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Length scale

Motivation for understanding electrode mesoscale morphology

Manufacturing

Www.targray.com

Hutzenlaub (2012)

Mesostructure

Battery Performance

VOLTAGE (V)
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Lithiation-Induced Fracture

LiCoO2 STXM, Farid El Gabaly Marquez (Sandia)

Mechanical Abuse = Electrochemistry / Mesostructure

NMC/graphite pouch, H. Wang (ORNL) Cannarella/Arnold (2015)

Mesoscale morphology is critical link between manufacturing and performance
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Imaging of cathode mesostructures

LCO with binder from FIB/SEM, NMC from XRCT, LCO from XRCT,
35 nm resolution, 370 nm resolution, 64 nm resolution,
20 um domain. 757 um domain. 22 um domain.
Hutzenlaub (2012) Ebner (2013) Yan (2012)

Imaging reveals complex networks; binder can be difficult to detect at scale
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Mesoscale geometry from CT data using CDFEM

CDFEM 1s a powerful tool for creating multi-material conformal meshes

Noble (2013); Roberts (2014,2016,2018)
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5 I CDFEM for mesostructure mesh generation

Conformal Decomposition Finite Element Method (CDFEM) — Sandia’s Sierra/Krino code
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Background

mesh
_|_

Surface
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(STL./analytic)
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mesh

CDFEM enables rapid meshing of many complex domains from various source descriptions

9/11/2018 Noble (2013); Roberts (2014,2016,2018)



6 Solution verification for rradihla macAactriicrriira cimlllations
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Solution verification establishes simulation correctness and domain/mesh size requirements
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Roberts (2018)
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What about the conductive binder?

Resolving conductive binder in 3D 1maging difficult

> Binder often neglected, assuming non-active void space
is electrolyte

° Limited imaging results can hint at binder location

Amorphous binder is significantly nanoporous
© 47% Zielke (2015); 45% Grillet (2016)

> 5% 1onic conductivity of pure electrolyte

(b) i graphite

ring fluorine

Superposition of
carbon & fluorine map

Graphite; Jaiser et al. (2017)

How are electrode-scale properties affected by the inclusion of binder? How does the morphology matter?

LCO; Komini Babu et al (2015)
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g | Binder bridge morphology approach

102.00 . ’ . 5 1 1 T T T T T T
e'l 7 4 5
RaLW 1rnag o # Kam (2012) 2| (c) Amin (2016) Y -
e 2% % e 101.00 | | ==
e Z e e | g O ~4.10V,
ZZ oy s < 100.00 | 4 8 4l = ~3.80V ~3.95V i
/ /’/ 0
1 27 = Y ®
: 3 5 F .
: 7 5 99.00 | 1 & ~3.65V Charge
s - o 6} -
% A1 AAAAT 7 —
_ T 9.00 | 25" 1i03 1 ® NMC333
Coatmgv/l; i Charge o At30°C | O NMC523
;s an 4 oo S

S 1 08 06 04 02 O 0 0.2 04 ~ 06 0.8
A" X in Li MO, x value in Li, ,NMC

d@=; NMC has lithiation-dependent properties
/ 0.35 7 ’ i [
o - ® @ Fresh
o vsl we Grillet 2016) [0 2 Freh
Binder bridge: /
/ i ) s o~ 0.25
s e L diss g 0.20
7)5—';\'15/:%%‘\‘"«» il KL 7‘ // // | . 7 /:;///; 4 s @ |
ﬁ%‘ﬂwﬂi [ & ' Ak s %0.15
7 YV A VA Y YV
: ’ A AAY YA ® 0.10
Mathematical aadndide. 4
) * e o S 0.05
description of R
. . bt | 0.00
“binder bridges” ’ SIS I I IS
€p
: Binder has strain- (e.g. lithiation-) dependent properties

Binder bridge mimics experimental observations; properties are lithiation-dependent

9/11/2018 Trembacki (2017)



9 I Effect of including binder on effective properties
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Binder morphology and mechanical coupling have a significant impact on effective properties; localization matters!
9/11/2018 Trembacki (2017)



0 | What about other morphologies and numerical methods
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Care must be taken when comparing results generated using different numerical methods; likely not converged!

9/11/2018 Trembacki, submitted



11 | Porous binder and morphology considerations
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Limiting cases of both morphology methods show similar (but not identical) behavior; nanoporosity is important!

9/11/2018 Trembacki, submitted
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Challenges with using CT mesoscale data

3D CT image data: (b) — graphite
° BExpensive

° Time consuming

o Conductive binder not visible

ring fluorine

Superposition of
carbon & fluorine map

Graphite; Jaiser et al. (2017)

.'q

Hypothesis: Use DEM simulations to create AM+CBD mesostructures and CDFEM for physics predictions

Trembacki, submitted
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13 | Mesostructure generation: Uniaxial compression

intermediate
microstructure

et L

initial microstructure

compression

(drying)

* height: 525 um —
* width: 100 um

porosity: 50%
height: 100 um
width: 100 um

* porosity: 90%

: compression
constant strain-rate p
(calendering)

compression .

fixed fixed ,'y — 48_ 1
dimension dimension |
periodic * periodic c.ompressed
boundary boundary microstructure
0.4 s physical time * porosity: 20%
< -7* uniaxial compression 864 cores * hfflght 66 um
* periodic boundary ~ 12 hours simulation time *  width: 100 um

Uniaxial compression represents both drying and calendering

9/11/2018 Stivastava, unpublished



14 I Conformal Decomposition Finite Element Method (CDFEM)
N |

Background mesh

° 0.7 um resolution

o 22M elements

Mesh AM phase
° 39M elements

° 84 cores, 40 s

Mesh CBD phase
> 70M elements

° 84 cores, 3 min
o Swell CBD 2x

nano-porous
2

CDFEM efficiently meshes results of DEM simulations

9/11/2018 Srivastava, unpublished



Confaormal Decomnocition Finite Flement Methoad (CDFFM)




16 I Composite effective properties

Electrical conductivity Tortuosity (tonic conductivity)
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Effective properties are simple yet appropriate characterizations of electrode performance

Physics simulations:
o Sierra/Aria
Timing:

9/11/2018 Srivastava, unpublished



17 | Porosity/calendaring comparisons
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Calendaring = lower porosity = more CBD connectivity = higher conductivity and tortuosity
9/11/2018 Srivastava, unpublished



18 I Next steps: Large deformation multi-physics formulation

Concept:

o Solid mechanics ¢

° Transport/electro

° Transfer displacer

I— 5.0e-03

— 0.004

. — 0.003

von_mises

0.002

0.001

0.0e+00

Demonstrated two-way coupling between mechanics and transport codes; developing robust particle contact

9/11/2018 Brunini, unpublished
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Next Steps: Credible Automated Meshing of Images (CAMI) LDRD

Segmentation using deep CNNs Smooth, low anisotropy UQ and propagation
Labeling, feature detection (CV) conformal meshing (CDFEM, (per voxel, geometric perturbation)

9/11/2018

morph, sculpt, omega_h)

Automatically, efficiently, and reproducibly create conformal meshes from 3D tomography with quantified uncertainty
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