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Abstract

We have made the first continuous measurements of black carbon in Barrow, Alaska at the ARM aerosol-
observing site at the NOAA Barrow Observatory using a Single-Particle Soot Photometer (SP2). These 
data demonstrate that BC particles are extremely small, and a majority of the particles (by number 
density) are smaller than 0.5 fg, the lower limit of reliability of the SP2. 

We developed the first numerical model capable of quantitatively reproducing the laser-induced 
incandescence (LII) and scattering signals produced by the SP2, the industry-standard BC instrument. Our 
model reproduces the SP2 signal temporally and spectrally and demonstrates that the current SP2 optical 
design allows substantial contamination of LII on the scattering signal. 

We ran CAM5-SE in nudged mode, i.e., by constraining the transport used in the model with 
meteorological data. The results demonstrate the problem observed previously of under-predicting BC at 
high latitudes. The cause of the discrepancy is currently unknown, but we suspect that it is associated with 
scavenging and rainout mechanisms.
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NOMENCLATURE

AAOD Aerosol absorption optical depth
ARCPAC Aerosol, Radiation, and Cloud Processes affecting Arctic Climate
ARCTAS Arctic Research of the Composition of the Troposphere from Aircraft and 
Satellite
AERONET AErosol RObotic NETwork
BC Black carbon
CPMA Centrifugal particle mass analyzer
CW Continuous wave
DMA Differential mobility analyzer
DOE Department of Energy
FINN Fire INventory from NCAR
HIPPO HIAPER Pole-to-Pole Observations
LII Laser-induced incandescence
NCAR National Center for Atmospheric Research
NOAA National Oceanic and Atmospheric Administration
NSF National Science Foundation
PSAP Particle Soot Absorption Photometer
SNL Sandia National Laboratories
SP2 Single-Particle Soot Photometer
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1.  INTRODUCTION

Growing evidence suggests that black carbon (BC) particles contribute significantly to global 
climate change and are largely responsible for the enhanced warming of the Arctic (~twice that 
of the global rate) [1, 2]. Because of the relatively short atmospheric lifetimes of particulates 
compared to CO2 and the large radiative forcing of BC aerosols (23-65% that of CO2), BC 
reductions are being considered as a viable near-term climate-change mitigation approach [3]. 
Assessing the effectiveness of such a strategy, however, will require better estimates of BC 
climate forcing, which are hampered by large uncertainties associated with a paucity of 
atmospheric observational constraints, particularly in the Arctic, and poorly represented BC 
physical and optical properties in climate models [4, 5]. In order to reduce the uncertainties of 
Arctic climate forcing of BC by combining Arctic field observations, laboratory experiments, 
and modeling, we (1) combined laboratory experiments and modeling to characterize state-of-
the-art commercial BC instrumentation and (2) deployed instrumentation to characterize the 
abundance of BC-containing aerosols in the Arctic.

Aerosol models tend to overestimate BC concentrations at all altitudes and latitudes [4-9]. 
Model-measurement discrepancies are often less severe at the Earth’s surface, however, and 
models may even underestimate BC surface concentrations under some conditions, particularly 
in the Arctic [4, 5, 10, 11]. Discrepancies between models and Arctic measurements appear to 
vary with season [12-14]; underestimations of surface BC loading are largest for the spring, and 
models often fail to capture the increase in BC loading leading to Arctic haze [4, 13, 14]. These 
discrepancies have been attributed to misrepresentation of wet deposition rates [11, 13] and 
coarse model resolution [15]. There are, however, very few data sets available for the Arctic. 
Comparisons between models and measurements for Arctic BC loading are based on data from a 
couple of aircraft campaigns for the SP2 [4, 5, 7, 11-13], filter-based data from the Particle Soot 
Absorption Photometer (PSAP) recorded at the NOAA BRW Station [12-14], and ground-based 
remote sensing observations from the AErosol RObotic NETwork (AERONET) [4, 5].

ARCTAS Arctic Research of the Composition of the Troposphere from Aircraft and Satellite 
[16]

ARCPAC Aerosol, Radiation, and Cloud Processes affecting Arctic Climate [17]

HIPPO HIAPER Pole-to-Pole Observations [18]

PSAP Particle Soot Absorption Photometer [19]

AERONET AErosol RObotic NETwork [20]

1.1. Black-Carbon Instrumentation

Mature soot absorbs strongly and broadly across optical wavelength regions and is refractory 
with a sublimation temperature of ~4000 K. Clean, mature soot is composed of small “primary” 
particles of polycrystalline graphite 10-50 nm in diameter covalently bound into dendritic 
aggregates of varying size with branched-chain structures typically characterized by fractal 
dimensions of 1.7-1.9 [21-25]. When these particles age in the atmosphere and become coated 
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with semi-volatile coatings, the morphology of these particles can collapse, resulting in and 
increase in the fractal dimension and changes to particle surface areas and optical properties. 
Many studies have demonstrated such effects when particles are coated with oxygenated 
hydrocarbons [26-36] or sulphuric acid [31, 37-40]. For some coatings (e.g., heptane, oleic acid, 
glutaric acid, sulphuric acid, and dioctyl sebacate) this restructuring is irreversible, such that the 
particles retain a compressed morphology when the coatings are removed in a thermodenuder 
[27, 30, 31, 35, 39, 40]. For succinic acid coatings, however, the restructuring appears to be 
insignificant [30]. 

Laser-induced incandescence (LII) is a diagnostic technique that has been used extensively to 
measure soot-particle abundances and physical properties under a wide range of conditions, e.g., 
in engines [41-47], flames [48-54], exhaust streams [37, 55-57], and the ambient atmosphere 
[58-64]. The implementation of LII involves heating soot particles in an intense laser field to 
temperatures as high as 4000 K and measuring the resulting incandescence from the hot particles 
[65]. The signal magnitude is related to the particle volume fraction or mass. It is also 
nonlinearly dependent on the particle temperature. While laser absorption is responsible for 
heating the particle, conductive cooling is the dominant cooling mechanism under non-vacuum 
conditions when sublimation can be ignored. The balance of heating and cooling mechanisms 
determines particle temperature, which controls LII signal as a function of time. When a 
nanosecond pulsed laser system is used to heat the particles, as is typical for combustion studies, 
conductive cooling can be ignored on the timescale of absorptive heating, and the LII peak 
temperature is directly related to the laser fluence and particle absorption cross section. When a 
CW laser is used, as is common for atmospheric-soot measurements, the laser-particle interaction 
time is on the order of microseconds, and conductive cooling competes with absorptive heating.

Particle aggregation effects, such as aggregate size and morphology, influence the average 
particle-surface area available to interact directly with the bath gas. Shielding of some primary 
particles within an aggregate by other primary particles is predicted to cause large aggregates to 
have lower effective surface areas per primary particle than smaller aggregates [66-74]. 
Experiments by Kuhlmann et al. [69] to confirm these effects demonstrated only small changes 
to the decay rate with increasing aggregate size. Experimental confirmation of these effects 
performed by Bladh et al. [71], in contrast, demonstrated more significant changes to the decay 
rate than anticipated or explained by aggregate size. Bladh et al. [71] suggested that additional 
effects could be related to aggregate morphology. Bambha et al. [75] experimentally 
demonstrated significant reductions in LII signal-decay rates with an increase in fractal 
dimension. The behavior can be explained by lower conductive-cooling rates caused by an 
increase in primary-particle shielding and a decrease in effective-surface area for the restructured 
(i.e., collapsed) particle.

The effect of particle morphology on scattering cross sections is less obvious. Some theories 
predict that the scattering cross section should decrease with increasing fractal dimension 
because either (1) the aggregate size is reduced or (2) multiply scattered waves at the aggregate 
core destructively interfere [25, 37, 76, 77]. Other studies predict that the increased scattering 
interactions between primary particles should lead to an increase in the scattering cross section 
with increasing fractal dimension [78, 79].
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We have studied and characterized the effects of BC particle morphology on measurements 
made using a commercial instrument known as the Single-Particle Soot Photometer (SP2) [60]. 
This instrument has become a common instrument for measuring atmospheric BC, but it has not 
been well characterized under a range of relevant conditions. The SP2 employs a continuous-
wave laser induced incandescence (LII) technique that is poorly understood with respect to 
systematic biases, and its sensitivity to small BC particles (<~140 nm mobility diameter) is poor. 
Nonetheless, the SP2 has been deployed at numerous lower latitude sites and on aircraft 
missions. 

1.2. Arctic Field Measurements of Black Carbon

A recent DOE workshop on the leading uncertainties in climate models concluded that there are 
significant uncertainties in the physics and chemistry of aerosols and aerosol-cloud interactions, 
leading to systematic errors in climate-model representations of aerosol and cloud radiative 
effects. General circulation models have particular problems simulating aerosols in the upper 
troposphere (where they overestimate aerosol concentrations) and at high latitude (where they 
underestimate concentrations). These problems stem, in part, from a paucity of observations of 
aerosol global distributions and properties, such as composition, mixing, morphology, and size 
distribution. In particular, there is a severe lack of information on aerosol vertical distributions 
and a need for field studies to provide information about aerosol, cloud features, and their 
relationships to guide model parameterizations and validation. Atmospheric measurements of BC 
are especially scarce, in part because state-of-the-art instrumentation is not easily fieldable for 
remote, continuous operation.

We deployed an SP2 in Barrow, Alaska at the ARM aerosol-observing site at the National 
Oceanic and Atmospheric Administration (NOAA) Barrow Observatory, i.e., the NOAA BRW 
Station. Although BC is measured using filter-based instrumentation in Barrow, our 
measurements are the first continuous measurements of BC in Barrow using an SP2.
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2.  BLACK-CARBON INSTRUMENTATION

We have developed a model for LII that reproduces and predicts the temporal response of the LII 
signal over a wide range of laser fluences [65, 80-82]. For pulsed-laser applications, this model 
solves the energy- and mass-balance equations during and after the laser pulse and includes 
heating by laser absorption, surface oxidation, and annealing, cooling by conduction to the 
surrounding atmosphere, sublimation, radiative emission, and thermionic emission, and mass 
loss by sublimation, non-equilibrium desorption, and oxidation. The particles are allowed to 
anneal, which influences conductive cooling rates and absorptive heating rates. The model has 
been validated with data taken in flames using 532 and 1064 nm laser heating over two orders of 
magnitude in laser fluence. It reproduces measured LII signal and particle-temperature temporal 
profiles. We have recently adapted it for characterizing the behavior of an atmospheric black-
carbon instrument that produces LII signal from single particles injected intracavity into a CW-
laser beam with time-resolved broadband LII-signal detection (shown in Fig. 1). Using this 
model, we have shown that factors that influence conductive-cooling rates, such as primary-
particle size and aggregate size and morphology, have a strong influence on whether particles 
reach the sublimation point and whether the technique is linear with particle mass [83].

Figure 1.  Experimental setup for CW-LII-signal collection. Particles are delivered to the 
Single-Particle Soot Photometer (SP2, Droplet Measurement Technologies) at 
atmospheric pressure. A nozzle, perpendicular to the laser beam and detection axis, 
directs the aerosol to the center of the laser cavity where the beam waist is ~1.1 mm. 
Particles drift through the laser beam and are detected one at a time by two PMTs 
equipped with different broadband filters for two-color LII and an avalanche photodiode 
for elastic scatter. Adapted from Schwarz et al. [60]. 

The intracavity-beam intensity of this instrument is on the order of 106 W/cm2, and the particles 
traverse the beam on timescales on the order of 10 µs before they exit the beam or are vaporized. 
The laser-particle interaction is determined by the drift time of the particle through the laser 
beam [84] and is comparable to particles interacting with a high-fluence laser pulse (~3 J/cm2) 
with a pulse duration of ~10 µs [83]. Ideally, under normal operating conditions, the particles are 
heated to the sublimation temperature, and the maximum of the LII signal occurs at the 
sublimation temperature and is linearly dependent on the particle mass. 

The temporal distributions measured using CW LII are sensitive to particle-aggregate 
morphology and size and may also be useful for inferring aggregate morphologies or exposed 
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particle-surface areas [83]. Figure 2a shows LII temporal profiles for three aggregate sizes and 
two aggregate morphologies measured using an SP2. Because the SP2 measures LII temporal 
profiles of individual particles, the data can be binned by particle size within a distribution based 
on LII signal intensity. Figure 2a shows that LII signal occurs earlier (relative to the time the 
particle enters the laser beam) for more compact particles (Df=2.4) than for less compact 
particles (Df=1.9). The differences are related to the increased surface area available for 
conductive cooling for the less compact particles and more effective competition between 
conductive cooling and absorptive heating as the particles transit the laser beam. This technique, 
combined with the model, might be capable of providing information about particle exposed-
surface area or morphology but will require more refinement for the quantitative assessment of 
such parameters. In addition, this technique will only provide information about the aggregate 
morphology or surface area as long as the particles are not coated with a volatile coating, which 
can similarly influence the signal timing. 

Figure 2. Modeled and measured temporal profiles of CW LII and scattering signal. 
Profiles are shown for (a) CW LII and (b) scattering signal for aggregates with selected 
sizes and morphologies. Symbols represent average temporal profiles from 50 particles 
for each size/morphology. Profiles were recorded for particles with average fractal 
dimensions of 1.9 and 2.4, as indicated in the legend. Lines indicate results from an LII 
model. This figure is adapted from Bambha and Michelsen [83].

Figure 2b shows the corresponding predicted scattering signal measured simultaneously with the 
LII signal. These results confirm the timing of the signal and provide information about the 
particle optical properties. Results from the scattering calculations suggest that the radius of 
gyration of the aggregates increases rapidly when the particle temperature hits the sublimation 
point, i.e., the aggregates pop like popcorn during sublimation [83].

Using the results of this work, we procured a new SP2 with filters, detectors, and amplifiers built 
to our specification, and we are performing side-by-side comparisons with the standard SP2, 
which will generate critical feedback to the vendor and community.
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3.  ARCTIC FIELD MEASUREMENTS OF BLACK CARBON

We deployed an SP2 at the National Oceanic and Atmospheric Administration (NOAA) Barrow 
Observatory, i.e., the NOAA BRW Station, which is part of the ARM aerosol-observing site in 
Barrow, Alaska. This instrument is part of the Arctic Methane, Carbon Aerosols, and Tracers 
Study (AMCATS) and is co-located with, and on the same inlet as, the other aerosol instruments 
at the NOAA BRW Station. We have been making measurements of BC in Barrow since 
February 2016. Photographss of the instrument and co-located instruments are shown in Fig. 3, 
and a photograph of the NOAA BRW Station and inlet are shown in Fig. 4. 

Figure 3. SP2 installed at the NOAA BRW Station. The SP2 is on the same inlet as several 
other instruments in the aerosol suite. The SP2 rack includes a computer for external 
communication, a data storage unit, a keyboard-video-mouse unit, and an uninterruptible 
power supply.

Figure 4. Photograph of the NOAA BRW Station. The tall stack protruding from the 
shelter is the aerosol inlet.

The instrument was calibrated using a suspension of fullerene agglomerates in water, aspirated 
through a nebulizer into a diffusion dryer and differential mobility analyzer (DMA). Voltages on 
the DMA were set to select mobility diameters of selected sizes, the masses for which had been 
calibrated using a centrifugal particle mass analyzer (CPMA) at Sandia. SP2 histograms were 
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recorded for each size distribution, and the maxima of the modes in the SP2 histograms were 
matched to the peaks of the modes of the masses given by the CPMA. Once fully installed and 
running in Barrow, the SP2 required maintenance, cleaning, and calibration at an interval of 
approximately every 3 months.

The calibrated Arctic data demonstrate that BC mass is highly variable as a function of time 
during the winter and early spring in Barrow, as shown in Fig. 5. These high-resolution BC 
measurements will allow detailed comparisons to be made for the first time between high-
resolution atmospheric transport models and measurements over multiple months and seasons. 
These comparisons will provide a unique opportunity to refine models of the atmospheric 
processing of black carbon. 

Figure 5. Time series of total black carbon mass measured by SP2 at the NOAA BRW Station.
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5.  CONCLUSIONS

We have performed experiments to characterize state-of-the-art instrumentation for black carbon 
measurements in the atmosphere. We have deployed this instrumentation in the Arctic, making 
continuous measurements of black carbon in Barrow, Alaska. The results show considerable 
variability in black-carbon concentration over the winter and spring.
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