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Abstract

In experiments conducted on the Z-machine at Sandia National Laboratories, dynamic mate-
rial properties cannot be analyzed using traditional analytic methods, necessitating solving
an inverse problem. Bayesian model calibration is a statistical framework for solving an
inverse problem to estimate parameters input into a computational model in the presence
of multiple uncertainties. Disentangling input parameter uncertainty and model misspeci-
fication is often poorly identified problem. When using computational models for physical
parameter estimation, the issue of parameter identifiability must be carefully considered
to obtain accurate and precise estimates of physical parameters. Additionally, in dynamic
material properties applications, the experimental output is a function, velocity over time.
While we can sample an arbitrarily large number of points from the measured velocity, these
curves only contain a finite amount of information about the calibration parameters. In this
report, we propose modifications to the Bayesian model calibration framework to simplify
and improve the estimation of physical parameters with functional outputs. Specifically, we
propose scaling the likelihood function by an effective sample size rather than modeling the
discrepancy function; and modularizing input nuisance parameters with weakly identified
parameters. We evaluate the performance of these proposed methods using a statistical sim-
ulation study and then apply these methods to estimate parameters of the tantalum equation
of state. We conclude that these proposed methods can provide simple, fast, and statistically
valid alternatives to the full Bayesian model calibration procedure; and that these methods
can be used to estimate parameters of the equation of state for tantalum.

1 Introduction

Computational simulation modeling is a commonly used tool in the physical sciences for
characterizing the relationship between inputs and outputs. Using such models, outputs
can be predicted as a function of inputs, or conversely, inputs can be inferred by pairing
computational predictions with observed experimental data. The latter process, referred to
as model calibration, is the process of inferring the distribution of computer model inputs
based on how well the computational model output matches the observed experimental data.

In this report, we consider calibration of dynamic material properties using velocity
profiles predicted from a computational simulation model coupled with experimental ob-
servations. Specifically, in dynamic experiments conducted on the Z-machine at Sandia
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National Laboratories, materials of interest can be compressed to MBar pressures. These
experiments are used for the validation and development of physics models relating to the
equation of state, strength, and phase transition kinetics of materials in these extreme condi-
tions. The increasing complexities of these experiments, however, are resulting in data which
can longer be analyzed using traditional analytic techniques. As such, an inverse problem
must be solved by coupling hydrocode computational simulations of velocity profiles with
experimental measurements.

The objective of this analysis is estimation and uncertainty quantification for two pa-
rameters of equation of state for tantalum, the bulk modulus (B0) and pressure derivative
(BP0). Velocity profiles were measured with error across 9 different experiments ( Figure 1).
Hydrocode simulations were run to calculate computational predictions of velocity as a func-
tion of time, considering as inputs material properties and other experimental uncertainties
(e.g. sample thickness, sample density, and boundary condition). Uncertainties in the mate-
rial property estimates are driven by unknown inputs to the computational simulation code,
experimental measurement error, and potential physics model misspecification. The mate-
rial properties, along with other uncertain parameters, are input into the computer model,
with the objective of estimating and quantifying uncertainty associated with these material
properties in the presence of other uncertainties. In this calibration problem (as is common
in practice), choosing an optimal approach for uncertainty quantification on model inputs
is not straightforward. The input parameter space is high dimensional, experimental data
are measured with error, and the computational models have model form misspecification.
Further, the output from the computer model is a function (velocity over time).

Bayesian model calibration is a popular framework for estimating the values of input
parameters into computational simulation models in the presence of these multiple uncer-
tainties (Kennedy and O’Hagan 2001; Bayarri et al. 2012). However, solving for computer
model inputs is typically a poorly identified problem (Kennedy and O’Hagan 2001; Brun
et al. 2001). That is, multiple values of the model parameters can produce the equally valid
solutions. In the presence of model misspecification, calibration parameters will typically be
biased. Such model misspecification could include systematic model discrepancy, e.g. mono-
tone bias function over time (Brynjarsdóttir and O’Hagan 2014), as well as misspecification
of the model likelihood. For instance, if the Gaussian process approximation for the residuals
is incorrect or if the parameters of the Gaussian process are misspecified, estimates may be
biased. The problem of identifiability is often bypassed when computer models are used for
prediction, defined as predicting an output at areas of the design space different from where
data have been collected. In the prediction setting, model calibration is typically employed
to a set of ‘best fitting’ parameters that do not typically have a physical interpretation but
improve the predictive capability of the model. When using computer models for physical
parameter estimation, the issue of parameter identifiability must be carefully considered in
order to obtain accurate and precise estimates of physical parameters (Arendt et al. 2012a;
Brynjarsdóttir and O’Hagan 2014; Arendt et al. 2016).

Another challenge associated with calibration of dynamic material properties is calibra-
tion of physical parameters with functional outputs. While we can sample an arbitrarily large
number of points from the measured function, these curves only contain a finite amount of
information about the values of the calibration parameters; naturally, uncertainties on cal-
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ibration parameter estimates are highly sensitive to the model parameters that dictate the
amount of information provided from a single curve, though selection of these parameters
is not straightforward. While calibration with functional outputs has been discussed in the
literature (Williams et al. 2006; Bayarri et al. 2007; McFarland et al. 2008), previous work
only addresses calibration of tuning parameters for prediction of model output and does not
address calibration of physical parameters. Arendt et al. (2012b) discuss using multiple out-
puts to improve calibration of physical parameters but do not provide an explicit approach
for calibration of physical parameters with functional output. Brynjarsdóttir and O’Hagan
(2014) discusses the issue of artificially decreasing posterior variance by increased sampling
from the design space. Using a toy example with a low dimensional input parameter space
and a monotone increasing discrepancy function, they conclude that introducing a model
discrepancy function can improve the accuracy of physical parameter estimates, but only in
the presence of highly information priors about the shape of the discrepancy function. To
our knowledge, there is a gap in the literature pertaining to best-practice recommendations
for model calibration of physical parameters with functional outputs for practical calibra-
tion problems (multiple nonidentifiable inputs, measurement uncertainties, and model form
misspecification).

The goal of this report is to describe our efforts to explore different approaches to phys-
ical parameter estimation using Bayesian model calibration with functional output, with
applications to estimating dynamic material properties. The uncertainty in the physical
parameter estimates is driven by how much information about the physical parameters is
contained within the experiment-specific velocity profiles. In our example, this informa-
tion is primarily driven by variability in the non-physical calibration parameters, which we
deem ‘nuisance parameters’, model discrepancy, and measurement uncertainty. We describe
different approaches for quantifying this information, and list the pros and cons for each
approach. This report is structured as follows. First, we describe the methods we considered
for robust calibration of the physical parameters with functional output and describe the
simulations and data analysis we conducted to evaluate the performance of these methods
(Section 2). We describe results from the simulation study as well as apply the methods to
estimate parameters of the equation of state of tantalum (Section 3). Lastly, we discuss the
results (Section 4), the anticipated impact of these results (Section 5), and summarize final
conclusions (Section 6).

2 Methods

Our work was motivated by concerns about the performance of the standard-of-practice
Bayesian model calibration procedure for physical parameter estimation with functional
data. Because identification of physical parameter posteriors is not possible in the pres-
ence of ‘nuisance’ calibration parameters and model discrepancy, we propose an approach
to improving the robustness of the physical parameter posterior estimates with functional
outputs and nuisance calibration parameters.
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Figure 1: (Left) Experimental velocity curves for the 9 experiments. (Right) Experimental
minus predicted velocity for a single experiment, standardized by the predicted variability
in velocity attributable to the known experimental uncertainties.

2.1 Calibration model

First, we review the current ‘best-practice’ calibration model for functional outputs across
multiple experiments, as described in Kennedy and O’Hagan (2001); Williams et al. (2006)
and Brynjarsdóttir and O’Hagan (2014).
Notation: We use notation consistent with Kennedy and O’Hagan (2001) and Williams
et al. (2006). We denote the output of the simulations as η(x, t) given input vector (x, t),
where the vector x contains observable inputs and the vector t contains unobservable calibra-
tion and tuning parameters to run the code. In our model, x includes pressure, a controllable
experimental condition, and time. For each experiment, n equally spaced velocity measures
are sampled from each velocity curve, such that xj = [Pj, x1j, ..., xnj] where Pj is pressure
and x1j, ..., xnj are times. The parameters t are the set of input parameters, made up of
nuisance parameters (aluminum and tantalum thicknesses, sample density, and boundary
condition scaling) and physical parameters (bulk modulus and pressure derivative). Note
that the physical parameters and sample densities are constant between experiments (be-
cause all samples were cut from the same block of tantalum), whereas the thicknesses and
boundard scaling changes between experiments. For notational convenience, we partition t
into t = (γ, α), where γ = [γj] is the set of nuisance parameters for each experiment and α
is the set of physical parameters of interest.
Model: We model the ith observation in the jth experiment as:

y(xij) = ζ(xij) + ε(xij) (1)

where y(xij) is the observed velocity at time xij, ζ(xij) denotes the actual unobserved ve-
locity at time xij, and ε(xij) is measurement uncertainty at time xij. The measurement
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uncertainty in velocity is known and specified through εj ∼ N(0,Σε
j), where diag(Σε

j) =
σ2
V = .002ζ(xj)

2 + (0.03 ∗ 280)2.
The output is modeled as a function of time and the calibration parameters using the

simulator η(·).

ζ(xj) = η(xj, γ
T
j , θ) + δj(xj) (2)

where θ is the true but unknown value of the physical parameters α, γT = [γTj ] is the true
but unknown value of the nuisance parameters, and δ(xj) is a model discrepancy term.
Simulation runs and emulator. Because the simulation is computationally expensive, we
use Gaussian process emulators to inexpensively generate new values of η() as a function of x
and t. The calibration parameters t are design values and we use Latin hypercube sampling
to choose the m = 500 design points for each time point and experiment in x. Because
uncertainty associated with the GP estimation is negligible relative to nuisance parameter
and model form uncertainty, we do not account for GP uncertainty in the calibration pro-
cedure (sensitivity analyses suggest results do not change upon accounting for this source of
uncertainty).

Discrepancy term. Model discrepancy can arise when the hydrocode simulations do
not adequately capture the true physics, for instance due to numerical problems, grid size ap-
proximations, or order of the equation of state approximation. If present, model discrepancy
can result in biased estimates of θ (Kennedy and O’Hagan 2001; Arendt et al. 2012a; Bryn-
jarsdóttir and O’Hagan 2014). We assume the discrepancy function can be approximated
using a Gaussian process, where δj ∼ N(0,Σδ

j) and

Cor[δ(xij), δ(xi′j)] = exp
[
−ρj(xi′j − xij)2

]
(3)

following Arendt et al. (2012b) and V ar(δij) = φjσ
2
ij, where {σ2

ij} are fixed variance weights
(when relevant) and φj is an unknown variance scaling factor. Following Kennedy and
O’Hagan (2001) and Arendt et al. (2012b), we estimate the autocorrelation parameter (here
ρj) prior to calibration and therefore assume the autocorrelation parameter is fixed and
known.

For functional data calibration, a discrepancy term must be included in the model to
ensure that inferences are independent of n, the number of points sampled from the curve.
Without including a discrepancy term, the standard errors of the calibration parameter
estimates are O(n−1/2). Hence, for functional data, the form of the discrepancy function has
a large impact on the accuracy and precision of the physical parameter estimates.

Final model. Combining Equations 1 and 2, the observed velocity is linked to the
simulation through:

y(xij) = η(xj, γ
T
j , θ) + δ(xij) + ε(xij) (4)

We use Bayesian framework to estimate the model parameters, [α, γ, φ] given the experimen-
tal data y = [y1, ..., yJ ]. Denote Σj = Σδ

j + Σε
j. The model likelihood is:

l(y|α, γ, φ) =
J∏
j=1

(2π)−n/2|Σj|−1/2exp
[
−.5(yj − η(α, γj))

T (Σj)
−1(yj − η(α, γj))

]
(5)
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Denoting prior probability distributions by π, the posterior is:

π(α, γ, φ|y) ∝ l(y|α, γ,Σδ)π(α)π(γ)π(φ) (6)

2.2 Scaling the likelihood

The standard of practice calibration model accommodates temporal autocorrelation in the
velocity residuals using a Gaussian process discrepancy function. Rather than modeling the
discrepancy, we instead assess the validity of scaling the likelihood function to account for
the limited amount of information contained in the velocity profiles due to model discrep-
ancy/residual autocorrelation. Specific issues we aim to address by scaling the likelihood
include:

• Modeling the discrepancy function is numerically instable and computationally inten-
sive, with the instability of the procedure increasing with the sample size (Gramacy
and Lee 2012; MacDonald et al. 2015). Further, the discrepancy function is inherently
non-identifiable (Brynjarsdóttir and O’Hagan 2014).

• Without including a discrepancy term in the model, the variances of the physical
parameters are on the order of n−1; that is, the physical parameter standard errors
decrease with the number of points sampled from the velocity curve for each experi-
ment. At some point, increasing sampling from the velocity curve does not increase
the information about the physical parameters, and thus physical parameter standard
errors should not scale with n.

Therefore, we aim to find an estimation procedure that constrains the standard errors of
the physical parameters to be constant as a function of n but does not explicitly require
modeling the discrepancy function. We could only find one other instance of scaling the
likelihood in the literature (Mosbach et al. 2014). The authors chose an arbitrary scaling
factor of 5 to avoid having their standard errors shrink toward 0 and did not link likelihood
scaling to model discrepancy or provide any justification for selecting a scaling factor.

One reasonable scaling factor is the ratio of the effective sample size (ESS) of the velocity
profile to the number of sampled points. This scaling factor results in inferences that are
independent of the n, number of velocity residuals sampled from the curve. The ESS for an
autocorrelated time series is:

nej = n/τj

τj = 1 + 2
∞∑
k=1

νj(k) (7)

where νj(k) is the autocorrelation at lag k, i.e. the correlation between ε(xij) and ε(xi′j)
where |i− i′| = k.

To estimate the ESS, we fit a model assuming velocities are independent, i.e.

log l∗(yj|α, γj, φj) =

[
−n

2
log(2π)− n

2

∑
i

log(φjσ
2
ij)−

1

2

n∑
i=1

(
y(xij)− η(xij, α, γj)

φjσij

)2
]

(8)
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and calculate the autocorrelation νj(k) for the residuals from this model. Specifically, to
estimate νj(k), we compare using the sample covariance to specifying a parametric form for
the correlation structure.

The scaled likelihood is then defined as:

log l(yj|α, γ, φ) =
nej
n

log l∗(yj|α, γj, φj) (9)

Estimation of the calibration parameters can proceed by using the scaled likelihood for
estimation. Alternatively, if calibrating using maximum likelihood estimation, the variance
of the maximum likelihood estimates (MLEs) from Equation 8 can simple be scaled by nej/n.

Scaling the likelihood by an ESS may be preferable to modeling autocorrelation in the
residuals (discrepancy) for three reasons: simplicity, stability, and interpretability.

Regarding simplicity, with a sufficiently large n, it is rather straightforward to estimate
τj. We no longer have to specify a functional form for the autocorrelation structure the
residuals in order to obtain unbiased inferences. Using the standard approach of modeling the
autocorrelation structure requires estimation of poorly identified parameters of the variance-
covariance matrix as well as inverting an ill-conditioned matrix of size n, adding unnecessary
computational complexity and instability.

Regarding stability, the estimates of the physical parameters do not change according to
the form of the residual autocorrelation. Additionally, standard errors of these parameters
are independent of n (insofar as a sufficiently large n is selected to capture the relevant
information), providing inferences that are independent of the number of time points sampled
from the velocity curve.

Regarding interpretability, nej is loosely interpretable as the number of independent
pieces of information available for curve matching in experiment j after accounting for au-
tocorrelation. Thus, one can compare nej to the number of parameters being estimated to
evaluate potential identifiability issues.

2.3 Modularization

While calculating the ESS nej can help inform when parameter identifiability issues may
arise, scaling the likelihood does not solve the issue of parameter identifiability. To address
identifiability, we assume that the data cannot inform the true values of the nuisance pa-
rameters and subsequently ‘modularize’ nuisance parameter uncertainty (Liu et al. 2009;
Plummer 2015). Specifically, we simply do not update the values of the nuisance parameter
priors using the data and assume π(γ|y) = π(γ). Modularization has been suggested as a
tool to improve stability of estimates under model misspecification in computer modeling
(Liu et al. 2009), but we could not find evidence of modularization with respect to sampling
from prior distributions of nuisance calibration parameters.

Using this approach, the posterior is:

π(α, γ, φ|y) = P (α, φ|y, γ)π(γ|y)

= P (α, φ|y, γ)π(γ)

P (α, φ|y) =

∫
γ

P (α,Σ|y, γ)π(γ)dγ (10)
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where P denotes a posterior and f denotes priors and

P (α, φ|y, γ) ∝ l(y|α, φ, γ)π(α)π(φ) (11)

We can modularize inference on all nuisance parameters or only a subset of the nuisance
parameters. Modularizing parameters that are non-identifiable based on a sensitivity analysis
will improve computational efficiency. In the presence of model discrepancy, parameters
that are shared across multiple experiments may be more feasible to identify parameters
than those that vary between experiments, if we are willing to assume that experiments are
unbiased ‘on average’ (across all experiments); in this case, modularizing only experiment-
specific parameters may be appropriate. In this report, we consider modularizing all nuisance
parameters as well as only those that are non-identifiable based on results of a sensitivity
analysis.

Modularization does not result in full Bayesian inference, and the estimated posterior
distributions to not converge to a true posterior (Plummer 2015). However, using modu-
larization, the estimated posteriors on the physical parameters should be more robust to
model misspecification than full Bayesian inference. Updating nuisance parameters in the
presence of model misspecification will artificially decrease uncertainty and introduce bias in
physical parameter estimates (Brynjarsdóttir and O’Hagan 2014). However, modularization
can also introduce bias into the physical parameter estimates (analogous to failing to include
the outcome in a multiple imputation model). Therefore, neither full Bayesian inference or
modularization of certain parameters is a perfect solution, and we recommend fitting both
models in practice and comparing the results to understand variability in physical param-
eters under different modeling assumptions. Modularization has been applied in different
Bayesian statistics applications, with the rationale that when models are mis-specified, up-
dating parameters within an analysis may actually induce bias in other spaces of the model
rather than improving estimates (Zigler et al. 2013; Plummer 2015).

2.4 Analysis of tantalum data

To test the performance of the proposed methods, we estimated parameters of the tantalum
equation of state as a case example.

Data processing. We processed data for 9 different tantalum experiments. We thinned
the datasets to have n = 100 time points per experiment for computational efficiency. We
approximated the computational simulation model using a Gaussian process emulator, as-
suming a Gaussian correlation structure (Equation 3) across time points, with common
hyperparameters set to the average over the time points. We estimated the emulator using
the DiceKriging R package (Roustant et al. 2012). We also used a lower-fidelity but faster
spline-based emulator. Results were not sensitive to the use of or choice of the emulator.
We fit the emulators using 500 build points, selected using Latin hypercube sampling across
the nuisance and physical parameter space.

Sensitivity analysis. We conducted a sensitivity analysis to understand how the sen-
sitivity to the calibration parameters changes across the velocity curves. We calculated
first-order and total Sobol indices (Saltelli et al. 2000) to estimate the amount of variance in
velocity at a single time point explained by each input. We used the known input distribu-
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tions for the input parameters and restricted the physical parameters to their approximate
MLE sampling distributions: B0 ∼ N(189, 2.9) and BP0 ∼ N(3.92, .075).

Details of model calibration estimation procedures. We used both Bayesian and
frequentist calibration procedures to estimate the physical parameters. Throughout, we use
the likelihood function specified in Equation 9 to represent the likelihood of an observed
velocity curve for a given experiment. We estimate the variance weights (σj) by calculating
the variance in velocity at each time point attributable to the nuisance parameters and
measurement uncertainty. Results were not sensitive to the choice of variance weights.

For the maximum likelihood estimation, we use brute force optimization of the likeli-
hood, restricting the nuisance parameters to ±3 standard deviations, with the standard
deviations calculated from the known experimental uncertainties. We apply a REML correc-
tion nej/(nej−p) to φ̂ to adjust the estimated variance for small sample bias in the maximum
likelihood estimate.

For Bayesian model calibration (BMC), we used Monte Carlo Markov Chain (MCMC)
sampling to estimate the posterior distribution of the model parameters. We specified the
following prior distributions on the model parameters:

• Bulk modulus (GPa): N(189, 172)

• Pressure derivative: N(3.90, .62)

• Density (g/cm3): N(16.55, .0662)

• Thickness: N(0, 1.5e−6)

• Boundary scaling: N(1, 4e−3)

• φj ∼ InvGamma(1.75, .35)

We use a somewhat informative prior on φj to encourage the variance parameter to be
near the expected variance in velocity, σj. We updated the variance parameter φ using the
conjugate Inverse-gamma prior and updated the calibration parameters using a Metropolis
step. For modularized parameters, we simply sampled from the priors rather than updating
a posterior distribution. We computed 10,000 posterior samples with a burn in of 2,000
samples and assessed convergence using trace plots.

All analyses were conducted in the R statistical software package (R Core Team 2015).

2.5 Simulation study to evaluate proposed methods

We constructed a simple simulation study to evaluate the performance of the likelihood
scaling approach. Specific questions addressed in the study include:

1. Can the effective sample size be accurately estimated using Equation 7?

2. Does the likelihood scaling estimation procedure result in valid inferences for a single
physical parameter under a mean zero Gaussian process discrepancy function? for
multiple physical parameters?
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2.5.1 Estimation of ESS

To address question (1) above, we did not use the tantalum data, but simply generated
realizations from a mean 0 Gaussian process (GP) with a Gaussian correlation structure
(Equation 3). We selected autocorrelation parameters corresponding to effective sample sizes
of nej = 3, 5, 10, and 20. For each generated GP, we sampled n = 100, 200, or 500 equally
spaced points as our dataset and then estimated the effective sample size. We considered
two methods for estimating the autocorrelation νj: (1) using the non-parametric sample
correlations and (2) fitting a GP to the simulated data assuming the correct (Gaussian)
form of the correlation structure. We compared the two procedures by generating 500 GP
realizations and comparing the estimates of nej to the true value across the different scenarios.

2.5.2 Likelihood scaling for statistical inference on physical parameters

To address the second simulation question, we used a statistical simulation study based on
the tantalum data to evaluate the statistical properties of scaling the likelihood when esti-
mating calibration parameters with autocorrelated residuals. We first consider the simple
case of estimating a single physical parameter from a single experiment, ignoring nuisance
parameter uncertainty. We generate simulated datasets from the model in Equation 2, act-
ing as though the emulator for the computational simulation model representing the true
underlying physics. We assumed φ = 1 and used the variance weights σj described in Section
2.4 to determine the variance of the discrepancy term. We used a single experiment for this
simulation study, arbitrarily selecting the data for the chronologically first experiment in the
dataset. We assume measurements are collected over n = 100 time points. We set the true
values of the calibration parameters (physical and nuisance) to the prior mean values. We
vary the effective sample size by generating mean zero GP discrepancies with ρ selected such
that the effective sample size is approximately 4, 6, 11, and 20. We assume all physical and
nuisance parameters are fixed and known, aside pressure derivative.

We fit the scaled likelihood model using maximum likelihood estimation (for computa-
tional efficiency) and calculated 95% confidence intervals for α using a t-distribution with
nej − 1 degrees of freedom. We compare the average estimated standard error of the phys-
ical parameter E[se(α̂)] to the empirical standard error se(α̂) as well as calculate the 95%
confidence interval coverage across ∼ 1000 simulation runs.

We also considered the case where we jointly estimate 4 parameters - the 2 material
properties and 2 sensitive nuisance parameters. We considered effective sample sizes of ∼ 6
and 11 as case examples.

2.5.3 Tantalum analyses

Calibration of single experiments. We analyzed the individual experiments separately,
to understand how estimates and uncertainties changed according to the estimation pro-
cedure when only one experiment is available (to inform future situations when fewer ex-
periments are conducted). First, we inferred the physical parameters for each experiment
separately using maximum likelihood estimation, ignoring the nuisance parameters by fix-
ing all nuisance parameters to their nominal values. Next, we selected a single experiment
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and compared three different estimation procedures: (1) the ML estimates ignoring nuisance
parameter uncertainty; (2) BMC estimates with sensitive nuisance parameters (boundary
scaling and density) estimated; and (3) BMC with all nuisance parameters modularized.

Calibration combining across experiments. To understand the impact of different
modeling choices on uncertainty quantification for the tantalum material properties, we fit
two models: BMC inferring physical parameters and sensitive nuisance parameters and BMC
inferring only physical parameters. We compare the estimates and uncertainties across these
two approaches and compared the results to the single experiment calibration.

3 Results

We have structured the results section to parallel the described methods section. First, we
discuss the simulation study results and then we discuss the data application results.

3.1 Simulation study results

In this section, we describe results pertaining to the simulation study described in Section
2.5 above.

3.1.1 Estimation of the effective sample size

The ESS can be accurately estimated using Equation 7, but the correct form of the autocor-
relation structure is needed for accurate inferences with smaller effective sample sizes (Figure
2). For low values of the ESS (< 10), the sample correlation is biased low, making the non-
parametric ESS biased high. Upward bias in the ESS will result in underestimation of the
calibration parameter standard errors (assumes more information than actually exists). For
higher values of the ESS (≥ 10), the bias in the nonparametric estimator is negligible, and
we suggest using the non-parametric estimator in this case.

3.1.2 Estimation of physical parameters

The likelihood scaling estimation procedure results in approximately valid inferences on a
single physical parameter under a mean zero Gaussian process discrepancy function. Results
of the simulation are summarized in Table 1. The estimates of the pressure derivative are
unbiased. The estimated standard errors are slightly too low due to the upward bias in
the non-parametric ESS described in Section 3.1.1, resulting in confidence interval coverage
that is approximately too low for smaller ESS values (Figure 3). The standard errors of the
physical parameters are now proportional to nej rather than n, such that the standard errors
increase as the amount of autocorrelation in the residuals increases but are constant with
respect to the number of points sampled n.

The simulation results suggest that obtaining valid inferences when inferring multiple
physical parameters is more challenging, as expected. With 4 inferred parameters (2 ma-
terial properties, density, and boundary scaling) and effective sample sizes of 6 and 11,
asymptotic maximum likelihood procedures seem to begin to break down and identifiability

11



Figure 2: True versus median estimated ESS, comparing parametric (blue) to nonparametric
(black) estimate of ESS. The parametric estimate for ESS = 20 failed to converge at least
half of the time and is therefore not included in the plot.

issues arise. The point estimates of the material properties remain unbiased. Inferences on
the bulk modulus are also valid, with confidence interval coverage 94% and 93% for ESS 6
and 11, respectively. These results suggest likelihood scaling is providing valid inferences
for strongly identifiable parameters. However, confidence interval coverage for the pressure
derivative is lower (90% and 85% for ESS 6 and 11), likely attributable to the fact that
the pressure derivative is much more weakly identified than the bulk modulus (due to the
strong influence of boundary scaling). Hence, the estimation procedure results in reason-
able inferences when inferring strongly identifiable physical parameters under a mean zero
Gaussian process discrepancy function. However, for weakly identifiable parameters (pres-
sure derivative), performance seems to deteriorate due to identifiability issues. Incorporating
prior information via Bayesian inference could improve the identifiability issues, but evalu-
ating the performance of the Bayesian approach would require a large number of much more
computationally expensive Bayesian model runs. This simulation study was simply designed
to show proof of concept regarding scaling the likelihood as a viable alternative to modeling
the discrepancy, and more extensive simulations are needed to evaluate performance across
different ESS values and different numbers of inferred parameters.

3.2 Tantalum data analysis results

Sensitivity analysis. The material properties, density, and boundary scaling account for
almost all of the variability in velocity, and the sensitivity of the model to these parameters
changes over time (Figure 4). Material thicknesses explain a very small fraction of variability
in velocity. The impact of the material properties and boundary scaling changes over time;
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Figure 3: 95% confidence interval coverage for single physical parameter (pressure derivative)
as a function of the true ESS, calculated using a statistical simulation study. With mean 0
discrepancy, scaling the likelihood results in approximately valid statistical inferences with
functional outputs when inferring a single parameter, though coverage declines with the ESS
due to small-sample bias.

True ESS Estimate Bias SE Bias Coverage ESS Bias
3.8 0.0 -12.6 0.908 60.1
5.6 -0.3 -11.7 0.942 37.9

11.3 0.2 -6.0 0.962 15.2
18.8 -0.1 3.5 0.970 8.8

Table 1: Simulation results for assessing the validity of scaling the likelihood by a non-
parametrically estimated ESS when estimating a single physical parameter.

the bulk modulus is more important initially, and pressure derivative and boundary scaling
are more important at later time points.

Calibration. Examining the results from the single-experiment analysis (Figure 5), the
material property estimates are similar across the different calibration procedures (ignoring
nuisance parameters, inferring sensitive nuisance parameters, and modularizing all nuisance
parameters), while the variances change across the calibration procedures. Ignoring nuisance
parameter uncertainty results in the smallest variance for the estimated material properties.
Accounting for nuisance parameter uncertainty using BMC substantially inflates the vari-
ances. The variance of the bulk modulus is much smaller when inferring nuisance parameters
versus modularizing the nuisance parameters, while the variance of the pressure derivative
is similar across the settings. There is a strong negative correlation in the joint posterior for
the bulk modulus and pressure derivative.
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Figure 4: Total sensitivity index over time for input nuisance parameters and material
properties in two experiments: high pressure (top) and lower pressure (bottom).
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Figure 5: Posterior distribution of the bulk modulus and pressure derivative from a single
experiment using different estimation procedures: (left) maximum likelihood approxima-
tion ignoring nuisance parameter uncertainty; (middle) Bayesian model calibration inferring
only sensitive nuisance parameters (boundary scaling and density); and (3) modularizing all
nuisance parameters.

Examining the maximum likelihood estimates for all 9 experiments (Figure 6), we observe
substantial variability in both the point estimates and standard errors across the experiments.
The average estimated bulk modulus across experiments is 191 GPa , with standard error
4.8 GPa; the average estimated pressure derivative is 3.8 with standard error .17. The
estimated bulk modulus tends to decrease with input pressure while the pressure derivative
increases. The results of the second experiment are somewhat different compared to the
remaining 8 experiments; the second experiment has the highest bulk modulus and lowest
pressure derivative estimates, with relatively tight 95% confidence intervals. The ESS for the
individual experiments ranges from 5 to 12, with an average of 7, suggesting small sample
bias in the ESS could result in some underestimation of the experiment-specific ESS values.

Using BMC, we combine across all 9 experiments to estimate the material properties.
When we update the sensitive nuisance parameters (boundary scaling and density), the es-
timated bulk modulus is 189 GPa (SE 1.1) and the estimated pressure derivative is 3.8 (SE
.05). Modularizing all nuisance parameters, the estimated bulk modulus is 190 (SE 3.0)
and estimated pressure derivative is 3.8 (SE .11). While the point estimates are similar be-
tween the two estimation procedures, the standard errors are much higher when all nuisance
parameters are modularized, as anticipated. Choice of which estimates are more credible de-
pends on the assumptions about the underlying model. Specifically, if we believe the model
in Equation 4 is correct, namely that the model is ‘on average’ correct across time (mean 0
discrepancy function), then the data should be able to inform the nuisance parameters and
there is no need to modularize. On the other hand, if we question the accuracy of the model
form in Equation 4, then there is a risk that we could update the nuisance parameters incor-
rectly, inducing more bias in the physical parameter estimates; in this case, modularization
may be a more appropriate option.
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Figure 6: Estimates of bulk modulus (top) and pressure derivative (bottom). (Right) Max-
imum likelihood estimates with 95% CIs are provided for the 9 individual experiments,
ordered by pressure ramping input Pj (experiment-specific). (Middle) BMC estimates pool-
ing across all experiments (combined). The first combined estimate is based on modularizing
all nuisance parameters; and the second is based on estimating sensitive nuisance parameters
(boundary scaling and desnity). The external estimates come from published estimates of
the material properties (Söderlind and Moriarty 1998; Cynn and Yoo 1999; Dewaele et al.
2004).
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4 Discussion

In summary, we have proposed simple alternatives to the full Kennedy and O’Hagan (2001)
calibration model and illustrated that these alternative can produce valid statistical infer-
ences for estimating physical parameters using Bayesian model calibration. Specifically,
we proposed scaling the likelihood function as an alternative to explicitly modeling the
discrepancy function. Likelihood scaling is only valid assuming a mean zero discrepancy
function. While the Kennedy and O’Hagan (2001) model can theoretically accommodate
non-mean-zero discrepancies, estimates of physical parameters are biased without strong
prior knowledge about the discrepancy in this setting (Brynjarsdóttir and O’Hagan 2014);
assuming mean-zero discrepancy is thus necessary for inferring physical parameters without
this prior knowledge. Future work could formally compare the full Kennedy and O’Hagan
(2001) model to the scaled likelihood model. Further, we could explore different methods
for estimating the ESS, such as pre-posterior analysis (Arendt et al. 2016) to find a value
that produces valid inferences under discrepancy functions that are not mean zero but are
constrained within some range of functional forms.

Estimating the ‘effective sample size’ of the functional output provides an interpretable
measure of the number of independent pieces of information provided from the output,
facilitating calculating the model degrees of freedom to assess whether the model is over-
determined. Nonparametric estimates of the ESS are biased high, with the bias increasing as
the ESS decreases. Parametric estimation of the ESS eliminates bias, though specification
of the parametric form is somewhat arbitrary. Future work could explore bias corrections
to the ESS as well as whether ESS estimates are approximately correct with mis-specified
correlation structures.

In the presence of an over-determined system, modularization of the nuisance parame-
ters may improve uncertainty estimation by avoiding identifiability problems. Specifically,
if a model is mis-specified, full Bayesian inference will update the calibration parameters
incorrectly, resulting in biased physical parameter estimates; modularization assumes that,
because the model is potentially mis-specified, the experimental data cannot inform some
(or all) of the nuisance parameters. Note that modularization does not guarantee conser-
vatism in the presence of a mis-specified model. Modularization requires deviating from full
Bayesian inference, and the parameter distributions lose technical interpretation as Bayesian
posteriors. The experimental data may be able to inform some or all of the nuisance pa-
rameter values, in which case full Bayesian inference would be preferable. We considered
modularizing all nuisance parameters, experiment-specific parameters, and parameters with
negligible impact on the outcome. Future work should explore how to decide which parame-
ters to modularize. Future work could also assess the theoretical validity of modularization
as proposed as well as determine the optimal sampling algorithm for inference (sampling
within or outside of the MCMC).

We used statistical simulation studies to validate the statistical properties of our proposed
approaches. Statistical simulation can provide substantial added value when understanding
the performance of calibration models under certain assumptions, but many proposed cali-
bration approaches lack formal validation through statistical simulation. Because Bayesian
estimation via MCMC is computationally expensive, we conducted the simulations using
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maximum likelihood estimation. While maximum likelihood estimation should approxi-
mately agree with the Bayesian inference results, future work could explore replicating the
simulation studies using Bayesian inference.

We applied the model calibration procedure to estimate the bulk modulus and pressure
derivative of tantalum. The estimated material properties were consistent with hypothesized
values in the literature, and the uncertainties in the properties combining across experiments
were consistent with the variability in the experiment-specific estimates. Therefore, we con-
clude that Bayesian model calibration is a useful tool for estimating and characterizing
uncertainty in the bulk modulus and pressure derivative of tantalum. The estimated un-
certainties in the physical parameters varied according to the modeling decisions, such as
when to modularize nuisance parameters and how to scale the likelihood. While future work
could explore determining an optimal estimation procedure for the material properties, we
recommend estimating the parameters across different settings to assess the sensitivity of
the results to the subjective modeling decisions.

High correlation was observed between the bulk modulus and pressure derivative, as well
as between the pressure derivative and boundary scaling, suggesting weak joint identifiability
of these parameters. Reducing uncertainty in boundary scaling would improve precision in
physical parameter estimates. We observed some trending of the estimates according to the
pressure of the experiment as well as strong autocorrelation in the residuals of the fitted
calibration model, suggesting presence of some model discrepancy that varies according to
pressure. Future work should prioritize developing model diagnostics to identify the form
of the model discrepancy. Further, future work can explore the validity of the proposed
methods in the presence of more physical parameters to estimate, such as materials with
phase transitions.

5 Anticipated Impact

This project provides valuable preliminary information needed to work toward an accepted
inverse analysis technique within the field of dynamic material properties. We demonstrated
the feasibility of estimating dynamic material properties by solving an inverse problem using
Bayesian model calibration. In experiments conducted on the Z-machine at SNL, the col-
lected data cannot be analyzed using traditional analytic methods, necessitating solving an
inverse problem to estimate the material properties of interest. Credible uncertainty quan-
tification in these estimates is needed to understand how much information each experiment
provides about the properties of interest and to propagate these uncertainties forward. We
applied the methods to tantalum as a proof of concept, but aim to extend the work to other
materials without an analytic solution and whose properties are of direct pertinence to the
Sandia nuclear weapons mission area. As next steps, we plan to continue expanding our
work within dynamic material properties. Within this project, we worked to develop gen-
eralized software coded in Matlab that can be applied across different calibration problems.
Subsequently, the methods can immediately be applied to other applications in dynamic ma-
terial properties. Experiments have already been conducted, such that we can immediately
begin analyzing additional datasets. However, some of the upcoming applications require
inferring more physical parameters, so the validity of calibration framework will need to be
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evaluated in these settings. We will continue partnering with Organization 1646 (Dynamic
Material Properties) to finalize the calibration framework and assess the generalizability
across different dynamic material properties applications.

Research into the calibration of physical parameters is limited but growing (Arendt et al.
2012b,a; Brynjarsdóttir and O’Hagan 2014; Arendt et al. 2016). Interest in Bayesian model
calibration also seems to be increasing at Sandia National Laboratories, with a recent imple-
mentation of the methodology in Dakota and an increase in uncertainty quantification for
computational modeling applications in general. Subsequently, there is a need for practical
and implementable calibration solutions for analysts, as well as a need to distinguish between
best-practice calibration for prediction of outputs versus learning about physical parameters.
The methods proposed herein sacrifice some efficiency for robustness in physical parameter
estimates, but we argue that this may be preferable when estimating physical parameters.
Scaling the likelihood is simpler, more interpretable, faster, and more computationally stable
than full BMC. Modularization may increase robustness of physical parameter estimates in
the presence of nuisance parameters and model discrepancy.

Existing best-practice calibration methods are conceptually complex for non-statistical
audiences and can also be computationally instable. The questions asked within this proposal
are not unique to the calibration of dynamic material properties. There are many cross-
cutting themes within calibration activities such as:

• How should the likelihood function be formulated when combining data across multiple
experiments? How should individual experiments be weighted?

• Should all calibration parameters (physical and nuisance) be estimated when trying to
infer physical parameters?

• How should model discrepancy be diagnosed and accounted for when inferring physical
parameters with functional outputs?

The decision-making space for conducting model calibration in practice is exceptionally high
dimensional and complex. Understanding the relative importance of the set of decisions is
key to communicating credibility of results, but no generalized guidance has been provided
for analysts.

As next steps, we aim to submit a proposal to provide practical guidance for implement-
ing calibration, targeted toward analysts. We plan to target either ASC or LDRD funding
mechanisms for pursuing this research. Additionally, we are part of an on-going project
with Organization 1544 (V&V, UQ, Credibility Processes) to explore end-to-end ModSim
uncertainty quantification recommendations for analysts. The lessons learned within this ex-
ploratory express project will inform the path forward for providing such end-to-end recom-
mendations as well as produce additional preliminary data for building a calibration-themed
proposal for LDRD submission or ASC funding. We are also presenting the results of our
work at the University of New Mexico (UNM) Applied Math and Statistics Colloquium,
raising the external visibility of the work as well as build partnerships with UNM faculty
who are currently pursuing research in uncertainty quantification for ModSim. We have
engaged a UNM statistics graduate student intern in the project, aiming to further build our
relationship with the UNM statistics department and ultimately pursue joint research. We
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will also submit an abstract to present the work at a statistics conference. We are currently
preparing a publication for submission to a peer-reviewed journal during the first quarter of
FY17.

6 Conclusion

In conclusion, Bayesian model calibration appears to be a viable methodology for estimating
dynamic material properties from experimental data collected on the Z-machine. Existing
approaches to Bayesian model calibration in these types of applications (Williams et al.
2006) are computationally expensive and may underestimate uncertainty in the presence of
model form misspecification. Subsequently, we proposed simpler alternatives to the existing
approaches: scaling the likelihood function as an alternative to explicitly modeling the dis-
crepancy function and modularization of calibration nuisance parameters as an alternative
to full Bayesian inference. Using statistical simulation coupled with analysis of experimental
tantalum data, we illustrated that these alternatives can produce valid and potentially more
robust statistical inferences for estimating physical parameters than the existing approach.
Future work will explore assessing the validity of the proposed calibration approaches in the
presence of a larger number of physical parameters as well as developing model diagnostics
to identify model discrepancy. Further, this initial work can inform future work aiming to
develop best-practice guidance for using Bayesian model calibration for the estimation of
physical parameters.
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