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Executive Summary

Plug-in electric vehicles (PEVs) can help to reduce worldwide dependence on petroleum and
carbon emissions. In the past a few years, PEVs have received considerable attention as an eco-
friendly and cost-effective alternative to conventional gasoline vehicles. PEVs consume higher
power from the grid during charging compared to conventional residential loads. Therefore,
the emerging fleet of PEVs will introduce a considerable amount of additional load on power
systems. On the other hand, a majority of PEVs are parked for more than 90% of the time,
making them ideal for providing various services through Electric Vehicle Supply Equipment
(EVSE), a.k.a. charging stations which are PEVs’ connection points to the power system.

In this project, coordinated PEV charging methods are developed to provide distribution system
services, considering PEV characteristics, realistic travel pattern, charging behaviors, and EVSE
power rating and availability. The main efforts and contributions are summarized as follows.

• Mobility models and EVSE charging capability/availability are indispensable for evaluating
PEV charging coordination strategies and developing PEV charging control. Many exist-
ing studies utilize simplified mobility models assuming that the entire vehicle fleet returns
home in the evening and is parked at home until the next morning. Some other PEV mod-
els better represent diversified home arrival and departure time, but cannot capture varying
charging flexibility and capability at different locations, and therefore are not appropriate
to study the impacts of public EVSE on PEV load and utilization. In this work, a mobility
and charging flexibility model is proposed to better represent the temporal availability and
varying charging capability from PEV onboard charger and EVSE.

• Based on the mobility model, a generalized optimization method is proposed to evalu-
ate different PEV charging coordination strategies. In the existing literature, different
algorithms and methods need to be designed to evaluate each charging strategy from both
vehicle owners’ and the power system’s perspective. With the optimization method pro-
posed in this work, different charging control strategies can be studied and compared by
only updating objective functions. Moreover, optimization tricks are provided to con-
vert the optimization problems to equivalent linear programming problems, which can be
efficiently solved with existing solvers.

• An innovative scheduling and control framework is proposed to enable smart PEV charging
for grid services while meeting PEV owners’ travel needs. In the proposed framework,
each set of EVSE is equipped with a controller that estimates charging power and energy
flexibility based on vehicle characteristics, EVSE power rating, battery energy state, and
upcoming trip information. With the simplified charging flexibility model received from
each EVSE controller, the central coordinator determines the optimal power allocation for
a look-ahead time window for the given grid services. The proposed charging control can
help reduce the computational complexity and communication requirement compared with
existing methods. It is also scalable to the expanding PEV fleet and robust to uncertainties
in upcoming vehicle trips and future system condition.

• The proposed charging strategy evaluation and smart charging control methods are applied
to one of the prototypical feeders developed by the Pacific Northwest National Laboratory
(PNNL) for case studies. Detailed trip information extracted from the National Household
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Travel Survey (NHTS) is used to represent travel and parking patterns. Different scenarios
are simulated to evaluate the performance of the proposed methods and understand how
PEV mobility and public EVSE availability affect PEV load and potential grid services.

iv



Acronyms and Abbreviations

DMS Distribution Management System
EV Electric Vehicle
EVSE Electric Vehicle Supply Equipment
NHTS National Household Travel Survey
MPC Model Predictive Control
PEV Plug-in Electric Vehicle
PHEV Plug-in Hybrid Electric Vehicle
TOU Time-of-Use

Notation

di(t) average tractive power consumption at wheels of vehicle i at time step t

dbatt
i (t) battery power consumption in driving mode of vehicle i at time step t

ei(t) battery energy state of vehicle i at the end of time step t

emax
i maximum battery energy of vehicle i

emin
i minimum battery energy of vehicle i

Emax
flex,i(t) maximum charging energy flexibility of vehicle i at the end of time step t

Emin
flex,i(t) minimum charging energy flexibility of vehicle i at the end of time step t

hi average tractive energy per mile at wheels of vehicle i

Hw central-coordinator look-ahead time horizon
L(t) total system load at time step t including PEVs
L0(t) system load without PEVs at time t

mi,k distance traveled by vehicle i during trip k

pbatt
i (t) change of battery energy state of vehicle i at time step t in parked mode

pgrid
i (t) power exchange between vehicle i and its EVSE at time step t

pmax
i (t) maximum charging capability of vehicle i at time step t

pmin
i (t) minimum charging (maximum discharging) capability of vehicle i at time step t

pmax
i,l maximum charging capability of vehicle i at location l

pmin
i,l minimum charging capability of vehicle i at location l

Ti,l duration of vehicle i parked at location i

∆edrive
i (t) battery energy used during trips that occur within the next t time steps by vehicle i

∆T time step size
ηb2w

i battery-to-wheel efficiency of vehicle i
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η
g2v
i grid-to-vehicle charge efficiency of vehicle i

η
v2g
i vehicle-to-grid discharge efficiency of vehicle i

Ki,t set of trips that start within the next t time steps by vehicle i

Ti,k set of time steps in trip k by vehicle i

Ti,l set of time steps when vehicle i is parked at location l
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1.0 Introduction

Plug-in electric vehicles (PEVs) refer to either plug-in hybrid electric vehicles (PHEVs)—that
also contain an internal combustion engine—or pure electric vehicles (EVs). These vehicles
are equipped with adequate battery energy storage to travel for several miles using (mostly)
electricity, and are rechargeable from the electric grid. Hence, a portion of petroleum can
be displaced by electricity. PEVs are identified as a key technology for reducing worldwide
dependence on petroleum and carbon emissions [Tanaka et al., 2011]. In the past a few years,
PEVs have received considerable attention as an eco-friendly and cost-effective alternative to
conventional gasoline vehicles. Worldwide PEV sales have increased from 320 thousand in
2014 to 1.04 million in 2017 [InsideEVs, 2017], and the demand is expected to further accel-
erate [Office for Low Emission Vehicles, 2011]. The annual sales of PEVs in the U.S. have
increased from 17.4 thousand in 2011 to 158.6 thousand in 2016 [InsideEVs, 2017]. By Novem-
ber 2017, the cumulative national PEV sales were about 700 thousand [PEV Collaborative, 2017].
In 2017, many automakers announced new PEV models in coming years. For example, Gen-
eral Motors Co. announced it would add 20 new battery electric and fuel cell vehicles to its
global lineup by 2023, while Volkswagen announced it would spend $40 billion on electric cars,
autonomous driving, and new mobility services by the end of 2022 [Davies, 2017]. Volkswa-
gen will roll out 80 new electric cars by 2025, up from a previous goal of 30, and wants to offer
an electric version of each of its 300 group models by 2030 [Cremer, 2017]. Volvo will build
only electric or hybrid-electric cars beginning in 2019, making it the first big auto company to
abandon gas-only cars [Ewing, 2017]. China, India, France, and the United Kingdom all have
announced plans to phase out vehicles powered by combustion engines and fossil fuels between
2030 and 2040.

PEVs consume higher power from the grid during charging compared to conventional residential
loads. The emerging fleet of PEVs will introduce a considerable amount of additional load on
power systems. Many studies have been devoted to estimating PEV load and their potential
negative impacts on power systems, e.g., [Wu et al., 2011b, Weiller, 2011, Shaaban et al., 2013,
Hafez and Bhattacharya, 2016]. In fact, majority of PEVs are parked for more than 90% of the
time [Wu et al., 2011a], making them ideal for providing various services at both transmission
and distribution levels, including ancillary services [Peng et al., 2017], load leveling for dis-
tribution system upgrade deferral and energy cost saving [Garcı́a-Villalobos et al., 2014], and
renewable output smoothing [Dallinger and Wietschel, 2012, Gao et al., 2014]. All these ser-
vices need to be provided through Electric Vehicle Supply Equipment (EVSE), a.k.a. charging
stations which are PEVs’ connection points to the power system. EVSE is available at resi-
dences of most existing PEV users and PEV flexibility can be fully utilized when they are parked
at home. Therefore, existing residential EVSE at home enables most PEVs to provide frequency
regulation service during the night. However, there is much less non-residential EVSE at work,
public parking lots, retail chains, tourist destinations etc., compared to existing PEVs on road.
Existing EVSE is not sufficient to connect all PEVs to the grid and additional EVSE investment
is needed in order to fully utilize the flexibility of PEV charging for grid services.

Although current EVSE locations are placed for consumer utility yet they may coincide with a
utility’s distribution level infrastructure, and major consumer routes/patterns. This dispersion
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of access points, into a utility’s distribution infrastructure, provides access to potentially deliver
grid services. Furthermore, EVSE banks are likely owned by third parties. These access points,
if provided supplemental data about the utility’s constraints, could offer access points for third
parties to provide/sell bulk grid services (including ancillary services such as capacity, balanc-
ing, or firming) and provide distribution level benefits. According to EERE’s Alternative Fuels
Data Center [Office of Energy Efficiency and Renewable Energy, 2017], there are 45.1 thou-
sand charging outlets at 16.5 thousand charging stations in the U.S. capable of connecting only
6.4% of existing PEVs to the grid simultaneously. A summary of the total maximum potential
assuming 6.6 kW unidirectional charging that can be provided by existing EVSEs for providing
frequency regulation is shown in Table. 1. It can be seen that the maximum regulation potential
from the existing EVSE is not enough to meet the frequency regulation requirements.

Table 1. PEV and EVSE number vs regulation requirement in California, Texas, and New York
in 2016

State Number
of PEVs

Number
of

charging
outlets

Typical
regulation
require-

ment
(MW)

Total
regulation
potential

from
PEVs
(MW)

Maximum
regulation
potential

with
existing
EVSEs
(MW)

California 257,937 16,066 600 851 53
Texas 17,031 2,650 450 56 9

New York 20,326 1,741 250 67 6

For example, in California, there are currently 16,066 charging outlets at 4,492 charging stations.
The regulation requirement is around 600 MW in California. The total frequency regulation
potential from 257,937 PEVs with 6.6 kW Level 2 bidirectional chargers is:

851 MW︸ ︷︷ ︸
total reg. potential

= 257,937︸ ︷︷ ︸
Total PEVs

× 3.3kW︸ ︷︷ ︸
reg. capability per PEV

×1 MW/1000 kW︸ ︷︷ ︸
unit conversion

However, the existing EVSEs in California can at most connect 16,066 PEVs to the grid. If all
these EVSE are Level 2 chargers, we can obtain at most 53 MW regulation capacity through
unidirectional charging.

53 MW︸ ︷︷ ︸
total reg. potential

= 16,066︸ ︷︷ ︸
Total EVSE

× 3.3kW︸ ︷︷ ︸
reg. capability per PEV

×1 MW/1000 kW︸ ︷︷ ︸
unit conversion

This is much less than the 600 MW requirement. A significant portion of regulation potential
from PEVs cannot be realized during day time because of a lack of EVSE. Therefore, PEV
mobility and charging flexibility model is required to account for EVSE availability in PEV
impact assessment and charging control development.

This project studies PEV and EVSE utilization for distribution services considering different
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charging strategies and different levels of public EVSE availability. The distribution system used
for evaluation, assumptions on PEV and EVSE configuration, and travel pattern that represents
PEV mobility are described in Chapter 2. A comprehensive mobility and charging flexibility
model is proposed in Chapter 3 to capture impacts of various factors on PEV load control, includ-
ing PEV characteristics and temporal availability, driving energy consumption, and charging
capability of EVSE at different locations. Chapter 4 presents PEV charging strategy evaluation.
An optimization method is developed to evaluate different charging strategies by only updating
the objective function. Optimization tricks are provided to convert the optimization problems
to equivalent linear programming problems. Case study results are offered to provide insights
on the performance of different charging strategies. In Chapter 5, a smart charging framework
is developed for online charging control to provide grid services while meeting PEV owners’
charging demand. The proposed charging framework is illustrated and evaluated using the same
test systems in a few representative scenarios. Finally, concluding remarks and future work are
offered in Chapter 6.
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2.0 Testing System and PEV Fleet

2.1 Distribution system

In this analysis, the electric distribution system is modeled using one of the 24 prototypical
feeders provided by PNNL. These prototypical feeder models contain the fundamental char-
acteristics of radial distribution feeders found in the U.S., based on 575 distribution feeders
from 151 separate substations from different utilities across the nation [Schneider et al., 2008,
Schneider et al., 2009]. GridLAB-D [Pacific Northwest National Laboratory, 2018] is used as
a simulation platform. The PNNL feeder named R1-12.47-4 (feeder No. 4 with 12.47 kV pri-
mary distribution voltage in climate region 1 (West Coast) is selected for evaluation. This feeder
represents a distribution system in a heavy suburban area, where PEVs are expected to concen-
trate. Since California accounts for about 45% of cumulative national PEV sales through 2017
[PEV Collaborative, 2017], San Francisco weather is used so that the feeder exhibits the main
characteristics of distribution systems in northern California. This feeder serves 793 end-user
loads, which include 652 residential houses and 141 commercial buildings.

2.2 Number of PEVs

In this analysis, the number of vehicles associated with each residential house is determined
based on the probability mass function (PMF) of a number of vehicles for a random household in
the U.S. is obtained from [U.S. Dept. of Transportation, 2010], as shown in Table 2. The number
of vehicles associated with each commercial building can then be estimated based on the building
type and floor area and/or electric energy consumption. PEV penetration level is assumed to be
30%.

Table 2. Vehicles per Household

Veh/HH 0 1 2 3 4 5 ≥ 6

Prob. 0.087 0.323 0.363 0.144 0.053 0.019 0.01

2.3 PEV configuration and EVSE

The electric driving range heavily depends on particular PEV models. In this study, it is
assumed that the range follows a normal distribution with a mean of 80 miles and a standard
deviation of 20 miles. A PEV’s charging/discharging power limits depends on charging rates
of EVSE at the parked location and the vehicle’s onboard charger. PEV charging infrastructure
standards and classifications are reviewed in [Rubino et al., 2017]. For residential EVSE, it can
be a conventional outlet at 120 V/12 A, 16 A, or a separate circuit at 240 V with a higher current
rating. For nonresidential EVSE, level 1, level 2, and fast DC charging are available, and level
2 dominates the EVSE infrastructure in the U.S. Popular onboard charger rates are 1.4 kW and
1.9 kW for level 1 and 3.3 kW and 6.6 kW for level 2, depending on the PEV model and battery
size. In this analysis, for PEVs with an electric range of fewer than 40 miles, both the onboard
charger and residential EVSE ratings are 1.9 kW. For PEVs with a larger electric range, both an
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onboard charger and residential EVSE ratings are 6.6 kW. Two scenarios of EVSE infrastructure
availability are considered:

• Scenario 1: EVSE only at home;

• Scenario 2: EVSE everywhere (with 6.6 kW public EVSE).

The reality is most likely to be between these two extremes.

2.4 Travel pattern and mobility

Statistical information on driving energy consumption, arrival and departure times, and charging
durations of the PEV fleet is important in the analysis of PEV load estimation and charging coor-
dination. Such data can be obtained by monitoring the actual composition, travel pattern, and
energy consumption of the fleet as the penetration of PEVs increases in the future. In this work,
the 2009 National Household Travel Survey (NHTS) database [U.S. Dept. of Transportation, 2010]
is used in conjunction with certain assumptions about EVSE locational availability and charging
power capability to generate synthetic data. The survey collects information on the travel behav-
ior of a national representative sample of U.S. households, such as mode of transportation, trip
origin and purpose, and trip distance. The 2009 NHTS consists of 150,147 households and
294,408 light-duty vehicles (including car, van, SUV, and pickup truck). An example of vehicle
travel information is shown in Table 3.

Table 3. NHTS Data Sample

Vehicle Type Origin Start time Destination End time Trip miles
Home 07:35 Work 07:50 6

Veh1 SUV Work 17:30 Home 17:45 6
Home 07:25 Work 07:54 17
Work 15:45 Home 16:15 17
Home 17:35 Library 18:05 12Veh2 Car

Library 19:00 Home 19:25 12
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3.0 PEV Mobility and Charging Availability Model

The key characteristics that differentiate PEVs from static battery storage and other loads are
their temporal availability and varying charging capabilities at different locations. PEV charging
and discharging availability depend on whether the vehicle is parked and whether EVSE is
available at the parking location. The charging/discharging levels depend on both the onboard
charger and EVSE power ratings. Many existing studies utilize simplified mobility models
assuming that the entire vehicle fleet returns home in the evening and is parked at home until
the next morning, such as [Clement-Nyns et al., 2010] and [Wu et al., 2012]. However, many
personal vehicles are away from home from late morning to early afternoon. Some vehicle trips
take place from evening to midnight as well. In addition, the home-arriving time of a vehicle
fleet is distributed throughout a day and there is no parking-at-home period for the entire fleet.
The percentage of traveled vehicles parked at home and away from home in urban areas on an
average weekday is shown in Figure 1. Some other PEV models better represent diversified
home arrival and departure time, e.g. [Weiller, 2011] and [Shaaban et al., 2013], but cannot
capture varying charging flexibility and capability at different locations, and therefore are not
appropriate to study the impacts of public EVSE on PEV load and utilization. To overcome
these shortcomings, a PEV mobility and charging flexibility model is proposed as follows.

0

0.5

1
Parked at home

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of day

0

0.2

0.4

0.6
Parked away from home

Figure 1. Percentage of vehicles in urban areas parked at different locations during weekdays

• In driving mode, the power consumption of vehicle i can be estimated as

di(t) =

{himi,k
Ti,k

, if t ∈ Ti,k ,

0 , Otherwise,
(1)
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where hi is the average tractive energy at wheels provided by battery and motor(a), mi,k
is the miles traveled by vehicle i during trip k, Ti,k is the duration of trip k by vehicle i,
and Ti,k is the set of time periods in trip k by vehicle i. The power consumption from the
battery of vehicle i can be estimated as

dbatt
i (t) =

{ di(t)
ηb2w

i
, if ei(t)> 0,

0 , if ei(t) = 0,
(2)

where ηb2w
i is the ratio of energy from the battery over tractive energy at wheels, and

ei(t) is the usable energy left in the battery of vehicle i at the beginning of period t. In
this analysis, it is assumed that all the tractive energy comes from the battery in charge-
depleting mode. Therefore, this ratio is the same as battery-to-wheel efficiency, which is
assumed to be 0.73 based on the estimation in [Wu et al., 2011a], considering losses from
battery discharging, power electronics, traction motor, mechanical transmission, etc. After
all usable energy in the battery is exhausted, i.e., ei(t) = 0, the operation of the PEV enters
charge-sustaining mode, with all tractive energy derived from the fuel.

• In parking mode, the energy change rate of battery in vehicle i can be expressed as

pbatt
i (t) =

{
pgrid

i (t)/ηv2g , if pgrid
i (t)< 0 (disch.) ,

pgrid
i (t)ηg2v , if pgrid

i (t)≥ 0 (ch.) ,
(3)

where pgrid
i (t) is the power exchange between vehicle and EVSE, ηv2g is the vehicle-

to-grid discharging efficiency, and ηg2v is the grid-to-vehicle charging efficiency. Both
efficiencies are assumed to be 0.9 considering losses from the battery, charger, and power
electronics. The limits of pgrid

i (t) are given in (4).

−pmin
i (t)≤ pgrid

i (t)≤ pmax
i (t) , (4)

where

pmax
i (t) =

{
pmax

i,l if t ∈ Ti,l ,
0 , Otherwise

(5)

pmin
i (t) =

{
pmin

i,l if t ∈ Ti,l ,
0 , Otherwise

(6)

where pmax
i,l and pmin

i,l are the maximum discharging and charging power, respectively,
which depend on both vehicle onboard charger rating and EVSE availability and power
rating at the parking location, and Ti,l is the set of time periods when vehicle i is parked at
location l.

(a) In this study, the average tractive energy for different vehicle classes is 0.21 kWh/mile for
cars, 0.33 kWh/mile for vans, 0.37 kWh/mile for SUVs, and 0.40 kWh/mile for pickup
trucks.
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• The dynamics of the battery energy state can be expressed as

ei(t) = ei(t−1)−dbatt
i (t)∆T + pbatt

i (t)∆T (7)

where ei(t) is the battery energy state of vehicle i at the end of time period t, and ∆t is time
step size. Please note that dbatt

i (t) and pbatt
i (t) cannot be non-zero at the same time. The

energy state needs to satisfy the constraint in (8).

emin
i (t)≤ ei(t)≤ emax

i , (8)

where emax
i is the maximum usable energy stored in the battery, which depends on the

vehicle’s charge-depleting range, driving energy per mile, and a fraction of driving energy
from battery in charge-depleting mode. The lower bound emin

i is typically set at zero,
but could be nonzero to reflect specific requirements from PEV owners for charging. In
addition, for charging control and PEV load estimation, constraints on battery energy state
at the end of scheduling horizon is needed, as shown in (9).

ei(T )≥ ereq . (9)
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4.0 PEV Charging Strategy Evaluation

The expanding fleet of PEVs will introduce a considerable amount of load onto the power
grid [Wu et al., 2011a, Fernandez et al., 2011]. Utilities face a growing challenge in deter-
mining charging behaviors of PEV customers regarding time, amount, and location of charging.
Under the U.S. Department of Energy’s Smart Grid Investment Grant program, six utilities eval-
uated operations and customer charging behaviors for in-home and public PEV charging stations
with time-based charging rates, providing essential insights into peak-period charging habits of
customers [U.S. Department of Energy, 2014]. Among other findings, the report concludes that
the customers were aware and took advantage of time-based charging rates, and convenience in
prescheduling charging sessions for off-peak periods was acknowledged. The willingness of
customers to keep track of or participate in grid-favorable schemes opens up many more avenues
for grid operators to use the flexibility in PEV charging, and provides an excellent opportunity for
grid services. Different charging strategies are reviewed in [Mukherjee and Gupta, 2015], such
as uncontrolled charging, energy cost minimization, and load leveling (cut the peak and fill the
valley). Uncontrolled charging and time-of-use (TOU) charging (a special case of energy cost
minimization) are today’s practices for most PEVs. Coordinated charging for load leveling and
renewable power smoothing can help to adopt high-penetration of PEVs into existing distribution
systems, and even provide services such as distribution upgrade deferral, congestion mitigation,
voltage management. These more advanced charging coordination are expected to be deployed
in the near future. In the existing literature, PEV load estimation and scheduling methods vary
with charging strategies. Significant efforts are required to develop a new method to evaluate
any new control strategies and run comparisons with existing ones. This chapter proposes to
estimate PEV load from different charging strategies by formulating and solving the same opti-
mization problems only with different objective functions. Herein, the optimization problems
for uncontrolled charging, TOU charging, and load leveling are presented as examples in Chap-
ter 4.1. In Chapter 4.2, optimization tricks are provided in to convert the optimization problems
to equivalent linear programming problems. Evaluation results for the test system are presented
in Chapter 4.3.

4.1 Charging Strategy Evaluation Method

4.1.1 Uncontrolled charging

Uncontrolled charging represents a scenario where PEV charging energy is charged at a flat
residential rate. It is assumed that PEV owners immediately plug their vehicles into EVSEs for
charging as vehicles are parked, and no delayed charging is desired. PEVs are being charged
until they are fully charged or unplugged for travel. No discharging is enabled. This is today’s
practice for the majority of PEVs. In order to represent uncontrolled charging behavior, the
objective in (10) is formulated.

P1 : min
ei(t),dbatt

i (t),pgrid
i (t),pbatt

i (t)
∑
t

∑
i
(t−T )ei(t) (10)

4.1



The constraints include (2)–(4) and (7)–(9), where di(t), pmin(t), and pmax(t) are input parame-
ters and are calculated according to (1), (6), and (5), respectively. With the objective function in
(10), for every t, starting charging immediately results in the largest feasible ei(t), and therefore
minimizes the objective function. The obtained optimal solution represents the PEV load with
uncontrolled charging.

4.1.2 Energy cost minimization

In this charging strategy, PEVs charging is scheduled to minimize total charging cost based on
time-varying electric energy prices. Time-of-use rate is a special case of energy cost mini-
mization, where the energy price λ(t) is the same for all t within on-peak, mid-peak, or off-peak
period. In this case, there are many optimal solutions with the same energy cost. The objective
function in (11) is formulated to minimize the total charging energy cost.

P2 : min
ei(t),dbatt

i (t),pgrid
i (t),pbatt

i (t)
∑
t

∑
i

λ(t)pgrid
i (t) (11)

The constraints are (2)–(4) and (7)–(9), where λ(t) is the energy price for period t. In order to
capture the charging behaviors in real-world, the second component ε[(t−T )ei(t)] is added into
objective function to reflect PEV owner’ preference of early charging when the energy cost is the
same, where ε is a very small positive number (e.g., 10−5) so that the added term is small enough
compared with the original objective function.

4.1.3 Load leveling

In this charging control strategy, PEV charging is coordinated so that the peak of the system load
is minimized and the valley is filled evenly with PEV load, Such a strategy can help to not only
reduce the charging cost of PEVs, but also to effectively reduce the annual peak load, and thereby
defer distribution system upgrades. The objective function in (12) is formulated to represent this
strategy.

P3 : min
ei(t),dbatt

i (t),pgrid
i (t),pbatt

i (t)

[
max

t
L(t)−min

t
L(t)

]
(12)

where
L(t) = L0(t)+∑

i
pgrid

i (t) , (13)

and L0(t) is the system load without PEVs. The constraints are (2)–(4) and (7)–(9).

4.2 Equivalent Linear Programming Problems

All the objective functions and constraints in P1–P3 are linear except the conditional expression
in (2) and (3), and max and min operators in (12). Optimization tricks can be applied to convert
P1–P3 into linear programming problems, which are described as follows.

• The constraint in (2) simply means that electric energy stored in the battery is used for
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vehicle driving before the battery is exhausted. An alternative way to represent is to set

dbatt
i (t)≤ di(t) (14)

and add −M ∑t ∑i dbatt
i (t) in to objective functions, where M is a sufficiently large positive

number. Because of constraint (8), the optimal solution always lead to dbatt
i (t) = di(t)

when ei(t) is positive.

• Equivalent linear constraints of (3) are provided in [Wu et al., 2015].

pgrid
i (t) = pg2v

i (t)− pv2g
i (t) (15)

pbatt
i (t) = pg2v

i (t)ηg2v− pv2g
i (t)/η

v2g (16)

pv2g
i (t) , pg2v

i (t)≥ 0 (17)

pv2g
i (t)pg2v

i (t) = 0 (18)

It has been shown in [Hao et al., 2018] that constraint (18) is unnecessary for the objective
function in (11). This is also true for the objective function in (10), but not (12), because
“wasting energy” (pv2g

i (t)pg2v
i (t) 6= 0) may help to raise the valley during off-peak hours

and increase mint L(t). Therefore, the objective function is modified as

min

[
max

t
L(t)− ε1 min

t
L(t)+ ε2 ∑

t
∑

i
pgrid

i (t)

]
(19)

where ε1 and ε2 are small positive numbers, and ε2 is sufficiently small compared with the
first term but sufficiently large compared with ε1.

• The maxt L(t) and mint L(t) operators can be replaced by Lmax and Lmin, respectively, and
add the following constraints

Lmax ≥ L(t), for t = 1,2,3 . . . (20)

Lmin ≤ L(t), for t = 1,2,3 . . . (21)

The resulted equivalent linear programing problems are summarized as follows:

• Uncontrolled charging:

P′1 : min
x ∑

t
∑

i
[(t−T )ei(t)−M∑

t
∑

i
dbatt

i (t)] (22)
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subject to constraints (14)–(17), (4), and (7)–(9), where

x = [ei(t),dbatt
i (t), pgrid

i (t), pbatt
i (t), pg2v

i (t), pv2g
i (t)].

• TOU charging:

P′2 : min
x ∑

t
∑

i
{λ(t)pgrid

i (t)+ ε[(t−T )ei(t)]−M∑
t

∑
i

dbatt
i (t)} (23)

subject to the same constraints and with the same decision variables as P′1.

• Load leveling:

P′3 : min
x
{Lmax− ε1Lmin + ε2 ∑

t
∑

i
pgrid

i (t)−M∑
t

∑
i

dbatt
i (t)} (24)

with (20) and (21) added to the constraints, and Lmax and Lmin added to the decision vari-
ables in P′1.

4.3 Charging Strategy Evaluation Results

Different charging strategies are evaluated using the proposed method for the test system
described in Chapter 2 for representative average and peak summer days. For charging scenarios
are considered:

SC1: uncontrolled unidirectional charging at home,

SC2: time-of-use unidirectional charging at home,

SC3: optimal coordinated bidirectional charging at home,

SC4: optimal coordinated bidirectional charging at all locations.

The feeder loading for different charging strategies for a peak summer day is plotted in Figure. 2,
while the minimum voltage within the feeder is plotted in Figure 3, where

Some key observations and explanations are provided below:

• Uncontrolled charging increases system load but not significantly, because the vehicles’
arrival time and charging start time are naturally distributed throughout a day. Neverthe-
less, the increased peak load cannot be ignored as PEV penetration, electric ranges and
charging power increase.

• TOU charging causes a spike during off-peak hours because of charging synchronization
around the beginning of reduced rate period. This kind of undesirable synchronization has
been observed in some distribution systems in California. This strategy is only effective
when PEV penetration is very low.

• Optimal coordinated charging can help to avoid increasing peak load, and can even reduce
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Figure 2. Feeder loading level
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Figure 3. Minimum voltage within the feeder

peak with vehicle-to-grid (V2G) enabled PEVs. PEVs and EVSE with bidirectional charg-
ing capability can be used for load shifting when vehicles are not in use. This strategy
can be leveraged to reduce energy cost or to absorb excessive renewable generation. More
importantly, it can effectively reduce the annual peak load, and therefore avoid or defer dis-
tribution system upgrades. For example, the prototypical feeder has a daily peak around
3 MW except for a few hot summer days with peak load around 4.5 MW. Coordinated
charging by using V2G capability can lower the peak by 1 MW.

• With V2G enabled home EVSE, an additional reduction in peak load from public EVSE
is not significant. Therefore, other utilizations are important in making public EVSE
economically viable.
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• The ANSI standard C84.1 requires that the service voltage remains within five percent
from the nominal value (114–126 V) at the customer level. Low-voltage violations are
detected for uncontrolled and TOU charging scenarios, as can be seen in Figure 3. Reac-
tive compensation needs to be modified in order to meet the voltage requirement in these
two scenarios.

• Vehicle miles powered by electricity increase by 5% due to the availability of public EVSE
in this analysis. This is another advantage of public EVSE, and the percentage could
increase for a PEV fleet with smaller electric ranges.

The feeder losses and efficiency(a) are plotted in Figure 4 and Figure 5, respectively. Current
magnitude in a feeder is proportional to system loading, and therefore adding PEV load tends
to increase losses. Optimal charging shifts PEV charging to hours with low loading level, and
help reduce losses in this case. Optimal charging decreases loss-to-energy ratio, and there-
fore increases efficiency. Uncontrolled and TOU increase loss-to-energy ratio, and therefore
decreases efficiency.

Figure 4. Feeder losses (MWh)

(a) Efficiency is defined as the ratio of total energy-loss over total energy.
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Figure 5. Feeder efficiency
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5.0 PEV Charging Control Framework

A few charging coordination strategies are presented in the previous chapter. Some charging
strategies can be realized through simple price-based charging control, which is though helpful in
PEV load management at a mild penetration level, could cause an even bigger peak at night with
a large number of PEVs. The development of advanced PEV charging coordination strategies
that can adapt to changing system conditions and types of services with the least inconvenience
to customers has been the subject of considerable study of late. In [Clement-Nyns et al., 2010],
quadratic programming and dynamic programming techniques are used for charging coordina-
tion to minimize power losses in distribution systems. A priority-based method is proposed in
[Wu et al., 2012] for PEV aggregators to schedule and dispatch charging load for energy cost
minimization. Auction mechanisms are proposed in [Bhattacharya et al., 2014] to achieve effi-
cient allocation of charging energy to PEVs. Based on scenarios of stochastic PEV connection
to grid, an event-triggered scheduling scheme is proposed for load flattening in [Jian et al., 2015].
Fuzzy control and quadratic programming are used to determine optimal charging that minimizes
both load variance and charging costs with weight factors in [Garcı́a-Villalobos et al., 2016]. In
[Ke et al., 2019], a real-time greedy-index dispatching policy is developed to control PEVs for
providing frequency regulation service. While these methods can effectively solve the formu-
lated charging coordination problems, the assumptions are oversimplified and many practical
constraints are not considered. For example, many studies use simplified mobility models,
assuming that the entire vehicle fleet returns home in the evening and is parked at home until
the next morning. As a result, the proposed methods and algorithms may not be useful in prac-
tice. Furthermore, most of the existing studies are based on centralized control approaches,
in which the modeling objective and constraints at the system level are straight forward. The
obtained coordinated charging has definite advantages over the local charging strategy, as shown
in [Mets et al., 2010] for load flattening. Nevertheless, centralized control approaches require
a single control center to gather information on PEV configuration, charger power rating, bat-
tery energy state and preferred operating range, and upcoming trips for potentially thousands of
vehicles and incorporate complicated mobility and charging availability models into the coor-
dination problem. Such a centralized control strategy is often subject to several disadvantages,
such as high requirement and cost in communication, substantial computational burden, and
limited flexibility and scalability. Far less work has been done towards effective decentralized
methods for grid services. In [He et al., 2012], a locally optimal scheduling scheme is developed
for charging cost minimization with a performance close to a centralized scheduling method.
In [Ma et al., 2013], a decentralized charging control is developed using concepts from non-
cooperative games to achieve valley filling, assuming PEVs are weakly coupled via a common
electricity price. In [Zeraati et al., 2019], consensus-based algorithms are proposed to effec-
tively utilize PEV storage capacity for voltage management. Unlike centralized charging control
methods, it is extremely challenging to adapt or modify existing distributed charging algorithms
for problems with modified/additional objectives and constraints. In addition, these distributed
control methods rely heavily on iterative algorithms that require speedy communication or fail
to generate charging control signals within the required time. Moreover, communication net-
work effects such as time delays and packet drops could fail distributed algorithms from practical
applications [Yang et al., 2015]. To address these challenges, hierarchical charging has been
proposed. In [Qi et al., 2014], the authors show that a hierarchical control structure has clear
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advantages over a completely centralized or decentralized control regarding computation and
communication. The authors of [Xu et al., 2016] present a three-level hierarchical framework
consisting of provincial, municipal, and charging station levels to facilitate PEV charging coor-
dination in China. In [Luo et al., 2018], a three-level scheme is proposed to utilize PEV to
hedge against wind-induced unit ramp cycling operation, where decentralized charging con-
trol is implemented at the bottom level. In these hierarchical charging systems, aggregators as
intermediate layers are introduced to serve between a central coordinator at the transmission or
sub-transmission level and individual PEVs. The charging scheduling and control at the bottom
level are still either centralized or distributed, requiring aggregators to gather information on
vehicles, charging equipment, and vehicle trips for a large number of vehicles and incorporate
complicated mobility and charging availability models into the scheduling problem, significantly
increasing computational and communication cost.

Inspired by [Radhakrishnan et al., 2016], this paper proposes a simple, but powerful, smart
charging method, in which each vehicle reports charging requirements for its travel needs and
discharging availability for supporting grid operations through the charging infrastructure known
as electric vehicle supply equipment (EVSE). PEVs and EVSE are not aware of operating con-
ditions and needs of the electric power systems. Each set of EVSE includes a local controller
that gathers information on PEV configuration, EVSE power rating, battery energy state, and
upcoming trips, to estimate its charging/discharging flexibility for a look-ahead time window,
which is then sent to a central coordinator, either a PEV aggregator or distribution system opera-
tor. Based on the updated PEV flexibility and system information, the central coordinator then
optimally coordinates PEV charging to support and improve distribution system operation or
provide transmission level services while meeting PEV owners’ travel needs. In this way, the
central coordinator is relieved from having to take in detailed PEV mobility models. The pro-
cess repeats in a model predictive control (MPC) fashion and can adapt to any updates on PEV
owners’ travel needs and power system conditions. Because the central coordination only needs
to act when there are updates on charging demand from PEV customers, the communication
and computation requirements are reduced. Please note that the proposed control framework is
not a hierarchical system with layers representing PEV aggregation. It is a hierarchical control
because the proposed EVSE controller forms an additional control layer. The main contributions
of the proposed charging control framework are highlighted as follows.

• We develop a novel and scalable framework for PEV charging control to not only meet
PEV owners’ travel needs, but also to provide grid services. The proposed framework
is based on a hierarchical control structure which has clear advantages over a completely
centralized or decentralized control for PEV charging control regarding computation and
communication. The use of MPC for scheduling services provides a superior control
capable of accounting for various uncertainties.

• We propose a model to characterize PEV charging flexibility locally, taking into account
various factors, including PEV and EVSE configuration parameters and travel needs. The
proposed model is simple but is equivalent to the comprehensive mobility and charging
availability model for charging control.

• The proposed hierarchical charging control framework enables a service model that makes
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it convenient for PEV owners to participate in smart-grid services. The customer only
needs to key-in energy needs and the associated deadline when a PEV is plugged in and
does not need to keep track of time-based rates for reducing charging cost.

5.1 Smart Charging Control Framework

The charging coordination problem presented in the previous chapter, if directly solved, would
require information on detailed trip information, battery characteristics, vehicle characteristics,
and customer demand to be collected at a central authority, which is very challenging in practice.
To overcome this, a novel smart charging architecture is proposed, as illustrated in Figure 6. In
the proposed charging control architecture, a local controller residing at each EVSE starts up
when a PEV is plugged in. The customer then has the option to enter how many miles’ worth of
charge they require or demand a percentage of energy state required by a particular time. The
information is collected and processed to calculate a set of four parameters that are indicative of
the charging flexibility and demands of each vehicle. The central coordinator receives the data
from all EVSE and solves an optimal charging coordination problem. This paper considers load
leveling. The following subsections will describe the charging control procedures, information
flow, and computations involved in the proposed smart charging method.

5.1.1 EVSE Controller

In the proposed method, the charging flexibility of PEV i is characterized by its maximum and
minimum charging power and energy limits for a predefined time slot Hw based on vehicle
characteristics (e.g., vehicle weight and electric range), EVSE power rating, battery energy
state, and upcoming trip information. Trading-off required charging energy for additional grid
services is beyond the scope of this paper. Therefore, the customers’ charging requirements
should be satisfied at all times. The following calculations capture the upward and downward
flexibility of each PEV regarding its bidirectional power flow capability and energy demands, in
order to avoid sending all vehicle parameters and the comprehensive mobility model as described
in (1)–(9) to the central coordinator.

• Power flexibility
The maximum and minimum charging power flexibility depend on a PEV’s onboard
charger rating, whether the vehicle is parked, and the availability and power rating of
EVSE at the parked location. The maximum charging power flexibility is simply pmax

i (t),
which can be calculated using (5). Similarly, the minimum charging power flexibility
pmin

i (t) can be calculated using (6).

• Energy flexibility
The cumulative charging energy supplied to each vehicle needs to take into account driving
energy demand and battery capacity. The maximum charging energy for PEV i during the
next t time steps depends on the initial energy stored in the battery ei(0), the battery energy
capacity emax

i , the grid-to-vehicle charging efficiency η
g2v
i , and the energy discharged from
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Figure 6. Smart charging architecture.

the battery during trips that occurs within the next t time steps ∆edrive
i (t).

Emax
flex,i(t) = emax

i − ei(0)+∆edrive
i (t) , (25)

where t = 1, · · · , Hw. Similarly, the minimum charging energy for PEV i during the next t
time steps can be calculated as

Emin
flex,i(t) = emin

i − ei(0)+∆edrive
i (t) . (26)

Note that when the right-hand side in (26) is positive, i.e.,

∆edrive
i (t)> ei(0)− emin

i , (27)

it means the remaining energy in the battery at the current time step, ei(0), is insufficient
for the next t time steps. On the other hand, when the right-hand side in (26) is negative, it
means there is more than enough energy in the battery for vehicle trips and the vehicle can
be discharged to support grid operation. The energy discharged from the battery during
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trips that occur within the next t time steps can be expressed as

∆edrive
i (t) = ∑

k∈Ki,t

ei,k (28)

where ei,k is the energy consumption from the battery by vehicle i during trip k, and Ki,t is
the set of trips that start within the next t time steps by vehicle i. Note that ei,k depends on
not only the miles vehicle i travels in trip k, but also the initial battery energy state and the
time available for charging within the next t time steps, as expressed in (29).

ei,k = min
(

himi,k/η
b2w
i ,Ei(tstart

i,k )
)

(29)

where himi,k/ηb2w is the required energy consumption from the battery by vehicle i during
trip k, and Ei(tstart

i,k ) is the maximum energy that can be stored in the battery of vehicle i at
the starting time of trip k. Ei(tstart

i,k ) should be less than the battery energy capacity emax
i .

It should be also less than the battery energy at tstart
i,k if vehicle i would be charged at the

maximum rate for the entire parked period between two trips, i.e.,

Ei(tstart
i,k ) = min

(
emax

i , ei(tend
i,k−1)+η

g2v
i pmax

i,l Ti,l

)
(30)

where ei(tend
i,k−1) is the energy left in the battery at the end of trip k− 1, pmax

i,l is the maxi-
mum charging rate at location l where vehicle i is parked between trips k−1 and k, and Ti,l
is the parked duration.

The input, output, and flexibility characterizing procedures at the EVSE controller are summa-
rized in Algorithm 1, which is an event-driven algorithm.

Algorithm 1 EVSE controller: characterizing flexibility

Input: hi, emax
i , ηb2w

i , η
g2v
i , pmax

i,l , and pmin
i,l (PEV and EVSE parameters) read by EVSE con-

troller, emin
i , mi,k, and tstart

i,k (input from PEV owners), and a predefined Hw

Output: pmax
i (t), pmin

i (t), Emax
flex,i(t), Emin

flex,i(t)
1: Initialization: ei(0)← energy state at current time step
2: Calculate pmax

i (t) using (5) and pmin
i (t) using (6)

3: Calculate ∆edrive
i (t) based on (28)–(30)

4: Calculate Emax
flex,i(t) using (25) and Emin

flex,i(t) using (26)
5: return pmax

i (t), pmin
i (t), Emax

flex,i(t), Emin
flex,i(t)

6: loop
7: if updates in PEV energy demands then
8: Repeat 1-5
9: end if

10: end loop
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5.1.2 Central Coordinator

The central coordinator receives the power and energy flexibility information from EVSE con-
trollers and determines the optimal allocation of electric power based on operating conditions
and needs of the power system. These flexibility bounds are used to construct constraints in the
optimal power allocation problem periodically solved by the central coordinator. The objective
could be load leveling, peak load shaving, energy cost minimization, voltage management, or
any other applications that support grid operation. The decision variables are the individual
PEV charging/discharging power level from the grid pgrid

i (t). There is no need for the central
coordinator to receive and consider the comprehensive mobility model and many PEV and EVSE
parameters, which significantly reduces computation and communication requirements.

The charging coordination problem for load leveling is formulated in (31).

min
pgrid

i (t),L(t)
[maxL(t)−minL(t)] (31a)

s.t.:
L(t) = L0(t)+∑

i
pgrid

i (t) (31b)

pmin
i (t)≤ pgrid

i (t)≤ pmax
i (t) , ∀i (31c)

Emin
flex,i(t)≤

t

∑
τ=1

η(τ)pgrid
i (τ)∆T ≤ Emax

flex,i(t) , ∀i (31d)

∀t = 1, · · · ,Hw, where η(τ) is η
g2v
i when pgrid

i (τ)≥ 0, and 1/η
g2v
i when pgrid

i (τ)≤ 0. Constraints
(31c) and (31d) capture the flexibility bounds sent by each EVSE controller. This problem can
be readily converted to a standard linear programming problem [Wu et al., 2018] and solved
efficiently with existing solvers. The optimization is performed by a central coordinator in a
MPC manner. At each time step, the solution pgrid

i (t) for the next step is sent back to each EVSE
for it to follow.

5.2 Smart Charging Control Evaluation Results

This subsection evaluates the proposed smart charging control method using the setup presented
in the previous subsection. For comparison, a base case is first studied to represent today’s
uncontrolled charging practice, in which PEVs are charged whenever they are plugged in until
they are fully charged or unplugged for travel. Uncontrolled charging is used as the basis for
evaluating the proposed method including the following cases.

• Uncontrolled charging

• Smart charging with knowledge of all trips during the day

• Smart charging with knowledge of imminent trips only

• Smart charging with varying scheduling window sizes
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In all the smart charging scenario, the step size is 10 minutes. The charging flexibility updates
at each EVSE and central coordination occur every 30 minutes with different look-ahead time
windows.

5.2.1 Uncontrolled charging

In the uncontrolled charging case, PEVs are charged whenever they are plugged in until they are
fully charged or unplugged for travel. No discharging is enabled. The non-PEV load together
with the total system load including PEV load for both EVSE infrastructure scenarios is plot-
ted in Figure 7 for a typical summer peak day. As can be seen, most charging occurs during
peak hours, resulting in high charging cost. The system peak demand increases by 6.50% in the
“EVSE only at home” scenario and 6.90% in the “EVSE everywhere” scenario. This may entail
investment in upgrading the distribution system to maintain reliable operation. The difference
between the peak demand (maximum load) and base load (minimum load) is increased by 7.97%
for the “EVSE only at home” scenario and 8.40% for the “EVSE everywhere” scenario. Addi-
tional public EVSE helps to shift driving energy derived from conventional fuel to electricity
for PEVs with small batteries compared with their travel needs. Charging at public EVSE also
raises the peak demand slightly but does not affect the magnitude of base load.
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Figure 7. System load from uncontrolled charging

5.2.2 Perfect knowledge

In this case, each PEV owner predicts its trips for the entire operating day and abides by their
predictions. The prediction horizon for the EVSE controller and the time window for the central
scheduler (Hw) are both 24 hours. Using the smart charging method presented in Chapter 5.1,
optimal charging coordination is simulated for the two EVSE scenarios. The results are plotted
in Figure 8.
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Figure 8. System load from smart charging with perfect knowledge

Compared with uncontrolled charging, smart charging takes advantage of charging flexibility and
delays a significant amount of charging to off-peak hours. In addition, with the V2G capability,
vehicles that are not in use for travel can be discharged during peak hours to shift some non-PEV
load to off-peak hours. The proposed smart charging can be used to reduce energy cost or to
absorb excess renewable generation. More importantly, it can effectively reduce the annual peak
load, and thereby avoid or defer distribution system upgrades. For example, the prototypical
feeder has a daily peak around 3 MW except for a few hot summer days with peak load around
4.5 MW. Uncontrolled charging increases the peak by about 300 kW, while smart charging by
using V2G capability only at home lowers the peak by 700 kW. Smart charging with public
EVSE further reduces system peak load by another 300 kW. The peak demand is reduced by
15.15% for the “EVSE only at home” scenario and 21.15% for the “EVSE everywhere” scenario
compared with the non-PEV load. In other scenarios, the loading level during off-peak hours
is effectively raised. The difference between the peak demand and base load is reduced by
44.37% for the “EVSE only at home” scenario and 57.79% for the “EVSE everywhere” scenario
compared with the non-PEV load. Compared with uncontrolled charging, public EVSE has
much greater impacts on system loading in smart charging.

The total driving versus charging power from the entire PEV fleet are plotted in Figure 9, and
cumulative driving versus charging energy are plotted in Figure 10. As can be seen from Fig-
ure 9, majority of PEV driving occurs from 7 am to 8 pm. Therefore, cumulative driving energy
in Figure 10 increases during this period. With smart charging control, most PEV charging
occurs between 11 pm and 8 am, and hence cumulative charging energy in Figure 10 increases;
most discharging occurs between 11 am and 7 am, and hence cumulative charging energy in
Figure 10 decreases. The total charging energy meets the driving needs over the entire day.
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Figure 9. Driving power vs. charging power
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Figure 10. Cumulative driving energy vs. cumulative charging energy

5.2.3 Imminent knowledge

In practice, customers cannot be expected to report their entire day’s travel activity and energy
needs and adhere to it precisely. It is more reasonable to assume that each customer only reports
the trip information or charging needs for the very next trip. The flexibility beyond the next trip
is assumed to be zero when making charging control decision. We have repeated the simulation
using the proposed smart charging where the charging flexibility is characterized based on only
the very next trip information for both EVSE scenarios. The updated results are plotted in

5.9



Figure 11. In perfect knowledge case, most PEVs can be discharged during peak hours and are
expected to be charged later. In this case, with charging flexibility information only from current
time step to the departure time of next trip, many PEVs are not discharged during peak hours
in order to meet required charging energy within limited parking period. Without discharging
operation during peak hours, the capability of PEV fleet to raise load during off-peak hours also
decreases. Therefore, the system peak demand is much increased compared with the perfect
knowledge case. Nevertheless, compared with the non-PEV load, the peak demand is still
reduced by 5.93% in the “EVSE only at home” scenario and 7.21% in the “EVSE everywhere”
scenario. The difference between the peak demand and base load is reduced by 21.24% for the
“EVSE only at home” scenario and 21.79% for the “EVSE everywhere” scenario compared with
the non-PEV load. This is still very impressive and is indicative of the benefits of including
PEV charging flexibility in grid operations even with limited knowledge of future charging
demands. The peak demand together with the difference between peak demand and base load
are summarized in Table 4.
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Figure 11. System load from smart charging with imminent knowledge

5.2.4 Smart charging with varying look-ahead window

The choice of the look-ahead window size Hw, which represents how far into the future the
charging coordination is performed, affects the performance of the proposed smart charging
method. Smart charging of PEVs has been simulated for both EVSE infrastructure scenarios
with varying values of Hw as the MPC look-ahead window for an entire day for the “EVSE only
at home” scenario. The peak demand reduction percentage is plotted in Figure 12, and the
reduction percentage of the difference between peak demand and base load is plotted Figure 13.
Both are with respect to non-PEV load. It shows that with an increase in prediction horizon, the
solution becomes more optimal until it reaches a saturation point beyond which no more savings
can be obtained. This trend is indicative of a sweet spot for the selection of Hw beyond which
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Table 4. Peak demand and difference between peak (maximum) and base load (minimum)

Peak demand Peak minus base load
Case Scenario (kW) change (%) (kW) change (%)

Uncontrolled 1 4814 6.50 3944 7.97
charging 2 4832 6.90 3960 8.40

Smart charging 1 3827 -15.33 2032 -44.37
perfect knowledge 2 3563 -21.17 1542 -57.79

Smart charging 1 4252 -5.93 2877 -21.24
imminent knowledge 2 4194 -7.21 2857 -21.79

additional information on PEV flexibility and system, and increased computational complexity
and communication burden are unnecessary.
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Figure 12. Peak demand reduction percentage with varying Hw in scenario 1
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Figure 13. Load leveling improvement percentage with varying Hw in scenario 1
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6.0 Conclusions and Future Work

In this project, we have proposed a PEV mobility and charging availability model to capture
PEV characteristics, EVSE charger rating, driving energy requirement, and parked and departure
times, etc. Based on the mobility and charging availability model, optimization-based method
are proposed for offline evaluation of PEV charging coordination strategies. The proposed
method is used to study the loading condition of a distribution system with a medium penetration
of PEVs, considering different charging strategies and different levels of public EVSE availabil-
ity. Insights on different charging strategies and public EVSE utilization are provided. It is
found that flexibility from PEVs can be effectively utilized to shape system load through coor-
dinated charging. The addition of public EVSE as a supplement to home charging can further
reduce peak load, but to a limited extent for a medium congested system.

In addition, we have developed a simple yet powerful control method for effectively coordinat-
ing PEV charging/discharging to provide grid services. The proposed method consists of two
types of control agents: local EVSE controllers and a central coordinator. Each local EVSE
controller takes in information on PEV, EVSE, and customers’ driving needs to construct a sim-
ple charging flexibility model, which is equivalent to the comprehensive mobility and charging
availability model for charging control. The central coordinator takes the flexibility models
and formulates and solves the optimal charging power allocation problem. Compared with the
existing methods based on the comprehensive mobility model, the proposed method can help to
reduce computational complexity at the central coordinator and communication requirements
between the EVSE and the central coordinator. It is also robust to uncertainties in system load
and charging demand, and scalable as numbers of PEV and EVSE increase. The case studies
using a practical test system and realistic travel patterns showed that the proposed method can
effectively coordinate PEV charging for load management while meeting PEV owners’ travel
needs. The flexibility potential from a PEV fleet and the capability for load leveling depend on
PEV owners’ participation in smart charging program. Developing incentive mechanisms and
business framework for PEV owners to participate in a smart charging program is one of our
future plans. Another interesting task is to evaluate the technical and economic performance of
the proposed method for various single and multiple grid services. Additionally, a stochastic
optimization will be performed in the future to explicitly use uncertainty information on system
load and PEV trips for PEV charging coordination.
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