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Abstract

Monte Carlo (MC) sampling is a common method used to randomly sample a range of
scenarios. The associated error follows a predictable rate of convergence of 1/+/N, such that
quadrupling the sample size halves the error. This method is often employed in performing
global sensitivity analysis which computes sensitivity indices, measuring fractional contribu-
tions of uncertain model inputs to the total output variance. In this study, several models are
used to observe the rate of decay in the MC error in the estimation of the conditional variance,
the total variance in the output, and the global sensitivity indices. The purpose is to examine
the rate of convergence of the error in existing specialized, albeit MC-based, sampling methods
for estimation of the sensitivity indices. It was found that the conditional variances and sensi-
tivity indices all follow the 1/v/N convergence rate. Future work will test the convergence of

observables from more complex models such as ignition time in combustion.



[. INTRODUCTION

Modeling systems and physical phenomena has error abound from experimental error to the inabil-
ity to completely model the system of interest. These issues are especially common in chemical
kinetics and reaction modeling. In a seemingly straightforward reaction, there are tens, hundreds,
even thousands of intermediate elementary reactions that make up the overall step. The reaction
rate of each reaction depends on temperature, specific activation energy, and pre-exponential fac-
tor. That, in turn, leads to many more inputs into a model with more opportunities for introducing
uncertainty into the output. There are two steps to combat the unfeasibly large models and the
uncertain inputs that go with them: use Monte Carlo sampling with global sensitivity analysis to
efficiently sample from the input space and determine which inputs significantly contribute to the
uncertainty in the output. This process may then reduce the input space of a majority of the inputs,
allowing the model dimensions to be reduced and more effective sampling methods such as sparse
quadrature can be performed on the simplified model. In this paper, we discuss the convergence
properties of Monte Carlo sampling to confirm the theoretical rates of convergence for global sen-
sitivity analysis results. A simple and complex model are used to touch on the various sensitivity
measures. It was expected that the convergence of the conditional variance and sensitivity indices

would follow the 1/+/N rate.

II. MONTE CARLO SAMPLING

Monte Carlo (MC) analysis is a method to randomly sample from the input space using each
input’s respective probability density function!’ The Monte Carlo sampling methods known today
stem from Los Alamos National Laboratory’s efforts in the 1930’s to estimate quantities related to
controlled fission? MC sampling has several key attributes that make it ideal for high-dimensional
models such as combustion and other kinetic models. First, the error in estimation of an MC-based

quantity of interest converges at a rate of 1/1/N, where N is the number of samples. As the number



of samples quadruples, the error in estimation halves. Although this rate is slow, it is constant and
independent of dimensions. A model may have 10 dimensions or 1,000 dimensions, and the error
in estimation will still converge at the same rate. Second, MC sampling is robust and does not
depend on the smoothness of model outputs. This is ideal for modeling chemical ignition, as there

are sharp time gradients in many system outputs.

Ill.  SENSITIVITY ANALYSIS

Sensitivity analysis is a tool used in a variety of fields to study the contribution and significance
of input variation to variation in the output of a model ' An application of sensitivity analysis is
to reduce the model of interest by identifying insignificant uncertain inputs and either eliminating
the inputs from the model or setting their values. This is used often in chemical reaction models to
reduce dimensionality from thousands of reactions to a handful that contribute to uncertainty.

Although there are various types of sensitivity analysis techniques, this research focused ex-
clusively on global (variance-based) sensitivity analysis (GSA). The GSA method divides the un-
certainty of the output among the uncertainty in the model input factors by varying all inputs
simultaneously, unlike local sensitivity analysis, which varies one input at a time to determine its
effects. The input uncertainty is based on the entire support and form of each input probability
density function.!

The analysis results in sensitivity indices as discussed more thoroughly in the following section.

A. Method of Sobol’

Sobol’ sensitivity indices represent an approach to estimate fractional contributions from individual
parameters of a combination of paramters to the total variance in specific quantities of interest
output from a model !’ Calculating sensitivity indices using an MC-based algorithm requires n(d +
2) number of model evaluations where 7 is number of samples and d is number of independent

random variables or the stochastic dimensionality of the model. As such, Monte Carlo sampling is



best suited for this method because it can handle high-dimensional problems.

Based the work done by Sobol’ and eloquently shared by T. Crestaux et al.* the following
highlights an understanding of the Sobol’ method. First, the input range is described by the fol-
lowing equation:

Ql=Qx---xQ (1)

d times

where Q is the space of an input. Each independent random variable has its own probability density
function, p(x;), as well.
The fundamental aspect of the Sobol” method is the decomposition of the model into a collec-

tion of summands, as in

d
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where fy = E[y| is the expected value of y. Each of the 2¢ — 1 functions within the individual
summands can be used to evaluate the conditional variances, D, or uncertainty from one or more
of the random variables.

The conditional output variance for input u can be determined using the following equation:

Dy = [ Eblulpln)dx, — f§ = Var(Elyix,) @)
Qu

where Var and E are the probabilistic variance and expectation of a random variable.

The total variance of the output can be defined as

p-[ ()= o p()(x) = Var() “

Once the total variance and conditional variances of the output are calculated for each random

variable input, sensitivity indices can be found. Three sensitivity indices are discussed explicitly
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in this paper; however, 2¢ — 1 indices exist for a given model.
First, the first-order or main-effect sensitivity index is shown below. This index measures how

a single input affects the output:

¢ _ Di _ Var(Ely|x])
Si = D Var(y) )

where k = size of the ensemble at N number of samples. Next is the second-order or joint sensitivity
index, which measures the joint interactive effect between two input uncertainties:
S-~—@—S-—S- (6)
ij — D i J
The summation of all first-order, joint, and higher-order sensitivity indices for a model add up

to 1 which makes it a useful indicator.

k
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i=1 1<i<j<d
Finally, the total-order or total-effect sensitivity index, found in the following equation, de-
scribes the whole impact of a random variable’s uncertainty on the output including joint interac-

tion with other random variables.

TS, =1— -2 8)

where ~ i denotes all inputs except i. The summation of all input total-order sensitivity indices do
not necessarily add to one as is the case in Eq. (7). This is due to the incorporation of higher-order,

joint interactions between the inputs.



IV. EXAMPLES

In order to work up to complex models with the theory, the convergence of the Sobol’ indices and
its constituent parts needs to be evaluated. To verify the expected convergence rate of Monte Carlo
sampling, the following error in estimation equations were used for a simple and complex model,

respectively.

1 K
Ey =2 ) [0 — Gexacr 9)
k=1

where q);‘\, = quantity of interest for k' ensemble at N samples and Qrqe; = exact value of quantity

of interest.
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Eq. (9) relies on knowing the analytical, exact solution to the quantity of interest. This be-
comes increasingly difficult the more complex a model, thus Eq. relies on self-convergence.
Each quantity of interest at various N is with respect to the same reference value— the exact solu-
tion. Finding the difference between two quantities of interest cancels out the unknown reference

making it ideal for black-box or complex models.

A. Simple model

A simple model was used to examine the first-order sensitivity index and the conditional variance

with respect to input x;. This model is given by

y=f(x) =x1+x (1)

where x; ~ N(0,2%) and x, ~ N(0,1?)
An ensemble size, k, of 100 was used with N (number of samples) of {100, 200, 400, 800,
1600, 3200, 6400, 12800, 25600, 51200, 102400, 204800, 406900}. Eq. @) was used after the

analytical solutions to the quantities of interest were found.



Figures 1, 2, and 3 all relate to the simple model and plot the Eq. (9)) at each number of samples
compared to a 1/+/N trend. Figure 1 shows a fairly smooth Monte Carlo trend for the conditional

variance with respect to input x; with only 100 realizations in the ensemble.
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FIG. 1. Error in estimating the conditional variance of x; of a simple model as a function of N number of
samples.

Similarly, the total variance in Figure 2 is mostly constant with a local dip at 25600 samples,
due to random sampling error. The total variance was plotted as a check due to its simplicity in

calculating the quantity of interest.
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FIG. 2. Error in estimating the total variance of simple model as a function of N number of samples.

The error in estimating the first-order sensitivity index for x; also closely follows the MC
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convergence rate as the number of samples increases.
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FIG. 3. Error in estimating the first-order sensitivity index of simple model input x; as a function of N
number of samples.

B. Complex model

After a successful trial with the simple model and the first-order sensitivity indices, a slightly more

complex model is used, as seen in the following equation:
y=fx) =x14x+ (x1%x2) (12)

where x| ~ N(0,2) and x; ~ N(0,1)

The final term adds a joint interaction between the two inputs, x| and x, allowing for a study
of the second-order and total-order sensitivity index error convergence. The same ensemble size,
k, of 100 and sample size range was used for the complex model.

Using Eq. , Figure 4 clearly shows a 1/1/N convergence rate for the joint sensitivity index
between x; and x,. Figure 5 plots the error in estimating the total sensitivity index for x; and also

converges at a steady 1/ V/N rate.
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FIG. 4. Error in estimating the joint sensitivity index of complex model inputs x; and x, as a function of N
number of samples.
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FIG. 5. Error in estimating the total-order sensitivity index of complex model input x; as a function of N
number of samples.

After studying the convergence of error in estimating Monte Carlo-based sensitivity indices
and the conditional variance, the expectation that each quantity of interest would converge at a

Monte Carlo sampling rate of 1//N holds.

V. CONCLUSION

Global sensitivity analysis using Monte Carlo sampling is an invaluable tool in model evaluation

and simplification. This study of convergence verifies that the methods of sampling and sensitivity
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analysis follow what is expected from general Monte Carlo sampling. Future work will continue to
push more complex chemical kinetic models and investigate the sensitivity of various observables
from the models such as peak concentrations and temperature. There is more to explore as models

become more elaborate.
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