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Ethylene-

air

0 = 0.42

U = 200

m/s

u' = 10%

T = 1125 K

lnflow

Backward-facing step

lsothermal wall Twaii = 600 K

Block 1 Block 2

Block 3 D

lsothermal wall

Outflow

H 1.47 cm

D 0.3048 cm

ReH 35000

ReT 788

Grid count 2.6 billion

CPU hrs 25 million

• Mechanism: 22 species non-stiff reduced ethylene-air (Lu et al. 2012)

• Transport model: mixture averaged

• Turbulent inflow profile: feed data generated from a separate 3D DNS of channel

Periodic channel
Inflow profile

sampling
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Vorticity dynamics

Enstropy
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• Enstrophy present dominantly on product side



Vorticity dynamics
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• Flame structure varies with distance from the step
• Flame-flame interaction present due to the shear
• Incomplete oxidation
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Summary

• DNS of C2H4/air flame stabilization behind a backwards facing step

• Strong interaction between recirculation zone, shear layer, and flame
brush

• Radicals from the recirculation zone assist in anchoring the flame

• Turbulence generation migrates towards products downstream of the
stabilization point

• Implications for modifications to flame structure and heat losses to the
wall
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Staged gas turbine combustion

Premix
combustor

Dilution air
mixer

Sequential
combustor

Transition
piece

• Originally developed by ABB for high efficiency, load flexibility
and low emissions

• Recently improved and simplified (reduced cost) for the H-class
GT36

• First (premix) combustion stage based on flame propagation
• Second (sequential) combustion stage based on auto-ignition
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Staged gas turbine combustion

1st combustor Mixer/HP Seq. Burner Seq. Combustor 

X

SB inlet T
4 flame
position Exit T

• Adjusting firing temperature of 1st stage allows control of tign in
2nd stage



Staged gas turbine combustion
Hydrogen fuel
• Flashback in 1st stage
• Early auto-ignition in 2nd stage

t

ca
a)

1st combustor Mixer/HP Seq. Burner Seq. Combustor 

H2

SB inlet T
4 flame
position Exit T

I

• 2nd stage is mainly auto-ignition stabilized
• 2nd stage inlet temperature needs to be decreased and not 2nd
stage flame temperature



Staged gas turbine combustion
Hydrogen fuel
• Flashback in 1st stage
• Early auto-ignition in 2nd stage

1st combustor n Mixer/HP Seq. Burner Seq. Combustor

H2

Less Fuel

\

SB inlet T
4 flame
position Exit T

More
Fuel

• 2nd stage is mainly auto-ignition stabilized
• 2nd stage inlet temperature needs to be decreased and not 2nd
stage flame temperature
• 1st stage de-rating is compensated by shifting fuel to 2nd stage



Reheat burnet-

DNS of idealized reheat burner configuration from Ansaldo Energia
Operating conditions:
• Inlet temperature: — 1100 K
• Pressure: — 20 atm

Scaled conditions:
• Mean inlet temperature:
• Pressure: 1 atm
• Fuel: hydrogen

Turbulent
NSCBC
inflow

Ignition length (LA

U bulk

T.

Isothermal walls

Objective:
• Understand the flame stabilization
• Identify the modes of combustion
• Quantify the role of auto ignition

2

  NSCBC
Outflow



- Multiblock
• Mildly complex geometry enabled by multi-block DNS capability
• Construct geometries by assembling several cuboidal blocks (like Lego)
• Compressible formulation (J. H. Chen et al., CSD 2009)
• Spatial derivatives: 8th order CD schemes & 10th order filter
• Time integration: 4th order Runge-Kutta
• Mixture averaged transport model

Weak scaling on Titan
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483 grid points per core
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lo'

Code scales well on
hundreds of thousands of
processors



Turbulent
inflow

Simulation details

Isothermal wall
-____________

NSCBC
Outflow

1.25 billion grid points
20 million CPU hours
Reb = 13000

• Chemical mechanism: 9 species hydrogen-air (Li et al., 2004)
• Inflow composition: premixed H2 + 02 + N2 + H20 (c1) = 0.35)

• Ubulk = 200m/s, u' = 20m/s, Tin iet = 1100K, Twaii = 750K
• Inflow profile: feed from DNS of a fully developed channel flow

Feed data
sampling plane



lso-surfaces of
vorticity magnitu
colored by
temperature

Two combustion configurations are observed:

• Design state: mainly auto-ignition in the combustion chamber

• Intermittent auto-ignition state: ignition in mixing section



Design combustion state
Heat release rate
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Transport budget analysis
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3-1 1

Chemical Explosive Mode Analysis

• a = otos /d3ow : ratio of the projected non-chemical source term and
the projected chemical source term (C. Xu et al., PROCI 2018 )

Three mode are identified:
• Assisted-ignition (a > 1,_ diffusion significantly promotes reaction
• Auto-ignition (-1 < a ‹- chemistry plays a dominant role
• Extinction zone (a < —1): diffusion dominates chemistry and
suppresses ignition

: 7) c 80
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g).04a 60
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1
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Intermittent auto-ignition state
Heat release rate
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Intermittent auto-ignition state
— 1.0e+10

— 7.5e+09

I
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1.0

Compression wave

"N. V,
Auto-ignition Contours of

heat release

• Local rise in pressure

• Increases local

temperature by 20-30 K

• High reactivity of hydrogen

• Decrease in ignition delay

time (30%)



Conclusions
• Performed DNS of a reheat burner at scaled conditions

• Two states of hydrogen/air combustion have been observed:

• design state: flame propagation and auto-ignition in the combustor

• intermittent auto-ignition in mixing section

• Premature auto-ignition arises due to pressure (and following
temperature) rise in mixing section

• Quantified the contribution of different modes towards heat release
using chemically explosive mode analysis (CEMA)

• Future work:

• characterize the unstable flame behavior and the conditions
leading to it

• find the inlet conditions for statistically stationary reheat flame

• perform 2D and 3D simulations with varying fuel composition and
its stratification



ECP has formulated a holistic approach that uses co-
design and integration to achieve capable exascale

Application
Developmen

Science and
mission

applications

31 Exascale Computing Project,
www.exascaleproject.org

Software
Technology

Scalable and
productive

software stack

System Software, resource
management threading,

scheduling, monitoring, and
control

Math libraries and
Frameworks

Data
management
110 and file
system

Hardware
Technology

Exascale
ystem

Hardware
technology
elements

Integrated
exascale

supercomputers

ECP s work encompasses applications, system software, hardware
technologies and architectures, and workforce development

From Paul Messina's ASCAC talk April 19, 2017
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ECP application: Transforming Combustion Science and Technology
Through Exascale Simulation (Pele)

Effects of reactivity
stratification at:

• high pressure
• high turbulenc
• fuel blends

on:

S3D: multi-block compressible reacting
DNS multi-physics validation: spray,
soot, radiation

Exascale Computing Project
Argonnelr

NATIONAL LABORATORY

ignition delay
combustion
rates
emissions

r~rrifr 1\1

BERKELEY LAB

OAK E.) Sada
RID GE National

National Laboratory 
laboatories

Pele: Block-structured adaptive mesh
refinement, multi-physics: spray, soot,
and radiation, real gas, complex
geometry

Automated Mechanism Generation

R E L
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The Pele Project
Transforming Combustion Science and Technology with Exascale Simulations
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• Use exascale platforms to solve first of
exascale-era combustion problems

• Anchored in basic research needs:
requirements driven by gas phase
chemical kinetics research questions

• turbulence chemistry
interaction in
conditions motivated
by IC engine
research

• provide a path for
development of
scalable design
codes suitable for
exascale hardware



Challenge Problem - Motivation

Advanced combustion regimes (LTC)

2.0

C 0
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O '>4),"064)/
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N 0

0.0  
1400 1600 1800 2000 2200 2400

Peak cylinder temperature (K)

PCCl/HCCI — load limitations
Requires precise charge preparation and
combustion control mechanisms
(for auto-ignition and combustion
timing)

Conventional diesel "

Early injection PCCI

UNIVERSITY OF WISCONSIN - ENGINE RESEARCH CENTER

Adapted from
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by University of
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Engine Research
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High Fidelity DNS and Hybrid DNS/LES of RCCI Diesel Combustion

-Soot-precursor

I
Nonpremixed

Lean HTC

Rich HTC

LTC

DNS of a ndodecane
spatially evolving
turbulent diesel jet flame
at 60 bar, combustion
modes, Dalakoti et al.
2018

Characteristic / Need

Impulsively started jets with disparate scales between

fronts and turbulence.

(Outer scales: 1.0cm, ms

Inner timescales: microns, ns)

High speed injection followed by subsonic conditions

downstream

Long time horizons to set up turbulence for studying

fundamental TCI

Lean, rich, and low temperature chemistry critical in

multi-stage ignition and formation of soot precursors.

Liquid fuel injection

Coupling between mixture preparation and emissions

Mixture preparation dependent on re-entrainment of

combustion products

Dynamic adaptive mesh refinement

Compressible and low-Mach capabilities

Hybrid DNS/LES

[Non-reacting LES, DNS for flame]

Accurate and detailed thermochemistry.

Lagrangian spray model

Detailed kinetics including emissions, sectional model for

soot with radiation

Realistic piston dish and cylinder wall geometry

Performant on exascale architecture



Design Philosophy, Strategy

• The Pele suite:

— Compressible (PeleC) and low Mach number (PeIeLM) integrators, compatible design,
data, I/0, etc

— Shared physics (ideal/real gas kinetics, thermodynamics, transport, sprays, etc) -
PelePhysics

— Block-structured adaptive mesh refinement, built on AMReX framework

— Robust, accurate, extensible finite-volume (conservative) discretizations

— Embedded boundary treatment of arbitrary geometries

• Enables CAD-to-compute, avoids expensive, time-consuming difficult mesh
generation step

— AMReX-supported X+Y parallelism (inter-node X and intra-node Y)

— Parallel mesh and particle data, specialized to needs of AMR (temporal subcycling, etc),
plus Fork-Join type temporary redistribution strategies, high-performance I/0 and in-
situ/in-transit analysis support

— Combustion-specific agile code generation: Fuego+SINGE for GPU-optimized CUDA
kinetics evaluation, Kokkos-based kernels for particle/fluid coupling terms

• Agile development framework, open source modular design, continuous integration/testing

• Close interaction with AMReX for new capabilities in development

— App-relevant GPU/A21 implementation of AMReX structures/algorithms

— Leverage AMReX multi-app development



Pele Code Design Overview
• Baseline algorithm design for multicomponent flow with stiff reactions, AMR

— PeleC: Comparable advection, diffusion time scales, motivates IMEX-type scheme based on
Spectral Deferred Corrections (SDC) with time-implicit chemistry

• Robust highly efficient time-explicit Godunov-type upwind advection, simple centered
diffusion

• BDF-style implicit chemistry ODE integration, with sources that approximate the other
processes

— PeIeLM: acoustics filtered away analytically, but still want robust, time-explicit advection

• Chemistry and diffusion are now time-implicit — iterative timestep simultaneously
incorporates flow constraint (constant pressure), mutually coupled species/energy
diffusion and chemistry. Entire system evolved stably on slower advection time scales
across AMR grid hierarchy

• SDC-based iterative timestep — treats each process essentially independently, with accelerated
iteration to couple everything nicely together

• Robust baseline allows stable, well-behaved extensible time step

— Switch 2nd order advection scheme with more accurate 4th order algorithm

— Option for "destiffened" chemistry model that allows highly efficient time-explicit advance

— Robust to other, potentially stiff, tightly coupled processes, such as sprays, radiation, soot,
etc
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DNS of Ndodecane Multi-injection Jet at
Diesel Conditions - Parameters

• N-dodecane/air injection with YNC12H26 =0.45, 446K
• Jet: D=0.17mm, U=30m/s, Re=15,000
• Environment: 60 bar, 900K, 15/85% 02/N2 (`spray A)
• 10 micron resolution
• 53 species mechanism

• Age variable tracks the fluid age/residence time

Diffusion
coefficient
based on
Le=1 for all
add. scalars

Opa Opuja a ( 
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Reactor studies oxidizer consists of lean
products (Z=0.025)

Fuel side: NC12H26/air @Z=0.45, oxidizer: equilibrated NC12H26/air @Z=0.025,
60atm
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Comparison at 0.4ms after pilot/main injection start
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Comparison at 0.4ms after pilot/main injection start

zpilot, Zmain
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emmComparison at 0.4ms after pilot/main injec
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Comparison at 0.4ms after pilot/main injection start
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Comparison at 0.4ms after pilot/main injec

Zpilot, Zmain
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Difference in pilot and main ignition - temperature

time = O.lOms
2250

2000

1750

1500

1250

1000

750

500

0.00 0.05 0.10 0.15 0.20 0.25 0.30
ZmiM

2250

2000

1750

1500

1250

1000

time = 0.20ms

0.00010

0.00008

0.00006

0.00004

0.00002

2250

2000

1750

1500

1250

1000

750

500

time = 0.10ms

0.35 0,40 0.45 0.00 0.05 0,10 0.15 0.20 025 0.30 0.35

500

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

time = 0.30ms
2250

2000

1750

1500

1250

1000

750

500

0.00

2250

2000

1750

1500

1250

1000

750

500

0.00

49

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Z„„.,

time = 0.40ms

0.05 0.10 0.15 0.20 0.25 030 0.35 0.40 0.45

0.000200

0.000175

0.000150

0.000125

0.000100

0.000075

0.000050

0.000025

time = 0.20ms
2250

2000

1750

1500

1250

1000

750

500

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.00030
2250

0.00025 2000

1750
0.00020

1500

0.00015 1250

1000
0.00010

750

0.00005 500

0.00035

0.00030

0.00025

0,00020

0.00015

0.00010

0.00005

time = 0.30ms

0.40

0.40

0.45

0.45

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

time = 0.40ms
2250

2000

1750

1500

1250

1000

750

500

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.0005

0.0004

0.0003

0.0002

0.12 -

0.0001 0.10 -

0.08

E 0.06 -

0.04 -

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0.0008

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0.02 -

0.0000

Temperature, homogeneous ignition

0.0002 0.0004 0.0006

time t [a]

•
0.0008 O. 0 0 10

Pilot:
-Stoich. conditions close
to homogeneous ign.
-Difference for rich cond.

Main:
-Significant differences on
rich side

Pilot: 0.26ms, dwell: 0.17ms, main: 0.74ms; left: times w.r.t pilot start, right: times w.r.t. main
start

2200

3000

1800

1600

1400

1200

1000

800

4 9 
EXRSCRLEEC P 1%0170N5



Difference in pilot and main ignition OC12H230GEL
time = O.lOms time = O.lOms
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Difference in pilot and main ignition
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Combustion simulations

lso-surfaces of
vorticity magnitude
colored by
temperature

T (K): 800 1000 1200 1400 1600

• Multi-variate data: —10 — 100 variables

• Direct numerical simulations: resolve all the scales in space and time

• Massively parallel solvers (e.g. S3D Chen at al. (CSD 2009))

• computationally expensive (tens millions of CPU hours)

• large amount of data (— 100 TB)

• Exascale (millions processing elements): need efficient workflows



Simulation workflow

Time

loop

►

Initialization

Mesh (AMR)

Compute RHS terms

Update solution

ln-situ analysis

Save data (I/0)

End simulation

et al. 2014)

A. Krisman (2016)



Results

• k-nearest neighbors

• compute "mean" distance from k nearest
neighbors

• Local outlier factor

• compute outlier score based on local
density

• Supervised learning methods (e.g. neural
networks)

• regression and classification

---------

----------4- 0
04--- 0..4.

WOO
a • • •
•

(i

Not efficient and expensive to compute

o



• Bivariate dataset

-2

-2

Normal data

0

vi_

2

Idea

2

-2

Data with anomaly

-2 0

171

2

• Characterize the data distribution: principal component analysis

• Change in distribution: effects the magnitude of principal value
and orientation of principal vectors



Principal component analysis
• Scale the data: with mean and maximum
• Compute the co-variance matrix (second order joint moment)
• Perform Eigen decomposition to obtain the principal values

and vectors

1

Vl

• Mainly captures variance

• Need to look at higher order moments to capture extreme events

1

1

1
92,

— Principal values:
0.1928 0.0479

1
v1



Fourth order joint moment

Kurtosis: measure of "either existing outliers (for the sample
kurtosis) or propensity to produce outliers (for the kurtosis of a
probability distribution)" (P. H. Westfall, 2014)

• Compute the fourth joint moment (cumulant tensor, T )

T = Et v 0 v0v0 td — Et vi, v12 ]IE [ vi3 vij

Elvfl vi3JE[vi2 vid — E [ vii vi4JE[ vi2 yid 1 1 < ii ... izt < k

• Decompose the fourth order symmetric tensor
• Tensor size (A/14), Alf : number of features
• Matricize the tensor and perform SVD (A. Anandkumar et al.,

JMLR 2014)
• Obtain principal kurtosis values and vectors
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o

1

Anomaly detection

PV2

`)% PV 1

Second moment0

Fourth moment

1 o
v1

1

1

o

1

1 o
V1

• First principal kurtosis vector aligns in the direction of
anomalies

• Can be used to characterize extreme events

1



Results
Consider a simple problem with a 1D domain
• Initial condition

1600 

*":, 1400

4.3
co

a. 1200

1000 
0

Region 1 Region 2 Region 3 11 Region 4

0.2 0.4 0.6 0.8
x — position (cm)

• Fuel-air composition: premixed — 0.6CO + 0.4H2 + 0.5(02 + 3.76N2)
• Solver: scalable reacting flow code S3D (J. H. Chen et al., CSD 2009)

• Number of subdomains: Nd = 4
• Time-steps: At = 0.001 pis
• Number of checkpoints: Nt = 20, interval: 1 ps



Auto-ignition test case
• Time evolution of temperature

T
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• Early ignition occurs in Region 1: spatial anomaly

• Eventually ignites in Regions 4, 2, and 3



Results

Time evolution of principal vectors in Region 1 (axes: scaled)
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Feature moment metrics

• Number of features: Alf = 13 (12 species + temperature), index i

• Number of subdomains: Nd = 4, index j

• Number of time steps: Nt = 20, index n

• Project the principal vectors weighted by the principal values
onto the features to obtain the feature moment metrics (Fihn)

Nf

E Air Pi k)2
Fi,n = k=1 

NF

E Air
k=1

• e"' • V is effectively the i-th entrv in the k-th vector tik

• Property: fivIl Fr = 1, V j, n
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• FMMs distribute across different features when ignition
(anomaly) occurs



Anomaly metrics

Identify spatial and temporal anomalies
• Statistical signature: distribution of feature moment metrics changes
• Hellinger distance: a symmetric measure of difference between two

discrete distributions P and Q

DPQ =
1

0
E (\/pi  .\./ch )2

i

• Spatial metric: compare eacn hiviivi distribution with the average

11411W=
1

-V2

A I f 7  

)2

1 .1,n in

t=1

• Temporal metric: compare FMM distribution between successive time
steps

Mi2(n) =
1



Algorithm

Algorithm 1: Anomaly detection algorithm

// initialization

1 Nt, Nd <— decompose data;

2 Nf <— select features;

// time step loop

3 for n <— 1 to Nt do
// sub-domain loop

4 for j <— 1 to Nd do
5 scale data;

6 Tj' n <— compute joint moment tensor;

7 matricize tensor Ti' n ;

8 Aj, vj <— perform SVD;

9 F: n <— compute feature importance;/
10 Min (j), A/f(n) *— compute anomaly metrics;

11 end

12 flag anomalous sub-domains;

13 end



Results

Spatial Metric
• Region 1

Region 2
• Region 3

Region 4

5 10 15
Time (p,$)

20

• Dash line: threshold for anomaly (=0.5)
• Anomalies detected in space and time

Temporal Metric
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Forecasting

1

0

-1

-2

-2 -1 0 1 2

-2

-2 -1 0 1 2

-2 -1 0 1 2

• Track the rate of change of vector orientation



Results
• Proposed an unsupervised anomaly detection algorithm

• Verified the idea using synthetic and auto-ignition data

• Future work:

• in-situ implementation of the algorithm into the massively
parallel direct numerical simulation solver (S3D)

• evaluate scalability

• apply the algorithm to detect anomalies in other scientific
phenomena


