂O

∂F

∂F

∂p
+
∂O

∂p
(2.5)

Direct and adjoint formulas, given by equations 2.2 and 2.4 can be expanded to specifically apply
to various kinds of analysis. The derivations, especially for transient sensitivities, are quite com-
plicated. We have prepared a SAND report that focuses solely on the formulas and calculations
for the different types of sensitivities: direct steady-state, adjoint steady-state, direct transient, and
adjoint transient. This SAND report is [5]. Some of the derivations are also explained in [4] and
[6].

2.3 Transient Direct Sensitivity
Transient direct sensitivities can be derived following the approach described by Hocevar. [9]. In
transient, the derivation is slightly more complicated than steady-state, as the time derivative term,
q̇, must be accounted for. To be consistent with the original DAE solve, it is necessary to derive
forward direct formulas for all the time integration methods of interest. More detailed derivations
of the transient direct equations are given in reference [5].

For any integration method, a transient direct equation can be solved by starting with the differential
algebcaic equation (DAE) form, which is given by:

F = q̇ + j − b = 0 (2.6)

This equation is minimized at every time step in transient using a Newton solver. To obtain the
direct sensitivity equation, equation 2.6 must be differentiated with respect to a parameter, p, and
then re-arranged to give a linear system to be solved at each time step:

dF

dp
=

d

dp
(q̇ + j − b) = 0 (2.7)

dF

dp
=
∂q̇

∂p
+

[
∂j

∂x

∂x

∂p
+
∂j

∂p

]
− ∂b

∂p
(2.8)

For Backward Euler integration, the time derivative form for ∂q/∂p is given by:

∂q̇

∂p
=

1

h

(
∂q

∂p
(xn)− ∂q

∂p
(xn−1)

)
(2.9)

Using Backward Euler, substitute in the equation for dq/dp, which ultimately gives:

J
∂x

∂p n

= −FD + CR (2.10)

Where J is the original Jacobian given by:

J =

[
1

h

∂q

∂x
+
∂j

∂x

]
(2.11)

10



FD is the “function derivative”, or the partial derivatives that come directly from the device models,
and is given by:

FD =
1

h

[
∂q

∂pn
− ∂q

∂pn−1

]
+
∂j

∂p
− ∂b

∂p
(2.12)

The remaining term, CR, in this paper is referred to as the chain-rule term, given by:

CR =
1

h

[
∂q

∂x

]
∂x

∂p n−1
(2.13)

Note that the chain rule term is using the Q-matrix ( ∂q∂x ) from the previous time step, n − 1. So,
for the implementation to be correct, it is necessary to either store store previous matrix-vector
muliplication results of ∂q

∂x
∂x
∂p .

2.4 Transient Adjoint Sensitivity
Transient adjoint sensitivities [8, 10, 11] can be broadly classified in broadly classified into two
categories: discrete adjoint sensitivities and continuous adjoint sensitivities. Discrete adjoint sen-
sitivities are obtained when one applies the adjoint operator after discretizing the original DAE
system, and continuous adjoint sensitivities are obtained from applying the adjoint operator first,
and then discretizing the result. For this project, only the discrete form of transient adjoint sensi-
tivities were implemented in Xyce. The following discrete adjoint derivation follows the description
of [8] and [10]. More details of the transient adjoint derivation are given in reference [5].

When considering the transient case, it is convenient to consider the full transient in block form.
If a transient simulation consists of N time points, then all the time points can be considered in a
single block matrix equation, which has the same general form as equation 2.6:

Ψ = Q̇ + J−B = 0 (2.14)

where Ψ is the block residual vector given by Ψ = [F0, F1, ..., FN ]. The other terms in the equation:
X,Q̇, J, and B are block analogies of the original DAE equation terms: x, q, j, and b, respectively.
Similarly, Θ and Θ? are the block forms of dx/dp and dO/dj. For conventional time integration
methods, the block Jacobian takes on the form of a lower triangular matrix:

∂Ψ(X)

∂X
=



(
∂F0
∂x0

)(
∂F1
∂x0

) (
∂F1
∂x1

)
...

...
. . . (

∂FN
∂xN

)

 (2.15)

Where the linear block system is:
∂Ψ

∂X
Θ =

dΨ

dp
(2.16)

Where Θ = [Θ0,Θ1, ...,ΘN ] is the derivative of the block solution X = [x0, x1, ..., xN ] with respect to
a parameter value p. ie, Θ0 = dF0/dp. The block matrix is upper triangular and banded depending
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on the integration method. If the method is Backward Euler (BE), then, the equivalent equation
corresponding to row n of matrix 2.15 is:(

∂Fn

∂xn

)
dxn
dp

= −
(

∂Fn

∂xn−1

)
dxn−1
dp

+
dFn

dp
(2.17)

The left hand side of 2.17 is the original Jacobian matrix given by equation 2.11 at time point n
multiplied by dxn/dp. (

∂Fn

∂xn

)
=

[
1

h

dq

dxn
+

dj

dxn

]
(2.18)

The first term on the right hand side of equation 2.17 (involving an off-diagonal Jacobian block) is
equivalent to equation 2.13. (

∂Fn

∂xn−1

)
= −1

h

[
dq

dxn−1

]
(2.19)

The remainder of the right hand side of equation 2.17 is the similar to equation 2.12.

dFn

dp
=

1

h

[
dqn
dp
− dqn−1

dp

]
+
djn
dp
− dbn

dp
(2.20)

The transpose block Jacobian takes on the form of a upper triangular matrix:

(
∂Ψ(X)

∂X

)T

=



(
∂F0
∂x0

)T (
∂F1
∂x0

)T(
∂F1
∂x1

)T
. . .

...(
∂FN
∂xN

)T


(2.21)

Where the linear block system is: (
∂Ψ

∂X

)T

Θ? =
∂O

∂X
(2.22)

Where Θ? = [θ?0, θ
?
1, ..., θ

?
N ] is the derivative of the objective function O with respect to the block

residual vector Ψ = [F0, F1, ..., FN ]. Once Θ? has been computed it can be used (analogous to
the steady-state case) to obtain dO/dp by taking the dot product with dΨ/dp. As the adjoint block
linear system is a lower-triangular system, it necessary to compute the sensitivity by performing
the time integration backwards in time, starting at the final time point N .

2.5 Device Model Support
Production-level circuit simulator contain many different electrical component models, often re-
ferred to as “compact models”. Some of these models, such as linear resistors, are very simple;
while others, such as those supporting modern semiconductor technology nodes can be quite
complex. To support parameter sensitivities, the terms dj/dp, dq/dp and db/dp (used by both
adjoint and direct methods) must be provided by the individual models. Given the complexity of
modern compact models, as well as the volume of models typically supported by a simulator like
Xyce, this is a prohibitive undertaking. Fortunately, there are modern tools available that can be
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leveraged to make this more feasible, including automatic differentiation (AD) and model compil-
ers.

Many Xyce models have recently been modified to provide derivatives using the Sacado [12] auto-
matic differentiation (AD) library. However, for legacy models that have already been established,
and were not originally designed to support the templating required by the Sacado API, it can be
difficult to retrofit the model to use Sacado. A few models in Xyce have been manually modified in
this manner, but doing so required a nearly complete rewrite of each model. Fortunately, for many
models one can circumvent this issue by using model compilers.

Modern complex device compact models are often developed using a high-level modeling lan-
guage such as Verilog-A. Verilog-A is the current industry standard for compact modeling, as
established by organizations such as the compact model coalition (CMC) [13]. To use a model
written in Verilog-A it is necessary to use a model compiler. Model compilers are software tools
which parse Verilog-A input files, and store the model in an abstract data structure. Once stored
as abstract data, the model can then be written in simulator-specific source code. The model
compiler takes care of many implementation details, such as Jacobian derivatives. The resulting
source code can then be compiled and linked into the simulator.

There are numerous benefits to using this approach, which have been well-documented in the
compact modeling literature. It allows the model developer to focus on the models, rather than
the implementation details. Additionally, once a model has been developed, it doesn’t have to
be re-developed for subsequent simulators. However, one benefit of model compilers has mostly
been ignored in the literature. That benefit is the application of AD to support analytic parameter
derivatives. This particular benefit has been explored as part of this project and represents a
unique research result, and a unique feature of Xyce.

One model compiler, the Automatic Device Model Synthesizer (ADMS) [14] is open-source and
has been modified for use with Xyce. This compiler has been used to implement many recent
industry-standard compact models [15, 16, 17, 18, 19, 20, 21]. For this project, the Xyce-specific
back end to ADMS was extended to produce parametric sensitivities using Sacado AD. Once this
modification was applied, it was possible to regenerate the Xyce source for all of the ADMS-based
models, with sensitivity support included. As a result nearly all the modern transistor models in
Xyce support analytic sensitivities. This is a unique feature of Xyce, compared to other circuit
simulators.

2.6 Impact of Sensitivities in Xyce
As noted, analytic parametric sensitivities are a unique feature of Xyce. It is only with the combina-
tion of model compilers and automatic differentiation that implementation in a production simulator
is feasible. As such, this capability does not appear to be available in any rival open-source sim-
ulator [22, 23]. It is more difficult to assess if this feature is available in any commerical circuit
simulators, but it is not a commonly available feature.

As demonstrated in section 3, analytic parameter derivatives can have a significant impact on UQ,
by providing additional information to the chosen UQ algorithm. They can also be extremeley
useful in circuit optimization, which is the topic of a follow-on project.
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3. Gradient Enhanced UQ
Methods

There are two classes of uncertainty quantification methods which can benefit from analytic sen-
sitivities: reliability methods and stochastic expansion methods. We provide a very brief overview
here. These methods are both outlined in more detail in [4] and [6]. Reliability and stochas-
tic expansion methods are both “forward UQ” methods because they propagate uncertain input
parameters defined by probability distributions through a simulation code to obtain the resulting
probability distribution on outputs or responses of interest. There are also “backward UQ” meth-
ods, also called inverse UQ or parameter estimation methods. These approaches take uncertain
data on outputs (e.g. from physical experiments) and use that data to infer what the corresponding
uncertainty in the inputs must have been to result in those uncertain outputs. Initially, we focused
more on reliability methods in this LDRD, because they also are used in a particular form of back-
ward UQ called “backward propagation of variance” or BPV [24]. In the second half of the LDRD,
we have focused more on stochastic expansion methods for two reasons: (1) they tend to be more
accurate and consistent and (2) Xyce has future plans to calculate the stochastic expansions in
an “intrusive” or embedded manner.

In this chapter, we provide a very brief overview of the methods and show an example with a
comparison of the methods.

3.1 Reliability Methods

Reliability methods are a popular uncertainty quantification approach which can be less compu-
tationally demanding than sampling, particularly when quantifying uncertainties with respect to a
particular response or probability level. The goal of reliability methods is to estimate failure proba-
bilities, i.e., the probability that an output response exceeds or falls below a threshold value. These
approaches preferentially evaluate points around the area of interest, namely the failure region,
and may use successive approximations to refine failure esti- mates. Reliability methods can be
more efficient than Monte Carlo sampling when computing statistics in the tails of the response
distributions (low probability events). These methods transform the UQ problem to an optimization
problem and use gradients to solve the optimization problem, which is why the analytic sensitivities
from Xyce are so important. The interested reader is encouraged to start with [25] for an excellent
overview of local reliability methods.
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3.2 Stochastic Expansion Methods
Stochastic expansion UQ methods approximate the functional dependence of the simulation re-
sponse on uncertain model parameters by expansion in a polynomial basis. The polynomials used
are tailored to the characterization of the uncertain variables. Polynomial chaos expansion (PCE)
is based on a multidimensional orthogonal polynomial approximation. There are many variations
of PCE. The one we have focused on involves sampling the simulation at random input points
and also using the analytic sensitivities at these points to obtain a regression-based formulation
for solving for the coefficients of the expansion. This “derivative-enhanced regression PCE” has
been a main focus of interest in the LDRD. For more details about PCE, the user is encouraged to
review [26] and [27].

3.3 Results for CMOS Inverter Circuit
In this section, we demonstrate the use of the gradient-enhanced UQ methods on a five-stage
CMOS inverter which involves transient sensitivities calculated by Xyce. We model a simple CMOS
five-stage inverter circuit, which uses 10 instances of the BSIM6 [28] compact model. This circuit
is meant to mimic applications where signal delay is the important metric. Each inverter stage
adds to the signal delay. The CMOS circuit is shown in Figure 3.1. The PMOS and NMOS
oxide thicknesses are thus critical uncertain parameters. We model these as normal uncertainties,
centered around a nominal value with a standard deviation equal to 10% of nominal.

−
V in

+

Vdd Vdd Vdd Vdd Vdd

Vout

Figure 3.1. CMOS circuit with five inverters.

The circuit is driven by a step input, and the output of interest is the output voltage Vout. This is
shown in Figure 3.2.

Since the output voltage is a transient signal, we used a generalized Elmore delay, similar to that
given by [29], as our objective function of interest. The Elmore delay is given by:

O = Elmore Delay =

∫ T
0 g′A(t) · t · dt∫ T

0 g′A(t)dt
(3.1)

and represents the approximate time for the signal rise or fall. Note that gA(t) = Vout.
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Figure 3.2. Overall behavior of CMOS circuit with Elmore delay
highlighted

Xyce returns the transient sensitivities (e.g. the derivatives of the Elmore delay objective with
respect to the thickness of the NMOS and PMOS oxide layers as a function of time). This is shown
in Figure 3.3.

We performed uncertainty quantification on the CMOS circuit using a variety of UQ techniques.
As a baseline, we performed Latin Hypercube Sampling (LHS) with 100 and 1000 samples. LHS
is a stratified sampling method which has good space-filling properties and generally gives better
results than plain Monte-Carlo sampling (e.g. results which have lower variance on statistical
estimators such as the mean). Then, we performed polynomial chaos expansion using a full
tensor product quadrature of order 5 for each of the two input parameters, resulting in a total of
25 sample points. Finally, we performed two types of regression-based PCE. In the first, we used
30 samples but did not include the gradients. In the second, we used 10 samples. For each
sample, we had two gradient values representing the derivative of the Elmore delay with respect
to the two input parameters. Thus, the last PCE calculation used 30 pieces of information and was
comparable to the 30 sample regression PCE with no gradients, but it only required 10 samples.

Note that for all of these sample runs, the two input parameters were the NMOS and PMOS oxide
layer thickness.They were varied according to a normal distributions with means of 1.74E-9m and
2.34E-9m, and standard deviations of 1.75E-10 and 1.34E-10, respectively. After each Xyce run,
the Elmore delay was calculated and used as the quantity of interest in these analyses. All of the
runs were performed using Dakota for the UQ methods and Xyce as the circuit simulator.

The use of sensitivities in performing uncertainty analysis is highlighted in Figure 3.4 and Table 3.1.
As shown in the figure, the cumulative distribution function (CDF), which gives the probability that
the Elmore delay is less than a particular value, is almost the same for an LHS sample of size
1000 and all of the PCE methods. It is very hard to see differences: the CDF curves for LHS 1000
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Figure 3.3. Transient sensitivities from the CMOS circuit high-
lighted

Table 3.1. Comparison Results from UQ Approaches

Number of samples Mean Std Dev.

and UQ Method

100 LHS 2.0781E-7 6.6309E-9

1000 LHS 2.0782E-7 6.6935E-9

25 PCE Quadrature 2.0783E-7 6.6954E-9

30 PCE Regression 2.0783E-7 6.7131E-9

10 PCE Regression 2.0782E-7 6.7035E-9

with derivatives

and all of the PCE variants overlay each other. The one that is different is LHS based only on 100
samples. Figure 3.4 shows that this CDF is not as resolved as the others. Table 3.1 shows that the
mean values of the Elmore delay are very similar, differing only in the fifth significant figure. Finally,
the standard deviations show a little more variability, but again are reasonably close. We conclude
that a polynomial chaos expansion using sensitivities from Xyce (the 10 PCE with regression case)
performs comparably to 1000 samples from LHS.
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Figure 3.4. Cumulative Distribution Function of Elmore Delay
using Various UQ Approaches
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4. Field Data

Field data refers to responses that are a function of independent coordinates such as time and/or
spatial coordinates. For example, circuit responses such as voltage or current can be a function
of time. In these cases, the output from Xyce is a table of timesteps and corresponding current
or voltage values. For many years in Dakota, responses were treated as scalar values. That is, if
Xyce returned voltages at 1000 timesteps, these were treated as 1000 separate responses.

Under this LDRD, we added the notion of “field responses” in Dakota. The treatment of field
responses is different from the treatment of separate, scalar responses at each independent coor-
dinate: one treats the correlations in the field. In the example above with 1000 timesteps and 1000
corresponding voltages, this can now be handled as one field response in Dakota with length 1000.
Another common example of field responses in circuit simulations are I-V curves: the dependent
variable current is a function of the independent variable voltage.

The field response capability is described in the Dakota User’s manual [3] and the Dakota Ref-
erence manual [30]. The addition of field responses facilitated other capabilities. Specifically,
we added a capability to interpolate field responses from simulations to field data from physical
experiments. This allows Dakota to calculate the residual terms (difference between simulation
result and experiment) for the sum-of-squares error objective in calibration problems. For exam-
ple, previously if a Dakota user was calibrating an emitter current in a VBIC transistor model to
some experimental data, he or she had to interpolate the Xyce current around nearby voltage val-
ues to return the current exactly at the experimental voltage to construct the residual term for the
least-squares calibration. Now, Dakota will take the I-V curve from the simulation and interpolate
it to the I-V experimental data points to construct the residuals. Further, we developed methods
(both finite difference and analytic) for handling gradients in the interpolated case since we need
gradients for gradient-based calibration methods such as Gauss-Newton solvers. We also allow
for mixed calibration to both scalar and field data. For example, one may have some I-V data
to use in calibration but also want to match a particular temperature or pressure condition of the
experiment given as a scalar value. Finally, we allow for more sophisticated treatment of exper-
imental measurement error: separate measurement error can be given at each point in the field
and/or a full covariance matrix specifying the error across the field can be given.

4.1 Random Field Model
The field response capability outlined above was initially designed to use analytic sensitivities from
Xyce in calibration with interpolation. However, the field responses also can be used in uncertainty
quantification. Specifically, if we do a forward propagation of uncertain input parameters (such as
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IS, BF, and other transistor parameters), one generates an ensemble of results. A random field
model can be thought of as a mathematical model (e.g. an abstraction) of an ensemble of field
responses. There are two main classes of random field models we use in Dakota:

1. Karhunen-Loeve expansion (K-L)

2. Principal Component analysis (PCA)

These are very similar: both K-L and PCA represent a random field as a sum of basis functions
weighted by coefficients. The difference is in how the uncertain coefficients are represented.
Under this LDRD, we focused on PCA and created a predictive PCA where the coefficients are
Gaussian process models that are functions of the uncertain circuit parameters such as transistor
parameters IS, BF, etc. The PCA can be used to generate more field realizations and/or can be
used as a surrogate field model. Our approach is outlined in the following section.

4.2 Principal Component Analysis
We use Principal Component Analysis as a dimension reduction method for field responses. There
are many good references on PCA [31]. For the application of PCA to field or functional data,
we encourage the interested reader to review the book titled “Functional Data Analysis” by J.O.
Ramsay and B.W. Silverman [32]. This book goes into more treatment about functional data (e.g.
treating the covariance matrix of the data as a function of time), but we are essentially treating the
data as discretized values and using a standard PCA with our approach.

In PCA, the idea is to take possibly correlated data and use an orthogonal transformation to obtain
uncorrelated components which explain the majority of the variance seen in the original data. The
principal components are constructed such that the first component explains the largest amount
of variability in the data, the second component explains the second largest amount of variability
in the data subject to being orthogonal to the first component, etc. The principal components are
the eigenvectors of the covariance matrix of the data. Typically, the original data set is mean-
centered (e.g. each column has the mean subtracted from it). Then, an eigenvalue decomposition
is performed on the covariance matrix of the data. The eigenvectors corresponding to the largest
eigenvalues are the principal components. In PCA, the results are often presented in terms of
factor scores and loadings. Factor scores are the transformed variable values corresponding to a
particular data point, and loading refers to the weight or value which each original variable should
be multiplied by to obtain the factor score. This will be explained in more detail below.

We present more detail about the computation of the principal components for our application.
We assume that we have a set or ensemble of I-V curves that have been generated by generating
samples on Xyce input parameters and running a simulation repeatedly at different input parameter
values. The goal is to identify the principal components responsible for the spread of that data
ensemble. For notation purposes, there are d input parameters, N samples, and the field length
is L. Focusing only on the output from the simulation, we have a data matrix (the full data matrix)
XF of dimension N ∗ L. For example, if we take 100 samples of a 10000 length response, XF is a
matrix of 100*10000.

To perform a PCA on XF, we do the following:

20



• Center the data.

Take XF and center it so that the mean of each column is subtracted from that column. That
is:

X =



...
...

...
...

...
XFi,1 −XF:,1 XFi,2 −XF:,2 XFi,L −XF:,L

...
...

...
...

...
...


(4.1)

where the dimension of X is N ∗L, with indexes i = 1 : N, j = 1 : L. X is the mean-corrected
version of XF. The notation Xi denotes the ith row of X (a particular observation).

• Perform eigen-decomposition of the covariance matrix.

The idea in PCA is to construct a linear representation of variable values to highlight the
variance present in the data. To find the first principal component, we define fi as a linear
combination of variable values:

fi =

L∑
j=1

βjxij = Xiβ (4.2)

Then, we find the set of (L*1) coefficients β1 such that the linear combination fi1 = Xiβ1

has the largest possible mean square (defined as
∑

i fi
2/N) subject to the constraint that

‖β1‖2 = 1. The optimal β1 when applied to all observations will result in a vector Y1 of
dimension N*1: Y1 = X1β1. This vector identifies the strongest and most important modes
of variation. The process is repeated with subsequent steps, to determine the sets of coef-
ficients β2, β3 that define the second, third components, etc. These coefficient vectors are
called “loadings” or “factor loadings” and the Y vectors are called “factor scores” or “principal
component scores.”

In summary, we have a system:
Y = Xβ (4.3)

Typically, the process is only carried out until the M principal components are identified that
account for a certain percentage of the variance. To calculate the coefficients β, it is nec-
essary to calculate the eigenvectors of the covariance matrix of X. That is, we calculate the
matrix

V =
XTX

N
(4.4)

The first eigenvector (with the largest eigenvalue) of V corresponds to β1, the second eigen-
vector of V corresponds to β2, etc. Note that the full β can be of dimension L∗L but typically
is smaller, L ∗M . Also, note that to perform a prediction in the original space, we use the
loadings and factor scores. Equation 4.5, derived from Equation 4.3, uses the fact that the
inverse of an orthogonal matrix is its transpose:

X = YβT (4.5)
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In some circuit examples, a few (e.g. one to three) components are sufficient to represent the data
in the sense of explaining 95% or 99% of the variance of the original data. Note that one component
is a vector. In the example above, the first component β1 would be of dimension 10000*1. We can
use Equation 4.5 to obtain the predicted values of the centered data given the factor scores Y and
the principal components.

Thus far, we have presented the PCA to obtain the principal components for the responses of the
circuit simulation (e.g. the I-V curve). The next step is to relate these to the input parameters of
the circuit simulation which generated the spread in the data. To do this, we propose to develop
a surrogate or emulator model for the functional data. We construct Gaussian process (GP) sur-
rogates for the factor scores of the M principal components. The GP surrogates will be function
of the uncertain inputs. The idea is that we have just performed PCA on (for example) the covari-
ance matrix of N samples. Typically, those N samples will be generated by sampling over some
d uncertain input parameters we name u, so there should be a mapping from u to the response
data, specifically to the loading coefficients and the factor scores. We want to create a surrogate
model so that we can predict a new set of data for parameter values u that are not in the particular
sample set of the N original samples.

A particular prediction will be considered as:

Xpred = GP1(u)β1 + GP2(u)β2 + ...+ GPM(u)βM + µX (4.6)

Where µX is a vector containing the column means of the original data XF. Note that in this
equation, the βi coefficients and the µX vectors are of dimension L*1. The GP surrogates each
produce a scalar value, so the prediction is of dimension L ∗ 1. If one looks carefully at the
relationship between Equations 4.5 and 4.6, the main difference is that Gaussian process models
are multiplying the principal components in Equation 4.6, whereas the factor scores are multiplying
those principal components in Equation 4.5. To estimate the Gaussian process model coefficients,
we use a training set that contains N samples of the d inputs u, and N samples of the factor scores
Yi. The Gaussian process is just a surrogate model mapping the uncertain inputs u to estimates of
the factor scores. For example, for the first principal component, if we have 4 uncertain inputs, we
have a matrix of N*4 input parameters that we want to map to an N*1 factor score Y1. We perform
this estimation by using a code that calculates the parameters governing the Gaussian process
surrogate. This code is in the software framework called Dakota [3], but other Gaussian Process
emulators could be used. After the GP is constructed, we have a set of surrogate models GPi

which are surrogates for the factor scores. Equation 4.6 can be considered a generalization of
Equation 4.5. In Equation 4.5, we use the first M principal components to recover the original data
from the N samples, but in Equation 4.6 we are using the principal components and surrogates for
the factor scores to predict values of the data at new sample points.

PCA Results

This section shows an example of an ensemble of I-V curves, generated in Figure 4.1a. This figure
shows ensemble results (the blue lines) of I-V curves generated by varying VBIC parameters IBEI,
IBEN, NEI, and NEN. One hundred samples of these uncertain parameters were generated using
the Latin Hypercube sampling algorithm in Dakota. The Xyce VBIC model was run at all the sample
points to generate the 100 blue I-V curves. The right-hand Figure 4.1b shows the correlation of the
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Figure 4.1. Left side (a): Ensemble of I-V curves generated by
varying four VBIC parameters; Right side (b): Importance of these
four parameters as a function of the voltage level.

input parameters to the output current as a function of voltage. One can see that the parameters
have different influence depending on the voltage level: IBEN and NEN are important at lower
voltages, and IBEI and NEI are important at higher voltages.

We applied the PCA dimension reduction approach described above. The results are shown in
Figure 4.2. The left-hand figure shows that the first principal component captures the variance at
higher voltages, but not at lower. It requires two principal components, shown in the right-hand
figure, to capture the variance well at both ends of the I-V curves.

Finally, we used the Gaussian process surrogate approach described above coupled with the
principal components to generate new sample realizations of I-V curves. That is, we generated
new samples of the four inputs, but instead of running them through Xyce’s VBIC model, we
propagated them through Equation 4.6. The resulting new ensemble I-V realizations are shown in
green in Figure 4.3.
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Figure 4.2. Left side (a): One principal component captures
the variance at higher voltage levels; Right side (b): Two principal
components capture variance at both ends. Original Xyce ensem-
ble samples are shown in blue, with principal component results
shown in red.

Figure 4.3. New ensemble realizations of I-V curves generated
using PCA approach (green) with original ensemble data shown
in blue.
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5. Summary

To summarize, this LDRD project investigated advanced uncertainty quantification methods that
rely on having accurate, analytic sensitivities. The calculation of these sensitivities (both transient
and steady-state) have been added to Xyce, so that they are analytically provided using either
direct or adjoint methods. These analytic sensitivites provide derivatives of responses of interest
with respect to uncertain parameters. These sensitivities are much more accurate than finite
difference calculations of the derivatives.

Given that many of UQ and calibration methods involve optimization, they can be enhanced with
gradient information. We have observed that for compact model calibrations, accurate deriva-
tives are very important, and thus finite-difference based sensitivities are frequently insufficient.
Currently, the sensitivity implementation in Xyce relies on either analytic or finite difference sen-
sitivities on the device level. The type of implementation is dependent on specific device model
implementations.

We examined the use of Xyce’s analytic sensitivities for UQ on circuit simulation problems using
reliability methods and polynomial chaos expansions. In terms of forward uncertainty propaga-
tion, we found that reliability methods and PCE worked very well, requiring significantly fewer
function evaluations than sampling, especially on linear problems with Gaussian random inputs.
For nonlinear problems or problems with non-Gaussian inputs, PCE tended to be more accurate
and consistent than the reliability methods. We demonstrated these approaches in a set of com-
parative studies on a CMOS inverter chain, a common emitter amplifier, and a Gilbert cell mixer
circuit [6].

Finally, we developed an approach to handle highly-correlated outputs with large numbers of re-
sponses (e.g. voltage-time curves, current-voltage curves). We added a new response type to
Dakota called “field response” and used this with a dimension reduction approach called Princi-
pal Component Analysis. Further, we augmented the standard PCA so that it can be used in a
predictive mode, by making the coefficients of the principal components functions of the uncertain
variables used to generate the ensemble.

In summary, this LDRD resulted in new algorithm capabilities in both Xyce and Dakota as well as
practical methods for using the new analytic Xyce sensitivities in gradient-enhanced UQ methods
in Dakota.
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