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Primary Roles of a Safety Assessment Model

1. Evaluate potential disposal concepts
and sites in various host rock media
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2. Build confidence in the repository safety
case — first generic, then site-specific

3. Help prioritize R&D activities, through
multiple phases of the repository program
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Cost of R&D Activity

...

V.I.= F [sensitivity of system performance to the R&D information
obtained; uncertainty reduction potential (TRL)]
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Phases of a Repository Project
(and maturation of safety case confidence

-0

Licensing

U.S. Program currently:

• Concept Evaluation stage
• "Generic" stage
• Baseline models
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Role 3 R&D Prioritization Within one Project Phase
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Role 1 (and Role 2) Safety Assessment
Model/Software Philosophy

1. Direct representation in Safety Assessment model of
significant coupled multi-physics processes in three
dimensions (3-D), over a large heterogeneous domain
• Lessening reliance on assumptions, simplifications, and process

abstractions

2. Realistic spatial resolution of features and processes
• Explicit representation of all waste packages

3. Appropriate quantification and propagation of
uncertainties, based on model form and data availability
at various spatial scales

4. Implementation of a numerical solution and code
architecture that uses evolving (a) computer architecture
(parallel HPC), (b) software languages, and (c) numerical
solution algorithms

Sandia
National
laboratories
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2012:
IBM Blue Gene/Q

10 x 1015 FLOPS (petaflops)
786,432 CPUs; 7.86 x 1011 KB DRAM

Evolution of Computing Power
2018 (U.S.)

Generic

PerformAnce Assessment

Site Selection/CharacterizationNational Academy of Concept Evaluation
Sciences (1957):
The Disp3sal of

Evaluate Disposal roncepts;
Development Identification Progressive

Radioactive Waste on
FEPs; Develod and

Demonstrate Tecitnologies;
of Siting
Criteria

of Potential
Sites

Site Down-
Selection

Land Preliminary Fr:EAD

1964:
IBM 360IModel 30

35 x 103 IPS
1 CPU, 8 KB Memory

three
decades
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(2075 in U.K.!)
2045? 2050?

•
•

Site-Specific

•

Repository Development

Detailed Site
Characterization Construction Operations
& Repository Closure

Design —> License Monitoring Monitoring
Submittal

2045-50? 

IBM Quantum
10??2 FLOPS

"IBM System360 Model 30" by Dave Ross - Flickr: IBM System/360 Model 30. Licensed under CC BY 2.0 via Wikimedia Commons
"Mira - Blue Gene Q at Argonne National Laboratory - Skin" by Courtesy Argonne National Laboratory. Licensed under CC BY 2.0 via Wikimedia Commons
"The Quantum Hack" by Tim Folger, Scientific American, February 2016
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(Geologic Disposal Safety Assessment)
GDSA Framework
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)>ID' Explore and predict with confidence.

DAKOIA DAKOTA Modeling
Capabilities

• Interface between input parameters and domain simulation (PFLOTRAN)

• Manages uncertainty quantification (UQ), sensitivity analyses (SA),

optimization, and calibration

• Object-oriented code; open source

• Supports scalable parallel computations on clusters

• Mixed deterministic / probabilistic analysis; aleatory and epistemic uncertainty

Parameters

/- -.
DAKOTA 

• Optimization
• Sensitivity Analysis
• Parameter Estimation

Uncertainty Quantification }

i- Computational Model 

• Repository Simulator
• Black Box Code: e.g., mechanics, circuits,
high energy physics, biology, chemistry

• Semi-intrusive Code: e.g., Matlab, Python,
\„_multi-physics codes

erformance

Metrics

r — -.- - I. — — — — — ..
1 http://dakota.sandia.gov/ I
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R-PUITRAN PFLOTRAN-

• A porous-medium continuum code for modeling:

• Multicomponent, multiphase flow & transport

• Heat conduction & convection

• Biogeochemical reaction

• Geomechanics

• Isotope decay & ingrowth

Sandia
National
laboratories
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GDSA Framework Website

■ At http://pa.sandia.gov 

■ Past reports, latest developments, contact information

Sandia
National
Laboratories

GDSA Framework

A Geologic Repository Modeling and Assessment Capability

Home PFLOTRAN on Bitbucket Documentation Events Contact

Welcome to GDSA Framework

GDSA Framework (5,,eologic Disposal Safety Assessment Framework) is an open-source performance assessment tool for deep underground disposal

of nuclear waste. Its availability and continuing development owes to an ongoing collaborative effort led by Sandia National Laboratories.

Collaborators to date include mernbers of the following organizations and laboratories: PFLOTRAN.org, Los Alamos National Laboratory (LANL),

Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL).
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Typical Applications of PFLOTRAN

• Nuclear waste disposal

• US DOE — new geologic repository concepts for spent fuel
• Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM

• SKB Forsmark spent fuel repository (Sweden, Amphos21)

• Climate: coupled overland/groundwater flow

• 3-D contaminant transport modeling
UkVil Concentratron

1 E•07

• CO2 sequestration 5E.0

... 5E-09
8

E•08

• Enhanced geothermal energy 110

I

NIDE

T

• Radioisotope tracers 
200

• Colloid-facilitated transport

Pressure (Pal: 10000 50000

• 11
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G 00
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90000 130000 170000 210000

Hammond and Lichtner, WRR, 2010
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Application of PFLOTRAN
Information from a survey of PFLOTRAN users:

■ 3D near-field models of nuclear waste
repositories

■ Agriculture

■ Apatite reactive barrier

■ Behind-casing pressure development in
well annulus due to N2 injection

■ Biogeochemical hot spots/hot moments

■ Biogeochemistry within groundwater-
river water exchange zones

■ CO2 sequestration

■ CO2 storage

■ Coupled surface/subsurface land mode

■ Geothermal Systems

■ Groundwater age

■ Groundwater management

■ Hydrogeochemical evolution

■ Interpretation of in-situ through-diffusion
experiments

■ Modelling of enhanced oil recovery (using
CO2 as solvent)

■ Modelling of oil and gas reservoirs

■ Mountain block recharge beneath soil
mantled hill slopes

■ Multicomponent transport of trace gases

■ Nuclear waste repository performance
assessment

■ Permafrost modeling

■ pH sweep and water quality data analysis

■ Radioactive waste management

■ Radionuclide transport

■ Redox gradients within hyporheic zones

■ Remediation design

■ Species specific diffusion and Donnan
equilibrium in clays

■ Subsurface hydrology and geochemistry

■ Surface/hill slope hydrology

Sandia
National
laboratories
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Why use PFLOTRAN?

■ Open source licensing: LGPL

• Freely available

■ Modularly programmed in modern object-oriented
Fortran

■ Founded upon established and supported open
source libraries

• MPI, PETSc, HDF5, METIS/ParMETIS/CMAKE

■ Demonstrated performance on supercomputers

• Maximum # processes: 262,144 (Jaguar supercomputer)

• Maximum problem size: 3.34 billion degrees of freedom

• Scales well to over 10,000 processes

Sandia
National
laboratories
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How well does PFLOTRAN scale?

• Doubling the number of cores nearly cuts run time in half
(up to and beyond 10,000 cores)
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Support for PFF 1TRAN
• Active support infrastructure: www.pflotran.org

• Online documentation: clocui iientation.pflotran.org

• Online access to source code:

Git clone hithucket.org/ptlotran/pflotran 

• Automated testing: travis-ci.org/pflotran/pflotran 

• User mailing list: oflotran-users@googlegroups.com 

PFLOTRAN A1.1 B6.6" InstaIlat6n Dome%tan Parallel Pedormane De.lopmem Tem

REIATIMN
A Massikiy 611L1

Subsurface Processes
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Flexible Process Model Coupling

• Customizable linkage
between process models

• Flow

• Transport

• Reaction

• Updates to material

properties at select times

• Flexible time stepping

• Individual processes may
run at their own time scale

Process Model Coupler

Process Model

Multiphase Flow

Numerical Methods

Tirne Integrator

Newton Solver
Linear Solver

1
Child

(catch-up)

• Modularity for incorporating new process models

• Time stepping loops for existing process models are not impacted

Sandia
National
laboratories

 * Peer
(sync-point)
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Discretization and Numerical Methods

■ Spatial discretization

• Finite volume (2-point flux default)

• Structured and unstructured grids

■ Time discretization: fully-implicit backward Euler

■ Nonlinear solver

• Newton-Raphson

• Line search/damping with custom convergence criteria

■ Linear solver: direct (LU) or iterative (BiCGStab)

■ Multi-physics coupling

• Flow and transport/reaction: sequential

• Transport and reaction: global implicit

• Geomechanics and flow/transport: sequential

• Geophysics and flow/transport: sequential

Sandia
National
laboratories

Deep Borehole
Waste Disposal

Stein 2015
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Generic Repository Reference Case

■ Reference Case is a surrogate for site- and design-
specific information not yet available during the
current Concept Evaluation Phase

• Documents information and assumptions for generic
disposal system models

• Helps ensure consistency across analyses (e.g., PA, process
modeling, UA/SA)

• Initial focus on the undisturbed scenario (e.g., performance
in the absence of external natural or human-induced
events)

Sandia
National
laboratories
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Disposal Concepts Being Examined
(with corresponding generic reference
Mined repository in qranite or other hard rock

Cladding tube

Fuel pellet of
uranium dioxide

Spent nuclear fuel

Copper canister
with cast iron insert

Bentonite clay

Crystalline
bedrock

Surface portion of final repository

500 rn

Underground portion of
final repository

Source: SKB 2011, Figure S-1.

Mined repository in cla /shale

e 500m

„,;

_
Installsbons SCRIlOttallee

C.IM.OSES.04.0263 C
Atrecs
AP salckne

Source: ANDRA 2005b.
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Mined repository in bedded salt
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Source: BMWi 2008, Figure 15.
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crystalline
basement rock

2 km DEIN
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Crystalline Reference Casc
• Characteristics of crystalline rock as a geologic disposal medium:

• High structural strength, which stabilizes engineered barriers (unique)

• Low permeability (— 10-20 m2)

• Typically reducing pore waters (which limit radionuclide solubility)

• High sorption capacity

• Potentially connected fracture network — adversely affecting isolation if present

Sandia
National
laboratories

Locations of crystalline rock outcrop and
near-surface subcrop in the US (black).
Regions of high seismic hazard shown in
warm color shading. Blue line is the
maximum extent of the last glacial
maximum (Perry et al. 2016)
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Crystalline Reference Case

• Crystalline Host-Rock Repository
In drift 12-PWR disposal, 3360 WPs (1/4 size), 168 drifts, 20 m apart

— Fractures generated by dfnWorks, mapped to porous media mesh

Time: 1000 Years GDSA/Domains6

1.000e+01 46.75
1111

Temperature (C)

93.5 140.2

Sandia
National
laboratories
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Crystalline Reference Case

• Crystalline Repository Simulations
Breakthrough of 1291 (at surface)
highly sensitive to fracture distribution

Also sensitive to sediments permeability
and waste package degradation rate
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lacial2"

[1291] versus time for 50
realizations of uncertain
inputs

101 1o2 1o3 104
Time (years)

b.) Observation point "glacial2"

Spearman rank
correlation coefficients
for maximum [1291]

o * 2, .0, 2' 4!.) 4pbq,
4r. 4, (4k

S
c? 

4z,

Parameter Range Units Distribution

UNF Dissolution Rate 10-', - 10° yr-1 log uniform

Mean Waste Package Degradation Rate 10, - 10-4, yr' log uniform

Waste Package r 0.01 - 1.0 log uniform

Bentonite 0 0.3 - 0.5 uniform

DRZ 0 0.005 - 0.05 unifornn

Np Ka bentonite 0.1 - 702 make log uniform

Np Ka natural barrier 1.26 x 10e - 5.37 x 10' makg-1 log uniform

105 106
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Other Recent Repository Applications
Generic Bedded Salt

Depth to Top of fielt b Ileiffs

9
ben

▪ Siltstone
▪ Mudstone
• Dolomitelaquifer)

• Halite

• Anhydrite

Generic Clay/Shale

90

515

675

930

1200

Overburden
Sandstone

Host Rock

Limestone

}Lower shale
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Components of Generic Safety Case

q'y
1. lntroduction, Purpose, and Context

2.1 Management Strategy
a. Organizational/mgmt. structure
b. Safety culture & QA
c Planning and Work Control
d. Knowledge management
e. Oversight groups

2. Safety Strategy
2.2 Siting & Design Strategy
a National laws
b. Site selection basis & robustness
c. Design requirements
ct Disposal concepts
e. Intergenerational equity

2.3 Assessment Strategy
a Regulations and rules
b. Performance goals/safety criteria
c. Safety functions/multiple barriers
d. Uncertainty characterization
e. RD&D prioritization guidance

3.1 Site Selection
a. Consent-based siting
methodology

b. Repository concept
selection

c. FEPs Identification
d. Technology development
e. Transportation
considerations

f Integration with storage
facilities

3. Technical Bases
3.2 Pre-closure

Basis
a. Repository design & layout
b. Waste package design
c. Construction requirements
& schedule

ð Operations & surface
facility

e. Waste acceptance criteria
f. lmpact of pre-closure

activities on post-closure

3.3 Post-closure Bases (FEPs)
3.3.1 Waste &

Engineered Barriers
Technical Basis

a inventory character&ation
b. WF/WPtechnical basis
c. Buffer/backfill technical

basis
d. Shafts/seals technical basis
e. UQ (aleatory. epistemic)

3.3.2 Geosphere/
Natural Barriers
Technical Basis

a. Site characterization
b. Host rock/DRZ technical

basis
c. Aquifer/other geologic

units technical basis
d. UQ (aleatory, epistemic)

3.3.3 Biosphere
Technical Basis

a. Biosphere & surface
environment
-Surface envinonment
-Flora & fauna
-Human behavior

SI. Disposa! System Safety Evaluation
4.1 Pre-closure Safety Analysis

a. Surface facilities and packag*
b.Mining and drilling
c. Underground transfer and handling
d.Emplacement operations :
e. Design basis events & probabigities
f. Pre-closure model/software Alidation
g.Criticality analyses •
h.Dose/consequence analyses

4.2 Post-closure Safety Assessment
a.FEPs analysis/screening
b. Scenario construction/screening
c. PA model/software validation
d.Banier/safety function analyses and subsystem
analyses

e.PA Model Analyses/Results
f. Uncertainty characterization and analysis
g. Sensitivity analyses

4.3 Confidence Enhancement
a. R&D prioritization
b.Natural/anthropogenic analogues
c. URL & large-scale demonstrations
d.Monitoring and performance
confirmation

e.lnternational collaboration & peer
review

f. Verification. validation. transparency
g. Qualitative and robustness arguments

5. Synthesis & Conclusions
a.Key findings and statement(s) of confidence
b. Discussion/disposition of remaining uncertainties
c. Path forward

Sandia
National
laboratories

: Most generic R&D
! issues/activities
are for these two
major safety case

: elements
•%. 
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Evolution/Iteration of Technical Bases & Safety
Assessment through R&D Role 3 

Generic
Safety Case

SR-Specific
Safety Case

Concept Evaluation Site Selection/Characterization Repository Development

Evaluate Disposal Concepts; Detailed Site
Development Identification Progressive Characterization Construction Operations

FEPs; Develop and of Siting of Potential Site Down- & Repository Closure
Demonstrate Technologies; Criteria Sites Selection Design —4 License Monitoring Monitoring

Preliminary RD&D Submittal

Technical Bases &
Models

in Stage "A"

Safety
Assessment
in Stage "A"

Directed Science, Testing, and Process
Modeling ROW Program

Decision Framework,

I.: 

[4:4,17.7 

• I

Management. Stakeholder.
and Expen input:

Directed Science, Testing, and Process
Modeling ROW Program

Dec ision Framework. Management. Stakeholder,
and Emden input

;1%131

Safety
Assessment
in Stage "B"

Technical Bases &
Models

in Stage "B"

E> Technical Bases &
Models

in Stage "C"

Safety
Assessment
in Stage "C"

Directed Science, Testing, and Process
Modeling PDS() Program

Decision Flamer...Au Management. Stakeholder,
and Expen input:

Directed Science, Testing, and Process
Modeling I,10,10 Program

Decision Flamework: Management. Stakeholder,

Safety
Assessment
in Stage "D"

Technical Bases &
Models

in Stage "D"

Sandia
National
laboratories
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Representhtion of Flow in Fractures
• Discrete fracture networks (DFNs) are commonly used to model

isothermal fluid flow and radionuclide transport in fractured rock:
• Stochastically generated network of 2-D fracture planes distributed in 3-D domain

• Does not include the effects of heat on fluid flow

• GDSA Framework has mapped a DFN (generated with dfnWorks) to an
equivalent continuous porous medium (ECPM) in PFLOTRAN

• Determines which ECPM 3-D grid cells are intersected by DFN fracture planes

• Adjusts anisotropic permeability and porosity of ECPM "fracture cells" to represent those
same properties of the DFN

Tracer distribution comparison at 1000 years: 

Bu
lk
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C
P
M
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(
m
2
)
 

Sandia
National
Laboratories

Bulk permeability
comparison: * 

3.00E-17

2.50E-17

2.00E-17

1.50E-17

1.00E-17

5.00E-18

0.00E+00
0.00E+00 1.00E-17 2.00E-17 3.00E-17

Bulk DFN Permeability (m2)

y = 0.7103x + 4E-19
R2 = 0.8608

* Stein et al. 2017 (at IHLRWM 2017 in Charlotte)
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Argillite Reference Case

---Monterey Mancos

Lebo

Pierre

Pierre Shale

Woodford

Barnett

Depth to Top of Shale in Meters

Mil 5-100 l= 1.001 - 1200
- 101 - 200 = 1,201 - 1.400
=I 201 - 300 0 1,401 - 1.800

MI 801 - 400 0 1.601 - 1.800
- 401 - 500 = 1,801 - 2.000
MI 501 - 600 161 2,001 - 2500
- 601 - 700 - 2,501 - 3.000

IN 701 - 800 IIMI 3,001 - 3,500
- 801 - 900 IIM 3,501 - 4.000

Mil 001 - 1,000 = 4.001 - 4.500

New Albany

Maquoketa—.

Graneros

Krowa
NIJS, .11! 1

Depth On

90

—500-

930 —

1200 —

[larine shale 

Nunh Car

Perm. k

 1e-15

le-13 IT,

1

overburden
Upper sandstone aquifer

Shale host rock

(585 m thick)

Limestone/chalky shale

Lower shales

Lower sandstone aquifer

Lower shales and sandstones

Regional Stratigraphy
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Data feeds and conceptual

model to support GDSA

reference case

• Hydrologic properties of the
Pierre Shale host rock and
adjacent formations

• Implications of fluid pressure
anomalies in shale

• Groundwater chemistry

• Other processes or events
relevant to the safety case
(seismicity, human intrusion)
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Argillite Reference Case
clayl2pwri

• Two shale repository
models

In drift 12-PWR disposal

Horizontal borehole 4-PWR
disposal

Argillite 4-PWR

__=-

1-

Time: 20 y

Sandia
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laboratories

Both are mirrored
in the negative Y
direction

Mr-
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Argillite Reference

• Shale repository simulation

4-PWR and 1 2-PWR repository layouts provide
similar performance

Diffusive transport through shale

1291 concentration remains below 1 0-12 M in upper
sandy aquifer up to 1 06 y

Dose remains far below IAEA rec. limit of 10-3 Sv/yr

1291 concentration remains below 1 0-8 M in lower
limestone aquifer up to 1 06 y

Total 1129 (M)

1.0Xie-151e-14 le-13 le-12 le-11 le-10 le-9 le-8 le-7 le-6 1.0O2e-436
I 11 J ,

kjaartIdoinaal

Laboratories

10 2 
b.) Observation point "sand obs2"

10 13

io"

• 10 15

cn 46
N 10

=

fC

c

10 18

lg

lo 2°0 

10-9

10-1°

o-1

10-1

200000 400000 600000 800000 1000000

Time (years)

Dose at Well

— Deterministic

— Mean

Median

q = 5%

q = 95%

200000 400000 600000 800000 1000000
Time (years)
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PFLOTRAN Computing Capabilitv
• High-Performance Computing (HPC)

• Increasingly mechanistic process models

• Highly-refined 3D discretizations

• Massive probabilistic runs

• Open Source Collaboration

• Leverages a diverse scientific community

• Sharing among subject matter experts and
stakeholders from labs/universities

• Modern Fortran (2003/2008)

• Domain scientists remain engaged

• Modular framework for customization

• Leverages Existing Capabilities

• Meshing, visualization, HPC solvers, etc.

• Configuration management, testing, and QA

Lg
g,

R.

'

Data Assimilation

a
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Xingyuan Chen, PNNL, 2011

AMPHOS 21

- Los Alamos
NATIONAL LABORATORY

Arg2pne6
°NAL LABORATORY

ub

0
OFIN Pasoan,

RII/E 
National Laboratory

Pacific
Northwest
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PFLOTRAN Output Formats

• Excel: *.tec [POINT]

• gnuplot: *.tec [POINT]

• MATLAB: *.tec [POINT], *.h5

• Matplotlib: *.tec [POINT]

• T 1ecp.ot : *.tec [POINT, BLOCK, FEBRICK]

• ParaView: *.h5, *.xmf, *.vtk

• R *.tec [POINT], *.h5

• Vislt *.h5, *.xmf, *.vtk
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1.0 osecisca• ea. —

csoase.07....:6 soya —

100

•!.
00

Vislt

Trle Ivl

gnuplot
1010

0 01 02 01 Oa OS 06 07 00 061Y1

Matplotlib

Ilo5im-

ramam  
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11(90 COnCeotroleen MI
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se 100

Excel
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Why Object-Oriented Fortran 2003/2008?

• Why Fortran?

• Experienced domain scientists remain engaged

• Commonality among all domain scientists

• Why object-oriented?

• Modular data structures
Eases code development and debugging — data locality

Nesting of processes and data

• Tree structure enables self-contained simulations

• Why Fortran 2003/2008?

• Classes (extendable derived types)

Member functions

Inheritance

• Pointers to procedures

E.g. swapping equations of state

Realization

Process Model A

Simulation

Process Model B

State Variables Parameters

Sandia
National
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Solver

1

Timestepper

i

Newton Solver

[
Linear Solver
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Prioritizing R&D Activities

■ R&D Prioritization process can be formalized

1. Identify a set of objectives and associated metrics, including
■ Importance to components of the safety case: safety assessment, technical bases, confidence-building

■ Potential to reduce key uncertainties, i.e., increase the TRL (or KRL, or SAL)

■ Other factors, e.g., cost, redundancies, synergies

2. Evaluate each R&D activity using the metrics

3. Define a "utility function" to combine the metric scores, to give an overall
numerical score

4. Compare utilities ("rankings") of the activities

Value of R&D

Information

Obtained (14/.)*

High
Priority

Low
Priority

Cost of R&D Activity

* V.l. = F [sensitivity of system performance to the R&D information
obtained; uncertainty reduction potential (TRL)]
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