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Abstract 
 
The Thor pulsed power generator is being developed at Sandia National Laboratories. The design 
consists of up to 288 decoupled and transit time isolated capacitor-switch units, called “bricks”, 
that can be individually triggered to achieve a high degree of pulse tailoring for magnetically-
driven isentropic compression experiments (ICE). The connecting transmission lines are 
impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an 
ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore 
equation of state, material strength, and phase transition properties of a wide variety of materials. 
We present an optimization process for producing tailored current pulses, a requirement for 
many material studies, on the Thor generator. This technique, which is unique to the novel 
“current-adder” architecture used by Thor, entirely avoids the iterative use of complex circuit 
models to converge to the desired electrical pulse. We describe the optimization procedure for 
the Thor design and show results for various materials of interest. Also, we discuss the extension 
of these concepts to the megajoule-class Neptune machine design. Given this design, we are able 
to design shockless ramp-driven experiments in the 1 TPa range of material pressure. 
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1. INTRODUCTION 

The magnetically-driven isentropic compression (ICE) technique was developed on the Z 
accelerator at Sandia National Laboratories [1,2]. The technique has been used over the past 
fifteen years for a variety of material studies.  Currently the refurbished Z accelerator (also 
referred to as ZR) produces tailored current pulses to drive samples quasi-isentropically to 
pressures as high as 500 GPa [3]. Given the success of ZR, there has been a great interest in 
developing smaller, high-throughput generators for dynamic material experiments. This 
motivated the development of Thor, a compact generator based on a current-adder architecture. It 
has also motivated the development of the much larger megajoule-class generator Neptune.  

In this article we present an optimization procedure aiding the design of Thor; a next-
generation pulsed power generator that will achieve pressures as high as 100 GPa.  The 
description of Thor and an introduction to the optimization procedure is given in a recent 
publication by the authors [4]. The purpose of this report  is to provide a more in depth 
description of the optimization process as well as its generalization to all current-adder 
architectures. 

The design of the Thor generator is briefly outlined in Sec. 2. A new algebraic technique 
that calculates the switch triggering sequence necessary to achieve a desired load current time 
history is described in Sec. 3.  Application of the optimization technique to three examples of 
isentropic compression experiments on Thor is presented in Sec. 4.  Optimization on the 
megajoule-class generator Neptune is discussed in Section 5. Section 6. contains our 
conclusions. 

2. THOR CURRENT-ADDER PULSED POWER GENERATOR 

Thor consists of the following components:  

1. Up to 288 “bricks” which can be individually triggered. A brick is made of two 
capacitors connected in series to an electrically-triggered switch [5].  

2. 288 coaxial cables which are impedance matched to the bricks. The cable transit-
time length is chosen to be 300 ns in order to avoid wave reflections. 

3. A central power flow (CPF) consisting of a tri-plate deionized (DI) water line that 
transitions to a single plastic-insulated line. The plastic-insulated line terminates 
in a strip-line load where current is concentrated.  

Because Thor is modular in nature, we denote the configuration of the machine as “Thor-N”, 
where N is the number of bricks. As an example, the Thor-144 facility is shown in Fig. 1. 

Each brick is approximately impedance matched to output cables which act as constant 
impedance transmission lines to the CPF. This is conceptually shown in Fig. 2. We consider 
bricks as each providing identical current shapes in time, ( )i t , shown in Fig. 3.  The peak current 
for a +/-110 kV capacitor charge is 42 kA with a rise time of ~60 ns. The optimal transmission 
line for an individual brick is given by  
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1
1 1

1

1.1 0.8LZ R
C

= +  (1) 

where 1L , 1R , and 1C  are the single brick inductance, resistance, and capacitance, respectively 
[6]. We define the optimum impedance to be that which maximizes the peak forward-going 
power at the input to the CFS. Using Eq. (1) and our single brick circuit parameters (

1 1 1240 , 0.37 , 80L nH R C nF= = Ω = ), we find that 1 3Z = Ω . 

 Strictly speaking, Thor is a current-adder architecture where brick currents are combined 
in parallel into the CPF. However, voltage can also be added at the brick level by using a Marx 
bank configuration. Here the bricks are added together as shown in Fig. 4. We see that for each 
additional stage two capacitors and a switch are added in series. Therefore, in an m-stage Marx 
bank arrangement, the brick current ( )i t  remains the same compared to the regular brick case, 
while the brick output voltage is scaled by m. The brick circuit parameters become 

1 1 1, , /m m mL mL R mR C C m= = =  (2) 

and the optimal transmission line impedance can be expressed as 

1mZ mZ=  (3) 

Later we will use a combination of regular and “Marxed” brick to obtain an optimal current fit. 

Typical strip-line load panels are 1.0 cm to 2.0 cm in width with a length approximately 
equal to twice the width. Load panels are made of either copper or aluminum and are separated 
by a Kapton-layered film package with a total thickness of 0.5 mm. The strip-line is designed to 
produce planar magnetic pressure loading. This configuration is used to produce a compressive 
wave that propagates through the electrode and sample material contained within the panel body.   
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3. OPTIMIZATION TECHNIQUE  
 
3.1. Motivation 

The ability to tailor the pressure pulse is desired to delay the onset of shocks in samples. Pulse 
shaping delays the intersection of loading characteristics. Ideally, the pulse shape can be tailored 
so that all characteristics intersect at a single “critical” location Xc [7,8]. Given the equation of 
state (EOS) of a material, ideal pressure waveforms can be calculated.  In Fig. 5 we illustrate the 
construction of the ideal pressure waveform ( )IP t   for Aluminum compressed to 100 GPa. This 
waveform is constructed from the EOS for aluminum using Lagrangian wave characteristics 
which intersect at XC=3.9 mm. The corresponding pressure histories from a 1D hydrodynamic 
simulation show simultaneous shock formation at CX X≈  . 

On the ZR machine pulse tailoring is performed by individually triggering gas switches 
into 36 transmission lines. A transmission line code is used, along with 2D MHD simulations 
that capture the dynamic load inductance, to determine the optimal switching sequence. 
Complicating the pulse shaping is the fact that the gas and water switches in each ZR module are 
not transit time isolated from the switches in the other modules. As a result, reflections from 
modules triggered early can interact with the switches in the modules triggered later in the pulse. 
This “cross-talk” complicates the ability to design and predict the desired current pulse. 
Currently, the circuit model for ZR contains over 50,000 elements. Design of a desired pulse 
typically takes a physicist several days of iterative simulation work. Furthermore, due to 
uncertainties in other factors such as current losses, dedicated pulse shaping experiments on ZR 
are often required to determine the optimal machine configuration for a particular experiment.  

For a current-adder configuration such as Thor, we can take advantage of the transit time 
isolation of our bricks and determine our pulse without the use of a circuit or transmission line 
code. We note that this is unique to the current-adder architecture.  Essentially this involves 
using the brick current waveforms as basis functions to construct the desired configuration. The 
forward going wave, and thus the forward going electrical power, in any of the constant 
impedance coaxial lines is independent of the load for the “clear time” of the system. We define 
the clear time clearτ  as the constant impedance line electromagnetic round trip time, counting 
from the first triggered brick. Furthermore, given that the load is at a small radius, only the 
voltage average and the total current of all bricks need to be considered [9].  

 
3.2. Average voltage and total current 

To clearly state our optimization procedure it is useful to differentiate currents and 
voltages in different sections of Thor. By ,V I , we denote the average voltage and the total 
current at the CPF connecting circumference. ,k kV I , indicate the voltage and current at the kth 
angular location on that circumference. The brick voltage and current are denoted by ,k ku i . 
Using TEM waveguide theory, we may express the average voltage and total current as forward 
(+) and backward propagating (-) waves, 
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V V V+ −= +  (4) 

V VI
Z Z
+ −= −  (5), 

where  
1 1

/ ,  and 
N N

k k
k k

V V N I I
= =

= =∑ ∑ , and N is the number of bricks. 

We distinguish two relevant cases of N  bricks with identical current shapes:  

a) All the coaxial cables have the same impedance 1Z . In this case the impedance appearing 
in Eq. (5) is 1 /Z Z N= . 

b) The coaxial lines are not all of the same impedance. In this case 
1

1/ (1/ )
N

j
j

Z Z
=

= ∑ , which 

reduces to case a) when 1, .jZ Z j= ∀  

We show in reference [18] that for both cases we obtain for the forward propagating 
quantities. 

( )1
2

V V ZI+ = +      (6) 

1
2

VI I
Z+

 = + 
 

     (7) 

In case a) Equations (6) and (7) are exact results, while for case b) they are approximate, as we 
discuss in the Appendix. We remark that the average voltage and total current are the relevant 
quantities because the load is at small radius, where angular variations are negligible for the long 
wavelength electrical pulses employed by Thor [9]. 

Since the bricks are transit-time decoupled and the transmission lines are of constant 
impedance, the forward-going current is the sum of all individual forward-going currents at the 
CPF. 

( )
1

N

k k
k

I i t t+ +
=

= −∑  (8) 

where  is the set of brick delay times. During clearτ the brick current  

( ) ( / ) ( / ) /k coax k coax ki t i t l c u t l c Z+ = − = −  .     (9) 

That is, the kth forward propagating brick current and voltage equals the kth time translated brick 
current. Neglecting attenuation, the forward-going current (or voltage) is equal to the brick 
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current, until reflections from the brick can reach back to the CPF. The clear time for all the 
equal length coaxial lines is 2 / coaxl c . If we take as zero time the arrival of the earliest triggered 
time pulse to the CPF, no reflections affect any of the brick forward-going pulses at that location 
for the period going from zero time to the system clear time, i.e., 0 2 /clear coaxt l ct≤ ≤ = . 
Moreover, during that period, the forward-going current of a given brick at the CPF connection 
location, is the time translated current for that brick, which is the meaning of Eq. (9). Using the 
desired ICE load voltage and current (VD, ID) and the inductance of the CPF between the load 
and the cable header (LC), we may determine our desired forward-going current: 

 (10) 

We remark that for convenience we have lumped the DI water transmission line element of the 
CPF into the impedance LC. This is a reasonable approximation since the water line transit time 
of ~20 ns is much shorter than the typical current rise time of  200-500 ns. 

We then perform an optimization procedure to determine a set of kτ such that 0I + ≈ I+ . 
This involves finding an “adequate” local minimum to the L2 norm given by 

     (11) 

3.3. Summary of procedure 

1. Determine desired current and voltage at load: ID, VD . Typically this is done using a 
MHD code where these quantities can be determined self-consistently. 

2. Form the forward-going component of the total current 0I +  at the connecting point given 
by Eq. (10). 

3. Require the sum of the forward components of the brick currents be as close as possible 
to 0I + ; that is:  

( ) ( ) 0
1 1

N N

k k k
k k

I i t i t Itt + + +
= =

= − = − ≈∑ ∑  (12) 

where τ  is the delay time set given by    

  

and Eq. (12) is valid for 0 cleart t≤ ≤ . 
4. Minimize the difference between I+  and 0I +  by finding the local minimum of the L2  

norm  given by Eq. (11), employing a gradient-based technique to find the optimal 
delay times τ . 
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3.4. Consideration of attenuation 
 
The only important effect of attenuation, if it is not too large, is the uniform decrease of 
amplitude in the brick forward currents and corresponding voltages, as they arrive at the CPF 
connecting point. To confirm this assertion we take the coaxial cable resistance for the length of 
the cable corresponding to attenuation measurements. Based on measurements of the existing 
Thor cable at the characteristic frequency of 2 MHz, we take the resistance of each 300 ns transit 
time brick cable package to be RC=0.56 Ω. Using these values for impedance and resistance we 
solve the telegrapher’s equations numerically. In Fig. 6 we show the brick current after it has 
propagated to the end of one of the coaxial lines into a matched impedance. We see that the 
reflections are negligible, and that the signal shape is the same as the brick current multiplied by 
a factor of 0.9 . 
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5. EXAMPLES 
 
For examples we consider three materials that demonstrate the various aspects of the 

current-adder architecture as combined with the optimization technique. The first example is 
cerium, a relatively “soft” metal (low bulk modulus), with a complex phase diagram. We will 
consider the compression of cerium up to 40 GPa where the material is compressed through the 
γ, α, and ε phases [10]. This requires an aluminum electrode drive pressure of 33 GPa. When the 
γ-α phase boundary line is crossed, cerium undergoes a volume collapse resulting in a two-wave 
structure in the compressive wave. It should be noted that the pressure drive for cerium is 
considered closest-to-ideal as the low pressure phase transition prevents an ideal intersection of 
loading characteristics. 

The second example is tantalum. Here we wish to compresses the material shocklessly, 
hold it a constant pressure for ~100 ns, and finally release the material into a LiF window. The 
purpose of this design is a well-defined release wave whereby the material strength can be 
extracted through Lagrangian analysis [11]. The target copper electrode drive pressure for this 
design is 89 GPa, which gives a tantalum sample drive pressure of 110 GPa. 

The third example is aluminum, a standard electrode material for driving “soft” metals 
such as the aforementioned cerium. Aluminum is also a standard material for magnetically-
driven flyer plates. In the case of flyer plates, impact measurements are performed to 
characterize Hugoniot states. Similar to ICE, a shockless flyer plate is desired so as to have well-
characterized state for solving the jump conditions [12]. We consider shockless compression to 
~100 GPa which requires a higher applied load voltage than, for example, copper as well as a 
more exponential-like wave shape in both current and voltage. 

For each material example, we use the ALEGRA MHD code [13] to iteratively 
determine the current ID(t) and voltage VD(t) such that the magnetic pressure ( )MAGP t  
approximates the ideal drive pressure ( )IP t : 

( ) ( )2
0( ) / 2I MAGP t P t B t µ≈ =  (13) 

where ( )B t  is the magnetic field magnitude in the center of the insulating gap between the two 
drive panels. The pressure waveforms for all three examples are shown in Fig. 7. It should be 
noted that magnetic diffusion, which produces joule heating and ablation at the electrode surface, 
alters the ideal pressure drive applied to the sample. In practice the magnetic drive history must 
be slightly modified to maintain approximately ideal loading conditions. This process, which 
involves the use of a MHD code along with backward integration, is described in the literature 
[7]. The desired current and voltage waveforms are shown in Fig. 8. The details of each design 
are summarized in Table 1 where we also include the baseline 100 GPa copper design from 
reference 4.  

Using Eq. (10) we calculate the desired forward-going current that appears on the CPF 
after the TEM wave has propagated through the coaxial transmission lines. In this case, the 
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central power-flow inductance is given by LC=1.8 nH and the transmission line impedance is 
given by  

1 /Z Z N=  (14) 

where 1Z  is the single-brick effective cable impedance and N  is the total number of bricks. 

We form  given in Eq. (11), using the appropriate brick basis functions ( )i t (Fig 3), 
and find a  “good” local minimum. The optimization code is written in the Python programming 
language and uses optimization routines from the SciPy software package [14]. Specifically, a 
truncated Newton-conjugate gradient (TNC) method is used to find an adequate local minimum 
of the L2 norm given in Eq. (11). The TNC method iteratively solves the Newton equations under 
the constraint of each variable having an upper and lower bound [15]. In our case those bounds 
are minτ  and maxτ - the minimum and maximum trigger times.  

As in most optimization algorithms an initial guess must be provided. It is sufficient for 
these examples to choose a set of equally spaced trigger times from minτ  to maxτ . For all the 
example cases we organize our bricks into groups of eight bricks, where in each group the bricks 
share the same trigger time.  

For the cerium and tantalum examples we consider Thor configurations consisting of 144 
bricks and 200 bricks, respectively. The results of the optimization procedure are shown in Fig. 
9.  We see that a reasonable fit is obtained between the optimized forward-going current ( I+  ) 
and the desired forward-going current ( 0I +  ).  

For the tantalum case, we verify the closeness of fit of the resulting pressure waveforms 
using the MHD code. For this we form the circuit driven by the open circuit voltage. From Eq. 
(10) we obtain 

 (15) 

where 02OCV ZI += is the open circuit voltage. This is simply an inductance-resistance (LR) 
circuit that can be applied to our MHD calculation. The results of the MHD calculation for both 
the desired and the optimized voltage-driven cases are shown in Fig. 10. We see good agreement 
between the desired and optimized pressures during the shockless ramp phase. We note some 
difficulty in obtaining the flatness of the pressure drive. However, in practice this is acceptable.  
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For the aluminum case we consider a Thor configurations consisting of up to 288 bricks. 
We use this example to illustrate the procedure using “mixed” bricks. Here we combine our 
regular bricks with bricks arranged in a two-stage Marx configuration.  According to Eq. (3) the 
two-stage (m=2) Marxed brick will have a transmission line impedance of 2 12Z Z= and a voltage 
of 2 ku . 

The motivation behind using mixed bricks is that we require a relatively high final 
voltage (150 kV) at the load for the aluminum case. It is clear that the regular bricks cannot 
provide this peak voltage as the load voltage they provide is generally less than 100 kV. We 
denote the number of regular bricks by N1 of impedance 1Z  and the number of Marxed bricks as 
N2 of impedance 2 12Z Z= . Thus, the total number of bricks is given by N=N1+N2. We consider 
combinations ranging from all regular bricks (N1=288, N2=0) to all Marxed bricks (N1=0, 
N2=216). This is conceptually shown in Fig. 11. The results for four combinations of regular and 
Marxed bricks are shown in Fig. 12. The best fit is obtained, as expected, with all Marxed bricks. 
An adequate fit is obtained with a half-and-half configuration (N1=144, N2=144).  For all the 
cases we have used 1 23 , 6Z Z= Ω = Ω .  

To verify the assumptions in case b) are correct, we calculate the total current in the load 
given our set of optimized delay times. For this we use the Screamer circuit code, which includes 
individual brick LRC circuits connected to the CPF through transmission lines of the appropriate 
impedance [16,17]. The CPF is treated as a constant inductor connected in series to the MHD-
calculated load inductance.  

Since our results should be independent of brick-type ordering, we consider three cases 
with the half-and-half mixed brick case: (1) All Marxed bricks triggered last; (2) All Marxed 
bricks triggered first; and (3) A random ordering of Marxed and regular bricks. The results are 
shown in Fig. 13. We see that all three cases, calculated using Screamer, are closely matched 
with each other. Also, the results are in good agreement with the desired current pulse, thus 
further validating the approximation we introduced for the mixed brick case. 

The results shown in Figure 13 are confirmation of our previous assertion: because the 
load is at small radius, only the average voltage needs to be considered. Thus, as long as the 
triggering is such that the desired average voltage is well approximated, the quality of the fit 
does not depend on the brick triggering order. Also, as a further consequence, the fit does not 
depend on geometrical factors such as the number or location of the cables on the CPF. 

In practice, we have found a useful guide in determining the optimal number and type of 
bricks, given a desired ICE design. First, we note that the energy delivered to CPF, including the 
load, is typically one quarter of the total electrical energy when pulse tailoring is invoked.  We 
observed this in the many optimization calculations we have performed. We therefore use this 
rule-of-thumb in the following discussion. For the case of the regular and Marxed bricks, this can 
be expressed as  

1 2
1

4 2CPFE N N
Zη

= +  (16) 
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The CPF electrical energy is given by 

, (17) 

where T is the pulse time, and the brick energy integral is 

2

0
( )BT

i t dtη = ∫ , (18) 

where BT  is the time after which the current is negligible. 

Second, we note that for maximum energy efficiency the total cable impedance Z should 
be approximately equal to some averaged value of the CPF impedance measured at the 
connecting point. This can be expressed as  

2
1 2CPF

NZ N
Z

= +  (19) 

where the energy-weighted average inductance is given by 

 (20) 

and the time-dependent CPF power and impedance are given by 

( )
( )

/ ,

.

CPF D C D D

CPF D C D D

Z V L I I

P V L I I

= +

= +





 (21) 

Therefore, given our desired voltage and current, we may solve Eq. (16) and (17) to 
determine brick numbers N1 and N2. Using our aluminum case we find that the optimal 
configuration is given by N1=8, N2=207. This is very close to our best-case shown in Fig. 12 
which was given by N1=0, N2=216. In fact, we see that the total cable impedance Z for this 
example is very close to its energy-weighted average  (Fig. 14). 

To demonstrate the effects of attenuation on the optimization process, we again consider 
the aluminum example 1 2( 144, 144)N N= =  with resistive transmission lines. Including the 
aforementioned cable resistance the circuit calculations gives us a current waveform that 
undershoots the desired waveform by approximately 10%. This assumes the previously 
determined trigger time set . To compensate for the cable attenuation, we utilize as basis 
functions attenuated brick currents, including the resistive effect, which as we described above 
consists of simply replacing ( ) by 0.9 ( )i t i t . The corrected current waveform becomes the 
“attenuated” brick basis function and is used in the optimization procedure to find a new set of 
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trigger times . The results of using the new trigger time set  in a circuit calculation are 
shown in Fig. 15. We see that this modified procedure is successful in producing a total current 
that is close to the desired current waveform.  

6. NEPTUNE 
 
6.1. Motivation and machine design 
 

The ZR machine uses conventional, state-of-the-art, pulsed power technology to achieve 
high pressures. Recently, we have developed the "current adder" architecture to overcome some 
of the limitations of standard pulsed-power machines. One of these limitations is the difficulty in 
producing tailored pulses with internal voltage reflections from the closely coupled Marx banks. 
Another limitation is the energy delivery inefficiency caused by the need for multiple stages of 
pulse compression.  

We have extended the current adder concept to design a machine capable of 1 TPa level 
performance. This machine, called Neptune, consists of N=600 independent impedance-matched 
bricks [19]. Each brick is an 8-stage Marx generator (the case of m=8 in Eq. 2 and 3) which 
produces a 52 kA current pulse with a rise time of 100 ns.  Neptune stores 4.8 MJ of electrical 
energy in its brick capacitors. A  τ=450 ns long water insulated coaxial transmission line 
transports the power generated by each brick to a system of 12 electrically parallel water-
insulated conical transmission lines. The coaxial lines ensure that transit-time isolation is 
maintained for the clear time of τ=900 ns.  Impedance matching is maintained between the bricks 
(ZB) , the coaxial lines (Z1), and the system of conical lines (ZW). This can be expressed as 

1B
W

Z ZZ Z
N N

= = =  (22) 

where Z is the effective impedance. 

The conical water lines are connected electrically in parallel by a water-insulated 
convolute.  The convolute sums the electrical currents at the conical lines, and delivers the 
combined current to a single solid dielectric insulated radial transmission line.  The radial line in 
turn transmits the combined current to the physics load.  The Neptune concept is shown in Fig. 
16.  

As in the case of Thor, current-adder machines like Neptune can be thought of consisting 
of three components: 1) Bricks that provide the current; 2) constant impedance transmission 
lines; and 3) a central power flow section (CPF) where the currents are combined and delivered 
to the physics load. Using the desired ICE load current and voltage (ID, VD)  we may determine 
our desired forward-going current I0+.  

The desired current and voltage are found iteratively through two and three dimensional 
magnetohydrodynamic (MHD) modeling of the strip-line load. This accomplished by specifying 
a magnetic pressure drive (Eq. 13).  
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6.2. ZR-level performance designs 
 

We consider using Neptune to reproduce two major experimental platforms that are currently 
being fielded on the ZR machine. The first is an aluminum flyer plate capable of reaching a 
velocity of 30 km/s. As mentioned earlier, these impact experiments are used to determine 
Hugoniot states in materials. The second experiment is a high-pressure metal, tantalum; ramp 
compressed up to 600 GPa. This design produces shockless loading of the tantalum, allowing a 
quasi-isentrope to be determined up to peak pressure. In both cases we use 2D MHD calculations 
to determine the desired electrical quantities ID and VD. We note that these specific calculations 
were originally used to design experiments on ZR, Design parameters and load performances are 
summarized in Table 2. 

The aluminum flyer plate design consists of panels of length 20 mm and width 15 mm . The 
AK gap is 1 mm and the aluminum flyer plate thickness is 1 mm. 60 brick-groups are chosen to 
perform the optimization. The results of the optimization are shown in Fig 17 (a), where 
optimized trigger times are determined to produce a best match to the desired forward-going 
current. As discussed in section 5, we perform a 2D MHD calculation using the optimized open-
circuit voltage (Eq. 15). This is simply a series circuit consisting of the resistance Z, the 
inductance LC, and the computational strip-line element. The circuit is driven by the open-circuit 
voltage VOC=2ZI+. We see in Fig. 17 (b) that we obtain good agreement between our 
“optimized” total current, the result of our trigger time set τ , and our original “desired” total 
current.  

The tantalum design consists of copper panels of length 20 mm and width 11.6 mm. The AK 
gap is 1 mm and the copper driver plate thickness is 1 mm. 40 brick-groups are chosen to 
perform the optimization. The results of the optimization are shown in Fig 18. Again we obtain 
excellent agreement between optimized and desired quantities, thus ensuring that shockless 
loading can be maintained to a peak pressure of 600 GPa in this design. 
 
6.3. 1 Tpa designs 

 
We consider copper shocklessly ramp-compressed to 1 TPa over a time scale of 600 ns.  

Under these conditions copper will be driven from its ambient density of 8.93 g/cm3 to a density 
of approximately 19 g/cm3. Copper is of great interested because it is used on the ZR machine as 
a driver material for many material physics experiments. Also, copper is being used as a standard 
on other high-pressure experimental platforms [20]. 

Typically, an "ideal" pressure drive is determined from the condition of intersecting 
loading characteristics at the Lagrangian "shock-up" distance XC. For instance, for the 600 ns 
drive considered here, XC=2.2 mm. In practice, the pressure drive must be modified to account 
for magnetic diffusion into the electrode, which alters the pressure drive. This modification is 
performed through iterative 1-D calculations with an optimization program. The final results of 
this process are shown in Fig. 19 where the B-field drive is determined to obtain a shockless free 
surface velocity profile in a 1.8 mm copper sample. This B-field is in turn used to determine the 
magnetic pressure given in Eq. 3. 

The panel dimensions are carefully chosen to meet the current, energy, and voltage 
requirements for reaching 1 TPa in magnetic pressure. It should be noted that several geometric 
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and temporal factors affect the design of the strip-line load, given limitations in the electrical 
quantities. First, panel width can be adjusted to achieve the current density necessary to reach the 
target pressure. Second, panel length can be adjusted to limit the voltage and energy delivered to 
the load. Third, since ideal pressure waveforms are self-similar in time, the rise time can be 
scaled to limit the total energy delivered to the load. It should also be noted that slight 
modifications, not considered here, such as panel tapering can be employed to improve drive 
planarity. We find that an optimal configuration for panels of length 12 mm and width 6 mm 
with the aforementioned current rise time of 600 ns. 

We performed 3D MHD calculations on a representative strip-line load to determine the 
ID and VD that will reproduce the magnetic pressure drive PMAG. Peak ID and VD are 14 MA and 
780 kV, respectively. 1 MJ of electrical energy is delivered to the load. Cross sections of the 3D 
strip-line are shown in Fig. 20 at the initial time T=0 ns and the peak compression time of T=600 
ns. During compression, the anode-cathode gap is expanded from the initial 1 mm width to a 
final gap width of ~3 mm. Correspondingly the inductance grows from an initial value of 2.5 nH 
to a final value of 6.3 nH.  

Our electrical quantities ID and VD are used to construct the forward-going voltage given 
in Eq. 2. Transmission line impedance and CPF inductance are given by Z=0.0275 Ω and LC=3.0 
nH, respectively. To perform the optimization, we consider all 600 brick with 100 trigger points. 
Performing the optimization outlined in Eq. 2 we obtain our optimized triggering sequence and 
best-fit to the desired forward-going current [Fig. 21 (a)]. 

As a check on our procedure we apply the open-circuit voltage obtained from our 
optimization process to a Neptune circuit model self-consistently coupled to the 3D MHD 
calculation. As before, the circuit is driven by the open-circuit voltage VOC=2ZI+.The results of 
the calculation are shown in Fig. 21 (b). We see that pressure drive obtained from the 
optimization procedure is in good agreement with our desired pressure drive. 

In summary, we have shown that a new pulsed power driver, called Neptune, is capable 
of performing magnetically-driven shockless ramp experiments in the range of 1 TPa of pressure. 
The design, which uses a current-adder architecture, enables the rapid determination of shaped 
current pulses that are required for shockless loading. This is accomplished by an algebraic 
optimization technique that takes advantage of the time-transit isolated current pulses produced 
by the 600 brick circuits in the design. The copper ICE design presented here represents one of 
many ~1 TPa designs that could be fielded on Neptune. For instance, using copper as the driver 
electrode, experiments with tantalum, lead, and iron could be performed in the same pressure 
range. 

7. CONCLUSIONS 
 

The Thor current-adder design uses multiple capacitor-driven brick switches to deliver 
current to a power flow structure via impedance matched, transit-time-isolated coaxial cables. 
The current is concentrated into a strip-line load where dynamic material experiments can be 
performed using the large magnetic pressures. Because of the decoupling of the individual 
bricks, current can be tailored to achieve shockless loading. This is done through an optimization 
procedure that uses the individual brick current waveforms as basis functions in building the 
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desired total current pulse. This effective and fast technique can be used to design precisely 
tailored waveforms for a variety of material experiments. It may also be generalized to all 
current-adder architectures that maintain transit-time decoupling of the bricks, including 
machines that contain different combinations of voltage-added or “Marxed” bricks. Ultimately, 
this optimization technique can be applied to efficiently design 1 TPa-level material experiments 
on next-generation current-adder pulsed power machines such as Neptune.  
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9. FIGURES 
 
. 
 

 

 
 

 
 

Figure 1. Thor-144 facility consisting of 144 bricks. Shown are the brick towers, cable runs, and 
the CPF. Inset shows ICE panel in center section where current is concentrated. Ultimately Thor 
will be extended to Thor-288, the maximum capability of 288 bricks.  
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Figure 2. Conceptual drawing of the Thor current-adder architecture. Current from N bricks is 
added in parallel using transmission lines which connect to the CPF. There the current is 
concentrated into the strip-line load. The equations corresponding to this “ circuit-like”  diagram 
are in Section 3.2  (case a).  
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Figure 3. Brick current ( )i t . 
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Figure 4. Circuit diagram showing the arrangement of m bricks into an m-stage Marxed brick. 
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Figure 5. Aluminum compressed to 100 GPa with a tailored pressure pulse ( )IP t  . Pressure 
profiles are shown at Lagrangian distances in the sample from X=0 mm to X=4 mm, in steps of 1 
mm. A shock is formed simultaneously along the full pressure range at X=4 mm. Inset shows 
construction of ideal waveform in Lagrangian t-X coordinate space where characteristics 
intersect at XC=3.9 mm. 
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Figure 6. Attenuated cable signal ( )i t′  after transmission through a 300 ns line and into an 
impedance matched load. This is equivalent to a scaled brick current of ( )0.9 /i t l c−  . 
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Figure 7. Pressure waveforms MAGP  for the three example cases. 
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Figure 8. (a) Desired current waveforms DI  and (b) voltage waveforms DV  for the three example 
problems. 
 
 

 

  

(a) 

(b) 
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Figure 9. (a) Cerium optimizations results for 144 bricks and 36 trigger times. (b) Tantalum 
optimization results for 200 bricks and 40 trigger times. Shown for each case are the optimized 
fit of the forward-going current to the desired forward-going current. Insets show the optimized 
trigger times τ for each example. 
 

(a) 

(b) 
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Figure 10. Desired pressure waveforms compared with MHD-calculated pressures using the 
optimized open circuit voltage (OPT). Shown are both the magnetic pressure driving the copper 
electrode ( MAGP  ) as well as the pressure driving the tantalum sample ( TaP  ). Inset shows the 2D 
MHD calculation at 700 ns. Inset color contours are density (g/cm3) and lines are contours of 

MAGP  . 
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Figure 11. Conceptual representation of Thor for the mixed-brick case. Bricks 1 to N1 represent 
single-stage bricks. Marx 1 to N2 represent two-staged Marxed bricks. The equations 
corresponding to this “ circuit-like”  diagram are in Section IIIB (case b). 
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Figure 12. Aluminum optimization results with various mixed-brick options; 1N  bricks of 
impedance 1 3Z = Ω , and 2N  of impedance 2 6Z = Ω . 
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Figure 13. Desired current compared to Screamer circuit calculations with optimized trigger 
times for the mixed brick aluminum example 1 2( 144, 144)N N= =  . Screamer calculations for 
the three brick-ordering combinations described in section IV. 
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Figure 14. CPF impedance ZCPF, energy-weighted CPF impedance CPFZ , and total cable 
impedance Z for the best-fit aluminum example. 
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Figure 15. Desired aluminum example current waveform compared to the optimized current 
waveform for the following cases: (1) no cable losses; (2) cable losses and no correction in the 
trigger times τ ; and (3) cable losses and a set of trigger times based on corrected, or attenuated, 
brick basis functions τ ′ . 
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Figure 16. (a) Neptune facility design. (b) Neptune conceptual design. Single brick current 
waveform i(t) is also shown. N=600 bricks are connected in parallel in the Neptune design. 
 
 
 
 
 
 
 
 

(a) 

(b) 
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Figure 18 

(a) 

(b) 

Figure 17. (a) Results of optimization using 60 brick-
groups each consisting of 10 bricks. (b) Comparison of 
desired current to optimized current obtained by using 
forward-going current in the MHD code. Inset shows 
calculation at peak current. 
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  (a) 

(b) 

Figure 18. (a) Results of optimization using 40 brick-
groups each consisting of 15 bricks. (c) Comparison of 
desired current to optimized current obtained by using 
forward-going current in the MHD code. Inset shows 
calculation at peak current. 
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Figure 19. Optimized magnetic field waveform and resulting free-surface velocity profile of a 
1.8 mm copper sample. Inset shows ICE panel arrangement. 
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(a) 

(b) 

Figure . 3D density cross-sections of the 
strip-line at (a) initial time T=0 and  (b) peak 
pressure time T=600 ns. Density is given in 
kg/m3 and axes dimensions are in millieters. 

Figure 20. 3D density cross-sections of the strip-line at (a) 
initial time T=0 and  (b) peak pressure time T=600 ns. 
Density is given in kg/m3 and axes dimensions are in 
millimeters. 
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Figure 21. (a) Results of optimization using 100 brick-groups each 
consisting of 6 bricks. (b) Desired magnetic pressure waveform 
compared to pressure obtained using the optimized forward-going 
current in a self-consistent 3D simulation. 

(a) 

(b) 
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Table 1. Examples considered for Thor optimization 
 
 

Experiment 
Panel WxL 
(mm x mm) 

Driver 
Thickness (mm) Peak V (kV) Peak I (MA) 

 
Peak PMAG 

(GPa) 
 

   

 
Peak ELOAD 

(KJ) 
 

   Copper 10 x 20 - 83.5 5.1 100 46.3 

Aluminum/Cerium 15 x 30 1.0 70.4 4.27 33 29.6 

Copper/Tantalum 10 x 20 1.0 70.0 5.29 89 46.3 

Aluminum 10 x 20 - 147 5.61 100 62.3 
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Table 2. Examples considered for Neptune optimization 
 
 

Experiment 
Panel WxL 
(mm x mm) 

Driver 
Thickness (mm) Peak V (kV) Peak I (MA) 

 
Peak PMAG 

(GPa) 
 

   

 
Peak ELOAD 

(MJ) 
 

   Aluminum Flyer 15 x 20 1.0 864 20.4 43.7 1.58 

Copper/Tantalum 10 x 20 1.2 437 17.5 55.2 1.06 

Copper 6 x 12 1.8 432 13.6 1070 1.00 
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